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ON AN ALGEBRAIC FORMULA AND APPLICATIONS TO GROUP

ACTION ON MANIFOLDS∗

PING LI† AND KEFENG LIU‡

Abstract. In this paper we consider a purely algebraic result. Then given a circle or cyclic
group of prime order action on a manifold, we will use it to estimate the lower bound of the number
of fixed points. We also give an obstruction to the existence of Zp action on manifolds with isolated
fixed points when p is a prime.
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1. Introduction. In this short note we first prove a purely algebraic result,
which stems from the localization formulae of group actions on manifolds, and the
idea of which has been used in several literatures ([8], [6], [5], [7], [2]). Then, using this
result, we shall give some applications to circle action and finite cyclic group action
on unitary manifolds and smooth manifolds. The rest of this section is to introduce
and prove this algebraic result and the next two sections are devoted to applications.

Let F be a field (finite or infinite). What we are mainly concerned with are the
real number filed R and finite field Z/pZ =: Zp. Here Z is the integer ring and p is a
prime.

Suppose we have a set of r elements {P1, · · · , Pr}. We call such a set a weighted

set over F if, for each Pi, 1 ≤ i ≤ r, we associate n + 1 numbers µi, a
(i)
1 , · · · , a

(i)
n in

F to it. µi is called the coefficient of Pi and a
(i)
1 , · · · , a

(i)
n are called characteristic

numbers of Pi. We will see in the next section that such a system appears naturally
as the fixed points of group action on manifolds and the coefficients and characteristic
numbers of these elements will be induced from the representation on the tangent
spaces of the corresponding fixed points.

Now we will introduce the concept of stable weighted set.
Let λ = (1m1(λ)2m2(λ) · · ·nmn(λ)) be a partition of weight w, i.e., mj(λ) are all

non-negative integers and
∑n

j=1 j ·mj(λ) = w. For convenience we set

a
(i)
λ :=

n
∏

j=1

(a
(i)
j )mj(λ).

We call a weighted set {P1, · · · , Pr} over F stable if for any 0 ≤ w < n and any
partition λ = (1m1(λ)2m2(λ) · · ·nmn(λ)) of weight w, we have

(1.1) Γ(λ) :=

r
∑

i=1

µi · a
(i)
λ = 0.

The reason of this definition lies in the localization formulae of group actions and its
underlying geometric meaning will be clear in the next section.
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For a partition λ = (1m1(λ)2m2(λ) · · ·nmn(λ)), we define

m(λ) := max{m1(λ),m2(λ), . . . ,mn(λ)}.

With these notations understood, we can state the main result in this section.

Proposition 1.1. Let {P1, · · · , Pr} be a stable weighted set over a field F . If

there exists a partition λ = (1m1(λ)2m2(λ) · · ·nmn(λ)) of weight n such that m(λ) ≥ r,
then

Γ(λ) =

r
∑

i=1

µi · a
(i)
λ = 0.

Proof. Without loss of generality, we may assume m1(λ) = m(λ). Let

(1.2) {a
(i)
1 | 1 ≤ i ≤ r} = {s1, . . . , sl} ⊂ F

By definition s1, . . . , sl are mutually distinct, l ≤ r, and l = r if and only if a
(i)
1 , . . . , a

(i)
n

are mutually distinct. Define

At :=
∑

1≤i≤r

a
(i)
1 =st

µi · (a
(i)
2 )m2(λ)(a

(i)
3 )m3(λ) · · · (a(i)n )mn(λ), 1 ≤ t ≤ l.

Now let us consider the following m1(λ) partitions:

λ(j) := (1j2m2(λ)3m3(λ) · · ·nmn(λ)), 0 ≤ j ≤ m1(λ) − 1.

The weights of these λ(j) are all less than n as the weight of λ is exactly n. Then
following (1.1) we have



















A1 +A2 + · · ·+Al = 0
s1A1 + s2A2 + · · ·+ slAl = 0
...

(s1)
m1(λ)−1A1 + (s2)

m1(λ)−1A2 + · · ·+ (sl)
m1(λ)−1Al = 0.

(1.3)

Note that l ≤ r and by assumption m1(λ) = m(λ) ≥ r, which follows l ≤ m1(λ).
By definition s1, · · · , sl are mutually distinct, which means the determinant of the
coefficient matrix of the first l lines of (1.3) is

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
s1 s2 · · · sl
...

...
. . .

...
(s1)

l−1 (s2)
l−1 · · · (sl)

l−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤i<j≤l

(sj − si) 6= 0,

which is a nonsingular Vandermonde matrix.

Thus

A1 = A2 = · · · = Al = 0.
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Therefore,

Γ(λ) =

r
∑

i=1

µi · a
(i)
λ

=

r
∑

i=1

(a
(i)
1 )m1(λ) · µi · (a

(i)
2 )m2(λ) · · · (a(i)n )mn(λ)

=

l
∑

t=1

(st)
m1(λ) ·At = 0

Remark 1.2. The idea of this proof can be traced back to Pelayo-Tolman ([8],
Lemma 8) and the present authors

(

([6], Lemmas 3.1 and 3.2), ([5], Lemmas 3.2 and

3.2)
)

. Lü-Tan also used this idea in their proof of Theorem 1.1 in [7], which was
extracted by Cho-Kim-Park in ([2], Theorem 2.2) without pointing it out explicitly.

Corollary 1.3. Let {P1, · · · , Pr} be a stable weighted set over a field F . If we

define

m := max{m(λ) | λ : partitions of weight n such that Γ(λ) 6= 0},

then

r ≥ m+ 1.

Note that if in Proposition 1.1 F is a finite field, then by (1.2) we know l ≤ |F |,
where |F | is the cardinality of F . Therefore we have the following implication from
the process of proving Proposition 1.1.

Corollary 1.4. Let {P1, · · · , Pr} be a stable weighted set over a finite field

F . If there exists a partition λ = (1m1(λ)2m2(λ) · · ·nmn(λ)) of weight n such that

m(λ) ≥ |F |, then Γ(λ) = 0.

Corollary 1.5. Let {P1, · · · , Pr} be a stable weighted set over a finite field F .

If we define

m := max{m(λ) | λ : partitions of weight n such that Γ(λ) 6= 0},

then

|F | ≥ m+ 1.

2. Applications to circle actions. For our purpose, here we only review Bott
residue formula for 4n-dimensional smooth manifolds. For general case we refer to
([6], Section 2).

Let N4n be a 4n-dimensional connected, oriented smooth manifold with
a (smooth) circle action whose fixed points are non-empty and isolated, say
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{P1, P2 · · · , Pr}. At each fixed point Pi, the tangent space TPi
N splits as a real

S1-module induced from the isotropy representation as follows

Tpi
N =

2n
⊕

j=1

V
(i)
j ,

where each V
(i)
j is a real 2-dimensional plane. We choose an isomorphism of com-

plex plane C with V
(i)
j relative to which the representation of S1 on V

(i)
j is given

by e
√
−1θ 7→ e

√
−1k

(i)
j

θ with k
(i)
j ∈ Z − {0}. We can assume the rotation numbers

k
(i)
1 , · · · , k

(i)
2n be chosen in such a way that the usual orientations on the summands

V
(i)
j

∼= C induce the given orientation on Tpi
N . Note that these k

(i)
1 , · · · , k

(i)
2n are

uniquely defined up to even number of sign changes. In particular, their product
∏2n

j=1 k
(i)
j is well-defined.

Let pj ∈ H4j(M ;Z) (1 ≤ j ≤ n) be the j-th Pontrjagin class of N4n and
λ = (1m1(λ)2m2(λ) · · ·nmn(λ)) be a partition. Then we can define the correspond-
ing Pontrjagin number pλ[N ] as follows

pλ[N ] :=< p
m1(λ)
1 p

m2(λ)
2 · · · pmn(λ)

n , [N ] > .

Here [N ] is the fundamental class of N4n determined by the orientation and < ·, · >
is the Kronecker pairing. By definition pλ[N ] = 0 unless the weight of λ is n.

Let ej(x1, · · · , x2n) be the j-th elementary symmetric polynomial in the variables

x1, · · · , x2n. At each fixed point Pi, we can associate to n+1 numbers µi, a
(i)
1 , · · · , a

(i)
n

as follows.

µi =
1

∏2n
j=1 k

(i)
j

, a
(i)
j = ej

(

(k
(i)
1 )2, · · · , (k

(i)
2n)

2
)

, 1 ≤ j ≤ n.

The following result is a special case of Bott residue formula ([1], p.598).
Theorem 2.1 (Bott residue formula). With all above notations understood and

suppose λ = (1m1(λ)2m2(λ) · · ·nmn(λ)) is any partition whose weight is no more than

n, then we have

r
∑

i=1

µi · a
(i)
λ = pλ[N ].

Combining this formula with Proposition 1.1 will lead to the following result,
which is parallel to ([2], Theorem 1.3) and a generalization of ([6], Theorem 1.4) in
the smooth case.

Theorem 2.2. Suppose N4n is a 4n-dimensional connected, closed and oriented

smooth manifold and there exists a partition λ = (1m1(λ)2m2(λ) · · ·nmn(λ)) of weight n
such that pλ[N ] 6= 0, then any circle action on N4n has at least m(λ)+ 1 fixed points.

Remark 2.3. In the statement of above theorem, we require no restriction that
the circle action must have non-empty isolated fixed points. The reason is as follows.
The non-vanishing of some Pontrjagin number guarantees that the fixed points of any
circle action must be non-empty. If the fixed-point set is not isolated, then at least



ON AN ALGEBRAIC FORMULA AND APPLICATIONS 387

one connected component of it is a submanifold of positive dimension and in this case
there are infinitely many fixed points.

Corollary 2.4. Suppose N4n is a 4n-dimensional connected, closed and ori-

ented smooth manifold. Let

m := max{m(λ) | pλ[N ] 6= 0}.

Then any circle action on N4n has at least m+ 1 fixed points.

3. Applications to Zp actions. Let us recall the notation of unitary mani-
fold (some people call it stably almost-complex manifold or weakly almost-complex
manifold), which is a generalization of that of almost-complex manifold.

Let M2n be a 2n-dimensional connected, closed and smooth manifold. M2n is
called a unitary manifold if it is endowed with a complex vector bundle structure
on the stable tangent bundle. More precisely, we can give a complex vector bundle
structure on TM ⊕ θ2l, where TM is the tangent bundle of M and θ2l is the product
bundle M ×R

2l. TM ⊕ θ2l can be oriented from the complex vector bundle structure
and θ2l is also oriented in the usual way. These orientations induce an orientation of
TM . Hereafter a unitary manifold M2n is always oriented in such a way.

Now suppose the unitary manifold M2n admits a Zp action preserving the given
complex vector bundle structure. Here of course p is a prime and Zp is the cyclic
group of order p. Thus Zp is a finite field. Moreover we suppose this action has
isolated fixed points, say P1, · · · , Pr. Then at each fixed point Pi, Zp acts linearly
on the complex vector space Vi := TPi

M ⊕ R2l and the complex subspace of fixed
vectors of this action is exactly R

2l. Thus Vi/R
2l is a complex Zp-module without

trivial factor, which is isomorphic to TPi
M as real vector space. So we have n weights

k
(i)
1 , · · · , k

(i)
n ∈ Zp − {0} induced from this Zp-representation.

Note that, at each Pi, the tangent space TPi
M has two orientations. One is

induced from that of M and the other is induced from the complex structure of
Vi/R

2l. We set ǫ(Pi) = +1 or −1 according to these two orientations coincide or not.
Clearly ǫ(Pi) = +1 if M2n is an almost-complex manifold.

Let cj ∈ H2j(M ;Z) (1 ≤ j ≤ n) be the j-th Chern class of the complex vector
bundle TM ⊕ θ2l. Given any partition λ = (1m1(λ)2m2(λ) · · ·nmn(λ)), we can define
the corresponding Chern number cλ[M ]:

cλ[M ] :=< c
m1(λ)
1 c

m2(λ)
2 · · · cmn(λ)

n , [M ] > .

By definition cλ[M ] = 0 unless the weight of λ is n.
At each fixed point Pi (1 ≤ i ≤ r), we can associate to n + 1 numbers

µi, a
(i)
1 , · · · , a

(i)
n ∈ Zp as follows.

µi = ǫ(Pi) · (

n
∏

j=1

k
(i)
j )−1, a

(i)
j = ej(k

(i)
1 , · · · , k(i)n ), 1 ≤ j ≤ n.

Here ej(x1, · · · , xn) is the j-th elementary symmetric polynomial in the variables
x1, · · · , xn.

The following proposition is a special case of a result of Kosniowski ([4], Theorem
1.1), which reduces the calculations of the module p Chern numbers of M to the fixed
points {Pi} and is a Zp analogue to Bott residue formula in the circle action.
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Proposition 3.1 (Kosniowski). With all these above understood and let λ =
(1m1(λ)2m2(λ) · · ·nmn(λ)) be any partition whose weight is no more than n. Then we

have

r
∑

i=1

µi · a
(i)
λ ≡ cλ[M ], mod p.

Combining this proposition with Proposition 1.1 will lead to the following result.

Theorem 3.2. Given a 2n-dimensional connected closed unitary manifold M2n

and a prime p. If there exists a partition λ = (1m1(λ)2m2(λ) · · ·nmn(λ)) of weight n
such that the corresponding Chern number cλ[M ] is not divisible by p, then any Zp

action on M2n has at least m(λ) + 1 fixed points.

Remark 3.3. Here we still don’t need the assumption that the Zp action has
isolated fixed points and the reason is the same as that of Remark 2.3.

Corollary 3.4. Given a 2n-dimensional connected closed unitary manifold M2n

and a prime p. Let

m := max{m(λ) | cλ[M ] is not divisible by p}.

Then any Zp action on M2n has at least m+ 1 fixed points.

The following result is an obstruction to the existence of a Zp action on M2n with
isolated fixed points, which is a direct application of Corollary 1.5.

Theorem 3.5. Given a 2n-dimensional connected closed unitary manifold M2n

and a prime p. Let

m := max{m(λ) | cλ[M ] is not divisible by p}.

If there exists a Zp action on M2n with isolated fixed points, then

p ≥ m+ 1.

Remark 3.6.

1. As mentioned in ([4], p. 284), there is a similar formula like Proposition 3.1
in the smooth case for Zp actions so long as p is an odd prime. So we have
similar results like Theorem 3.2, Corollary 3.4 and Theorem 3.5 for smooth
Zp action on 4n-dimensional smooth, closed and oriented manifolds in terms
of Pontrjagin numbers so long as p is an odd prime.

2. If p is an odd prime and Zp acts smoothly on a closed, oriented, smooth
manifold N2n with isolated fixed points such that the fixed points satisfy
some additional assumption, then Ewing and Kosniowski also gives a lower
bound of the number of these fixed points in terms of n and p ([3], p. 295).
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