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ON A CONSTRUCTION OF BURAGO AND ZALGALLER*

EMIL SAUCANT

Abstract. The purpose of this note is to scrutinize the proof of Burago and Zalgaller regarding
the existence of PL isometric embeddings of PL compact surfaces into R3. We conclude that their
proof does not admit a direct extension to higher dimensions. Moreover, we show that, in general,
PL manifolds of dimension n > 3 admit no nontrivial PL embeddings in R™*! that are close to
conformality. We also extend the result of Burago and Zalgaller to a large class of noncompact
PL 2-manifolds. The relation between intrinsic and extrinsic curvatures is also examined, and we
propose a PL version of the Gauss compatibility equation for smooth surfaces.
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1. Introduction and Main Results. In [BZ2] Burago and Zalgaller proved the
following theorem, that represents a PL version for dimension n = 2 of the celebrated
Nash-Kuiper C! isometric embedding theorem [Na], [Kul]:

THEOREM 1.1. Any compact orientable PL 2-manifold admits a PL isometric
embedding in R3.

REMARK 1.2. Nonorientable PL 2-manifolds are shown to admit PL immersions
into R3.

Of course, one has to properly define the notion of isometric embedding for the
case of PL manifolds. We leave this for Section 2.

The main purpose of this note is to examine the validity of Theorem 1.1 above
in dimensions n > 2, hence of the Nash-Kuiper-Burago-Zalgaller embedding process
- henceforward abbreviated as NK BZ. In particular we prove the following negative
result:

THEOREM 1.3. In any dimension n > 3 there exists a compact PL manifold (in
fact an infinity of such manifolds) that can not be PL isometrically embedded in R™T1
via the NKBZ method.

The main ingredient in the proof of this theorem, besides a scrutiny of the proof
of Theorem 1.1, consists in computing the coefficients of conformality (see Section
2.2 below) of a certain standard mapping of the neighborhoods of the vertices, that
appears in the Burago-Zalgaller construction (see Section 3).

We can, in fact, strengthen the result above, as follows:

PROPOSITION 1.4. In any dimension n > 3 there exists a compact PL mani-
fold (in fact an infinity of such manifolds) that admits no nontrivial quasiconformal
embedding in R™H1.

Again, as in the proof of Theorem 1.3, the method to prove the result above,
besides an examination of the proof of Theorem 1.1, is to make appeal to the theory of
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quasiconformal/quasiregular mappings, more precisely to apply a theorem of Rickman
and Srebro ([RS]) on the nonexistence of quasiregular mappings with large local index
on a finite, evenly distributed set in R™,n > 3 (see Theorem 2.11 below).

REMARK 1.5. The implication of the nonexistence of such an embedding to
Graphics, Imaging and related applicative fields was discussed in some detail in [Sa4].

The remainder of the paper is apportioned as follows: In Section 2 we present the
necessary background. Section 3 represents a sketch of the Burago-Zalgaller construc-
tion. It is followed, in Section 4, by an analysis of the obstructions to the extension
of the said construction to higher dimensions. The main results are proven in Section
5. In the last section we discuss the role of curvature. In particular, we show that
the compactness condition, given in [BZ2], is too restrictive, and prove that their em-
bedding result holds, in fact, for a quite large class of unbounded manifolds (with or
without boundary). We also give a PL version of the Gauss compatibility condition
for existence of isometric embeddings of PL 2-manifolds into R3.

A few precautionary words to the reader: It is possible — indeed, it is rather prob-
able — that part of the material contained herein, especially in Section 2, will appear
redundant and classical. However, since the paper does not properly appertain — at
least as far as many of the employed methods are concerned — neither to Differential
Geometry, nor to Quasiconformal/Quasiregular Function Theory, but rather lies in an
indeterminate area between these two fields, we have decided to make the paper self
contained, hence as friendly as possible to readers of both backgrounds (and hopefully,
of any mathematical background).

2. Terminology, notation and preliminaries.

2.1. PL isometric embeddings. It is a quite common mistake to believe PL
isometric embeddings coincide with the isometric embeddings in the classical (smooth)
Riemannian context. It is true that a (rather straightforward) Riemannian structure
on PL manifolds can be defined — for full details see [Te]. However, due to the
lack of smoothness, the classical curvature operator can not be defined, therefore the
two notions of isometric embedding (i.e. classical and PL) diverge. Indeed, they
coincide only for piecewise flat manifolds — see, e.g. [Be]. It is, therefore important
to emphasize the difference and give the correct definition in the PL case. (See [Gr],
[LeDo] and, for a a lengthier discussion, [Sad]).

DEFINITION 2.1. Let M™ be a PL manifold (or, more generally, a metric space).
A map f: M™ — N”, where N” is another manifold (metric space) is called a PL
isometric embedding, or a path isometry iff

(i) Tt is a topological embedding

and

(ii) length(f (7)) = length(y),

for all! curves in M™.

REMARK 2.2. It is interesting to note that if one discards the embedding re-
quirement, then the following rather surprisingly result is obtained, namely that any
P L-manifold of dimension < 4 admits an PL isometry into R™ ([Zal]).

For more results on the metric geometry of PL surfaces see e.g. [Sal], [SA].

Leven for those of infinite length
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2.2. Locally flat manifolds. In the following we shall want to clearly distin-
guish between piecewise flat embeddings and simply PL ones. Therefore, we bring
here, following Loukkainnen [Lu], the necessary definition. First, we have to introduce
some notation:

Let m # n be natural numbers. First, let R = {X € R" |z, >0}, R}, ={x €
R? [#,-1 > 0}, and we identify R? with {x € R"|z; = 0,if i > ¢ + 1}. Next, we
deﬁnle: R’_ﬁ’qlz {z e R} |z; = 0,if i < n—gq},and RY! = {z € R} |2,_1 > 0}.
R} =R

A model for locally flat manifold pair at a point of a submanifold, or simply a
(n, q)-model, we mean one of the following pairs:

() (R, RY), (R",RL), (RY,RY), (RY, YD), if g 2 %

(i) (R™,RY), (R™,RL), (R%, R, if ¢ = 1;

(iii) (R™,R?), (R, RO), if ¢ = 0.

DEFINITION 2.3. A PL submanifold M of R™ is called locally flat (LF), or
piecewise flat (PF), iff for any point © € M, there exists an open neighbourhood U
of z in R™, an (n,q)-model (N, L) and a PL homeomorphism h : U — N, such that
h(UNM) = L, and h(z) = 0.

2.3. Quasiregular mappings.

DEFINITION 2.4. Let D C R™ be a domain; n > 2 and let f : D — R"™ be a
continuous mapping. f is called
1. quasiregular (qr) iff

(a) is locally Lipschitz (and thus differentiable a.e.);

and

(b) 0 < |f'(@)" < KJy(x), for any v € M";

where f'(x) denotes the formal derivative of f at z, |f'(z)| = sup|f'(z)h],

|h] = 1

and where Jy(x) = detf'(x);
2. quasiconformal (qc) iff f: D — f(D) is a quasiregular homeomorphism;
The smallest number K that satisfies condition (b) above is called the outer dilatation
of f.

REMARK 2.5. One can extend the definitions above to mappings f: M™ — N™,
where M"™, N™ are oriented, connected Riemannian n-manifolds, n > 2, by using
coordinate charts (for details see, e.g. [Va2]).

REMARK 2.6. Admittedly, the appellative quasiconformal conveys little geomet-
ric meaning. Certainly, the term mappings of bounded distortion, originally introduced
by Reshetnyak [Re] is far more apt to convey the geometric content of such mappings
and would, perhaps, be better used in the present geometric context. However, the
notions of quasiconformal and quasiregular mappings have gained ground, due to the
fact that they clearly point to the fact that such mappings represent natural exten-
sions of the classical conformal, respective analytic mappings in the plane. Because of
this reason, and due to the fact that core of the paper is based upon the observation
that no “almost conformal”, quasiconformal parametrizations of the neighborhoods
of the vertices of a polyhedron are possible in dimension n > 3 (see Section 4, (5) and
Section 5), we have retained here the more established terminology (albeit, perhaps,
at the detriment of geometric intuition).
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If f: D — R" is quasiregular, then there exists K’ > 1 such that the following
inequality holds a.e. in M™:

(2.1) Jr(z) < K'Virl1f1|Txfh|".

By analogy with the outer dilatation we have the following definition:

DEFINITION 2.7. The smallest number K’ that satisfies inequality (2.1) is the
inner dilation Ki(f) of f, and K(f) = max(Ko(f), K;(f)) is the mazimal dilatation
of f. If K(f) < oo we say that f is called K-qr.

The dilations are K(f), Ko(f) and K;(f) are simultaneously finite or infinite.
Indeed, the following inequalities hold: K;(f) < K& '(f) and Ko(f) < K7~ '(f).
This allows us to talk about the dilatation K of a mapping, without being more
specific.

For planar quasiregular mappings we have the following classical structure theo-
rem:
THEOREM 2.8 (Stoilow, [St]). Let f : D — R? be a nonconstant quasiregular
mapping. Then f admits the following factorization: f = go h, where h : D — R? is
quasiconformal and h : f(D) — C = R? is a nonconstant holomorphic mapping.

In particular, any quasiregular mapping f : D — R"™ is locally quasiconformally
equivalent to the mapping z — 2™,z € C, for some m = m(xy) € Nyzg € D.
Unfortunately, no generalization of Stoilow’s Theorem result exists in dimension n >
3. (We shall further expand upon this subject shortly.)

DEFINITION 2.9. Let f : D — R" be a quasiregular mapping. The set By =
{x € M™| f is not a local homeomorphism at x} is called the branch set of f.

Since any quasiregular mapping f : M™ — N" is discrete, that is f~!(y) is
discrete, for any y € M™ (see [Re]), we can introduce the following

DEFINITION 2.10. Let f: D — R”™ be an orientation preserving map. The local
topological index of f at x is defined as:

(2.2) i(z, f) = inf suplf ' (y)NU|.

UeN(@) vy

Note that if f : D — R™ is a quasiregular mapping, then i(z, f) > 1 and,
moreover, ¢ € By iff i(x, f) > 1.

Also, for n > 3 the local topological index cannot be uniformly too large on all the
points of a non-degenerate continuum F. To be more precise, the following inequality
holds:

(2.3) infi(z, f) <n" 'Ki(f).
xz € F
(See e.g. [Ri2], III. 5.9.)
Moreover, even though local topological index can be arbitrarily large at an iso-
lated point (see [Ril], pp. 263-264), it can not be too large even on a finite number of
points if the points and the indices of the map f at these points are evenly distributed:

THEOREM 2.11 ([RS], Theorem 1.1). Let f : D — R", D CR"™, n > 3 be a non-
constant K-qr mapping. Then, for any o € D, there exist to,p > 0, such that, and
for any x1,...,xm € B™[xo,t], 0 < 0 < to, and satisfying the following conditions:
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1. |I0 — Iml = t,‘

2. |wj_1 —xj| =t/p, where po <p <m < p” and 1 < v < (i(zo, f)/K1(f)) ™",
there exists j € {1,...,m} such that i(x;, f) < i(xo, f). (Here B"[xo,t] denotes the
closed ball of center xog and radius t.)

2.3.1. Coefficients of quasiconformality. We bring below a few results re-
garding the coefficients of quasiconformality of some specific domains. In this we rely
on [Va2] and [Cal]. These results are needed in the proof of our result.

DEFINITION 2.12. Let D C R™, D ~ B". The coefficients of quasiconformality of
D are defined as follows:

(2.4) Ki(D)= inf Ki(f), Ko(D)= inf Ko(f),
f:D—B" f:D—=B"

K(D)= inf K(f).
f:D>Bn

DEFINITION 2.13. Let z € R"™ be a point with cylindrical coordinates x =
(recosp,rsing, z1,...,2n—2). The set Dy = {0 < ¢ < a}, (0 < a < 27) is called a
wedge of angle a. More generally, a domain D C R™,n > 3 is called a wedge of angle
« iff there exists a similarity mapping f such that f(D) = D,. f=*({r = 0}) is called
the edge of D. Given a domain 2, a point b € 02 is called a wedge point iff there exist
a neighborhood U of b and a wedge D of angle «, such that b lies on the edge of 2
andUND=UnNAN.

DEFINITION 2.14. The homeomorphism f : Dy — Dg, f(r,¢,z) = (r, %cp,z),
z = (21,...,2n—2), is called a folding, or winding (or, more precisely, a k-winding
mapping, where k = %)

We should note that, for n > 3, foldings are topologically equivalent to z + z¥ x Id
(where Id denotes the identity mapping of R"~2).

If « < B, then f is quasiconformal, with dilatations Kj(f) =
(%)1/("_1). In particular, for 3 = 7, we obtain K;(Ds) = I, Ko(Da
whence K(D,) = Z.

«

Ko(f) =

(3
57
— (1)1/(71—1),

REMARK 2.15. Remarkably, the coefficients of quasiconformality for non-convex
domains (i.e. m < 27) are not known (at least to the best of our knowledge).

Following [Ca], we note the following natural generalization of the definition of a
wedge:

DEFINITION 2.16. The domain Dyr C R™, Do = {(r, 01, -+, Pr—k—1, Zn—k+1,
..., 2n)} is called a dihedral wedge of type k and angle a.

REMARK 2.17. For k = n — 2 we recuperate the classical definition of wedges.

PROPOSITION 2.18 ([Cal]). The coefficients of quasiconformality for Dy are:

7.rnflcfl T

n—k—1 n—1
(2.5) Ki(Dar) = ————— , Ko(Dar) = (7) ;

ap - Op—k—1 a1 Op_k—1
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COROLLARY 2.19. Let D be a convex polyhedron in R™ and let m denote the
number of faces of D. Then we have the following estimates:

o P
(2.6) Kf(p)zwmo(p)z(w) ,
m—n m—n
K(P) m—-—n-+2
m-n

REMARK 2.20. Clearly, the same estimates hold for PL-smooth convex mani-
folds.

A different slight generalization of wedges is the following one:

DEFINITION 2.21. Let D C R™ be a domain. We say that D has a curvilinear
wedge of angle a at xog € 9D iff, for all K > 1, there exists a neighbourhood U of xy,
such that f(U N D) =B"N D,,.

Another type of related domains are the so called raylike domains:

DEFINITION 2.22. A domain D C R" is called raylike, with vertex v € 0D, iff
v+t(x —v) € D, for all z € D and any ¢ > 0).

THEOREM 2.23 ([Va2], Theorem 40.3). Let D, G be domains in R™, such that G
is raylike, with vertex v. If v has a neighbourhood U, such that U N D =U NG, then
K;(D) > K;(G), Ko(D) > Ko(G), K(D) > K(G).

REMARK 2.24. These (rather straightforward) generalizations of the notion of
wedge, allow us to extend Theorem 1.2 and Proposition 1.4 to more general PL
embeddings, not just to piecewise flat ones (see also Section 4, (3) below).

Before concluding his section, let us consider again the folding map, this time
from a different point of view: As we have already noted, Stoilow’s Theorem does not
hold in dimensions higher than 2. There exists, however, a characterization of those
quasiregular mappings topologically equivalent to a folding;:

THEOREM 2.25 (Martio-Rickman-Viisald, [MRV]). Let f : D — R" be a
quasiregular mapping and let o be a point of D. If there exist a neighbourhood N,
of T, and a homeomorphism g, : Ny, — R™, such that ¢(N,, N By) C R"~2 C R",
then locally at xo, f is quasiconformally equivalent to a folding mapping (hence to
2z 2k x Id).

REMARK 2.26. This result suggests an approach to the existence problem of PL
embeddings of PL n-manifolds into R**!, n > 3, alternative to the one adopted in
the present paper.
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2.4. Higher dimensional angles. Since we discuss in the following sections —
mainly in Sections 5 and 6 — the role of angles (and curvatures) in the case of dimension
higher than 2, we succinctly present here a modicum of necessary definitions.

While presumably intuitive, we bring here the following technical definition of
dihedral angles, as given in [CMS]:

k
DEFINITION 2.27. A simplicial cone C* C R* C R, is defined as: C*¥ = Hj,
=1

J
where H; are open half spaces in general position, such that 0 € H;,j = 1,...,k.
LF=1 = C*NS"~ ! is called a spherical simplex.

DEFINITION 2.28. Consider the simplices ¢* < 7, and let p € o*. Define the
normal cone: C+(o% 7m) = {ﬁ |z er™, prL o}, where p# denotes the ray through
x with base-point p. The spherical simplex L(O‘k,Tm) associated to Cl(ak,rm) is
called the link of o in 7™.

REMARK 2.29. C* (0%, 7™) does not depend upon the choice of q.

DEFINITION 2.30. The (internal) dihedral angle £(7%,0™) is defined as the nor-
malized volume of L(c*, 7™), where the normalization is such that the volume of S*~!
equals 1, for any n > 2.

DEFINITION 2.31. Denote by L(c*,7™)* the dual simplex of L(c®,7™), i.e.
L(c*,7™)* = {v € S|4L(v,u) > 7/2,Yu € L(c*,7™)}. The normalized volume of
L(o*,7™)* is called the exterior dihedral angle of ¥ C 7™ and we denote it by
Z(TF o™).

3. The Burago-Zalgaller construction. We present here very briefly the
main steps of the Burago-Zalgaller construction, the accent being placed on the geo-
metric aspects of the construction and on those elements of the proof that are prob-
lematic when passing to higher dimensions — to be discussed in detail in the following
section. For the full technical intricacies of the proof, the reader should consult the
original paper [BZ2]. We concentrate solely on the case of compact, orientable man-
ifolds, both because they represent the basic case (whose modification produces the
construction for the other cases) and because the full connection with quasiconformal
mappings is displayed here (in contrast with the nonorientable case).

1. Start with a C? smooth, short embedding fy of the given PL compact, closed
2-manifold P. To obtain the necessary short embedding, one may use a
suitable homotety (see [Nal).

2. Produce a variation of the original embedding in certain (small) neighbor-
hoods of the vertices, such that each neighborhood has a standard form (more
precisely, a disk neighborhood) that allows us to produce a standard embed-
ding in the vicinity of the vertices. The standard embedding above is supplied
by the standard conformal map (or folding) from K (6,p) = {0 < ¢ < 60,p > 0}
to K(A,r) ={0 <4 <A r >0} given by:

A £/0
7 )

Y=, r=ap

(The most important case for our purposes being: A = 27.)
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The resulting, varied embedding f; will have different forms if the sum 6; of
the angles incident at the vertex v; is < 27 or > 271 — see also (4) below.
However, in both cases, the embedding f; will be short in the complement of
the said neighborhoods.

. Replace the neighborhoods of the vertices with small disjoint polygonal neigh-

borhoods N,. More precisely:
(a) If < 2mr, encircle A by a small “regular” hexagon composed of 6 trian-
gles of apex angle 6/6.
Some small enough neighbourhood of A the will be mapped by the stan-
dard conformal mapping onto a planar disk.
Over each triangle included in such a neighbourhood, one can perform
the basic construction (see (6) below), obtaining a PL isometric embed-
ding of this neighbourhood.
(b) If 8 > 2, proceed analogously to the previous case but
i. In a small circular neighbourhood of radius r1 map (a) isometri-
cally on radial segments and (b) using a /27 contraction on circles
centered at A;
ii. In a annular neighbourhood {ry < r < r2} use the standard confor-
mal mapping with the same contraction factor 6/2x.
Replace the neighbourhood above with a “cogwheel” (i.e. a circle sur-
rounded by isosceles “triangles” of sides, e.g. 26, and having as bases
arcs of the same length). The interior of each “cogwheel” is PL isomet-
ric embedded using “ripples”. (The basic element of each such “ripple”
is a pair of congruent triangles, having a common vertex in the center of
the “cogwheel”, one side of each being a radius, and a second common
vertex built over the midpoint of an arc used in the construction of the
“cogwheel” — see Figure 4 of [BZ2]).
The complement of | J, N, is triangulated using solely acute angle triangles.
(In particular, at convex vertices subdivide each triangle into n? similar trian-
gles, for some large enough n; while at non-convex vertices into almost regular
triangles.) This has to be performed with care, so that a certain inequality
([BZ2], (5), p. 373), regarding the angles of the triangles composing the tri-
angulation would hold. Moreover, an additional variation of the triangulation
is also applied.

. A further variation of f; is performed in the complement of the union of the

neighborhoods of the vertices. Here is employed a construction of Kuiper
[Kul] constituting in the adding a (finite) succession of C? smooth waves
superimposed on fi(P). The embedding fo obtained in this manner is C?
smooth and short? Moreover, fy will be almost conformal in the complement
of (sufficiently small) neighborhoods of the vertices v; such that the 6; > 2.
(The measure of “almost conformality” is a function of a and the degree of
approximation of an isometry.)

. The triangles obtained at the previous stages are further subdivided, in order

to obtain of sufficiently small mesh. Here the degree of “almost conformality”
is exceedingly important, since it is used to assure that the triangles T; and
t; (of the standard construction element — see (6) below) are almost similar
and also to produce dihedral angles close to 7. In addition, the dihedral angle
between adjacent “¢;” triangles are uniformly close to .

2 Again, the contraction constant can be precisely specified.
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6. Apply the canonical (standard) construction element:

(a) Let T = A(Ay, Ag, A3) and t = A(a1, az, ag) be acute triangles;

(b) let B,b and R,r the centers and radii of their respective circumscribed
circles;

(c) let E, = $AcA;, e, = Sapar; p k.1 € {1,2,3};

(d) and let H, = BE,, h;, = be,.
Moreover, let T' ~ t, Ay A; > axay, k,1 € {1,2,3}.
Then T can be isometrically PL embedded in R3, as the pleated sur-
face included in the right prism with base ¢, such that ApA;A4, fits
apEja1Epap By, where: B'b1t, B'a, = R and E}, E}, £y on the faces of
the prism, such that akEz’, = FEipa; = %AkAl.
The following variations of the basic construction above are also consid-
ered:

i. Each angle ¢ of T satisfies the condition 0 < a < ¢ and C'- Ay A; >
aga;,C < 1. Moreover, Ay A;/ara; =~ 1.

ii. Each of the lateral faces of the prism — including the broken lines
arEja; — can be (independently) slightly rotated around the lines
ara; such that the construction still can be performed. (The rotation
angle depends upon the constants o and C' above.)

(In general, one has to simultaneously construct a large number of the
standard construction elements above.)
This employment of the basic construction element may be done straight-
forwardly in the region of “almost conformality” and in the neighborhoods
of vertices v; for which #; < 2. For vertices v;, such that 6; > 2w, a cer-
tain variation of the construction is needed: more precisely PF “ripples” are
added, see [BZ2] (and [Sad] for a short presentation). Note that here, the
construction of a (local) triangulation by acute triangles is essential.
7. We obtain a C? smooth, short® embedding f(P) of all the standard con-
struction elements, therefore achieving the desired PL isometric embedding
of P.

4. Obstructions to the Burago-Zalgaller construction in dimension n >
3. We list here a number of impediments in the extension of the Burago-Zalgaller
construction to higher directions.
1. Ezxistence of acute triangulations.
As we have underlined in the previous section (e.g. in (6), (7)), the proof of
[BZ2] is based on the existence of acute triangulations, more specifically, on
a previous result of Burago and Zallgaler [BZ1].* However, such a result does
not exists for higher dimensions. Indeed, next to nothing is known about the
existence of such triangulations in dimension n > 3.5
2. Nonexistence of smooth embeddings.
As mentioned in (2) of the previous section, a smooth — i.e. of class C? or
higher — embedding of the given PL manifold is supposed to exist. However,

3again, in precise, controlled manner

4As we have see, they are necessary in the definition of the canonical construction element,
in the construction modified neighborhoods of the vertices, as well as in the triangulation of the
compliment of the neighborhoods of the vertices (Section 3.3). In consequence, they are needed in
the final modification of the construction (Section 3.6).

5There seems to exist little information apart from the one summarized in [Zal]. (However, there
is a renewed hope, due to a different method recently developed by Tasmuratov [Ta].)



596 E. SAUCAN

the existence of obstructions for the smoothening of a PL manifolds are clas-
sical (see [Mul], [HM]). It follows that, in certain cases, even the first step of
the Burago-Zalgaller proof can not be implemented.

3. Nonexistence of PL approximations.
As it is shown in the proof’s synopsis above (see also the enunciation of Theo-
rem 1.4 of [BZ2]), the gist of the proof is to produce PL isometric embeddings
arbitrarily close to a given smooth one. In fact, the approximation is even
piecewise flat®, at least away from Kuiper waves (cf. Section 3, (4)).
However, such approximations (neither PL, nor piecewise flat) do not always
exist in codimension 2, as it is shown in a number of counterexamples due to
Shtan’ko [Sh]. (It should be noted that they do exist, however, in any other
codimension — see [Lu].)
Since we work in codimension 1, this obstruction is not truly relevant. It is,
however, an impediment if one tries to apply the original Nash construction
[Na], that makes appeal to codimension 2, that is without using Kuiper’s
improvement [Kul], for which only one additional dimension is needed.

4. Standard conformal mapping
In Section 3, (2) the role of the standard conformal mapping is described.
Furthermore, the mapping f5, that is supposed to be almost conformal is
introduced in Section 3, (4). While the authors do not explicitly state this
fact, they introduce a quasiconformal structure on the given manifold, that is
further deformed to become arbitrarily close to conformality.
Unfortunately, while any topological manifold of any dimension n # 4 admits
a quasiconformal structure, by a result of Donaldson and Sullivan [DS], this
does not hold in dimension n = 4. In fact, there exists an embedding of
the unit ball B* into R*, that admits no quasiconformal approximation. It
follows that, in dimension n = 4, the use of the standard conformal mapping
is problematic. Moreover, while PL and locally flat quasiconformal approx-
imations of embeddings exist for n > 2,n # 4 and codimension m # 2, (see
Luukkainen [Lu]), such approximations do not exists for n = 4 and ¢ = 2
(again, by Shtan’ko’s results).

5. Main obstruction
However, the main obstruction in extending the Burago-Zalgaller construction
to dimension 3 and higher, resides in the fact, already alluded to in Remark
2.6, that it is not possible to obtain the needed “almost conformal” quasicon-
formal parametrization of the neighborhoods of the vertices of a polyhedron
of dimension n > 3, due to the fact that the dilatation is bounded away from
1 as discussed in some detail in Section 2.3.1 above. This fact represents the
main tool employed in the proof of our main results, in Section 5 below.

REMARK 4.1. It should be noted that even the shape of the initial smooth
embedding is important. Indeed, general “apple-shaped” domains in R™,n >
3, do not admit any quasicomformal mapping onto B™ (see [Cal, [Vu]).

5. Proofs of the main results. Before proceeding to the technical part of the
proofs, let us note that, as their name suggests, quasiconformal mappings represent,
indeed, the proper, technical notion for the “almost conformal” mappings of [BZ2]
— see [Ag] for precise estimates as well as proofs of the more delicate aspects of the

6This fact makes the Burago-Zalgaller construction apparently intuitive and attractive for the
Graphics community (see [Sa4]).
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theory, regarding the non-differentiability of everywhere of quasiconformal mappings.
(Similar estimates were also given in [Pes].)

Proof of Theorem 1.3. We show that if n > 3 one can not produce, for any given
PL manifold, quasiconformal embeddings, as close to conformality as desired, as it is
required in the Burago-Zalgaler construction.

First, let us note that the mapping fr obtained after performing each of the
iterations of the Burago-Zalgaller construction is, indeed, quasiconformal: By Section
3, (4) it is quasiconformal in the complement of the neighborhoods of the vertices.
Moreover, in the neighborhoods of the vertices, the construction of Section 3, (3)
renders, by the finiteness of the triangulation and by the finite types of simplices
employed, a quasiconformal” mapping. Therefore, the resulting mapping is, piecewise
quasiconformal®. It follows, by [Val], that it is, in fact, quasiconformal.

Moreover, since the polyhedron is compact, the limiting isometric fo mapping will
also be quasiconformal (see, e.g. [Val], Theorem 37.2) and, by [MRV], Lemma 4.5,
its index will be > limsup,,_, . %(v;, fi), where v; denote vertices of the PL manifold.

Let Fi, F5 be two n-dimensional faces, F} N F» = e, and let T, C P be a tube of
radius €. Let o = L(F1, F») denote the dihedral angle between Fy, F». The dihedral
wedge D, is raylike at any interior point of e and T, C D,, satisfies the conditions of
Theorem 2.23. It follows that K (T.) > K(D,) = = > 0. Therefore, K(P) > max T,
where the maximum is taken over all the dihedral angles of P.

Clearly, one can produce dilatation K (P) as large as desired, by choosing polyhe-
dra with at least one dihedral angle (between n-faces) w/m, where m is any (arbitrarily
large) natural number.? O

REMARK 5.1. By a result of Heinonen and Hinkkanen [HH], at each stage of the
NKBZ construction, the resulting map will not only be quasiconformal, but actually
quasisymmetric'®. That is, for compact polyhedra in some R™, the local, infinitesi-
mal condition of quasiconformality implies (in fact, it is is actually equivalent to) a
global one (i.e. quasisymmetry), thence in this case the local distortion of the PL
Riemannian metric translates into a global one, quantitatively't. (This fact should be
viewed in the light of the brief discussion in Section 2.1).

REMARK 5.2. Note that in the theorem of Rickman and Srebro the quasiregular
mapping considered is defined on a proper domain D in R™ (for some n > 2). As
such, it applies to PL-solid polyhedra P in R™, that is to the interior of a compact
polyhedral surfaces P embedded (PL isometrically) in Euclidean space. This corre-
sponds perhaps to our intuition, but falls somewhat short of our goal. To remedy

this deficiency, one possibility is to use the fact that PL quasiconformal mappings

7
8

even if not, as already stressed, actually conformal
in a rather strong sense

9Note that, in any case, by Corollary 2.18, the distortion coefficient of any polyhedron of dimen-
sion n > 3 is bounded away from 1.

10Recall that, given two metric spaces (X,d) and (Y, p), an embedding (in particular, a homeo-
morphism) f : X — Y is called quasisymmetric iff there exists a homeomorphism 7 : [0, 0c0) — [0, 00),
such that if d(z,y) < td(z, ), then p(f(z), f(y)) < n(t)p(f(z), f(2)), for any triple points z,y,z € X.
Note that, while any quasiymmetric homeomorphism is quasiconformal, the opposite implication is
far from being trivial even for mappings from R"™ to itself and holds only if n > 2. In fact, it is false
for n = 1. (See, e.g. [Va2], [Hel] for proofs and further details and [He2] for a brief, yet lucid and
inspiring exposition.)

11 That is the numerical parameters obtained depend solely on the parameters presumed in the
hypothesis.
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are quasiconformal [Val] and classical extension results (see, e.g. [Va2], 17.18 and
35.3),12 to show that the mapping can be extended from P to P = 9P.

Proof of Proposition 1.4. Proceeding along lines similar to those of the proof of
Theorem 1.3, suffices in this case to consider a polyhedron (even, for simplicity, one
homotopic to a sphere) whose set of vertices satisfies the density conditions required
in the statement of Theorem 2.10, and whose (solid) angles at the said vertices are
large enough to ensure that the index of the winding mapping at these these points
will satisfy condition (2) of Theorem 2.10. O

Before concluding this section we bring the following remark:

Given the fact that there exists no other method of PL isometric embedding,
apart from the NKBZ construction, it is possible that there exist no such embedding
for PL manifolds, if n > 3. Therefore, in the light of the results proven here and of
the more general discussion in the preceding section, we venture the following

CONJECTURE 1. For any n > 3, there exists an n-dimensional PL-manifold M™

(and in fact, an infinity of such manifolds), that admits no PL isometric embedding
in R*HL,

6. The role of curvature.

6.1. First remarks. Note that the main obstruction in obtaining an almost
conformal mapping resides — rather against geometric intuition — on the edges of
triangulation, and not at the vertices (0-dimensional faces). (See also [Pet], pp. 175
and 186.) In particular, if n = 3 and M™ is a a manifold with boundary embedded
in R™, then small values of the dihedral angle « (see Section 3 and 5 above), are
associated to large mean curvature H of the PL surface S? = OM?, as opposed to
the Gauss curvature concentrated at the vertices (see, e.g. [Ba], [CMS]). Indeed, any
pyramid with large base angles (i.e. with corresponding large dihedral angles) can be
quasiconformally mapped onto a half-space, with bounded dilatation, which depends
only on n and not on the angles at the vertices A;, even if the (dihedral) face-angles,
incident to the apex are not bounded from below (i.e having small, positive Gauss
curvature) — see [Ca], Theorem 3.6.10. and Theorem 3.6.13.1

In dimension n > 3, mean and Gauss curvature are replaced by the so called j**
mean curvatures and Lipschitz-Killing curvatures, respectively (see [CMS]). Fittingly,
these curvatures are also expressible in terms of (higher dimensional) dihedral angles.
However, in order not to diverge too much, for details we refer the reader to the above
mentioned paper of Cheeger et al.

REMARK 6.1. Actually, one can dispense with the use of the initial smooth
embedding, and formulate the bounded curvature condition for the PL (PF surface)
in terms of the so called generalized principal curvatures'* — see [Z#l1], [Z42]. (The fact

12Gee also another extension result due to Tukia and Viisila [TV].
13Moreover, cones — and even cylinders, as a limiting case when the vertex angle tends to 0 — can
be quasiconformally mapped onto H} with small dilatation, and this can be done independently of
the vertex angle.
14We recall the definition of generalized principal curvatures
First, we define be the reach of X C R™, reach(X) as:

reach(X) = sup{r > 0|for all y € N,(X), there exists a unique € X, nearest to y},

where N, (X) denotes the r-neighborhood of X.
Then, for any 0 < & < reach(X), ON<(X) is a Cb! hypersurface, hence it admits principal
curvatures (in the classical sense) a.e.; let x$(z + en) denote the i-th such curvature at a generic
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that the C? smooth requirement is, in fact, too strong is also noted in [BZ2], Remark
1.10. Note that a sufficient condition mentioned there is that the initial embedding
fo admits a C° approximation; compare with the discussion in Sect 4, (3).)

6.2. Unbounded 2-manifolds. We remark here that the NKBZ construction
actually holds even for unbounded (noncompact), orientable 2-manifolds, that admit
a “geometrically well behaved” isometric embedding in R3. Formally, we can state
the following result:

PROPOSITION 6.2. Let M be a connected, oriented 2-dimensional PL manifold,
without boundary or having a finite number of compact boundary components, that

admits a C? smooth embedding into R3. Then M admits a PL isometric embedding
in R3.

REMARK 6.3. Regarding the existence of an isometric embedding, with the
prescribed curvature property see Section 6.3 below.

Proof. We begin with the simpler case of manifolds without boundary.

Note that, again, by Nash’s argument (see [Na]) we may presume that the given
C? embedding is short.

We can apply Peltonen’s argument [Pel] (after eventually considering a smoothing
to the C* class) to produce an exhaustion {M;} of M.'> The “size” of the elements
of the exhaustion'® is a function solely of the mazimal osculatory (tubular) radius
wy = sup{p > 0| S?(x, p) osculatory at any x € M}, where S(z, p) is an osculatory
sphere at x € M iff: (i) S""1(x, p) is tangent at x; and (i) B"(z,p) N M™ = . (For
details see [Pel].) Note that an osculatory sphere exists at any point of M™, for all
sufficiently smooth Riemannian manifolds — see, e.g. [Pel]. We exploit this feature to
ensure that that also in this case, the manifold does not intersect itself, hence that
an embedding of a tubular neighborhood of M can be obtained, thus assuring that
canonical construction elements can be produced without intersections.

The principal curvatures will be uniformly bounded on each M;, thence, by Bur-
agogo and Zalgaller’s argument ([BZ2], p. 379), the NKBZ construction can be
performed on any of these submanifolds (with boundary) M;. Therefore, the respec-
tive maps f; and the resulting map f will be quasiconformal, by [Ge]. Here we have
to make appeal to the variation for compact manifolds with boundary of the Burago-
Zalgaller construction.!”Also, we may have to use a subdivisions and e-moves'® to
assure that, for all ¢, the vertices on the common boundary N; = OM; = OM;1
appertain to the triangulations of both of the considered elements of the exhaustion.

point. (Here n represents the normal to X at x.) We can now define the i-th generalized principal
curvature as:

ki(z,n) = 615% K§(z +en).

(The limit exists "~ ! a.a. (x,n), where, as usual, H denotes the Hausdorff measure.)

15Tncidentally, Peltonen’s goal was to produce a thick (or fat) triangulation of each of the elements
of the exhaustion, as well as of their intersections. While more technical definitions can be given
(see [Sa2]), for our present purposes suffices to say that thick triangulations are precisely those for
which the individual simplices may each be mapped onto a standard (Euclidean) n-simplex, by a
L-bilipschitz map, followed by a homotety, with a fixed L.

16as well as the (local) density of the vertices of the triangulation

I7Note that the gluing condition of the pieces M; is also given Peltonen in terms of wyy.

18See, e.g. [Mu2], for the definition and further details.
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To obtain the extension of the proposition to manifolds with boundary, one has to
use the modification of Peltonen’s construction given in [Sa2] and apply the Burago-
Zalgaller construction for each of the (compact) boundary components. O

REMARK 6.4. The fitting result for nonorientable 2-manifolds can also be proved
along the same lines.

6.3. Metric curvature and compatibility conditions. We begin by noting
that the frustrating, and not infrequently confusing aspect of PF embeddings (and,
in general, of PL ones), is that they are highly counterintuitive, not least with regard
to the discrepancy between the intrinsic and extrinsic curvature. We have discussed
this in some detail in [Sa4]. However, we mention here an example due to O’Rourke
[O'R], of a vertex in piecewise flat surface, for which the intrinsic Gaussian curvature,
computed using the angle defect at the vertex (see, e.g. [Ba]) is 0, while its extrinsic
one, given either by its generalized principal curvatures (as above) or, alternatively,
using metric curvatures (see below) is highly positive.

Since the classical notion of curvature can not be defined for PL (PF') surfaces,
due to their lack of differentiability (at the vertex points), an analogue of Nash’s
Theorem for smooth 2-manifolds is not immediate, and even the use of generalized
curvatures (as mentioned above) does not really solve the problem, and not solely due
to the aforementioned counterintuitiveness.

We propose here an approach that allows us to formulate both local and global
“curvature sensitive” embedding conditions in R? for PL 2-manifolds. Before pro-
ceeding further, we should emphasize here that the method we propose here is quite
different from the one of, e.g., [Wu], [BS], [No], [MTW]. We make appeal to notions
and results from metric geometry. In this we rest mainly on [Pl]. First, we introduce
some notation:

Let ST denote the n-dimensional simply connected space form (i.e. S§ =R"™; S} =
S’\L/E — the n-dimensional sphere of radius v/k, if K > 0; and S” = H’\I/TK stands for
the hyperbolic space of curvature v/—x, as represented by the Poincaré ball model of
radius R = 1/v/—k, if kK < 0).

Given a metric space (X, d) and z,y, z points in X. The triple {z,y, z} (viewed
as a finite metric space) can be isometrically embedded in S} if

(6.1) d(z,y) +d(z,z) +d(y,z) < 2.

where v/—r is taken to be oo, if K < 0.

The image of such an isometric embedding is unique, up to an isometry of S
(see, e.g. [Pl], Proposition 12), it is called the model (or representative) triangle (of
the triple {x,y, z}) in S7, and will be denoted by T(z, g, ).

Given three points z;, z;, 2; in a metric space (X, d), we denote by o (x;, z;,x;) €
[0, 7], the angle £ (x;x;2;)'® of the model triangle in S?. Note that a,, is a continuous
function of k and a monotone increasing function in the variables k and di = d(z;, x1).

Let Q = {x1,x2,x3,24} be a metric quadruple (that is, a 4 point metric space
Q). We introduce the following quantities:

(6.2) Vie(@i) = an(wis 25, 21) + (T3 25, Tm) + (T30, )
where z;, x5, z;, T € @ are distinct, and & is any number;

(6.3) AL(Q) = max Vie(24) .

Ythat is of apex x;
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From the analogous properties of a it follows that Vi (z) is a continuous, mono-
tone increasing function of k. (Hence A, (Q) is also monotone increasing as a function
of k.)

The first result we need to introduce our approach to a curvature-sensitive isomet-
ric embedding of PL manifolds is the following proposition (see, e.g. [Pl], Proposition
20):

PROPOSITION 6.5. Let Q = {x1, 72,23, 24} be a nondegenerate®® metric quadru-
ple. Then Q admits an isometric embedding in S2 iff (i) Ax(Q) < 2w, and (i) the
triangle inequality holds for any triple ou(xi;x;, 1), aw(®i;2j, Tm), (T, Tp).
Moreover, the embedding is planar (i.e. Q can be embedded in some S?) if there exists
an index i such that o (z:; 25, 21) = 0 (@i T4, T ) + ue(@i3 T4, Tp)-

The notion on which our approach rests is the so called Wald-Berestovskii (metric)
curvature [Wa), [Ber] (see also [Bl] for a detailed exposition on metric curvatures in
general):

DEFINITION 6.6. Let (X, d) be a metric space. An open set U C X is called a
region of curvature > k iff any metric quadruple can be isometrically embedded in .S,,,
for some m > k. A metric space (X, d) is said to be of Wald-Berestovskii curvature
> k iff for any x € X is contained in a region U of curvature > k.

It turns out that regions of curvature > k can be characterized easily in terms
of the embedding angle, more precisely we have the following result (see, e.g. [Pl],
Theorem 23):

PROPOSITION 6.7. Let (X, d) be a metric space and let U € X be an open set. U
is a region of curvature > k iff Vi.(x) < 27, for any metric quadruple {x,y,z,t} C U.

Note that we can consider the Wald-Berestovskii curvature at an accumulation
point (of a metric space) by considering limits of the curvatures of (nondegenerate)
regions of diameter converging to 0. Since, by a theorem of Wald [Wa], for smooth
surfaces (in R?), Gauss curvature and Wald-Berestovskii coincide, we can now pro-
ceed and present our approach to the isometric embedding of PL manifolds into R?+!
problem. First, the metric space we shall consider will be the 1-skeleton of the mani-
fold, with the obvious metric. We note that, in this context the natural choice for the
open set U required in Definition 6.6 is the closed star of a given vertex v, that is, the
set {ey;}; of edges incident to v. Therefore, the set of metric quadruples containing
the vertex v is finite and Proposition 6.7 is readily applied.

The local isometric embedding condition is now easy to express, in view of Propo-
sitions 6.5 and 6.7. Namely, given a vertex v, the following system of inequalities
should be sattisfied:

max Ag(v) < 2m;
(6.4) ap(v; v, v1) < ap(v;v5,vp) + ao(vy v, vp),  for all vy, vy, vy ~ v;
Vi (v) < 2.

(Here “~” denotes incidence, i.e. the existence of a connecting edge e; = vv;, and, of

course, Vi (v) = ay(v;v5,v;) + ak(v;v5, 0p) + aue(v; v1,vp), where vj, vy, v, ~ v, etc.)
Here the first two inequalities represent the (extrinsic) embedding condition, while

the third one represents the intrinsic curvature (of the PL manifold) at the vertex v.
The global embedding condition follows immediately:

20 A metric quadruple is called nondegenerate iff no point lies between two other points.
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max Ag(v;) < 2m;
(6.5) ap(vi; v, v1) < ap(v;v5,vp) + ao(v; v, vp),  for all vy, vy, vy ~ vi;
Vie(v;) < 2m;for all v; € Vi

where the inequalities above hold for all v; € Vi,. (Here V), denotes the set of vertices
of M.)

The system (6.4) represents as a PL version of the Gauss compatibility (or funda-
mental) equation of classical Differential Geometry of surfaces, while (6.5) functions
as a PL analogue of the similar global conditions on curvature that are satisfied in
the classical Nash embedding of smooth manifolds. However, for the problem of the
path isometric embedding itself, perhaps other methods (such as those adopted in
the papers mentioned at the begining of this subsection) should be better consid-
ered. Moreover, this should be regarded in view of the recent results of Matousek,
Tancer, and Wagner [MTW], namely that the problem of PL isometric embedding
of n-dimensional simplicial complexes in R™, n > 5 is undecidable, and also that the
more general problem of PL isometric embedding of n-dimensional simplicial com-
plexes in RV, is NP-hard for N > n > (2N — 2)/3, for any n > 4.

At this point, a number of observations are mandatory:

1. Obviously there exists an inherent weakness in the approach above, due to the
fact that the Wald-Berestovskii curvature is a comparison curvature, thence
only inequations, can be given, not equations. However, in the defense of the
considered definition of curvature, it may be said that it requires only simple
computations, using just quite standard, elementary trigonometry (albeit in
St for n =2 and n = 3).

2. This brings up the following natural question: Is it possible — and if so, how? -
to actually compute the Wald-Berestovskii curvature of a PL manifold (or of
a metric graph), using solely the metric of the manifold (respectively, graph),
that is without making recourse to an actual embedding?

The answer to this question is positive, at least for spaces satisfying the
local existence of shortest geodesic and having bounded (pinched) curvature
[Ber], Theorem 6 (see also [Bl]) — thence also in our case — it is possible to
compute the embedding curvature of a metric quadruple, due to a pioneering
work of Wald [Wa] (see also [B]] for a somewhat more recent and detailed
exposition, and [Sa3] for a perhaps more readily available “digest”). We have
the following formula for the embedding curvature x(Q) of a metric quadruple

Q:

(6.6)
0 if D(Q) =0;
K, k <0 if det(coshy/—k - di;) = 0;
K, k>0 if det(cos/k-d;j) and \/k-dij <7
and all the principal minors of order 3 are > 0;

Q) =

where d;; = d(z;,2;),1 < 1,5 < 4, and D(Q) denotes the so called Cayley-
Menger determinant:
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1 1 1 1
0 & & @,
d%2 (2) d23 d§4
d%?} d%3 (2) d34
d14 d24 d34 0

(6.7) D(zy,x0,73,24) =

=== = O

As far as the actual computation of (@) using Formula (6.6) is concerned, it
should be noted that, apart from the Euclidean case, the equations involved
are transcendental, and can not be solved, in general, using elementary meth-
ods. Moreover, when solving them by with the assistance of computer based
methods (e.g. making use of MATLAB), they display certain numerical instabil-
ity. For a more detailed discussion and some first numerical results, see [Sal],
[SA]. (Here, again, the advantage of the approach suggested by Propositions
6.5 and 6.7 is evident, at least as far as the type of the involved computations
is concerned.)

. To compute the extrinsic curvature of an embedding (and to compare it to
the intrinsic, given one) we can again make appeal to metric curvatures. In
this case, we shall use metric versions for the curvatures of curves, to compute
the maximal and minimal sectional curvatures of the embedding. Again, the
metric space under investigation is the 1-skeleton of the PL surface, and the
considered curves are pairs of edges having in common the vertex at which we
wish to compute curvature. As options for the metric curvature of such PL
curves we can consider either the Menger curvature or the Finsler-Haantjes
curvature — see [Sal] and [SA] for a discussion of the the practicability of this
approach in Graphics, and for some first experimental results. (See also [Bl]
for a detailed presentation of the two types of curvatures considered.)

. While due to the monotony of Vj, it would appear that for higher x there are
less possible solutions for the third inequality in (6.5) and (6.4), it should be
remembered that this inequality is a prescribed condition, representing the
curvature of the manifold at the considered vertex.

. To actually solve the system (6.5) appears to be quite difficult and we post-
pone this problem for further study. We should however, note here that here
we consider the isometric embedding (under curvature constrains) of PL man-
ifolds, and not the PL isometric embedding of such manifolds, as in Burago
and Zalgaller paper (as well as in the first part of this paper). Paradoxically,
the introduction of “superfluous” vertices, and, in consequence, of additional
inequalities, may actually make the problem more manageable, by introduc-
ing more degrees of freedom, thus rendering the embedding more flexible.
We do not, however, know how to quantize this freedom and introduce the
equations.

. Obviously, there is nothing special about the particular (and rather restricted)
case of 1-skeleta of polyhedra (or, more specific, of PL surfaces), and the
embedding criteria (6.4) and (6.5) can be applied to any locally finite metric
graph. Therefore, system (6.5) represents a partial answer to a question posed
to the author by N. Linial [Li] (see [Sa4]). Admittedly, in this case the notion
of intrinsic curvature is less natural. Moreover, in the absence of triangles —
whose existence is not guaranteed in the general case — the very definition of,
say, Finsler-Haantjes curvature is, in this case, quite problematic. We defer
such problems for further study [Sa5].
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7. Tt is sometimes desirable (especially in an applicative setting) to embed the

given PL surface (or graph) either in S® (for representation reasons), or in
H? (due to its exponential volume growth). In both cases, the appropriate
embedding conditions are immediate to obtain, from Proposition 6.5(1).

Let us also note here that an isometric embedding criterion in R™, as well as
in S™ and H", in terms of the Cayley-Menger and related determinants (and
some related results) can be found in [Bl]. Here, again, the practicability of
the required numerical computations is far from clear, and the advantage of
our method is evident.
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