ASIAN J. MATH. (© 2012 International Press
Vol. 16, No. 3, pp. 429-450, September 2012 005

NEW THOUGHTS ON WEINBERGER’S FIRST AND SECOND
INTEGRAL BOUNDS FOR GREEN’S FUNCTIONS*

JIE XIAOf

Abstract. New thoughts about the first and second integral bounds of Hans F. Weinberger
for Green’s functions of uniformly elliptic equations are presented by extending the bounds to two
optimal monotone principles, but also further explored via: (i) discovering two new sharp Green-
function-involved isoperimetric inequalities; (ii) verifying the lower dimensional Pélya conjecture for
the lowest eigenvalue of the Laplacian; (iii) sharpening an eccentricity-based lower bound for the
Mahler volumes of the origin-symmetric convex bodies.
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1. Introduction.

1.1. Weinberger’s 1st & 2nd integral bounds for Green’s functions.
From now on, let (a;;) be an n x n symmetric matrix on R™, n > 2, but also let

ij=1 """

be self-adjoint, and uniformly elliptic according to that there exists a constant A > 0
such that

n
(1.1) D a(@)&g = MEP Y (3,6 =(&,.6n)) ERT XR”
ij=1
holds. The model of this operator is the Laplacian A := Z?zl 8‘9—;. Given a bounded
domain D C R™ with boundary D and two functions f in D and hon dD respectively,
the solution (whenever it exists) to the following boundary value problem:

Lu=f in D
u=h on 0D

can be written as

(1.2) u(o) = — /D fG(o,-)dV () + /aD h% dS(-) for o€ D.

Here and henceforth, G(o,z) := G p(o,z) denotes the Green function of D with
singularity at any given point o € D associated to the operator L, i.e., the non-
negative solution to

{ —LG(o,-) =0o(-) in D
G(o,-) =0 on 0D
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for which 6,(+) is the Dirac measure giving unit mass to the point o; dS and dV are
the surface and volume elements;

0G(0,7) . \Glo,z)
(1.3) T—Mz::lau(x) oz Vi

is the directional derivative of G(o,-) along the outward unit normal vector v =
(v1, ..., V). For the later use, recall that if L = A then

In —Ho
% + H(o,z) for n=2

2—n —n
loz=” 7 —R, + H(o,z) for n>2,

n(n—2)oy,

(1.4) G(o,z) =

where
LH(o,-)=AH(0,-)=0 & H(o,0) =0,

oy, is the volume of the unit n-ball and R, is called the conformal respectively harmonic
radius of D with respect to o for n = 2 respectively n > 2; see also [2, p.58-59] and
[4]. When D is a Euclidean ball B, (o) with center o and radius r, G(o,x) can be
calculated below:

|z]o

re
[]

(1.5) G(o,x) = (2m) hl( |x,? ) for n=2
[n(n - 2)0n]71<|x —o*™" — % - lx%fin) for n> 2.

To improve G. Stampachhia’s results in [18], in his 1962 paper [21] (see also
MathSciNet: MR0145191(2642726) and its citations), Hans F. Weinberger obtained
two pointwise estimates on the solution (1.2) under the condition h = 0. The first is:

(1.6) |u(o)| < A_le,nV(D)%*% (/D |f|pdV) " for oc D,

where p is any number greater than § > 1, V(D) is the volume of D, and

1—1
1.9 _1 2 2p—1 2 1 P
Kpn=(n—=2)?""n"roy, |:B(p1’n2_p1)

is the best possible constant with B(-, -) being the classical Beta function. The second
is that if f = >, g‘x”f = divg, i.e., the divergence of vector-valued function g =
(9155 gn), then

1
P

for o€eD & p>n,

(L7)  ulo)l S AT Ky V(D)7 [ /D (ig%)% av

where

is the best possible constant.
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Weinberger’s proofs for both (1.6) and (1.7) use the Holder inequality, the repre-
sentation of the solution

ulo) = = [ Glo.)f()ave)
which also equals
/jj(g,VG(o,-))dV(~) whenever f = divg,
limit arguments, and most importantly, two optimal iso-volume estimates for

Gr,p(0,-) (when L and D are sufficiently smooth) as follows:
The first integral bound of Green’s function is: Under 0 < ¢ < %5 with n > 3,

(18) Ho.Da. ) = [ Gloyrav() < <<%[135qf;;ﬁq)>wzv>lw

with equality if L = A and D = B,(0). This has been extended by C. Bandle (cf.
[2, p.61, (2.21)] and [3]) to n = 2 via replacing the coefficient before V(D) with
I'(1 4 q)(4Am)~? where I'(-) is the classical Gamma function.

The second integral bound of Green’s function is: Under 0 < g < -2,

(19) (o, D,q,\) ::/D|VG(0,-)|qu(-) < [%] V(DyL- 2t

with equality if L = A and D = B,.(0).

1.2. A monotonicity look at the 1st & 2nd integral bounds and beyond.
By normalization, we define

1(0,D,q,\) _
Mraiagw  for n=2
I(o,D,q,\) := n=a(n=2)
( 1(0,D,q,)) - for n>2
("”T’z)B(qul,n”T'qu) [An(n—2)o2 -9

and

II(O)Daq7)‘) ) i
n(Anoi )= — g(n — 1)1

II(o,D,q,\) := <

Then (1.8) and (1.9) can be rewritten as

I(0,D,9.)) <1(0,D,0,%) ¥ g€ [0,—)
and
(0, D,q,)\) < I1(0,D,0,\) ¥ qe o, %).
Such a new observation suggests an investigation of the monotonicity properties of

I(o, D, q, \) and II(o, D, g, \) with respect to ¢q. In the forthcoming two sections, we
will prove respectively that I(o, D, ¢, \) and II(o, D, g, \) are strictly decreasing with
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g being strictly increasing in two appropriate intervals except L = A and D = B,.(0),
and thereby evaluating

liminfI(o, D,q,A) & liminfII(o,D,q, )
3 g— -2

5% -
in terms of two analogues R, 1, and R, 11,» of the (conformal or harmonic) radius R,.
Here, it is perhaps appropriate to point out that our arguments for the monotonicity
properties of I(o, D, ¢, A\) and II(o, D, g, \) cannot be obtained from Weinberger’s ones
for (1.8)-(1.9) which depends on the well-known Pélya-Szegd symmetrization. The key
for us is to use the layer cake formula to reduce the desired monotonicity properties to
one-dimensional calculus inequalities with sharp constants. Section 4 describes some
applications of the ideas developed in Sections 2-3 through:
e discovering two new sharp isoperimetric inequalities via G p(o,-);
e establishing a new Faber-Krahn type inequality for L (with strongly uni-
form ellipticity condition) that particularly confirms Pélya’s conjecture for
the lowest Laplacian eigenvalue in dimensions 2, 3, 4;
e using the optimal Faber-Krahn inequality for Laplacian to sharpen an
eccentricity-based lower bound for the Mahler volumes of the origin-
symmetric convex bodies.

2. The first monotonicity principle.

2.1. The fundamental setting. To reach the monotonicity of I(o, D, g, \) with
respect to ¢, we need a one-dimensional result which seems to be useful for other sharp
inequality problems such as in [14] and [16].

LEMMA 2.1. For0< ¢ < %5, n>2and 0 <t < oo let dy(t) = —ftoo 82dP(s)

and

cl®,(t) _
T(ita) when n =2
Wy(t) = [ c1®q(t) } T hen mo> 2
(25)B (525 —a.1+4q)

with ® and ¢ being respectively a differentiable self-map of [0,00) and a positive con-
stant such that

41e'®(t)]  when n=2

0> ] _n-
- { %[Q)(t)2n —ct]*"  when n>2.

(1) If0 < g2 < q1 < %5 then Wy, (0) < V,,(0) with equality if and only if

B(1) = D(0)e=*  when n=2
B [@(O)H +ct]*"  when n>2
holds for all t € (0,00).
(i)

2-m n

[®(t)= —ct]*™ when n>2.

{ O(t)et  when n =2

Proof. (i) We will verify this part according to two cases n = 2 and n > 2.
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Case 1I: n = 2. With no loss of generality we may assume ¥, (0) < co. If
g2 = 0 then @y, (t) = Po(t) = ®(t) follows from d(e“*®(t))/dt < 0 which ensures
B (00) := limy, o0 (t) = 0. Consequently,

d®o(t) e~ctdt

— >cdt = ———
Do(t) — ¢ [ eerdr

vV tel0,00).

If g > 0, then both d(e“*®(t))/dt < 0 and integration-by-part imply that for any
t € [0, 00),

o0
O, (t) =t20(t) + qz/ TQ2_1(I)(7”)d7”
t
< (t) (t‘“ + qgeCt/ rque_c"dr)
t

:cq)(t)eCt/ rie="dr.
¢

As a result, we read off

dDg, (1) - 2 (t)dt - t2e~ctdt

v tel0,00).
Tl) = Bpt) S [ rmeerdr 0,00)

Integrating this inequality from 0 to ¢, we obtain

12194, (0)

(I)‘Zz (t) S F(QQ + 1)

/ r2e="dr YV t€][0,00).
t

With the help of the last estimate we have that if

0<gp<qu< o L =00
S Qg2 < q1 n_92 92_9_
then
o0
B0 = (=) [0
(21) < cq2+1(QI - q2)(I)lZ2 (0) /OO tqlfqul(/oo Tq2€7crd7’) dt
N (g2 + 1) 0 t
o (Tla + 1))
=271 o 0 ,
<F(Q2 +1) o (0)

thereby getting the desired assertion.
Regarding the equality case, we consider two aspects. On the one hand, if

d(t) = ®(0)e™ " V te€(0,00),
then
D,(0) =c (g +1)®(0) V ¢e€l0,00),

and accordingly the desired equality holds. On the other hand, assume ¥y (0) =
WU,,(0) is valid. If the statement “®(t) = e “*®(0) V ¢ > 0” were false, then there
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would be two positive numbers ro and to such that ro > to and ®(rg) < e~¢(ro=t0)P(tg)
hold, and hence the continuity of ®(-) produces such a constant § > 0 that ®(rg) <
e~c(r=Y®(t) when t € (to — 6,to). Therefore d(e“*®(t))/dt < 0 is applied to derive
that ®(r) < e ("=Yd(t) as t € (ty — J,t] and r > 7. Consequently, we obtain

o0
D, (t) < cq)(t)eCt/ r@e=dr Y t € (ty—0,tol,
t

whence finding

CQTH (I)CD (O)

(I)Ch(t) < F(QQ + 1)

oo

/ rZe=dr Y te (tg—9,to]
t

This, along with (2.1), yields

B 0) = (0 - [ ety 0 < oo (HEE) 000)

contradicting the previous equality assumption.
Case 2: n > 2. Since

[o(1)5 —ct]T" ¥V tel0,0),
it follows that

2—n 2—n

(2.2) [@(t2) 7" — cta] =7 < [B(t1) " —ct]T7 ¥V 0<t <ty < 0.

If g2 = 0, then using integration-by-parts, (2.2) and a simple substitution we get

By, (0) = / 57 dD(s)
0
— Q1/ q)(s)sql_l ds
’ o0 2-n _n_
< q1/ [@(O)T + cs} =ngh—l g
0

n

o n
=¢(0)g1c / [1+@(0) o s] 77 s ds
0

n—q1(n—2)

nmqm=z n
= @0(0) " qic? B(m - Q1aQ1)7
whence reaching ¥, (0) < ¥,,(0).

If g2 > 0, then the situation is more complex than g = 0. Given r € [0, 00) and
q € (q2,7%5), an integration-by-parts, the inequality (2.2) and a change of variable
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yield

D,(r) =rid(r) + q/oo o)t dt

2—n

< rid(r) + q/oo [@(r) " +c(t—7)] T a1 gy

2(n—1)

[ee]
_ cn2/ [@(r)zjthrc(t*T)}ﬁtth
n— r
oo n 2(n—1)
- cn2/ [CID(r)zT —cr+ct] T 0dt
n— r
B B 2-m n—(n=2)q [ t9dt
=c qn(n _ 2) 1[(1)(7“) o — cr} 2—n / W7
= 1) n
®(r) n —ecr

and consequently,

q r nfrl(T;’b*2) 2 n
(2.3) L)q)] < [q)(T)T _ cr] T-n

4B(3%5 —

Observe that

(2.4)

d®,(t) ,de(t) cn 2(n—1)
= < q = .
e t o S (2_n)t d(t) vV tel0,00)

Now, (2.3) and (2.4) are used to deduce the following differential inequality

_2-n Hnd) 4P (¢ q
(2.5) td [(aq)q(t)) n—q(n—2) +ct} 2 < dt q( ) where a — nC—
(ﬁ) 4B(3%5 — 4.q)

The estimate ®4(t) < ®4(0) and the differential inequality (2.5) derive

2(n—1)

2-n n—2 o 2—n 2(n—1) dd (t)
tQ[ n—q(n—2) t® (0 77L7q(7lfz)} < ( )q) t q(n72)7n( q )
QT 4 et (0) < (=)0 -

Integrating this last inequality over [0, s], we obtain

_ n—gq(n—2)
s 2-n n—2 2(n—1) G=n)(at1)
Jo la™=a=2 4 cr®,(0) "2 ] 2= ridr (2=n)(a+1)
Dy(s) < | ) + By (0)
L cn(g+1)
: —
—n)(q
1 csla®q(0)] —aln—2) (n_1)
—,(0) |14 et / (14 1) 555209 gy
ci(n—q(n —2)) Jo

n—2

Using the above inequality, setting b = c[aCIDq2 (0)] n-an=2) "and integrating-by-parts,
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we further get

,,(0) = (a1 — g2) / By, ()50~ ds
0

n—g(n—2)
(2—n)(q2+1)

(1+ ) S gy

c?2 (n—qg (n—2))
T an(etl)

dSQ1—Q2

< <I>q2(0)/ 1+
0

n—go(n—2)
(2—n)(q2+1)

2(n-1)

e d 147 5= 792 dr
=P, (0)/ s — |14 ( ) ds

0 ds 42 (n—qz(n—2))

an(g2+1)
2(n—1)

n—qj(n—2) + 2(n— 1) (2—n)(g2+1)
B (aq)q2 n—qo(n—2) / ) + .f() ,qu(l + 'U) D dU dt
B CQ1 (1+41) (77 = c2 (n*(n*2)q2)

an(q2+1)
n—aqy(n—2)

n—qz(n—2) 1)
/ 1 +t dt
ch
n—q1(n—2)

02 n—qo(n—2)

(QQB( — G2, 02) )CI)(D ©) ’

IN
—
@
M\_/

(

_ [‘hB(

Q1,Q1)}

cd1

whose last inequality becomes equality when ®,,(0) = 0. Simplifying the just-
obtained estimates and using the definition of ¥, we immediately find ¥, (0) <
lI/(h (O)

Next, let us consider the equality. The ‘if’ part can be seen from a direct compu-
tation. As a matter of fact, if

(2.6) O(t) = [0(0)F +ct]™7 ¥V te(0,00),
then a simple calculation yields

n—q(n—2)

$,(0) = /OOO B(t) dt? = c_q(nﬁ2>3(% g1 +q)q>(o)ﬁ,

whence giving ¥, (0) = ¥,4,(0). On the other hand, if (2.6) is not valid, by (2.2) there
is a tg € (0,00) and € > 0 such that

(2.7) D(t) < [B(0) 5" +ct]7n YV te (to,to+e).

Applying (2.7) to the beginning estimates in the treatment of either go = 0 or g2 > 0,
we find that (2.3) becomes a strict inequality for r € (to,to + €), and so that (2.5) is
actually a strict inequality when ¢ € (g, top +€). With the help of this strictness, from
the concluding group of estimates in the treatment of either g; = 0 or g2 > 0 we see
either

By, (0) < Po(0)

n—gqj(n—2) n n
S (e )
(n_Q)C n_o It +q
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or

to to+te
D4, (0) = (q1 — q2) [/ / / } )12l s
to to+e

n—gq(n—2)
@=n)(az+1)
o0 bs 1+7r = 792 dr
oo [ [ B
0 cI2 (n—qz(n—2))
T an(g+D)
n—qy(n—2)
aB(F5 —q.q1) 2 ozl
< [—=2 | |( )4 (0)
i ©B(:%5 — a2, ¢2)

Needless to say, we end up with the strict inequality ¥,, (0) < ¥,,(0), whence com-
pleting the argument for the ‘only if’ part.

(ii) We demonstrate this part in accordance with two cases n = 2 and n > 2.

Case 1: n = 2. From the argument for (i) we may assume that ¥,(0) < oo is
valid for all ¢ > go with some ¢o € (0,00) and so that via integration-by-parts and
d(e“'®(t))/dt <0,

B,(0) = qéwﬂlémd

o0
:q/ e o(r rq_le_c’“dr
0

— gt / P e dr) :o—q/ooo (/Ot rilen dr) (e @ (1))

=c T(q+ 1)(1515{)10 Gth)(t)> - q/OOO (/Ot ra—le=er dr) d(e*®(t)).

Therefore, the desired limit formula follows from showing

0> J( )~—q70q/oo(/t ot ’”d)d(ct@(t))—w -
= J\g,Cc) ‘= F(q+1) o o r (& T (& as ¢ Q.

Notice that the condition d(e“®(t))/dt < 0 deduces that for any € > 0 there exists a
to > 0 such that —§ < L‘:O d(e“t®(t)) < 0. So

Ji(g,c) := I‘(%ﬁl) /t:o (/Ot pa—1o—cr dr) d(e (1))
> /OO d(e®(t)) > ,%_

to
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Meanwhile, integrating by parts plus d®(t)/dt < 0 derives

Ja(gq,¢) == F(%ﬁl) /Oto (/Ot rd=leer d?“) d(e“®(t))
> F(qc—il) /O " (e

cl to "
> [ et gt
CESY / 0

q ,cto4d4—q0 to
Z %/ t9o d(I)(t)
Lg+1) Jo

et g, (0)
I'(g+1)
The estimates on Ji (g, ¢) and Ja(g, ¢), along with d(eCt(P(t))/dt < 0, imply that
0> J(g,¢) = J1(g,¢) + Ja(g,c) > —¢

holds for sufficiently large ¢. Thus, limg . J(g,¢) = 0, as required.
Case 2: n > 2. From (2.3) it turns out that for a given r € [0, 00),

B,(0) = / "b(t) dit + B, (1)

T 2-m n—gq(n—2) n
< q = — 2—n —-q
_/0 ®(t) dt? + [®(r) cr] c (n72)B(
Using the Adams inequality [1, (17)]:
(a+B) <a? +4207 1B 4+ BaP~Y) for 0<a,B,7—1< oo,

—0 as qg— oo.

g1 )
—— —.1+q

as well as the asymptotic behavior of B(:,-), we get

lim ¥,(0) < [@(7‘)% —cr] =
e
thereby obtaining
. . 2-n Py
(2.8) qilf},g T, (0) < tlggo [@(t) o ct} T-n

For the reversed one of (2.8), noting that [®(t) e —ct] 77 decreases with ¢ increasing,
and so using (2.2), we obtain

2—n

6= Jim [0 — o] 7 < [2()*F —at] " < B(0).

Clearly, it follows from (2.8) that ¢ is nonnegative. But, if ¢ = 0 then (2.8) gives
lim,, »_ ¥,(0) = 0 and hence the limit formula in (ii) (under n > 2) is true. So, it

n—2
remains to deal with the case ¢ > 0. Using this condition, we get

L an _n_ n—gn-2 / N n
n -n 9 — n —4q _
<I>q(0)z/0 (65 + ct] ™7 dt? = ¢ (=) B(-==5 ~a1+a).

Naturally, this last estimate yields
2—n —n_

. > 1 = _ 2-n

, _lgan Wy(0) > lim [®(t) ct]

(2.9)

A combination of (2.8) and (2.9) gives the desired limit formula. O
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2.2. A monotone integration for Green’s functions. Using the preceding
lemma, we get the following monotonicity for Green’s functions.

THEOREM 2.2. Let the uniformly elliptic operator L and the bounded domain D
be so smooth that G(o,-) = G p(o,-) exists.
(1) If0 < g2 < 1 < 725 then

(210) I(OvDaqh)‘) < 1(07D7q27>‘)

where inequality in (2.10) becomes equality when L = A and D = B,(0).
(i) If0 < g < 75, t€[0,00) and Dy = {x € D : G(o,x) >t} then

3=

Roiy = [051 liminf I(o, D, g, )\)}

qa— n—2

defines the type 1 radius of D with respect to o € D which can be evaluated by

{ 1 [V (Dy)ern!]

1
. " when n =2
lim
t—o0

n S
on " [V(Dt)% — Knt] " when n > 2,

where
4t when n=2
Rn = 2
n(n —2)os A when n > 2.
Consequently
(2.11) onRy 1y <1(o,D,q,\) < V(D)

where equalities in (2.11) occur and so Ro1x = R, whenever L = A and D = B, (o).
Moreover

V2(Dt) ;

. — 7rtR )

1= lim (e °

t—00 V(D) 5 o when n > 2
on[n(n—2)ont+R; " "]2-7

when n =2

is valid for L = A.
Proof. (i) For ¢t > 0 consider the level set D, and put
1(07 Dtaq7)‘) = G(O)')q dV()
Dy

According to the well-known co-area formula (cf. [2, p.53, Lemma 2.5]) and Sard’s
theorem (cf. [17, Theorem 10.4]), we may assume |[VG (o, x)| > 0 exist for all € Dy,
and thus have

d
7_:[(07DtaQ7>\) :tq/ |VG(O,CL')|71 dS(lL')
dt oD,
Note that

% = —|VG(o,x)|v; when =z € 0Dy,
Ti



440 J. XIAO

and from the definition of Green’s function we read

(2.12) /M W&?(z) =1,

thereby finding via (2.12), (1.3) and (1.1)

_ = auxaG(o,x)V' .
t=- [ 3 a5 nds(e)

Di g j=1

(2.13) = / |VG(O,;E)|Z aij(x)viv; dS(z)

> )\/aDt |[VG(o,x)| dS(z).

Now that the isoperimetric inequality is valid for D; and its boundary 0Dy, i.e.,

n

(2.14) V(D)™ < (noy)~1S(8D,).

So, using the Cauchy-Schwarz inequality and (2.12)-(2.13)-(2.14) we get

4
dt

2(n—1)

(2.15) V(Dr) < —A(nois )V(Dy) ™

Upon letting ®(t) = V(D;) and using the layer-cake-formula we find

D,(t) == G(o,z)1dV(z) = — /too s9dd(s).

Dy

From (2.15) we know that the above-defined ® obeys the differential inequality re-
quired in Lemma 2.1 with ¢ = k,,, and consequently use Lemma 2.1 (i) to achieve
(2.10). The equality of (2.10) follows from a direct computation with the precise
formula (1.5) of Green’s function of B, (0) associated to A.

(ii) This follows from Lemma 2.1 (ii), the just-checked (i), and (1.4) which deter-
mines the radius R, under L = A:

R, = lim

r—o

{ |o — x| exp[2nG(0,2)] when n =2

[Jo—a[*™ —n(n —2)0,G(0o,2)]*" when n>2.

3. The second monotonicity principle.

3.1. A monotone integration for the gradients of Green’s functions.
Despite being still reduced to a one-dimensional sharp estimate, the monotonicity of
II(o, D, g, \) will be derived without introducing any additional assertion similar to
Lemma 2.1.

THEOREM 3.1. Let the uniformly elliptic operator L and the bounded domain D
be so smooth that G(o,-) = G p(o,-) exists.
(1) If0< g <q <1< 5 then
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(31) II(07D7QI7>‘) S II(OaDanaA)

where inequality in (3.1) becomes equality when L = A and D = B,(0).
(i) If0<g< =2, t€[0,00) and Dy ={x € D: G(o,x) >t} then

n—1’

3=

Roqi = [051 lim inf I1(o, D, g, )\)}

q— 2

n—1

defines the type 11 radius of D with respect to o € D. Consequently

(3.2) O—nRZ,II,)\ S II(O, D, q, )\) S V(D)
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where equalities in (3.2) occur and so R, 11,» = R, whenever L = A and D = B, (o).

Moreover

Jop, VG0, dS()
(2me—27tR,)%2—4

1= lim Jop, IVG(0,)]*71dS ()

when n =2

when n > 2

e -
(ncrn[n(n72)o'nt+R,2,7n]2*") !

is valid for L = A.

Proof. (i) In the sequel, let 0 < ¢ < -2, t € [0,00) and

Aqlt) = /D VG (o, )1 dV ().

By the co-area formula, we get

d

() = - /aDt VG (0, 2)|97 dS(x).

So,
II(o, D, q,\) = f/ —Aq(t) dt.
o dt

By (2.14), Cauchy-Schwarz’s inequality and (2.13) we obtain

n—1

Ao(t)™= < (now)"1S(0Dy)

33) < (noi)! [/BD |VG(o,x)|_1dS(x)r UaD VG0, 2)[dS(z)|

— & Ao (1)
T (now VA
Meanwhile, we employ Hélder’s inequality and (2.13) again to obtain
d q d 17%
4 “ A < "[——A } .
(3.9 SAg(0) < A = S (1)
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To continue, we apply (3.4) and (3.3) to get

oo 17%
(35) <at [T S]]
1 _ n n—g(n—1)

Both (3.5) and (3.3) produce

2(n—1)

(36) — 2 Ko(t) > YqnAg(t) T

In the above and below,

+q(n—1) 1 2 q(n 1) 72(71(71))

n n— 1 n — n—q(n—1

Yg,n = An—a(n—1) (no‘,’;)"*qwfl) {1 — 7} .
n

An application of (2.13) and Hélder’s inequality derives that if 0 < g2 < ¢1 < 25
then

2—a1
2—qg

@ <3 [ vGie g ase)]
dt 8D,

and hence
d ar d b=
—A— <= a= .
(3.7) A Ay (O] < [ = AT A ()]

Using (3.7) with ¢ = ¢ < 1 = q1, (2.14) and (3.5) we find

d (n=1)(2—q)
(3.8) —EAq(t) > Jgnlg(t) =DV g €]0,1],

where

1. _n@2-q) —1 (:;)7(25”
Sgm = A" Anoy ) rmatni-1 [1 - M] e
n
As a consequence of (3.7) and (3.8), we further obtain that if 0 < g2 <1 <1< —
then

a2—a91 o0 (n=1)(2—a2) _a2—a3
< —)\ie / [5q2,n(Aq2(t)) n—qg(n—1) } 2—qo qu2(t)
0
@2—a1

= (M) [%] (A (0)] 56D
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A simplification of the above estimates gives the desired inequality. In addition to
this, the equality case can be checked through a direct computation with the explicit

formula (1.5) of Green’s function of B, (o) attached to A.

(ii) Clearly, R, 11,» makes sense, enjoys (3.2), and equals R, whenever L = A and

D = B,(0), thereby assuring II(o, D, ¢, A) = V(D).

Next, suppose L = A. Then A = 1. Two cases are considered in what follows.

Case 1: n = 2. Under this condition, we employ (1.4) to obtain

R,
G(o,z) = (2m) "' In o= 2l + H(o,z),

whence finding
IVG(o,z)| = (27|o —z[) ™' +0(1) as |o—a|— 0.
Furthermore, if G(o,z) = t, then
Ry, =lo—xz|e*™ +0(1) as |o—z| =0,

and hence

/8D IVG(o,2)|97 dS(x) = (2nR,e ?™)?" 9+ 0(1) as t— oo.

¢

This verifies the desired limit formula for n = 2.

Case 2: m > 2. Under this assumption, we read from (1.4) that

o — af>~" — B2

Glo,z) = n(n — 2)o,

+ H(o,x),
and so that
IVG(0,z)| = (non) to—a|'"™ +0(1) as |o—z|— 0.
When G(o,x) = t, we also have
R, = [lo— 2" — n(n — 2)o,t] = +o(l) as |o—z| =0,

thereby getting

n—1\ 2—
/ |VG(o,x)|71dS(x) = (nan [n(n—2)o,t + R2"] ﬂ) ! +o0(1) as t — oo.
oD,

Obviously, this last estimate yields the desired limit formula for n > 2. O

3.2. Two sharp Sobolev-like inequalities. Totally motivated by Theorems
2.2 & 3.1 and their arguments, we figure out two interesting Sobolev-like inequalities

with sharp constants.

COROLLARY 3.2. Let the uniformly elliptic operator L and the bounded domain
D be so smooth that G(o,-) = G p(o-) exists. For 0 < q <1< "5 and 0 < p <

n_ g(n—1)
n—2 n—2 set

6,5T(p+1) when n=2

n = P+l _ _
lp.a; { 5;5[771 Z(ILQ 1)} B(i(" 711)7(3 a) fpfl,erl) when n > 2.
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Then

1 _n_ (a—D)n T ED
I(o, D,p,\) < (noy; ) =" AT=00:=D (/ IVG(o,-)7! dS('))
oD

with equality if L = A and D = B,(0).
(i)

/ G(o,-)P|VG(0,)]7dV () < Mp,a,n - [II(O7 D,q, )\)}n_q(n_l)_p(n_m
D

(n—2)

P
1 m—aqn—1)
n(AnU,{‘)q o
n—q(n—1)

with equality if L = A and D = B,(0).
Proof. (i) This follows immediately from (3.7) and

n

HaDmA)SV@HS[SQ?Wnl-

noy

(ii) Keeping the notation A4(-), we integrate (3.8) with respect to dt to get the
following inequality for ¢t > r > 0:

Ag(r)exp|—0g2(t — 1 when n =2
(3.9) Ayt) < _2om (nf;)(sq)n | qu
[Aq(r) neatn—1) 4 2oan (4 7’)] when n > 2.

n—g(n—1)

So, if dug := |VG(o,-)|2dV (-) then by substitution and integration-by-parts we have
| NG ave) = [ i are
= —/TOO tP dpig(Dy)
_ —/OO 7 dA, (1)
=1PA,(r) + p/oo A ()P~ dt.

Case 1: n = 2. Regarding this, we get from and the above upper bound estimate
(3.9) for Ag4(t) and integration-by-parts,

p/ Aq(t)tpfl dt < eﬁq,QrAq(r)< _ T.Peftsqz?“ + 5(],2 tpe—éq,zt dt)

T
oo

= —1PAq(r) + 5;566‘7'2’%(](7“)/ e P dt

6qy27'

< —rPAy(r) + 5;565‘?*2’”Aq(7’)r(p +1).

— (n_2)6q,n

Case 2: n > 2. Concerning this, let 7, ,, := ety Similarly, we get from (3.9)

and an integration-by-parts,
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S o . n—q(jn—n
P / Ag(t)tPtdt < p / [Aq(r)m +Tq,n<t—7«)] Tl

n—q(n—1) 1

— A + B [0 [T 0] T

n—g(n-1) 4

2—n —n
= —rPAg(r) +d4m [Aq(r)m - Tq,nr} ’ x
* ranl a=go-y
x / v [1 + Tan } U
" Ag(r)m=a=D — 74 nr
P Og.m _2on g
< —rPA(r) + ———1 [Aq(r) n—a(n=T) — Tq’n”l’} X

(%)Hl

TS R

A combination of the above two cases with r = 0 gives the desired inequality.
Moreover, if L = A and D = B, (o) (for some ry > 0) then the inequalities (under
r = 0) stated in the above argument become equalities, and hence the equality in
Corollary 3.2 (ii) holds in this case. O

4. Applications.

4.1. Two new optimal isoperimetric inequalities via Green’s functions.
A consideration of the cases ¢ < 0 of I(o, D, q,\) and II(o, D, g, \), whenever L and
D are so smooth that G(o,-) = G, p(o,-) exists, reveals (by Holder’s inequality) the
following inequalities

o (L)

and

V<D>1dvo>‘ < / V<D>1dV<->)l

4.2 / —— ] < —_— VO0<p<g<oo

a2 (] ey b VGG, P

with equalities in (4.1) and (4.2) respectively if and only if G(o,-) and |VG(o,-)| are
constants on D respectively. But, (1.3) clearly shows that the equality cases cannot

happen at all. Namely, (4.1) and (4.2) are actually strict. A similar argument plus
(2.13) derives

S =
Q=

S(/D%,liqm)_ VO<p<g<o

==
Q

@3)  S©OD,) = /wt ds < Ao (/BD IVG(o,-)| 72 dS(-))l_a vV oae(0,1)

with equality if and only if [VG(o, )| = [AS(0D;)]~* on 0D;.
An application of Holder’s inequality along with (4.3) yields the following mono-
tonicity estimate
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with the equality in (4.4) if and only if [VG(o,-)| = [AS(0D;)]~! on dD; — this can
certainly happen, for example, when L = A and D = B, (o) .
Furthermore, we have the following new sharp isoperimetric inequalities.

PROPOSITION 4.1. Let the uniformly elliptic operator L and the bounded domain
D are so smooth that G(o,-) = G, p(o,-) exists.
() If0<qg< ;%5 and 0 < a <1 then

/DG(O,-)q AV () < AFS /OOO o (/BD |VG(0,-)|_“‘1dS(-))”% dt

with equality when L = A and D = B,.(0).
(ii) If 0 < ¢ < ;%5 then

/ IVG(o,)| "1 dS() > vgm </ |VG|qu)
oD D
with equality when L = A and D = B,(0).

2(n—1)
n—q(n—1)

Proof. (i) An immediate application of (4.4) yields
d

i, cerave =1 [ w6t

Stq(A‘%/ |VG(0,-)|‘“‘1dS(-)) .
ODy

An integration with respect to ¢ € [0, 00) derives the desired inequality whose equality
case is obvious.
(ii) This follows from the special case t = 0 of (3.6). O

As the endpoint ¢ = 0 of (i) and (ii), the following sharp isoperimetric inequalities
are very natural (cf. [6, p.53]):

V(D) < A~%%a /OOO (/BD |VG(0,~)|‘“‘1dS(~))2ia &t vV ac(0,1)

and

V(o) < (Vanod) = ([ vt yitas)

which can be also established via (2.14) and (4.3) (with ¢t = 0).

4.2. The lowest eigenvalue of an elliptic operator & Pélya’s conjecture.
According to [2, p.110], if there exists another constant A > A such that the following
strongly uniform ellipticity condition

n

(45) AP = Y ay@)&l 2 NP ¥ (2,6 = (61,..60) ER" X R”

i,j=1

holds, then under some suitable regularity conditions (say, C°) on this elliptic oper-
ator L and the bounded domain D, the solution pair (u, A) to

(4.6) —Lu=M in D subjectto u=0 on 9D
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is decided by the extreme function of the following minimizing problem

(4.7)  M(L,D):= . (/D v? dV)l/D -Z: aij(-)(g—;) (%) av (),

where H{(D) is the Sobolev space defined as the closure of all C* smooth func-
tions with compact support in D that are square integrable with square integrable
derivatives.

PROPOSITION 4.2. With (4.5), (4.6) and (4.7), one has

2l < (L, D)V(D)%.
In particular, the following Pdlya’s conjecture (cf. [10, p.305] and [9])
(2m)%0 " < M (A, D)V(D)*

is true for the lower dimensions n = 2,3,4.

Proof. Assume that u € Hg (D) enjoys —Lu = A1 (L, D)u in D and u|sp = 0. Via
a limit argument, we may assume that L and D are so smooth that G(o,-) = G p(o,-)
exists. Then, an application of (1.2) and Theorem 2.2 (i) derives

u(o):)\l(L,D)/ uG(o,-) dV ()

gAl(L,D)[supu(x)}/DG(Ow)dV(')

xeD
< M (L, D)[ sup u(z)] M] ,

zeD QnAoé
and so
V(D)=
1< n(z0) |V )2]
2nioy

which gives the desired inequality.
Since

2 g —2
2noy > (2m)%on "
holds for n = 2, 3,4, Pélya’s conjecture is true for those lower dimensions. O

However, for the higher dimensions n > 5 the above Pdlya’s conjecture is still
open; see also [10, p.305]. Interestingly, an argument similar to the above can be
found in the paper [20] by G.-J. Tian and X.-J. Wang.

4.3. A sharp eccentricity-based lower bound for the Mahler volumes.
Due to Proposition 4.2 and its proof, we naturally recall the following Faber-Krahn
inequality under (4.5) (cf. [7] or [2, p.111, Theorem 3.3])

(4.8) M(L,D) > A[ng)} JL
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with equality if and only if D = B,(0) and (a;;) is A times the identity matrix (d;;),
where j no2 is the first zero of the Bessel function of order ”772 Surprisingly, this
review produces a way to sharpen an eccentricity-based lower bound for the Mahler

volumes of the origin-symmetric convex bodies.

PROPOSITION 4.3. Suppose that D is a convex body (open bounded convex set) and
symmetric with respect to the origin. For the unit ball B of R™ define the circumradius
R(D) and the inradius (D) of D to be the best quantities such that

r(D)B:={z €R":|z| <r(D)} CDC{zeR": |z <R(D)} = R(D)B
and write e(D) := R(D)/r(D) for the eccentricity of D. If
D°:={yeR":|(z,y)| <1 V wzeD}
is the polar body of D, then the Mahler volume
M(D) = V(D)V(D?)
is not less than e(D)~"a2 (cf. [19]). Moreover, M(D) equals e(D) ™02 if and only
if D is an origin-centered ball.

Proof. Although the first part of the conclusion is known, in order to verify the
second part of the conclusion, we use (4.8) with L = A to give an alternative proof
for M(D) > e(D)~"02. In fact, (4.8) tells us

2
”

(4.9) M(A, DV (D)F > Pson

2

with equality if and only if D° is an origin-centered ball. Without loss of generality,
we may assume

[N

e(D)" 2B C D Ce(D)2B.

Then
e(D)"2B C D° C ¢(D)?B.
Also because of
M(A.pB) = (5 azz) Y 90,

we have by the monotonicity of A (4, -),

(4.10) (j¥e(D)’%>2 < Mi(A,D°) < (j%e(D)%)2

thereby getting via (4.9),

This yields

(4.11) M(D) > V(D®)o,e(D)"% > o2e(D)™"
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as desired.
The proof of the second part is completed via the following argument. If M (D) =
e(D)~"02, then (4.11) gives

V(D°) = one(D)"%.

This, along with (4.9) and the most right inequality of (4.10), deduces

.2 2 o o2 2 2

JHT%U';Z < )‘I(AvD )V(D )n SJn2ow
and so

V(DR A(A,D°) = 0 fos.
2

As a result of the equality situation of (4.9), we see that D° = rB for some r > 0,
and so is D. O

Here, it should be pointed out that the Santalé inequality M (D) < M(B) is
always valid for any origin-symmetric convex body D (cf. [15]). And, it would be very
interesting to find out a pass from A1 (A, D°) or A\ (A, D) to the Mahler conjecture:

4n

M(D)ZM(Q):W

YV origin-symmetric convex body D,

where @@ C R" stands for the unit cube centered at the origin. Though the Mahler
conjecture is still open in general, several important steps: [12]; [13]; [8]; [5]; [11], have
approached toward this conjecture.

Acknowledgement. The author is indebted to the referee whose comments im-
proved the presentation of the paper.
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