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ON THE CONJECTURE OF KOSNIOWSKI∗

HYUN WOONG CHO† , JIN HONG KIM†‡ , AND HAN CHUL PARK†

Abstract. The aim of this paper is to address some results closely related to the conjecture of
Kosniowski about the number of fixed points on a unitary S1-manifold with only isolated fixed points.
More precisely, if certain S1-equivariant Chern characteristic number of a unitary S1-manifold M is
non-zero, we give a sharp (in certan cases) lower bound on the number of isolated fixed points in
terms of certain integer powers in the S1-equivariant Chern number. In addition, we also deal with
the case of oriented unitary Tn-manifolds.
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1. Introduction and main results. A smooth manifold equipped with a com-
plex vector bundle structure on the stable tangent bundle is called a unitary manifold
or stable complex manifold, while a smooth manifold equipped with a complex vector
bundle structure on the tangent bundle is called an almost complex manifold. If a
Lie group G acts smoothly on a unitary manifold (resp., almost complex manifold)
and if the differential of each element of G preserves the given complex vector bundle
structure, then M is called a unitary G-manifold (resp., almost complex G-manifold).
In particular, a unitary torus manifold (or unitary toric manifold) is a closed oriented
stable complex manifold of real dimension 2n admitting an effective T n-action with
a non-empty fixed-point set. In fact, in this case the fixed-point set consists of only
isolated points, since the action of T n is assumed to be effective.

Now let S1 act on a closed connected manifold whose fixed points are all isolated.
Since the tangent space at a fixed point has the complex structure determined by the
isotropy representation of S1, the real dimension of M is always even, although the
complex structure is not canonical, in general. However, it is the case if the manifold
is a unitary S1-manifold. Let P be an isolated fixed point. Then the tangent space
TPM has two orientations: one induced from the orientation of M and the other
induced from the complex structure. We define the sign of the point P by

ε(P ) = ±1,

depending on whether or not these two orientations agree. Note that if the manifold
M is an almost complex S1-manifold, then we always have ε(P ) = 1.

The aim of this paper is to address some results closely related to the following
conjecture of Kosniowski ([4], Conjecture A) about the number of fixed points on a
unitary S1-manifold with only isolated fixed points.

Conjecture 1.1. Let M be a connected oriented closed unitary S1-manifold
of dimension 2n with only isolated fixed points. If M does not bound a unitary S1-
manifold equivariantly, then the number of isolated fixed points is greater than or equal
to a linear function f(n) of n.
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According to the paper [4] of Kosniowski, the linear function f(n) is expected
to be n

2 . This conjecture suggests that the number of fixed points is large if the
dimension is large and if the manifold is not a boundary. In view of our results of
this paper (e.g., Theorem 1.3 below), however, his conjecture seems to be a little bit
rough. Related, but not directly, to this conjecture, note also that recently there are
some works ([10], [7], [6]) by Pelayo and Tolman, Li and Liu, and Li (see also [8]).

On the other hand, as in the book ([3], Appendix D, Section 1.5) of Guillemin,
Ginzburg, and Karshon concerning the equivariant boundedness of a stable complex
T k-manifold, cobordant oriented stable complex manifolds have the same characteris-
tic numbers, and the converse is also true. For the sake of clarity and later reference,
we state this fact as follows.

Theorem 1.2. For each 1 ≤ k ≤ n, let M be a closed oriented stable complex
manifold admitting a T k-action with isolated fixed points. Then M bounds a uni-
tary T k-manifold equivariantly if and only if all T k-equivariant Chern characteristic
numbers of M are zero.

With these understood, our first main result that can be regarded as a more
refinement of the conjecture of Kosniowski is

Theorem 1.3. Let M be a unitary S1-manifold of dimension 2n with only iso-
lated fixed points. Let i1, i2, · · · , in be non-negative integers such that i1 + 2i2 + · · ·+
nin = n. Suppose that M does not bound a unitary S1-manifold equivariantly in such
a way that

〈c1(M)i1c2(M)i2 · · · cn(M)in , [M ]〉 6= 0.

Then the number of isolated fixed points is greater than or equal to

max{i1, i2, · · · , in}+ 1.

Here ci(M) means the i-th (S1-equivariant) Chern class of M . The ideas that
have been successfully used by Tolman-Weitsman, Pelyao-Tolman, and later Li-Liu
in their papers ([11], [10], [7]) also play a crucial role in the proof of Theorem 1.3.

Note that S6 has the standard almost complex structure which can be given by
writing it as the quotient G2/SU(3) of the Lie group G2 by SU(3), and it can be
provided with a suitable S1-action with two isolated fixed points. Thus, S6 equipped
with the standard almost complex structure does not bound a unitary S1-manifold
equivariantly (see [4], p. 338 for details). Since the number of isolated fixed points
of an effective S1-action on S6 is equal to the Euler-Poincaré characteristic of S6,
〈c3(S

6), [S6]〉 is equal to two that is clearly non-zero. Hence, the example of S6 shows
that the lower bound of Theorem 1.3 is very sharp in this special case. In Section 2,
we will also provide more concrete and interesting case concerning the conjecture of
Kosniowski (see Corollary 2.4).

As an easy consequence of Theorem 1.3, we can reprove a result of Hattori ([2],
Corollary 4.3 or see also [7], Corollary 1.5).

Corollary 1.4. Let M be a closed oriented unitary S1-manifold of dimension
2n with only isolated fixed points. If

〈c1(M)n, [M ]〉 6= 0,

then the number of the isolated fixed points is greater than or equal to n+ 1.
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As another special case, the following corollary holds.

Corollary 1.5. Let M be a closed oriented unitary S1-manifold of dimension
2n with non-empty isolated fixed points. Suppose that M does not bound a unitary
S1-manifold equivariantly. Then the number of the isolated fixed points is greater than
or equal to 3, unless n is equal to 1 or 3.

Proof. Since the number of isolated fixed points of an effective S1-action is equal
to the Euler-Poincaré characteristic of M , 〈cn(M), [M ]〉 is non-zero. Hence, it follows
from Theorem 1.3 that the number of isolated fixed points is greater than or equal
to 2. On the other hand, a corollary of Theorem 5 in [4] says that if M is a unitary
S1-manifold with two fixed points, then M bounds S1-equivariantly or the dimension
of M is two or six. Therefore, in our case M cannot have two isolated fixed points.
This completes the proof of Corollary 1.5

It has been known that a circle action on an even dimensional manifold cannot
have only one isolated fixed point (e.g., see [1], Proposition 3.3). Corollary 1.5 and
its proof reproves this fact and more for certain unitary S1-manifolds. Note also that
the lower bound in Corollary 1.5 is very sharp, as the complex projective space CP 2

clearly shows. Finally we remark that Corollary 1.5 continues to hold even for smooth
S1-manifolds (refer to [5], p. 31).

Our second main result which is also closely related to the conjecture of Kos-
niowski (Conjecture 1.1) and can be regarded as an immediate consequence of Theo-
rem 1.3 is the following theorem.

Theorem 1.6. Let M be a closed oriented unitary T n-manifold of dimension
2n with only isolated fixed points. Let i1, i2, · · · , in be non-negative integers such that
i1 + 2i2 + · · · + nin = n. Suppose that M does not bound a unitary T n-manifold
equivariantly in such a way that

〈(cT
n

1 (M))i1(cT
n

2 (M))i2 · · · (cT
n

n (M))in , [M ]〉 6= 0.

Then the number of the isolated fixed points is greater than or equal to

max{i1, i2, · · · , in}+ 1.

Here cT
n

i (M) means the i-th T n-equivariant Chern class of M (see Section 3 for
more details).

We organize this paper as follows. In Section 2, we give a lower bound on the
number of fixed points for a unitary S1-manifold with only isolated fixed points under
the non-triviality of certain S1-equivariant Chern characteristic number. In the same
section, we also present a result related to the conjecture of Kosniowski, Conjecture
1.1 (see Corollary 2.4). In Section 3, in a similar vein we give a lower bound on the
number of fixed points for a unitary T n-manifold with only isolated fixed points.

2. Proof of Theorem 1.3: Unitary S1-manifolds. The goal of this section
is to first set up some basic notations and give some elementary materials for the later
use. Then we give a proof of Theorem 1.3 which will play an important role in the
proof of Theorem 1.6.

Let E be a complex vector bundle of rank m over a smooth manifold M of real
dimension 2n. For the sake of simplicity, let S1 act on a unitary M whose fixed points
are all isolated, and let P1, P2, · · · , Pr denote all the fixed points. Now suppose that
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the S1-action on M can be lifted to E. Then the fiber EPi
at the point Pi is a complex

S1-module to which we can associate integer weights a
(i)
1 , a

(i)
2 , · · · , a

(i)
m .

For instance, the tangent bundle TM can be taken to be such a complex vector

bundle E, so that TPi
M can be written as ⊕n

j=1V
(i)
j . Here V

(i)
j is isomorphic to C

by an isomorphism under which the representation of S1 on V
(i)
j is given by t 7→ tk

(i)
j

with some non-zero integer k
(i)
j . We may also assume without loss of generality that

the integer weights k
(i)
1 , k

(i)
2 , · · · , k

(i)
n are chosen in such a way that the orientations

on V
(i)
j = C induce the orientation of TPi

M .

Let us denote by σj(Pi) the j-th elementary symmetric function of n variables

k
(i)
1 , k

(i)
2 , · · · , k

(i)
n . Then the well-known ABBV localization theorem of Atiyah, Bott,

Berline and Vergne can be stated as follows.

Theorem 2.1. Let M be a unitary S1-manifold of dimension 2n with only iso-
lated fixed points P1, P2, · · · , Pr. Assume that i1 + 2i2 + · · · + nin is equal to n for
some non-negative integers i1, i2, · · · , in. Then we have

(2.1) 〈c1(M)i1c2(M)i2 · · · cn(M)in , [M ]〉 =

r
∑

i=1

ε(Pi)
σ1(Pi)

i1σ2(Pi)
i2 · · ·σn(Pi)

in

∏n

j=1 k
(i)
j

In order to prove the main theorem, we need to set up more notations. For each
1 ≤ j ≤ n, let

{σj(Pi)}
r
i=1 = {τ

(j)
1 , τ

(j)
2 , · · · , τ

(j)
lj

}.

Note that τ
(j)
1 , τ

(j)
2 , · · · , τ

(j)
lj

are mutually distinct by the very definition. Observe also
that lj is always less than or equal to r. Now we are ready to state and prove the
following

Theorem 2.2. Let M be a unitary S1-manifold of dimension 2n with only iso-
lated fixed points P1, P2, · · · , Pr. Let i1, i2, · · · , in be non-negative integers such that
i1 + 2i2 + · · ·+ nin = n. Suppose that
(2.2)

〈c1(M)i1c2(M)i2 · · · cn(M)in , [M ]〉 =

r
∑

i=1

ε(Pi)
σ1(Pi)

i1σ2(Pi)
i2 · · ·σn(Pi)

in

∏n

j=1 k
(i)
j

6= 0.

Then r is greater than or equal to max{i1, i2, · · · , in}+ 1.

Proof. For the sake of simplicity, assume that i1, i2, · · · , ik are all non-zero integers
in the equation (2.2), since the proof of other cases is similar. Then it follows from
the assumption (2.2) that
(2.3)

〈c1(M)i1c2(M)i2 · · · ck(M)ik , [M ]〉 =

r
∑

i=1

ε(Pi)
σ1(Pi)

i1σ2(Pi)
i2 · · ·σk(Pi)

ik

∏n

j=1 k
(i)
j

6= 0

with i1 + 2i2 + · · ·+ kik = n and i1, i2, · · · , ik ≥ 1.

Due to the ABBV localization formula and the dimensional reason, the following
lemma is obvious, but it plays an important role in the proof.
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Lemma 2.3. For each 0 ≤ t1 ≤ i1 − 1, we have

r
∑

i=1

ε(Pi)
σ1(Pi)

t1σ2(Pi)
i2 · · ·σk(Pi)

ik

∏n

j=1 k
(i)
j

= 0.

Now, assume first that i1 is greater than or equal to l1. Then we will derive a
contradiction. Therefore, we can conclude that i1 is strictly less than l1. Since l1 is
always less than or equal to r, we should have i1 + 1 ≤ r.

For the proof, let

As =
∑

1≤i≤r, σ1(Pi)=τ
(1)
s

ε(Pi)
σ2(Pi)

i2 · · ·σk(Pi)
ik

∏n

j=1 k
(i)
j

, 1 ≤ s ≤ l1.

Then, it follows from Lemma 2.3 that we can obtain a system of equations, as follows.

A1 +A2 + · · ·+Al1 = 0

τ
(1)
1 A1 + τ

(1)
2 A2 + · · ·+ τ

(1)
l1

Al1 = 0

· · ·

(τ
(1)
1 )i1−1A1 + (τ

(1)
2 )i1−1A2 + · · ·+ (τ

(1)
l1

)i1−1Al1 = 0.

(2.4)

Since i1 is assumed to be greater than or equal to l1, τ
(1)
1 , τ

(1)
2 , · · · , τ

(1)
l1

are mutually
distinct, and the coefficient matrix of the first l1 lines in the system of equations (2.4)
is non-singular, we should have

A1 = A2 = · · · = Al1 = 0.

But this would imply from the equation (2.3) that

〈c1(M)i1c2(M)i2 · · · ck(M)ik , [M ]〉 =

l1
∑

s=1

(τ (1)s )i1As = 0,

which is clearly a contradiction to the hypothesis of Theorem 2.2.
Now apply the exactly same argument to all other cases of i1, i2, · · · , ik, so that

we can conclude that ij+1 ≤ lj ≤ r for j = 2, 3, · · · , k. To do so, Lemma 2.3 needs to
be suitably modified in such a way that we can apply it to the cases of i2, i3, · · · , ik,
and clearly it can be made without any difficulty. This implies that r is greater than
or equal to

max{i1, i2, · · · , in}+ 1,

which completes the proof of Theorem 2.2.
As an interesting corollary related to the conjecture of Kosniowski above, we have

the following

Corollary 2.4. Let M be a closed connected unitary S1-manifold of dimension
2n with only isolated fixed points. Let i1, i2, · · · , ik be positive integers such that
i1 + 2i2 + · · ·+ kik = n. If M satisfies

〈c1(M)i1c2(M)i2 · · · ck(M)ik , [M ]〉 6= 0,
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then the number r of isolated fixed points is greater than or equal to

f(n) :=

[

2n

k(k + 1)

]

+ 1.

In particular, if k = 2, then r ≥ f(n) =
[

n
3

]

+ 1.

Proof. By Theorem 2.2, the number r is greater than or equal to
max{i1, i2, · · · , ik} + 1. Assume that max{i1, i2, · · · , ik} is attained at il. Since we
have

n = i1 + 2i2 + · · ·+ kik ≤ (1 + 2 + · · ·+ k)il =
k(k + 1)

2
il,

il is greater than or equal to 2n
k(k+1) . Since r is an integer, r is greater than or equal

to f(n), as required. This completes the proof.

3. Proof of Theorem 1.6: Unitary T n-manifolds. The goal of this section
is to give a proof of Theorem 1.6 which is related to Conjecture 1.1. To do so, we first
need to recall some basic notions of a unitary torus manifold.

Let M be a closed oriented unitary manifold of dimension 2n. Then there is
a closed, connected real codimension 2 submanifold of M fixed by a certain circle
subgroup of T n which contains at least one fixed point. This is called a characteristic
submanifold of M , and M has only finitely many characteristic submanifolds. Let
M1,M2, · · · ,Mm denote such characteristic submanifolds. For each 1 ≤ i ≤ m, let Ti

be the circle subgroup of T n fixing Mi pointwisely, and let ζi denote the corresponding
normal bundle of Mi. Then for each fixed point P one can write the tangent space
TPM as a representation of T n as

TPM = ⊕i∈I(P )ζi|P ,

where I(P ) = {i |P ∈ Mi} ⊂ {1, 2, · · · ,m}, and ζi|P is the restriction of ζi to the
fixed point P . Note that in case of a unitary torus manifold, the order of I(P ) is n.
The total T n-equivariant Chern characteristic class c(M) of the tangent bundle TM
of M can be written as

cT
n

(M) =
∏

i∈{1,2,··· ,m}

(1 + λi),

where λi is the element in H2
Tn(M ;Z) associated with each characteristic submanifold

Mi (see [9] for more details). Thus, the total equivariant Chern class of TM restricted
to an isolated fixed point P is given by

cT
n

(M)|P =
∏

i∈I(P )

(1 + λi|P ) = 1 +

n
∑

i=1

σ̃i(P ),

where σ̃i(P ) for 1 ≤ i ≤ n denotes the i-th elementary symmetric function over n
variables λi|P .

For an n-tuple (i1, i2, · · · , in) of non-negative integers, the T n-equivariant Chern
characteristic number of an oriented unitary T n-manifold is defined by

〈(cT
n

1 (M))i1 (cT
n

2 (M))i2 · · · (cT
n

n (M))in , [M ]〉 ∈ H∗(BT n;Z) = Z[t1, t2, · · · , tn],
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where cT
n

i (M) is the i-th equivariant Chern class of M . Note that in case of an
oriented unitary T n-manifold like an oriented unitary S1-manifold, the T n-equivariant
Chern characteristic number defined as above may not be zero, even though the sum
i1+2i2+ · · ·+nin is greater than dimM

2 = n. For the sake of simplicity, in this paper
as in Section 2 we only deal with the case that i1 + 2i2 + · · ·+ nin is equal to n.

The goal of this section is to prove the following

Theorem 3.1. Let M be a closed connected unitary T n-manifold (or torus mani-
fold) of dimension 2n with only isolated fixed points. Let i1, i2, · · · , in be non-negative
integers such that i1 + 2i2 + · · ·+ nin = n. Suppose that M does not bound a unitary
T n-manifold equivariantly in such a way that

〈(cT
n

1 (M))i1(cT
n

2 (M))i2 · · · (cT
n

n (M))in , [M ]〉 6= 0.

Then the number of the isolated fixed points is greater than or equal to

max{i1, i2, · · · , in}+ 1.

Proof. The proof of this theorem is completely similar to Theorem 2.2. To be
more precise, let P1, P2, · · · , Pr denote all the isolated fixed points. Then, for each
1 ≤ j ≤ r, let

{σ̃j(Pi)}
r
i=1 = {τ̃

(j)
1 , τ̃

(j)
2 , · · · , τ̃

(j)
lj

}.

Here τ̃
(j)
s is not an integer but an element in H∗(BT n;Z) = Z[t1, t2, · · · , tn], contrary

to the values of τ
(j)
s ’s. But it is important to note that at any rate lj is less than or

equal to r.
It is obvious that the ABBV localization formula (Theorem 2.1) in our case can

be stated as follows.

〈(cT
n

1 (M))i1 (cT
n

2 (M))i2 · · · (cT
n

n (M))in , [M ]〉

=

r
∑

i=1

ε(Pi)
σ̃1(Pi)

i1 σ̃2(Pi)
i2 · · · σ̃n(Pi)

in

σ̃n(Pn)
.

(3.1)

For the sake of simplicity, as before assume that i1, i2, · · · , ik are all non-zero
integers in the equation (3.1). Then, analogously to Lemma 2.3, the following lemma
holds due to the ABBV localization formula and the dimensional reason.

Lemma 3.2. For each 0 ≤ t1 ≤ i1 − 1, we have

r
∑

i=1

ε(Pi)
σ̃1(Pi)

t1 σ̃2(Pi)
i2 · · · σ̃k(Pi)

ik

σ̃n(Pi)
= 0.

Next, let

Ãs =
∑

1≤i≤r,σ̃1(Pi)=τ̃
(1)
s

ε(Pi)
σ̃2(Pi)

i2 · · · σ̃k(Pi)
ik

σ̃n(Pi)
, 1 ≤ s ≤ l1.

With these understood, it is now easy to see that we can apply the exactly same
arguments as in the proof of Theorem 2.1 in order to show that i1 < l1 ≤ r. So we
leave the details of the rest of the proof to the reader.

Similarly, it is also true that ij < lj ≤ r for all 2 ≤ j ≤ k. This completes the
proof of Theorem 3.1.
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