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ELIMINATION ALGEBRAS AND INDUCTIVE ARGUMENTS IN
RESOLUTION OF SINGULARITIES∗

ANA BRAVO† AND ORLANDO E. VILLAMAYOR U.†

Dedicated to Professor Heisuke Hironaka on the occasion of his 80th birthday

Abstract. Over fields of characteristic zero, resolution of singularities is achieved by means of
an inductive argument, which is sustained on the existence of the so called hypersurfaces of maximal
contact. We report here on an alternative approach which replaces hypersurfaces of maximal contact
by generic projections. Projections can be defined in arbitrary characteristic, and this approach has
led to new invariants when applied to the open problem of resolution of singularities over arbitrary
fields. We show here how projections lead to a form of elimination of one variable using invariants
that, to some extent, generalize the notion of discriminant.

This exposition draws special attention on this form of elimination, on its motivation, and its use
as an alternative approach to inductive arguments in resolution of singularities. Using techniques
of projections and elimination one can also recover some well known results. We illustrate this by
showing that the Hilbert-Samuel stratum of a d-dimensional non-smooth variety can be described
with equations involving at most d variables.

In addition this alternative approach, when applied over fields of characteristic zero, provides a
conceptual simplification of the theorem of resolution of singularities as it trivializes the globalization
of local invariants.
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Part 1. Introduction.

1. Resolution: Pairs, Rees algebras, Basic Objects, and Elimination.
A resolution of singularities of an algebraic variety X is a proper and birational
morphism π : X ′ → X , with X ′ non-singular. Hironaka’s Theorem states that such
morphism exists in characteristic zero, and that π can be defined as a composition of
blow-ups

(1) X ← X1 ← . . .← Xr = X ′

with closed and smooth centers C ⊂ X , C1 ⊂ X1, . . . , Cr−1 ⊂ Xr−1.
Constructive resolution of singularities is given by an algorithm that defines an

explicit procedure to resolve singularities. Roughly speaking, givenX , it provides cen-
ters Ci for a sequence as above, defining a resolution. This is usually made by defin-
ing a totally ordered set (Λ,≥) and, for any X , an upper semi-continuous function
Γ : X → (Λ,≥) that stratifies X in smooth strata. Moreover, the stratum correspond-
ing to the maximum value determines the center C of the blow-up. Thus, a sequence
as (1) is constructed by means of upper semi-continuous functions Γi : Xi → (Λ,≥)
for i = 0, 1, . . . , r − 1, so that the stratum corresponding to the maximum value of
each Γi is smooth, and defines the center Ci.

Over fields of characteristic zero, the upper semi-continuous functions from the
previous paragraph are constructed making use of an inductive argument. Induction
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on resolution of singularities is based on the notion of hypersurfaces of maximal con-
tact. These smooth hypersurfaces contain the worst singularities of a given variety
X , a property that is stable under monoidal transformations. In this presenta-
tion we discuss an alternative approach. Here hypersurfaces of maximal contact will
be replaced by transversal projections and the property of stability under monoidal
transformations will be replaced by the stability of transversality under monoidal
transformations. The very formulation of this alternative form of induction will be
given in terms of Rees algebras. So we will reformulate the problem of resolution in
terms of Rees algebras.

1.1. Hironaka’s reformulation of the problem of resolution. Hironaka
reformulated the problem of resolution in terms of pairs, basic objects and resolution
of basic objects (we follow the notation in [34] and [35]). In the following paragraphs
we give some hints about how the constructive resolutions work. Details and precise
definitions and statements will be given in forthcoming sections.

Given a smooth scheme V over a field k, a pair, (J, b), is a datum where J ⊂ OV

is a non-zero sheaf of ideals, and b is a non-negative integer. A pair (J, b) defines a
closed subscheme, Sing(J, b), which consists of all the points of V where the order of
J is at least b.

The blow-up along a smooth closed subscheme Y ⊂ Sing (J, b), V ← V1, induces a
factorization of the form JOV1 = I(H)bJ1, where I(H) denotes the ideal of definition
of the exceptional divisor. The new pair (J1, b) is said to be the transform of (J, b).

A resolution of a pair (J, b) is a finite sequence of blow-ups

(2)
(J, b) = (J0, b) (J1, b) . . . (Jr, b)

V = V0 ← V1 ← . . . ← Vr

with closed and smooth centers Yi ⊂ Sing (Ji, b) for i = 0, 1, . . . , r − 1, so that:

• Sing (Jr , b) = ∅;
• The exceptional locus of the composite morphism is a union of hypersurfaces,
say H1, . . . , Hr, with normal crossings in Vr.

In order to define a resolution, for a sequence of transformation as above, even
if Sing (Jr, b) is not empty, we will see that for each i = 1, . . . , r, there is a well
defined factorization of the form Ji = I(H1)

a1 · · · I(Hi)
aiJ i for suitable non-negative

integers a1, . . . , ai. The pair (Ji, b) is said to be within the monomial case if J i = OVi
,

or equivalently, if Ji = I(H1)
a1 · · · I(Hi)

ai . In the last case, it is simple to extend the
first i steps in (2) to a resolution. In fact, a resolution of a pair is achieved in two
steps: first defining a sequence of transformations so as to reach the monomial case,
and then extending the sequence to a resolution of the monomial case.

The normal crossings condition on the exceptional hypersurfacesH1, . . . , Hr leads
to the consideration of pairs (J, b) together with couples (V,E) with E = {H1, . . . , Hs}
a set of smooth hypersurfaces with normal crossing (i.e., their union has only normal
crossings in V ). All these data are encoded in terms of a basic object, (V, (J, b), E). If
V is a d-dimensional smooth scheme, then (V, (J, b), E) is said to be a d-dimensional
basic object.

A smooth closed subscheme Y ⊂ V is permissible for (V, (J, b), E) if Y ⊂
Sing (J, b) and has normal crossings with E (i.e., with the hypersurfaces of E). If

Y ⊂ V is permissible, then the blow-up at Y , V
π
←− V1, induces a transformation

of the original basic object, (V1, (J1, b), E1), where (J1, b) is the transform of the pair
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(J, b) and E1 = E ∪ {π−1(Y )}. Here the hypersurfaces of E are identified with their
strict transform in V1.

Hironaka reformulates the problem of resolution of singularities as that of resolu-
tion of basic objects: a resolution of a basic object (V, (J, b), E) is a finite sequence of
blow-ups at permissible centers

(V, (J, b), E)← (V1, (J1, b), E1)← . . .← (Vr , (Jr, b), Er)

so that Sing (Jr, b) = ∅. Hironaka stated that if we knew how to resolve basic objects,
then we could desingularize any scheme of finite type over a perfect field.

Fix a hypersurface X in V . By setting J = I(X) the defining ideal, and let-
ting b be the maximum multiplicity of X , a resolution of (V, (J, b), {∅}) lowers the
maximum multiplicity of X by successive monoidal transformations. For arbitrary
algebraic varieties, Hironaka attaches a basic object, say (V, (J, b), E), to the maxi-
mum value of the Hilbert-Samuel function. This basic object satisfies two properties:
Sing (J, b) is the stratum of maximum value of the function, and finding a resolution
of (V, (J, b), E) is equivalent to lowering this maximum value by means of monoidal
transformations. On the other hand, he also proves that lowering successively the
maximum value of the Hilbert-Samuel function leads to resolution of singularities.
This is how desingularization follows from resolution of basic objects.

The basic object (V, (J, b), E) attached to the Hilbert-Samuel function is not
unique, and this attachment can be defined only locally. This leads to Hironaka’s
notion of weak equivalence of basic objects: two different basic objects attached to
the Hilbert-Samuel function are weakly equivalent (see Section 8). So, strictly speak-
ing, resolution of singularities follows from resolution of basic objects if the latter
can be accomplished with some natural compatibility with weak equivalence. This is
achieved by the constructive resolution, but only over fields of characteristic zero.

1.2. On constructiveness of Hironaka’s resolution. Constructive resolu-
tion addresses resolution of basic objects in an explicit manner. Given a d-dimensional
basic object

(V, (J, b), E)

the algorithm of constructive resolution is defined by a string of invariants which are
the values of an upper semi-continuous function in a totally ordered set. The key
ingredient is a two-coordinates upper semi-continuous function with values on Q×Z,
ordered lexicographically. This upper semi-continuous function provides:

1. Either a way to choose a canonical permissible center of dimension (d− 1);
2. Or a way to reformulate the problem of resolution of (V, (J, b), E) in terms of

a (d− 1)-dimensional basic object (V , (K, e), E = ∅).
Roughly speaking, with this approach, the strategy is either to reduce (V, (J, b), E)

to the monomial case, or to use induction and reduce a lower dimensional basic object
to the monomial case.

Induction on the dimension is made by restriction to hypersurfaces of maximal
contact. The existence of these smooth hypersurfaces is only guaranteed when the
characteristic is zero.

1.3. Rees algebras and resolution problems. In this paper we report
on an alternative form of induction, or say, an alternative way to reduce resolution
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to a lower dimensional problem, which does not make use of hypersurfaces of maxi-
mal contact. This new procedure also reduces the lower dimensional problem to the
monomial case, even in positive characteristic. This is done using Rees algebras and
their properties. In characteristic zero, the one advantage of this approach is that the
local-global problem in resolution can be considerably simplified (see [8] and [18]). In
positive characteristic, the outcome is weaker than the one required for resolution of
singularities, but it has opened the way to new invariants for singularities over perfect
fields (see [9], [5], [6]).

A first step for this alternative approach to induction is the reformulation of
resolution problems in terms of Rees algebras.

Given a smooth scheme V over a perfect field k, a sheaf of Rees algebras over V
is a graded sheaf of rings G = ⊕n≥0InW

n where for each n ∈ N, In ⊂ O is a sheaf
of ideals , I0 = OV , and Ik · Il ⊂ Ik+l. We also assume that, locally, G is a finitely
generated sheaf of OV -algebras. The singular locus of a Rees algebra is the closed set

(3) Sing G := {x ∈ V : νx(In) ≥ n, for all n ≥ 0},

where νx denotes the usual order function in the local regular ring OV,x.

A pair (J, b) defines and can be replaced by a Rees algebra G. To this end, consider
the Rees algebra generated in degree b by J . Then the resolution of (V, (J, b), E) can
be formulated in terms of a resolution of (W,G, E).

The analogy of pairs extends to transformations and resolutions. The blow-up at
a smooth closed subscheme Y ⊂ Sing G, V ← V1, induces a transform of G,

G1 = ⊕n≥0I(H)−nInOV1W
n

where H denotes the exceptional divisor. A smooth closed subscheme Y ⊂ V is
permissible for (V,G, E) if Y ⊂ Sing G and has normal crossings with E. A resolution
of a basic object (V,G, E) is a finite sequence of blow-ups at permissible centers,

(V,G, E)← (V1,G1, E1)← . . .← (Vr,Gr, Er),

such that Sing Gr = ∅.
In the same manner as before, when k is a field of characteristic zero, constructive

resolution is essentially addressed making use of both, a two-coordinate upper semi-
continuous function, and induction.

However Rees algebras can be naturally enriched via the use of differential op-
erators, a fact that has some advantages over the use of pairs:

(i) For instance the basic object (V, (J, b), E) gives rise to the Rees algebra
OV [JW

b], where W is a dummy variable that helps us keeping track of the grad-
ing. This Rees algebra can be enlarged to a new algebra by using the action of
differential operators, say DiffG = OV ⊕ I1W ⊕ I2W

2 ⊕ . . .. Then it can be shown
that for a point x ∈ Sing(J, b), a hypersurface H containing x is of maximal contact
if and only if I(H1) ⊂ I1 locally in a neighborhood of x.

(ii) As we will see, differential operators play a role in elimination (in arbitrary
characteristic). And elimination opens the way to a new form of induction which does
not make use of hypersurfaces of maximal contact. This new form of induction is ap-
proached in the context of Rees algebras, and opens some hopes (and new invariants)
for the problem of resolution over perfect fields. The starting point in this approach
is the notion of elimination algebra.
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1.4. Elimination algebras. To fix ideas, suppose we are given a finitely
generated smooth k-algebra, S, and a monic polynomial f(Z) = Zn + a1Z

n−1 +
. . . + a1Z + a0 ∈ S[Z]. We are interested in the closed set of n-fold points of the
hypersurface {f(Z) = 0} in Spec (S[Z]), say Υn. Observe that Υn is the singular
locus of the Rees algebra generated by f(Z) over S[Z] in degree n. Set

G = S[Z][f(Z)Wn]

as graded subalgebra in S[Z][W ]. Let B = S[Z]/〈f(Z)〉 and consider the natural
morphisms β : Spec (S[Z]) → Spec (S) and β : Spec (B) → Spec (S). Zariski’s
Multiplicity formula for projections asserts that Υn is mapped bijectively to its image
via β(Υ) (cf. [41]). In Section 3 we will see how to construct a Rees algebra on S,
hence independent of the variable Z whose singular locus contains β(Υn). We will
refer to it as an elimination algebra associated to G , (denoted by RG), and it will be
described as certain polynomial expressions in terms of the coefficients of f(Z). As
indicated, in general

(4) β(Υn) ⊂ Sing RG ,

which is an equality if the characteristic is zero or coprime with n (see [36, Theorem
1.16] or Theorem 3.4 below). In order to get an equality in (4) with full generality
we need to consider a Rees algebra larger than S[Z][f(Z)Wn] (actually, saturating it
by using differential operators will do the work). Details regarding this matter will
be given in forthcoming sections, but the ideas exposed in the previous lines already
indicate the general strategy: assign to a given basic object

(V = Spec(S[Z]),G = S[Z][f(Z)Wn], E = {∅})

another in lower dimension, namely (Spec(S),RG , E = {∅}).

In the next section, Section 2, we give a more detailed explanation about the
way induction on the dimension works (in characteristic zero) using the language
of pairs. Here hypersurfaces of maximal contact play a central role. In Section 3
we explain the use of smooth general projections as an alternative to the use of
hypersurfaces of maximal contact, which is valid in arbitrary characteristic. Smooth
general projections are very easy to construct. A look at the first lines of the Appendix
will clarify this point.

The remainder of the paper is divided in three parts. Part 2 is devoted to pre-
senting Rees algebras from scratch. The main invariants associated to a Rees algebra
are the order at a point and the τ -invariant. These will be treated, respectively, in
Sections 4 and 7. In Section 6 we will formulate resolution in terms of Rees algebras,
and in Section 8 the notion of weak equivalence will be discussed (this parallels Hi-
ronaka’s notion of weak equivalence for idealistic exponents). Special attention will
be drawn on Rees algebras that are closed by the action of differential operators, and
these are studied in Section 5.

In Part 3 elimination algebras are introduced. We review their main properties,
briefly explain how to construct them, and give a description of their behavior under
blow-ups (Section 10). Section 11 is dedicated to presenting some of the results of our
research team in resolutions problems following this approach.

To conclude, in Part 4 we state and prove Proposition 11.4, using techniques of
elimination: the maximum Hilbert-Samuel stratum of a d-dimensional (non-smooth,
reduced) scheme X can be described in terms of equations involving at most d variables.
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2. On constructive resolution: Main invariants and maximal contact.
The main invariant in resolution problems is the order of an ideal in a smooth scheme.
Given a non-zero sheaf of ideals on a smooth scheme V over a perfect field k, say
J ⊂ OV , an upper semi-continuous function can be defined,

ν(J) : V → Z

x → νx(J),

by assigning to each point the order of the stalk Jx in the local regular ring OV ,x

(which we denote by νx(J)). Recall that the order of J at OV ,x is the highest integer
n with J ⊂ mn

x , where mx denotes the maximal ideal of OV ,x.
It is not hard to see that, in general, the order by itself is not sharp enough to

provide a good stratification in regular subvarieties on an arbitrary variety (consider
for instance z2 − (x3 − y2)2 = 0 in the affine space; the highest value of the previous
order-function is achieved along a singular curve). It is at this point where the use of
differential operators and induction on the dimension of the ambient space come into
play as useful tools to sharpening the order function.

2.1. Order and differential operators. Let x ∈ V be a closed point, fix
a a regular system of parameters {x1, . . . , xd} in OV ,x, and consider the completion

ÔV ,x = k′[[x1, . . . , xd]], where k′ denotes the residue field at the point. The or-
der of an element f ∈ OV ,x can be computed by looking at its series expansion in
k′[[x1, . . . , xd]], which in turn is connected to the action of differential operators on f .
To be more precise, consider the morphism:

(5)
Tay : k′[[x1, . . . , xd]] −→ k′[[x1, . . . , xd, T1, . . . , Td]]

xi → xi + Ti.

For f ∈ k′[[x1, . . . , xd]], Tay(f(x)) =
∑

α∈Nd gαT
α, with gα ∈ k′[[x1, . . . , xd]]. For

each α = (α1, . . . , αd) ∈ Nd define

(6)
∆α : k′[[x1, . . . , xd]] → k′[[x1, . . . , xd]]

f → ∆α(f) = gα.

It turns out that for f ∈ OV,x ⊂ ÔV ,x, ∆
α(f) ∈ OV,x, i.e.,

∆α
|OV ,x

: OV ,x → OV ,x

and that Diff
(r)
k (V ), the sheaf of k−differential operators of order r, is generated by

{∆α : α ∈ Nd, 0 ≤ |α| = α1 + · · ·+ αd ≤ r} locally in a neighborhood of x. It is here
where we require k to be perfect.

Given a sheaf of ideals, J , and a positive integer r, define:

Diff
(r)
k (J) = 〈∆α(f); f ∈ J ; 0 ≤ |α| ≤ r − 1〉 = 〈D(f); f ∈ J ;D ∈ Diff

(r)
k (V )〉,

which contains J . It is not hard to check that

V (Diff
(b−1)
k (J)) = {x ∈ V ; νx(J) ≥ b},

is the set of points where J has order at least b, and that

νx(Diff
(1)
k (J)) ≥ νx(J)− 1 ; νx(Diff

(2)
k (J))

≥ νx(J)− 2; . . . νx(Diff
(νx(J)−1)
k (J)) ≥ 1.(7)
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In addition, if the characteristic of the base field is zero then

νx(Diff
(1)
k (J)) = νx(J)− 1; νx(Diff

(2)
k (J))

= νx(J)− 2; . . . ; νx(Diff
(νx(J)−1)
k (J)) = 1.(8)

This means, that, if the characteristic is zero, then locally, in a neighborhood of x,

the ideal Diff
(νx(J)−1)
k (J) contains an element of order one at x. So the points

of highest order are locally contained in smooth hypersurfaces, classically referred
to as hypersurfaces of maximal contact. These hypersurfaces contain the points of
maximum order of an ideal, and they have the property that this containment is
preserved by blow-ups at suitably defined smooth centers until the maximum order
of the ideal drops. This is the starting point for induction when the characteristic is
zero.

Example 2.2. Consider the following surface in the affine space Spec (k[x, y, z]),

X := {z2 − (x3 − y2)2 = 0}.

The maximum order of the ideal 〈z2 − (x3 − y2)2〉 is 2, and the closed set of points
of maximum order, C := {x3 − y2 = 0, z = 0}, is contained in the smooth surface
{z = 0}. Now consider the ideal 〈(x3 − y2)2〉 in the affine plane, and identify C
with its restriction to z = 0. Observe that if the characteristic is different from 2,

then z ∈ 〈Diff
(1)
k (z2 − (x3 − y2)2)〉. Thus, 〈(x3 − y2)2〉 has order 2 in C \ (0, 0),

and its maximum order is 4, which is attained at (0, 0). The combination of all this
information already defines a smooth stratifying function for X ,

Γ : X → ({N ∪∞} × {N ∪∞},≤lex) ,

where

Γ(x) =







(1,∞) if x ∈ X \ C
(2, 2) if x ∈ C \ (0, 0, 0)
(2, 4) if x = (0, 0, 0).

The objective now is to define a sequence of monoidal transformations along the
two-fold points of the hypersurface and of its successive strict transforms, so as to
eliminate all points of multiplicity two. In other words, our goal is to find a resolution
of the basic object (Spec (k[x, y, z]), (〈z2 − (x3 − y2)2〉, 2), E = ∅). This problem can
be, somehow, reformulated within the hypersurface V := {z = 0}, where we consider
the ideal 〈(x3 − y2)2〉, and the basic object (Spec (k[x, y]), (〈(x3 − y2)2〉, 2), E = ∅).
Taking into account the law of transformation of pairs and basic objects, there is
strong link between the resolutions of the two basic objects:

Claim. In order to find a sequence of blow-ups to eliminate the points
of order two of 〈z2 − (x3 − y2)2〉, it is enough to find a sequence of
blow-ups to lowering the order of the ideal 〈(x3−y2)2〉 ⊂ k[x, y] below
2. The surface {z = 0} and its strict transforms contain the points
of order 2 of the strict transforms of z2 − (x3 − y2)2 until the order
drops below 2.
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Equivalently, finding a resolution of the three-dimensional basic object

(Spec (k[x, y, z]), (〈z2 − (x3 − y2)2〉, 2), E = ∅)

is equivalent to finding a resolution of the two-dimensional basic ob-
ject

(Spec (k[x, y]), (〈(x3 − y2)2〉, 2), E = ∅).

Thus, {z = 0} is a hypersurface of maximal contact. The ideal 〈(x3 − y2)2〉 is
usually referred to as the coefficient ideal.

So induction comes into play once more, since we have translated our initial
problem that involves three variables, into another expressible in one variable less:
the law of transformations of pairs and basic objects is so that finding a resolution of
(Spec (k[x, y, z]), (〈z2−(x3−y2)2〉, 2), E = {∅}) is equivalent to finding a resolution of
the 2-dimensional basic object (Spec (k[x, y]), (〈(x3 − y2)2〉, 2), E = {∅}), since there
are commutative diagrams of permissible monoidal transformations and restrictions:

(Spec (k[x, y, z]), E) ← (V
(3)
1 , E1 = {H1}) ← (V

(3)
2 , E2 = {H1,H2)}) ← V

(3)
3

(〈z2 − (x3 − y2)2〉, 2) (〈z1 − x2
1(x1 − y21)

2〉, 2) (〈z2 − x2
2y

2
2(x2 − y2)2〉, 2) . . .

∪ ∪ ∪ ∪

(Spec (k[x, y]), E) ← (V
(2)
1 , E1 = {H1}), ← (V

(2)
2 , E2 = {H1, H2}) ← V

(2)
3

(〈(x3 − y2)2〉, 2) (〈x2
1(x1 − y21)

2〉, 2) (〈x2
2y

2
2(x2 − y2)2〉, 2) . . .

Here the first monoidal transformation is the blow-up at (0, 0, 0); V
(3)
1 denotes the

affine chart Spec k [x1, y1, z1] (with x1 = x, y1 = y
x
and z1 = z

x
) and H1 denotes the

exceptional divisor. The second blow-up is the monoidal transformation at the origin

of V
(3)
1 , with V

(3)
2 = Spec [x2, y2, z2] (with x2 = x1

y1
, y2 = y1 and z2 = z1

y1
) and H2 is

the exceptional divisor.
The second row in the diagram corresponds to the transformation of the the two-

dimensional object (Spec (k[x, y]), E) obtained by restricting to z = 0, and considering
the pair constructed from the coefficient ideal: (〈(x3 − y2)2〉, 2). The third blow-up
would be the monoidal transformation with center the curve, z2 = 0, x2−y2 = 0. This

would lead to a two-dimensional basic object (V
(2)
3 , (J

(2)

3 , 2), E3) that is within the
monomial case. At this point, a resolution follows from a combinatorial argument.

This example already illustrates the general strategy for constructive resolution
in characteristic zero: force the basic object constructed by induction (in a lower
dimensional space) to fall within the monomial case. This procedure is referred to as
a simplification of singularities or a reduction to the monomial case, which we discuss
below.

General strategy for resolution of singularities in characteristic zero.
To fix ideas, assume that X is a hypersurface contained in some smooth d-dimensional
scheme V , and let Υn be the closed subset of points of maximum multiplicity, say n,
of X (i.e., the points where I(X) has maximum order n). Associate to this closed set
the d-dimensional basic object (V, (I(X), n), E = {∅}), so that Sing (I(X), n) = Υn.
It can be shown that Υn is locally contained in some smooth hypersurface of maximal
contact V , and that it is possible to attach to the previous d-dimensional basic object,
at least locally, another of dimension one less over V . The procedure of constructive
resolution applied to X proceeds by induction on the dimension, in two steps. The



ELIMINATION ALGEBRAS AND INDUCTIVE ARGUMENTS 329

first step consists of the definition of a suitable sequence of blow-ups along smooth
centers that leads to a simplification of Υn. This is usually referred to as a reduction to
the monomial case, meaning that, locally, Υn can be described in terms of the ideal of
a divisor with normal crossings support contained in some smooth lower dimensional
scheme. In the second step, the monomial case is treated and a lowering of the
maximummultiplicity ofX follows from a combinatorial argument. The simplification
of Υn is obtained by blowing-up the stratum of maximum value of an upper semi-
continuous function defined on X and its strict transforms. This stratifying function
is defined in terms of the order of certain ideals, obtained via an inductive argument
using maximal contact.

Hypersurfaces of maximal contact and positive characteristic. In char-
acteristic zero, hypersurfaces of maximal contact are closely related to Abhyankar’s
notion of Tschirnhausen transform (see [1], [2], and [3]). In J. Giraud’s work, hyper-
surfaces of maximal contact arise using techniques that involve differential operators
on smooth schemes over fields of characteristic zero ([19]).

J. Giraud also introduced methods involving differential operators in his attempt
to extend some of the arguments in resolution to the case of positive characteristic
(cf. [20]). However, in positive characteristic hypersurfaces of maximal contact may
not exist (see for instance [22] and [33]), and hence, the inductive arguments valid in
characteristic zero cannot be extended to this context.

3. Elimination vs. maximal contact. Suppose that we are interested in
studying the maximum multiplicity locus Υn of a hypersurface X embedded in a
smooth scheme V of dimension d + 1. By the Weierstrass Preparation Theorem, it
can be assumed that, in a neighborhood of a point x ∈ Υn, the defining equation of
X is given by a monic polynomial. This requires a generic smooth projection (see
Appendix). So, there is no lost of generality if we work in the following setting: let S
is a d-dimensional smooth ring of finite type over a perfect field k, consider

f(Z) = Zn + a1Z
n−1 + . . .+ an ∈ S[Z]

and denote by Υn the set of points in {f(Z) = 0} with multiplicity n. Note that Υn

is the singular locus of the basic object (Spec(S[Z]), (f(Z), n), E = ∅).

Υn is a closed subset in the d + 1-dimensional smooth scheme
Spec(S[Z]).

Notice that there is a natural smooth projection β, a finite restricted map β, and
a commutative diagram:

(9)
Spec (S[Z]/〈f(Z)〉) →֒ Spec(S[Z])

β ց β ↓
Spec(S).

Now, recall that β is purely ramified over a point x ∈ Spec(S) if the geometric fiber
over x consists of a unique point. Since S[Z]/〈f(Z)〉 is a free S-module of rank n,
Zariski’s projection formula for multiplicities ensures that β is purely ramified over
any point in β(Υn) (see [41, Corollary 1, p. 299]), and as a consequence Υn can be
identified with its image under β in Spec(S). In this sense:
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There is a bijection between the points in Υn and β(Υn). The closed
subset β(Υn) is contained in Spec(S); in particular it can be described
by an ideal in S.

Moreover, we would like to describe it as the singular locus of a basic object on
the smooth d-dimensional scheme Spec(S). This is a first step towards induction.

To fix ideas, consider a degree two polynomial, f(Z) = Z2 + a1Z + a2 with
a1, a2 ∈ S. In this case the discriminant, a21− 4a2 ∈ S describes the image under β of
the purely ramified locus in Spec(S). Observe that to describe the image of the two-
fold points under β, we have to use a sharper argument, and interpret a21 − 4a2 ∈ S
as a weighted homogeneous polynomial of degree 2 (provided that we assign weight
one to a1 and weight two to a2). If the characteristic of S is different from 2, then
the image of the two fold points is precisely the closed subset of Spec(S) where the
discriminant has order at least two. If the characteristic is 2, then the image of the
two-fold points is exactly the closed subset of Spec(S) where the discriminant has
order at least two, and all the partial derivatives of a2 have order at least one (see
Section 10 for precise statements and a justification of this fact). It is at this point,
when we need to make use of weighted equations, where the language of Rees algebras
comes in handy, as we will see in forthcoming sections. As for this example, the points
where the discriminant has order at least two will be expressed as the singular locus
of a suitably defined Rees algebra.

Another example is the particular case in which f(Z) factors in S[Z] as a product
of linear forms, i.e.,

f(Z) = Zn + a1Z
n−1 + . . .+ a1Z + a0 = (Z − α1) · · · (Z − αn),

with α1, . . . , αn ∈ S. Then {f(Z) = 0} = ∪i{Z − αi = 0}, Υn = {∩i(Z − αi)} = 0,
and

β(Υn) = {x ∈ Spec (S) : αi(x) = αj(x), ∀i, j}

= {x ∈ Spec (S) : (αi − αj)(x) = 0, ∀i, j}.(10)

Therefore, β(Υn) is the closed set of points where the αi −αj have order at least one
at the local ring of a point in Spec (S). It is not hard to see that αi − αj is invariant
by changes of the form Z → Z − α. This closed set has also a natural interpretation
as the singular locus of a Rees algebra over S, namely of S[(αi−αj)W ]i<j , viewed as
a graded subalgebra of S[W ], whose singular locus coincides with β(Υn).

In the general case, the problem of finding equations that describe the image in
Spec(S) of Υn, in terms of the coefficients of f(Z), and for an arbitrary n, is first
treated in the universal case.

3.1. The universal elimination algebra. [36, Section 1] Consider the
polynomial ring in n variables k[Y1, . . . , Yn], with coefficients in a ring k, and the
universal polynomial of degree n,

Fn(Z) = (Z − Y1) · · · (Z − Yn) = Zn − sn,1Z
n−1 + . . .+ (−1)nsn,n ∈ k[Y1, . . . , Yn, Z],

where for i = 1, . . . , n, sn,i ∈ k[Y1, . . . , Yn, Z] denotes the i-th symmetric polynomial
in n variables.

The diagram

(11)
Spec (k[sn,1, . . . , sn,n][Z]/〈Fn(Z)〉) →֒ Spec(k[sn,1, . . . , sn,n][Z])

αց α ↓
Spec(k[sn,1, . . . , sn,n])
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illustrates the universal situation, and (9) is a specialization of this case where:

(12)
Θ : k[sn,1, . . . , sn,n] −→ S

(−1)isn,i → ai.

Our motivation for this discussion is to find equations in the coefficients of Fn

that describe the image of the n-fold points of Fn = 0. By Zariski’s multiplicity
formula for finite projections, we start by looking for equations in the coefficients that
describe the purely ramified locus of the morphism.

Since we look for equations in the coefficients of Fn, we will be considering ele-
ments in

k[Y1, . . . , Yn]
Sn = k[sn,1, . . . , sn,n].

Note that k[sn,1, . . . , sn,n] ⊂ k[Y1, . . . , Yn] is an inclusion of graded rings since the
action of Sn in k[Y1, . . . , Yn] preserves the grading.

On the other hand, notice that the purely ramified locus does not vary under
changes of variable of the form

(13) uZ − α,

with α, u ∈ S and u invertible. This change of variable can be seen as the composi-
tion of a translation, Z − β followed by multiplication by a unity. We will start by
considering the translations of the variable Z.

It is not hard to see that k[Yi − Yj ]1≤i,j≤n are functions that are invariant by
translations of the variable Z. Since Sn acts linearly on k[Yi − Yj ]1≤n, clearly

k[Yi − Yj ]
Sn

1≤i,j≤n are functions on the coefficients (a subring of k[Y1, . . . , Yn]
Sn =

k[sn,1, . . . , sn,n]) that are also invariant under translations of Z. It requires some

extra work to prove that indeed k[Yi − Yj ]
Sn

1≤i,j≤n are precisely all the polynomials in
k[Y1, . . . , Yn] that are invariants by both, the action of the permutation group, Sn,
and the translations on the variable Z (see [36] for a proof of this fact).

Let us add a dummy variable W , and define U as the k[sn,1, . . . , sn,n][Z]-
subalgebra of k[sn,1, . . . , sn,n][Z][W ] generated by Fn in degree n, namely:

k[sn,1, . . . , sn,n][Z][FnW
n].

Then define the universal elimination algebra RU associated to U as

(14) k[Hm1 , . . . , Hmr
] := k[Yi − Yj ]

Sn

1≤i,j≤n,

where each Hmi
is a homogeneous polynomial in degree mi, for i = 1, . . . , r. Note

that each Hmi
is also a weighted homogeneous polynomial in sn,1, . . . , sn,n where sn,i

is homogeneous of degree i in the variables Y1, . . . , Yn for i = 1, . . . , n. For instance, in
the case of the universal degree two polynomial, the elimination algebra is generated
by the discriminant in degree two (i.e., n = 2). We will see later in this paper how
these graded algebras relate to Rees algebras, the latter being defined as direct sums
of ideals (see Theorem 3.4).

Remark 3.2. Observe that the elements Hmi
are invariant under changes of the

form Z −β, and are weighted homogeneous on the sni
. As a consequence, the images

of Hmi
in S generate an ideal that is invariant under changes of the form Z → uZ,
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for an invertible element u ∈ S, and thus invariant under changes of the form uZ −α
as in (13).

Recently J. Schicho has implemented a program to calculate the weighted homo-
geneous polynomials Hmi

that generate k[Yi − Yj ]
Sn . Differential operators also have

an interpretation in terms of invariants.

Remark 3.3. Notice that in the universal case changes of the form Z − β can
be expressed as

Fn(Z + T ) = (Z − (Y1 − T )) · · · (Z − (Yn − T )) ∈ k[Y1 − T, . . . , Yn − T ]Sn[Z],

and that

k[Y1 − T, . . . , Yn − T ]Sn [Z] = k[Fn(Z),∆α(Fn(Z)); 1 ≤ α ≤ n− 1]

where ∆α(Fn(Z)) denotes the α-th derivative of Fn(Z) relative to Z. Therefore since

Yi − Yj = (Yi − T )− (Yj − T )

we have that

(15) k[Yi − Yj ]
Sn

1≤i,j≤n ⊂ k[Fn(Z),∆α(Fn(Z)); 1 ≤ α ≤ n− 1].

Furthermore, denote by ∆α(Fn(Y1)) the image of ∆α(Fn(Z)) in

k[sn,1, . . . , sn,n][Y1] = k[sn,1, . . . , sn,n][Z]/〈Fn(Z)〉.

It can be shown that

k[Hm1 , . . . , Hmr
] = k[∆α(Fn(Y1)); 1 ≤ α ≤ n− 1] ∩ k[sn,1, . . . , sn,n]

as subrings of k[sn,1, . . . , sn,n][Y1] (see [36, Corollary 1.10]).

With the previous notation, the following theorem can be proven:

Theorem 3.4. [36, Theorem 1.16] Let S be a k-algebra, let f(Z) = Zn+a1Z
n−1+

. . .+ an−1Z + an ∈ S[Z] and consider a commutative diagram

(16)
Spec (S[Z]/〈f(Z)〉) →֒ Spec(S[Z])

β ց β ↓
Spec(S).

as in (9). Let Υn denote the set of n-fold points of {f(Z) = 0} ⊂ Spec(S[Z]).
Consider the morphism defined by specialization,

k[sn,1, . . . , sn,n] −→ S
sn,i → (−1)iai

which gives rise to the elimination algebra associated to f(Z), say,

Rf(Z) = S[Hmj
(a1, . . . , an)W

mj ; j = 1, . . . , r] ⊂ S[W ],

where mj denotes the degree of the weighted homogeneous polynomial
Hmj

(sn,1, . . . , sn,n) (see (14)).
Then:
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i) The closed set V (Hmj
(a1, . . . , an); j = 1, . . . , r) ⊂ Spec(S) is the set of points

where β is purely ramified.
ii) If S is regular, then

(17) β(Υn) ⊂ ∩1≤j≤r{x ∈ Spec(S) : νx(Hmj
(a1, . . . , an)) ≥ mj},

where νx denotes the order in the regular local ring of x. If in addition, the
characteristic of S is zero, or if n is coprime with the characteristic, then the
inclusion in (17) is an equality.

3.5. The universal elimination algebra for a finite number of polyno-
mials. Note that Rf(Z) = S[Hmj

(a1, . . . , an)W
mj ; j = 1, . . . , r] ⊂ S[W ], is a Rees

algebra over S. Moreover the right hand side of (17) is the singular locus of this
algebra (see (3)). The inclusion (17) is, in general, strict when n is a multiple of
the characteristic: in this case, just considering the equation f(Z) falls too short to
provide a good characterization of β(Υn). This can be remedied by adding some
extra information. In general, we will be working with a hypersurface X embedded
in smooth scheme V over a perfect field k. Then, locally, in an étale neighborhood
of a point of maximum multiplicity of X , one can assume a setting like the one of
Theorem 3.4 after applying Weirstrass Preparation Theorem. In this case, we will
be considering f(Z) together with all the k-differential operators (up to order n− 1)
acting on it. Then an elimination algebra associated to all these data can be defined
over S (see [36, Definition 1.42] for full details; some hints will be given in forthcoming
paragraphs). In terms of algebras, this leads to considering algebras saturated by the
action of k-differential operators, or in short, in working with absolute differential
Rees algebras.

The previous discussion motivates the study of elimination algebras for algebras
generated by more than one polynomial. This is done in full detail in [36]. For
instance, given a smooth local ring S over a perfect field k; and a finite number of
monic polynomials,

fi(Z) = Zni + ai1Z
ni−1 + . . .+ aini

∈ S[Z] i = 1, . . . , s

define a subalgebra of S[Z][W ] of the form

S[Z][fi(Z)Wni , i = 1, . . . , s].

Similarly, in the universal setting we can work with a finite number of polynomials

Fni
= (Z−Yi,1) · · · (Z−Yi,ni

) ∈ k[Y1,1, . . . , Y1,n1 , Y2,1, . . . , Y2,n2 , . . . , Ys,1, . . . , Ys,ns
, Z],

for i = 1, . . . , s, and then a universal elimination algebra can be defined (see [36,
Definition 1.42]). Via a specialization morphism, in a similar manner as in (12), an
elimination algebra can be constructed for S[Z][fi(Z)Wni , i = 1, . . . , s].

3.6. Towards equality in (17). To get an equality in (17) we need to go one
step beyond and consider algebras saturated by the action of differential operators
relative to the base field k. Define G as the graded algebra generated by f(Z) in
degree n, and the action on f(Z) of all higher order differential operators of degree at
most n (see Section 5). This will ultimately lead us, in the universal case, to algebras
as those studied in (15). The singular locus of G is still the set of n−fold points of
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f(Z) = 0. In this setting, an elimination algebra RG can be associated to G (see
Section 10), and formula (15) ensures the existence of a natural inclusion RG ⊂ G.

Assume that RG is generated by G1, . . . , Gs in degrees m1, . . . ,ms over S, i.e.,

RG = S[G1W
m1 , G2W

m2 , . . . , , GsW
ms ](⊂ S[W ]).

By definition its singular locus is

Sing RG = ∩j{x ∈ Spec S : νx(Gj) ≥ mj : j = 1, . . . , s}.

Then, for algebras saturated by k-differential operators, it can be shown that

β(Sing G) = Sing RG ,

i.e., Sing RG is the projection of the maximum multiplicity locus Υn of f(Z) = 0 (cf.
[36, Corollary 4.12]).

The starting point in the previous statement was the case in which an algebra
of the form S[Z][f(Z)Wn] was considered, and it was later saturated by the action
of k-linear differential operators. In general, given an arbitrary (finitely generated)
k-differential graded algebra G in an n-dimensional smooth scheme, and a sufficiently
general smooth projection to an (n− 1)-dimensional smooth scheme,

β : V → V
x → x,

an elimination algebra RG can be defined locally, in a neighborhood of each point x
of its singular locus (see [36, Definition 1.42] for the complete construction and full
details; or see Section 10 in this paper for a brief sketch). When G is closed under the
action of differential operators (i.e. when G is a Differential Rees algebra) then

β(Sing G) = Sing RG ,

(see [36, Corollary 4.12]).

3.7. Compatibility of elimination with monoidal transformations. With
the same notation as in the previous paragraph, it can be shown that if Y ⊂ Sing G
is a smooth center, then β(Y ) ⊂ Sing RG is also a smooth center. Then the blow-
up in V with center Y , say V ← V ′, induces a blow-up of V with center β(Y ),

say V ← V
′
. There is a law of transformation of Rees algebras which induces a

commutative diagram of smooth projections, elimination algebras and blow-ups in a
neighborhood of x ∈ Sing G:

(V, x) (U ⊂ V ′, x′)
πoo

G

β

��

G′

β′

��

	

(V , x) (V
′
, x′)

πoo

RG R′
G ,

where R′
G is an elimination algebra for G′, and U is a suitable neighborhood of x′, a

point in V ′ mapping to x (cf. [9, Theorem 9.1] or Theorem 10.8 in this paper). It
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is worth noticing here that, even if the starting setting is that β(Sing G) = Sing RG ,
there is a difference of the outcome depending on the characteristic of the base field.
When the characteristic is zero, it can be proved that β′(Sing G′) = Sing R′

G , while in
positive characteristic only the inclusion β′(Sing G′) ⊂ Sing R′

G holds (in general).

In this sense the selection of a suitable local projection generalizes the idea of
restricting to a hypersurface of maximal contact, as both are somehow stable by
suitable chosen monoidal transformations. Thus, we replace pairs by Rees algebras,
and restrictions to hypersurfaces of maximal contact by smooth projections; coefficient
ideals are replaced by elimination algebras (see 1.1, 1.2 and Example 2.2, specially
the argument after the Claim for some hints about coefficient ideals).

Using these techniques, given a non-smooth hypersurface, in arbitrary charac-
teristic, we can define an upper semi-continuous function that stratifies its maximum
multiplicity locus in smooth strata (see [9, Theorems 10.1, and 10.2] or Theorems 11.1
and 11.2 below). Moreover, the blowing-up along the maximum stratum of this func-
tion leads to a form of simplification of the singularities with maximum multiplicity,
which we refer to as the monomial case (cf. [37, Section 6], or Corollary 11.3 below).
When applied in characteristic zero, it is simple to check that this approach leads to
the same resolution invariants as the ones obtained using hypersurfaces of maximal
contact and coefficient ideals. A more detailed study of the monomial case is made
in [5], where it is also shown how this approach leads to a short proof of resolution of
singularities of surfaces over perfect fields.

Part 2. Rees algebras. We will discuss some essential properties of Rees al-
gebras that will be used later in this paper. Special attention will be paid to Rees
algebras that are, in some form, saturated, under the action of differential opera-
tors. Example 4.5 illustrates a typical geometric setting in which Rees algebras are
considered.

For our purposes, the most important invariants associated to a Rees algebra are
the order at a point, and the τ -invariant. The order measures the complexity of the
singularity, while the τ -invariant provides information about the number of variables
that can be eliminated from the problem (and it therefore plays a role in inductive
arguments). These are presented in sections 4 and 7 respectively.

Rees algebras will be used to reformulate resolution problems. In this sense, we
will be actually working with algebras up to integral closure, and sometimes up to
weak equivalence (see Section 8). If two Rees algebras are weakly equivalent, then
they have the same resolution invariants, and hence they will both undergo the same
constructive resolution. This equivalence relation parallels Hironaka’s notion of weak
equivalence, essential in the context of idealistic exponents (what we call here pairs
and basic objects).

4. Rees algebras.

Definition 4.1. Let B be a Noetherian ring, and let {In}n≥0 be a sequence of
ideals in B satisfying the following conditions:

i. I0 = B;
ii. Ik · Il ⊂ Ik+l.

Then the graded subring G = ⊕n≥0InW
n of the polynomial ring B[W ] is said to be

a Rees algebra if it is a finitely generated B-algebra.

A Rees algebra can be described by giving a finite set of generators,



336 A. BRAVO AND O. E. VILLAMAYOR U.

{fn1W
n1 , . . . , fns

Wns}, say,

G = B[fn1W
n1 , . . . , fns

Wns ] ⊂ B[W ]

with fni
∈ B for i = 1 . . . , s. An element g ∈ In will be of the form

g = Fn(fn1 , . . . , fns
) for some weighted homogeneous polynomial in s-variables

Fn(Y1, . . . , Ys) where Yi has weight ni for i = 1, . . . , s.

Example 4.2. The typical example of a Rees algebra is the Rees ring of an
ideal, J ⊂ B: G = ⊕nJ

nWn. As a matter of fact, any Rees algebra is, up to integral
closure, the Rees ring of an ideal: let G =

⊕

n≥0 InW
n ⊂ B[W ] be the Rees algebra

generated by {fn1W
n1 , . . . , fns

W s} with fi ∈ B, and let N be a suitable common
multiple of all integers ni, i = 1, . . . , s. Then

⊕

k≥0

IkNW kN ⊂
⊕

n≥0

InW
n

is a finite extension of Rees algebras (cf. [38, 2.3] and [36]).

4.3. Rees algebras and integral closure. In many problems concerning
resolution of singularities it is natural to consider ideals up to integral closure. For
instance two ideals with the same integral closure have the same embedded principal-
izations (log-resolutions). As another example, and for reasons that will be clarified
later in this paper, it will be interesting to consider Rees algebras G = ⊕n≥0InW

n

with the additional property that

(18) I0 ⊃ I1 ⊃ . . . ⊃ In . . . .

For an arbitrary Rees algebra, G = ⊕n≥0InW
n, define

I ′n =
∑

r≥n

Ir,

and set L = ⊕n≥0I
′
nW

n. Then L is contained in the integral closure of G (cf. [36,
Remark 2.2 (2)]), and has the additional property that I ′k ⊃ I ′s if s ≥ k. So, up to
integral closure, it can always be assumed that a Rees algebra fulfills condition (18).

The notion of Rees algebra extends to schemes in the obvious manner: a sequence
of sheaves of ideals {In}n≥0 on a scheme V , defines a sheaf of Rees algebras, G, if
Ik · Il ⊂ Ik+l for all non-negative integers k, l, and if there is an affine open cover
{Ui} of V , such that G(Ui) ⊂ OV (Ui)[W ] is a Rees OV (Ui)-algebra in the sense of
Definition 4.1.

4.4. The singular locus of a Rees algebra. Let V be a smooth scheme over
a perfect field k, and let G = ⊕nInW

n be a sheaf of OV -Rees algebras. Then the
singular locus of G, Sing G, is

Sing G :=
⋂

n

{x ∈ V : νx(In) ≥ n, for all n ∈ Z≥0},

where νx(In) denotes the order of In in the regular local ring OV,x. Observe that
Sing G is a closed subscheme in V . The singular locus of a Rees algebra is well
defined up to integral closure: If G1,G2 ⊂ OV [W ] have the same integral closure in
OV [W ], then Sing G1 = Sing G2 (see [38, Proposition 4.4 (1)]).



ELIMINATION ALGEBRAS AND INDUCTIVE ARGUMENTS 337

Example 4.5. Let X ⊂ V be a hypersurface, and let b be a non-negative
integer. Then the singular locus of the Rees algebra generated by I(X) in degree b,
say OV [I(X)W b](⊂ OV [W ]), is the closed set of points of multiplicity at least b of
X (which may be empty). In the same manner, if J ⊂ OV is an arbitrary non-zero
sheaf of ideals, and b is a non-negative integer, then the singular locus of the Rees
algebra generated by J in degree b, say OV [JW

b](⊂ OV [W ]), consists of the points
of V where the order of J is at least b.

4.6. The order of a Rees algebra at a point. [15, 6.3] Let x ∈ Sing G =
⊕

n≥0 InW
n, and let fWn ∈ InW

n. Then set

ordx(f) =
νx(f)

n
∈ Q,

where νx(f) denotes the order of f in the regular local ring OV,x. Notice that
ordx(f) ≥ 1 since x ∈ Sing G. Now define

ordxG = inf{ordx(f) : fW
n ∈ InW

n, n ≥ 1}.

If G is generated by {fn1W
n1 , . . . , fnm

Wnm} then it can be shown that

ordxG = min{ordx(fni
) : i = 1, . . . ,m},

and therefore, since x ∈ Sing G, ordxG is a rational number that is greater than or
equal to one. Furthermore if N is a common multiple of all ni, then

ordxG =
νx(IN )

N
.

In particular if G1,G2 ⊂ OV [W ] have the same integral closure, then ordxG1 = ordxG2
at any point x ∈ Sing G1 = Sing G2 (cf. [15, Proposition 6.4]).

5. Differential Rees algebras. Let V be a smooth scheme over a perfect field
k. For any non-negative integer s, denote by Diff s

k the (locally free) sheaf of k-
differential operators of order s.

Definition 5.1. A Rees algebra G = ⊕nInW
n is said to be a differential Rees

algebra, if the following conditions hold:
i. For all non-negative integers n there is an inclusion In ⊃ In+1.
ii. There is an affine open covering of V , {Ui}, such that for any D ∈ Diff r

k(Ui)
and any h ∈ In(Ui) we have that D(h) ∈ In−r(Ui) provided that n ≥ r.

Sometimes we will refer to differential Rees algebras as absolute differential Rees al-
gebras.

Given any Rees algebra G on a smooth scheme V , there is a natural way to
construct the smallest differential Rees algebra containing it: the differential Rees
algebra generated by G, Diff(G) (see [38, Theorem 3.4]). More precisely, if G is locally
generated on an affine open set U by {fn1W

n1 , . . . , fns
W s}, then it can be shown

that Diff(G(U)) is generated by

{D(fni
)Wn′

i−r : D ∈ Diff r
k , 0 ≤ r < n′

i ≤ ni, i = 1, . . . , s}.

See [38, Theorem 3.4].
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5.2. Differential Rees algebras and singular locus. Sheaves of differentials
Diff r

k are useful to study the order of a sheaf of ideals (see 2.1). Similarly, it can be
shown that if G =

⊕

n InW
n, then,

Sing G = ∩r≥0V (Diff r−1
k (Ir)),

(see [38, Definition 4.2], and also [38, Proposition 4.4]). In particular, if Diff(G) is the
differential Rees algebra generated by a Rees algebra G then

Sing G = Sing Diff(G);

and moreover, if x ∈ Sing G = Sing Diff(G) then

ordxG = ordxDiff(G)

(cf. [15, Proposition 6.4]). Furthermore, if G is a differential Rees algebra, then
Sing G = V (Ir) for any positive integer r (see [38, Proposition 4.4]).

5.3. Differential Rees algebras and integral closure. If G1 ⊂ G2 is a finite
extension of differential Rees algebras on a smooth scheme V over a field k, then
Diff(G1) ⊂ Diff(G2) is also a finite extension. In general, if G1 and G2 have the same
integral closure, then so do Diff(G1) and Diff(G2) (cf. [38, Section 6]).

6. Rees algebras, permissible transformations, and resolutions. In this
section we briefly expose how Rees algebras transform under suitable monoidal trans-
formations, and present the notion of resolution of Rees algebras.

6.1. Transforms of Rees algebras under blow-ups. Let G = ⊕nJnW
n ⊂

OV [W ] be a Rees algebra, and let Y ⊂ Sing G, be a smooth center. Consider the
blow-up at Y , V ← V ′, and let H ⊂ V ′ be the exceptional divisor. Then for each
n ∈ N,

JnOV ′ = I(H)nJ ′
n

for some sheaf of ideals J ′
n ⊂ OV ′ . We define the weighted transform of G in V ′ as:

G′ := ⊕nJ
′
nW

n.

The next proposition gives a local description of the weak transform of a Rees
algebra G after a permissible monoidal transformation.

Proposition 6.2. [15, Proposition 1.6] Let G = ⊕nJnW
n be a Rees algebra on

a smooth scheme V over a field k, and let V ← V ′ be a permissible transformation.
Assume, for simplicity, that V is affine. If G is generated by {gn1W

n1 , . . . , gns
Wns},

then its weighted transform G′ is generated by {g′n1
Wn1 , . . . , g′ns

Wns}, where g′ni
de-

notes the weighted transform of gni
in V ′ for i = 1, . . . , s.

6.3. Basic objects and resolutions. A basic object is a triple (V,G, E), where
V is a smooth scheme, G is a Rees algebra and E is a set of smooth hypersurfaces
having normal crossings. A smooth closed subscheme Y ⊂ Sing G is a permissible
center if it has normal crossings with E.
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The transform of a basic object (V,G, E = {H1, . . . , Hr}) by a permissible

monoidal transformation with center Y ⊂ V , V
π
←− V ′, is another basic ob-

ject (V ′,G′, E′), where G′ denotes the weighted transform of G in V ′, and E′ =
{H ′

1, . . . , H
′
r} ∪ π−1(Y ), with H ′

i the strict transform of Hi in V ′, for i = 1, . . . , r.
A resolution of a basic object (V,G, E) is a finite sequence of permissible monoidal

transformations

(19) (V,G, E)←− (V ′
1 ,G1, E1)←− · · · ←− (V ′

s ,Gs, Es),

such that Sing Gs = ∅.

Example 6.4. Let X ⊂ V be a hypersurface with maximum multiplicity n,
and let G be the Rees algebra generated by I(X) in degree n. Then a resolution of
(V,G, E = {∅}) lowers the maximum multiplicity of a strict transform of X below n.
Observe, that, locally at a point x of multiplicity n, a regular system of parameters can
be chosen, and differential operators as in (6) can be defined. Consider the differential
Rees algebra generated by G: if f is a defining equation for X , locally at x, then

Diff G = OV,x[fW
n,∆αfWn−|α| : ∆α ∈ Diff

(n−1)
k ].

Again, a resolution of (V,Diff G, E = {∅}) lowers the maximum multiplicity of a strict
transform of X below n. This follows from the so called Giraud Lemma formulated
in Theorem 8.7.

6.5. Relative differential Rees algebras. Relative differential Rees algebras
will play a central role in our arguments due to their relation to a form of elimina-
tion that we shall discuss in the next sections. The problem of resolution of a Rees
algebra can be formulated for a differential Rees algebra. However, the transform of
a differential Rees algebra by blow-up is no longer a differential Rees algebra: this
property is not stable by blow-ups. We remedy this weakness by introducing relative
differential Rees algebras (see [9, Theorem 9.1] or Theorem 10.8 below, which states
that this property is stable by blow-ups).

Let φ : V (d) → V (e) be a smooth morphism of smooth schemes of dimensions
d and e respectively. Then, for any non-negative integer s, the sheaf of relative
differential operators of order s, Diff s(V (d)/V (e)), is locally free over V (d). A Rees
algebra G = ⊕nInW

n ⊂ OV (d) [W ] is said to be a φ-relative differential Rees algebra
or simply a φ-differential Rees algebra if:

i. For all non-negative integers n there is an inclusion In ⊃ In+1.
ii. There is an affine open covering {Ui} of V (d) such that for any D ∈

Diff s(V (d)/V (e))(Ui) and any h ∈ In(Ui) we have that D(h) ∈ In−s(Ui)
provided that n ≥ s.

We will be particularly interested in the case in which e = d− 1 (see Section 10).

7. Simple points and tangent cones. Let G =
⊕

n≥0 InW
n be a Rees algebra

on a d-dimensional smooth scheme V over a perfect field k. We treat here the notion
of τ-invariant at a singular point x ∈ Sing G. Among other things, we will see that
the τ -invariant indicates the number of variables which are to be eliminated, via
elimination algebras, and it is therefore significant in the proof of Proposition 11.4.

Definition 7.1. A point x ∈ Sing G is simple if ordxG = 1 (i.e., if for some
k ≥ 1, νx(Ik) = k).
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7.2. The tangent cone [36, 4.2]. If x ∈ Sing G is a closed point, then we
define the initial ideal or tangent ideal of G at x, Inx(G), as the ideal of Grmx

(OV,x)
generated by the elements Inx(In) for all n ≥ 1 (here Grmx

(OV,x) ≃ k′[Z1, . . . , Zd] is
the graded ring of the local ring OV,x, mx is the maximal ideal of OV,x, and Inx(In)
denotes the image of In in mn

x/m
n+1
x ). Observe that the tangent ideal is non-zero if

and only if x is a simple point. The zero set of the tangent ideal in Spec (Grmx
(OV,x))

is the tangent cone of G at x, CG,x.

7.3. The τ-invariant at a simple point [36, 4.2]. When x ∈ Sing G is a
simple closed point, and G is a differential Rees algebra, then the tangent cone is a
linear subspace. More precisely, assume that k′ is the residue field at x. If k′ is a field
of characteristic zero, then InxG is generated by linear forms. If k′ is a field of positive
characteristic p, then there is a sequence of non-negative integers, e0 < e1 < · · · < er,
such that InxG is generated by elements of the form

(20) l1, . . . , ls0 , ls0+1, . . . , ls1 , . . . , lsr−1 , . . . , lsr

where each l1, . . . , ls0 is a linear combination of powers Zpe0

i ; if t ≥ 0, each

lst+1, . . . , lst+1

is a linear combination of powers Zpet

i , and the sr homogeneous elements in (20)
form a regular sequence in Grmx

(OV,x). Hence, 〈l1, . . . , lsr 〉 defines a subscheme of
codimension sr in TV,x. If k′ is a perfect field the radical of this ideal is spanned by
linear forms, defining a subspace of codimension sr in TV,x. The integer sr is said to
be the τ-invariant of the singularity and it is denoted by τG,x, or τx if the algebra it
refers to is clear from the context.

If G is not a differential Rees algebra, or if x is not a closed point, then the τ -
invariant is also defined: from the algebraic point of view, τG,x indicates the minimum
number of variables needed to describe InxG; from the geometric point of view, τG,x
is the codimension of the largest linear subspace LG,x ⊂ CG,x such that u + v ∈ CG,x
for all u ∈ CG,x and all v ∈ LG,x. Furthermore,

τG,x = τ
Diff(G),x.

If G is a differential Rees algebra then:

LG,x = CG,x;

and for an arbitrary Rees algebra G, the inclusion G ⊂ Diff(G) defines an inclusion
C
Diff(G),x ⊂ CG,x, and:

C
Diff(G),x = LG,x.

We shall see that locally at x, Sing G is included in a complete intersection scheme
of codimension τG,x (see Section 12, specially the discussion following Definition 12.4).
This motivates the following definition.

Definition 7.4. A Rees algebra G over V is said to be of codimensional type
≥ e if τG,x ≥ e for all x ∈ Sing G.

If G is of codimensional type ≥ e, then the codimension of the closed set Sing G
in V is at least e. Moreover the components of codimension e are smooth and define
an open and close set in Sing G (see [9]).
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8. Weak equivalence. Given a Rees algebra, G = ⊕nInW
n, and a positive

integer s, it is very natural to ask that G and Gs := ⊕nIsnW
sn ⊂ G have the same

resolutions. To start with, their singular locus are the same, and so is the order at any
point in Sing G = Sing Gs. More precisely: it would be desirable that two algebras
with the same integral closure have the same resolution invariants, and hence the
same resolution.

The previous question can be formulated in a wider context. For instance, we
may want to compare the resolution of an arbitrary Rees algebra G with that of the
differential Rees algebra generated by it, Diff(G). Again, it is very natural to require
that they both undergo the same constructive resolution. However, in general, G and
Diff(G) do not have the same integral closure.

This discussion leads to the notion of weak equivalence (see Definition 8.5 be-
low). Two weakly equivalent algebras have the same resolution invariants, and hence
have equivalent resolutions. Two Rees algebras with the same integral closure will
be weakly equivalent. A fundamental result is that a Rees algebra and the differ-
ential Rees algebra generated by it will be weakly equivalent too. This means that
algebras can be enriched by the action of differential operators and still they will be
undistinguishable from the point of view of resolution of singularities.

Weak equivalence is formulated considering three kinds of transformations of Rees
algebras: permissible monoidal transformations (see Section 6), étale extensions, and
products with affine spaces.

8.1. Smooth morphisms. We will consider the following pull-backs:
i. If U → V is a étale then the extension of G to U is a Rees algebra; if G is a

differential Rees algebra, its extension is a differential Rees algebra too.
ii. If φ : T = V × Ak → V is the projection, then the pull back φ∗G is a Rees

algebra. Moreover, if G is a differential Rees algebra, then so is φ∗G.

Remark 8.2. Observe that if G =
⊕

IkW
k is a differential OV -Rees algebra and

φ : T → V is a smooth morphism of smooth schemes then φ∗(G) is a differential Rees
algebra on T and Sing φ∗(G) = φ−1(Sing G) (cf. [38, Proposition 5.1, and Theorem
5.4]).

Definition 8.3. Let G be a sheaf of Rees algebras on a smooth scheme V . A
morphism V ′ → V is said to be a transformation of G if it is either a permissible
monoidal transformation as in Section 6, or a smooth morphism as described in 8.1
(i) or (ii).

Definition 8.4. A local sequence of transformations of basic objects is a sequence
of the form:

(21) (V,G, E) = (V0,G0, E0)←− (V1,G1, E1)←− · · · ←− (Vs,Gs, Es),

where for i = 0, 1, . . . , s each (Vi,Gi, Ei) ←− (Vi+1,Gi+1, Ei+1), is a pull-back as in
8.1 (i) or (ii), or a permissible monoidal transformation with center Yi ⊂ Sing Gi.

Definition 8.5. Two Rees algebras Gi , i = 1, 2, or two basic objects (V,Gi, E),
i = 1, 2, are said to be weakly equivalent if:

(i) Sing G1 = Sing G2;
(ii) Any local sequence of transformations of one of them (see Definition 8.4), say,

(V,Gi, E) = (V0,Gi,0, E0)←− (V1,Gi,1, E1)←− · · · ←− (Vs,Gi,s, Es),
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defines a local sequence of transformations of the other, and Sing (G1,j) = Sing (G2,j)
for 0 ≤ j ≤ s.

8.6. Integral closure, differential operators and weak transforms. [15,
4.1] Assume G1 ⊂ G2 ⊂ G3 is an inclusion of Rees algebras, where G3 is the differential
Rees algebra spanned by G1, and let V ← V ′ be a permissible monoidal transformation
with center Y ⊂ Sing G1. Then:

(i) There is an inclusion of weak transforms

G′1 ⊂ G
′
2 ⊂ G

′
3.

(ii) The three algebras G′1 ⊂ G
′
2 ⊂ G

′
3 span the same differential Rees algebra.

(iii) If G1 ⊂ G2 is a finite extension, then G′1 ⊂ G
′
2 is a finite extension as well.

The following theorem is derived from the cited result of Hironaka. This fact,
and many applications of it, are studied in [18].

Theorem 8.7. [28, p. 119], [27] If G1 and G2 have the same integral closure
then they are weakly equivalent. If Diff(G) is the differential Rees algebra generated
by G then G and Diff(G) are weakly equivalent.

The last assertion, namely that G and Diff(G) are weakly equivalent is known as
Giraud’s Lemma.

Theorem 8.8. [28, p. 101], [27] If G1 and G2 are weakly equivalent, then
ordxG1 = ordxG2 for each x ∈ Sing G1 = Sing G2.

The following theorem is due to Hironaka:

Theorem 8.9. If G1 and G2 are weakly equivalent, then for each x ∈ Sing G1 =
Sing G2 there is an equality between their τ-invariants, i.e., τG1,x = τG2,x.

9. Rees algebras vs. pairs. The notion of Rees algebra is essentially equivalent
to Hironaka’s notion of pair (see [26]). We assign to a pair (J, b) over a smooth scheme
V the Rees algebra:

(22) G(J,b) = OV [J
bW b],

which is a graded subalgebra in OV [W ]. It turns out that every Rees algebra over
V is a finite extension of G(J,b) for a suitable pair (J, b) (see [37, Proposition 2.9] for
details).

Observe that for G(J,b) = OV [J
bW b] there is an equality of closed sets

Sing (G(J,b)) = Sing (J, b),

and also of functions

ordG(J,b)
= ord(J,b),

where the left-hand side is that defined in 4.6, and ord(J,b)(x) =
νx(J)

b
.

Hence, up to integral closure, any Rees algebra is equivalent to a pair, and it is
not hard to check that the construction of a resolution of a basic object (V, (J, b), E)
is equivalent to that of (V,G(J,b), E).

We will say that a basic object (V,G, E) is monomial or that it is within the
monomial case if up to integral closure, G = G(J,b), and the basic object (V, (J, b), E)
is within the monomial case as in 1.1.
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Part 3. Elimination.

10. A local projection and the elimination algebra. Let V (d) be a d-
dimensional smooth scheme over a field k, let G = ⊕n∈NInW

n be a sheaf of Rees
algebras and let x ∈ Sing G be a simple point (see Section 7). In the following we will
establish the conditions needed to construct:

• A suitable local projection to a (d − 1)-dimensional smooth scheme, in an
étale neighborhood of x,

βd,d−1 : V
(d) → V (d−1),

with βd,d−1(x) = x1.
• An elimination algebra associated to G in a neighborhood of x1,

RG,βd,d−1
⊂ OV (d−1) [W ]

that captures algebraic-geometric information about the points in Sing G in
a neighborhood of x.

This will lead us to a geometric notion of transversality, which is shown to be
stable under permissible monoidal transformations. This issue, addressed in Theorem
10.8, guarantees the compatibility of elimination with blow-ups, essential in our ap-
proach based on a simplification of an elimination algebra. This parallels the idea of
simplification of the coefficient ideal in the context of maximal contact.

Definition 10.1. Let G be a Rees algebra on a smooth d-dimensional scheme
V (d) over a field k, and let x ∈ Sing G be a simple closed point. We say that a local
smooth projection to a (d− 1)-dimensional (smooth) scheme V (d−1),

βd,d−1 : V (d) → V (d−1)

x → x1

is G-admissible locally at x if the following conditions hold:
(i) The point x is not contained in any component of codimension one of Sing G.
(ii) The Rees algebra G is a βd,d−1-relative differential Rees algebra (see Definition

6.5).
(iii) Transversality: kerdβd,d−1 ∩ CG,x = {O} ⊂ TV,x .

Remark 10.2. Regarding to condition (i) in the previous definition, we under-
line that any codimension one component of Sing G is smooth in a neighborhood of
a simple point (cf. [9, Lemma 13.2]). Moreover, in such a case, the blow-up along
Sing G defines a resolution of G. Hence, any codimension one component of Sing G is
a canonical center to blow-up. Regarding to condition (ii), observe that absolute dif-
ferential Rees algebras are also relative differential Rees algebras for arbitrary smooth
maps. However, the condition of being differential is not stable under permissible
monoidal transformations; only relative differential Rees algebras are stable under
this kind of transformations (see [9, Theorem 9.1] for full details, or Theorem 10.8
below). As for condition (iii) we stress here that almost any smooth local projection,
or more generally, almost any smooth morphism defined locally, in a neighborhood of
a simple point in the singular locus of a Rees algebra, will fulfill this condition. We
refer to 10.3 for more details regarding to this point. In [9, Section 8] it is proven
that if conditions (i), (ii) and (iii) hold in a point x ∈ Sing G, then they hold in a
neighborhood of x in Sing G.
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10.3. Local projections [9, Section 8]. The previous discussion shows that
we may assume that Sing G has no components of codimension 1. Normally we will
take as a starting point an absolute differential Rees algebra G over the smooth scheme
V (d). This ensures that G will be βd,d−1-differential for any local smooth projection
to a (d− 1)-dimensional smooth scheme,

(23)
βd,d−1 : V (d) −→ V (d−1)

x → x1.

We now discuss how to construct a local projection satisfying condition (iii) from
Definition 10.1. Given a local projection as above, any regular system of pa-
rameters {y1, . . . , yd−1} ⊂ OV (d−1),x1

extends to a regular system of parameters
{y1, . . . , yd−1, yd} ⊂ OV (d),x. Notice that condition (iii) in Definition 10.1 holds
if and only if {Inxy1 = 0, . . . , Inxyd−1 = 0} ⊂ TV,x is not contained in the tan-
gent cone of G at x, CG,x. So it suffices to choose a regular system of parameters
{y1, . . . , yd−1, yd} ⊂ OV (d),x such that {Inxy1 = 0, . . . , Inxyd−1 = 0} ⊂ TV,x is not
contained in CG,x. Note that there is a natural injective map from the ring of poly-
nomials in (d − 1)-variables with coefficients in k into OV (d),x, and localizing we get
an inclusion of regular local rings,

k[Y1, . . . , Yd−1]〈Y1,...,Yd−1〉 −→ OV (d),x

Yi → yi.

This is one way to produce a local projection as (23), to a (d− 1)-dimensional regular
scheme, satisfying condition (iii) in Definition 10.1.

10.4. The elimination algebra RGβd,d−1
. Fix a locally admissible projection

in a neighborhood of a simple closed point x ∈ Sing G, as in Definition 10.1,

βd,d−1 : V (d) → V (d−1)

x → x1.

Then an elimination algebra

RGβd,d−1
⊂ OV (d−1),x1

[W ]

can be defined (see [36, 1.25, Definitions 1.42 and 4.10]). To do so, first note that
there is a positive integer n, and an element f ∈ In of order n at OV (d),x which
is transversal to βd,d−1 at x. Then construct a monic polynomial f(Z) ∈ In in a
suitable étale neighborhood of x (this follows from Weirstrass Preparation Theorem).
It can be checked that, up to integral closure, we may assume that G is as in 3.5, for
S = OV (d−1),x1

, and suitable monic polynomials fi(Z), i = 1, . . . , s. In particular, G
is locally (and up to integral closure) the pull-back of a universal algebra as in 3.5; so
an elimination algebra RGβd,d−1

⊂ OV (d−1),x1
[W ] can be defined by a specialization

morphism in a similar manner as in (12).

10.5. Elimination algebras and their properties. The elimination algebra
depends on the projection βd,d−1 but it can be shown that it does not depend on the
choice of the element f , once the projection is fixed. Elimination algebras satisfy the
following properties:
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1. The inclusion β∗
d,d−1 : OV (d−1),x1

→ OV (d),x induces an inclusion of Rees algebras
RG,βd,d−1

⊂ G ([36, Theorem 4.13]).

2. If G is a differential Rees algebra, then so is RG,βd,d−1
.

3. There is an inclusion of closed subsets

βd,d−1(Sing G) ⊂ Sing RG,βd,d−1

with equality if G is an absolute differential Rees algebra (cf. [36, Corollary 4.12]).

4. The order of RG,βd,d−1
at x1 does not depend on the projection, in other words,

ordx1RG,βd,d−1
is independent of βd,d−1 (see [36, Theorem 5.5]).

5. With the same notation as in 10.4, consider the following diagram:

OV (d),x[W ]
γ∗

−→ OV (d),x/〈fn〉[W ] ≃ OV (d−1),x1
[Z]/〈F (Z)〉[W ]

β∗
d,d−1 ↑ ր

OV (d−1),x1
[W ]

where γ∗ denotes the natural restriction. Then the image of RG,βd,d−1
in the quotient

ring OV (d−1),x1
[Z]/〈F (Z)〉[W ] is contained in γ∗(G), and they both have the same

integral closure (see [36, Theorem 4.11]). This Theorem also says that if an inclusion
of Rees algebras G ⊂ G′ is finite, then RG,βd,d−1

⊂ RG′,βd,d−1
is finite too.

6. If G is a differential Rees algebra, then τRG,βd,d−1
,x1 = τG,x − 1 (cf. [4, Theorem

6.4]).

10.6. Notation. In what follows, given a Rees algebra G = G(d) on a d-
dimensional smooth scheme V (d), we will refer to an elimination algebra as RG,βd,d−1

if we need to emphasize the projection, or just as G(d−1) ⊂ OV (d−1) [W ] if the choice of
the projection is not relevant in the discussion. So, in general, if G is of codimensional
type ≥ e(≥ 1) in a neighborhood of x (i.e., if τG,x ≥ e in U ⊂ Sing G) then we
can expect to iterate the arguments in 10.3 e-times. In that case a sequence of local
projections can be defined:

V (d) βd,d−1
−→ V (d−1) → . . .

βd−(e−1),d−e

−→ V (d−e)

x = x0 → x1 → . . . → xe,

which by composition induces a local projection from V (d) to some (d−e)-dimensional
smooth space V (d−e). In this way, by iteration, we can define elimination algebras

G(d−1) ⊂ OV (d−1) [W ], . . . ,G(d−e) ⊂ OV (d−e) [W ]

if for each i = 1, . . . , e, the projection

βd−(i−1),d−i : V
(d−(i−1)) → V (d−i)

is G(d−(i−1))-admissible locally at xi−1. By [36, Corollary 4.12], there is an inclusion
of closed subsets

βd−(i−1),d−i(Sing G
(d−(i−1))) ⊂ Sing G(d−i),
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which is an equality when G(d−(i−1)) is a differential Rees algebra for i = 1, . . . , e.
This motivates the next definition.

Definition 10.7. Let G(d) be a Rees algebra on a smooth d-dimensional scheme
V (d), and let x ∈ Sing G be a simple point with τG(d),x ≥ e(≥ 1). We will say that a
local projection to a smooth (d− e)-dimensional smooth scheme

βd,d−e : V (d) → V (d−e)

x → xe

is locally G-admissible at x if it factors as a sequence of local G(d−i)-admissible pro-
jections as in Definition 10.1,

(V (d), x0 = x)
βd,d−1
−→ (V (d−1), x1) → . . .

βd−(e−1),d−e

−→ (V (d−e), xe)

G(d) G(d−1) . . . G(d−e),

where for i = 1, . . . , e, each G(d−i) ⊂ OV (d−i),xi
[W ] is the elimination algebra of

G(d−(i−1)) ⊂ OV (d−(i−1)) ,xi−1
[W ], and βd−(i−1),d−i(xi−1) = xi.

The following Theorem establishes a natural from of stability for admissible pro-
jections under blow-ups.

Theorem 10.8. [9, Theorem 9.1] Let G(d) be a Rees algebra on a smooth d-
dimensional scheme V (d) and let x ∈ Sing G(d) be a simple point (i.e., τG(d),x ≥

1). Suppose that a local G(d)-admissible projection is given, defining an elimination
algebra:

βd,d−1 : (V (d), x) −→ (V (d−1), x1)
G(d) G(d−1).

Let Y ⊂ Sing G(d) be a permissible center. Then, locally in a neighborhood of x:
(i) The closed set βd,d−1(Y ) ⊂ Sing G(d−1) ⊂ V (d−1) is a permissible center for
G(d−1).

(ii) Given the monoidal transformations on V (d) with center Y , say V (d) ← V (d)′ ,
and on V (d−1) with center βd,d−1(Y ), say V (d−1) ← V (d−1)′ , there is a pro-
jection β′

d,d−1 defined in a suitable open set, and a commutative diagram of
projections and weighted transforms:

(V (d), x) U ⊂ V (d)′
π(d)

oo

G(d)

βd,d−1

��

G(d)
′

β′
d,d−1

��

	

(V (d−1), x1) V (d−1)′
π(d−1)

oo

G(d−1) G(d−1)′ .

Furthermore, if x′ ∈ Sing G(d)
′

6= ∅ maps to x, then,
(a) The projection V (d)′ → V (d−1)′ is G(d)

′

-admissible locally at x′ (see Defini-
tion 10.1). In particular G(d)

′

is a β′
d,d−1-relative-differential Rees algebra,

defining an elimination algebra G′(d−1).
(b) Let x′

1 = β′
d,d−1(x

′). Locally in an open neighborhood of x′
1, there is a natural

inclusion G(d−1)′ ⊂ G′(d−1) which is an equality up to integral closure.
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11. Elimination and resolution invariants. As indicated in sections 2 and
9, Rees algebras parallel Hironaka’s notion of idealistic exponents:

• Local smooth projections parallel local restrictions to hypersurfaces of maxi-
mal contact;
• Elimination algebras play the role of coefficient ideals.

In fact, the theory of idealistic exponents can be embedded in that of Rees algebras.
The following theorems say that, using elimination algebras one can define resolution
invariants that lead to smooth stratifying functions.

Theorem 11.1. [9, Theorem 10.1] Let V (d) be a d-dimensional scheme smooth
over a perfect field k, let G(d) ⊂ OV (d) [W ] be a differential Rees algebra, let x ∈
Sing G(d) be a simple closed point, and let m ≤ τG,x. Consider two different G(d)-
admissible local projections to some (d −m)-dimensional smooth schemes with their
corresponding elimination algebras:
(24)

β1d,d−m
: (V (d), x) −→ (V

(d−m)
1 , xm,1) β2d,d−m

: (V (d), x) −→ (V
(d−m)
2 , xm,2)

G
(d)

→ G
(d−m)
1 G

(d)
→ G

(d−m)
2 .

Then:

ordxm,1G
(d−m)
1 = ordxm,2G

(d−m)
2 .

Moreover, if V (d) ← V (d)′ is a composition of permissible monoidal transformations,
x′ ∈ Sing G(d)

′

a closed point dominating x, and

(V (d), x) (U ⊂ V (d)′ , x′)oo

G(d)

��

G(d)
′

β′
d,d−m

��

	

(V
(d−m)
j , xm,j) (V

(d−m)′

j , x′
m,j)

oo

G
(d−m)
j G

(d−m)′

j

is the corresponding commutative diagram of elimination algebras and admissible pro-
jections for j = 1, 2, then

ordx′
m,1
G
(d−m)′

1 = ordx′
m,2
G
(d−m)′

2 ,

where for j = 1, 2, x′
m,j = β′

jd,d−m
(x′) and β′

jd,d−m
: U → V

(d−m)′

j is the induced
projection map as in Theorem 10.8.

Theorem 11.2. [9, Theorem 13.1] Let G(d) be a differential Rees algebra on a
smooth d-dimensional scheme V (d) over a field k. Let Q∗ = Q ∪ {∞} and let

Id = Q∗ ×Q∗ × . . .×Q∗

︸ ︷︷ ︸

d−times

ordered lexicographically. Then there is an upper semi-continuous function,

γG(d) : Sing G(d) → Id

such that:
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(i) The level sets of γG(d) stratify Sing G(d) in smooth locally closed strata.
(ii) If k is a field of characteristic zero then γG(d) coincides with the resolution

function used for resolution of singularities in characteristic zero.

Given a differential Rees algebra G, in [9, Part 5] it is shown that, using functions
derived from those from Theorem 11.1, it is possible to construct a finite sequence
of permissible transformations so that the weighted transform of G is within the
monomial case. This would mean, that if G is of codimensional type ≥ e ≥ 1 in a
neighborhood of a point, then its elimination algebra in some e-codimensional smooth
scheme is monomial. More precisely, the following result can be proven:

Corollary 11.3. [9, Part 5] Let G(n) be a Differential Rees algebra on a smooth
n-dimensional scheme V (n) over a perfect field k, and let x ∈ Sing G(n) be a simple
point. Consider a locally G(n)-admissible projection in a neighborhood of x,

(25)
βn,n−τ : V (n) → V (n−τx)

x → x′.

Then there is a finite sequence of permissible transformations of d-dimensional basic
objects,

(26) (V (n),G(n), E = {∅})← (V
(n)
1 ,G

(n)
1 , E1)← . . .← (V (n)

r ,G(n)r , Er)

which induces a finite sequence of permissible transformations of (d− τx)-dimensional
basic objects,

(V (n−τx),G(n−τx), E(n−τx))← (V
(n−τx)
1 ,G

(n−τx)
1 , E

(n−τx)
1 )← . . .← (V

(n−τx)
r ,G

(n−τx)
r , E

(n−τx)
r ),

and commutative diagrams of local admissible projections, elimination algebras y per-
missible transformations,

(V (n), x) ← (V
(n)
1 , x1) ← . . . ← (V

(n)
r , xr)

G(n) G
(n)
1 G

(n)
r

↓ ↓ ↓

(V (n−τx), x′) ← (V
(n−τx)
1 , x′

1) ← . . . ← (V
(n−τx)
r , x′

r)

G(n−τx) G
(n−τx)
1 G

(n−τx)
r ,

so that locally, in a neighborhood of xr ∈ Sing G
(n)
r , G

(n−τx)
r is within the monomial

case (i.e., up to integral closure, it can be assumed that G
(n−τx)
r = OV (n−τx),x′

r
[MW s],

whereM is a monomial ideal supported on E
(n−τx)
r ).

Moreover, the sequence of permissible monoidal transformations (26), and the
pull-back of the monomial algebra OV (n−τx),x′

r
[MW s] in O

V
(n)
r ,xr

are independent of

the local admissible projection fixed in (25).

A detailed study of the monomial case is made in [5], where in addition it is given
a short proof of embedded desingularization of surfaces in arbitrary characteristic
following this approach (cf. [5, Part III]).

Part 4. Local presentations and elimination of variables. The purpose of
this part is to give a short proof of the following proposition:

Proposition 11.4. Let V (n) be a smooth n-dimensional scheme over a perfect
field k, and let X(⊂ V (n)) be a reduced non-smooth d-dimensional subscheme. Then,
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the stratum corresponding to the maximum value of the Hilbert-Samuel of X can be
described locally, in an étale neighborhood of each closed point, as a closed set in an
N -dimensional smooth scheme, with N ≤ d.

Motivation. In a neighborhood of a closed point x ∈ X , the Hilbert-Samuel
stratum can be seen as the singular locus of an algebra over an n-dimensional smooth
scheme, say (V n,G, E = {∅}). Moreover G can be taken to be a differential Rees
algebra,

G = OV (n) ⊕ I1W ⊕ I2W
2 ⊕ . . . .

When the characteristic is zero, the τG,x invariant at x is closely related to the previous
N : n− τG,x = N is the smallest choice so the proposition holds locally at x. Or, in
other words, n − τG,x = N is the smallest integer so that, locally in a neighborhood
of x there is a smooth n− τG,x-dimensional smooth variety V so that I(V ) ⊂ I1.

In the case of characteristic zero, where there is a theory of maximal contact,
this means that the lowering of the maximum of the Hilbert-Samuel function in a
neighborhood of x ∈ X is equivalent to finding a resolution of an N -dimensional basic
object (V ,G, {∅}) with N ≤ d, which can be defined by restriction. In particular, and
using the notation as in [34] and [16], one can attach to the Hilbert-Samuel stratum
a d-dimensional general basic object, where d denotes the dimension of X along any
closed point of this stratum.

Here we show, with a different approach, that with the same starting point
(V n,G, E = {∅}), a new algebra G can be defined over V . V is not a smooth sub-
scheme in the case of positive characteristic, but V is smooth and a generic projections
V n → V is defined by successive elimination of τG,x-variables.

We prove Proposition 11.4 using the so called Hironaka’s trick. The argument
obviously makes use of the notion of the τ -invariant of a singularity, and also of the
existence of local presentations of a Rees algebra in a neighborhood of a simple point.
Local presentations will be treated in Section 12, and the proof of the proposition will
be addressed in Section 13.

12. Local presentations, τ-sequences and nested sequences. Proposition
12.1 below gives an interesting and useful presentation of a Rees algebra in a neighbor-
hood of a simple closed point. Let H⊙L denote the smallest Rees algebra containing
the Rees algebras H and L.

Proposition 12.1. Local relative presentation. [5, Proposition 2.11] Let
x ∈ Sing G be a simple closed point, and let

V (d) βd,d−1
−→ V (d−1)

be a G-admissible projection in a neighborhood of x. Let fnW
n ∈ G be an element of

order n in OV (d),x, transversal to βd,d−1. Then, in a suitable neighborhood U of x, G
is, up to integral closure, equal to

OV (d)(U)
[
fnW

nWn, Dr(fn)W
n−r; 1 ≤ r ≤ n− 1

]
⊙ β∗

d,d−1(RG,βd,d−1
),

where Dr runs through all differential operators in Diff r(V (d)/V (d−1)), with 1 ≤ r ≤
n− 1. If G is a differential Rees algebra, then fn can be chosen so that its initial form
defines a linear subspace of codimension one in TV (d),x.
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The previous result also has a formulation when τG,x ≥ e > 1, and for a local

G-admissible projection V (d) βd,d−e
−→ V (d−e). Here the existence of τ-sequences plays a

role.

Definition 12.2. Let G = ⊕nInW
n be a Rees algebra in a d-dimensional smooth

scheme V over a field k, let x ∈ Sing G be a simple point, and let k′ be the residue
field at x. We will say that a set of homogeneous elements f1W

n1 , . . . , fsW
ns ∈ G is

a τG,x-sequence of length s if for j = 1, . . . , s:
i. nj = pej ;

ii. Inxfj ,∈ GrOV,x
≃ k′[Z1, . . . , Zd] is a k′-linear combination of Zp

ej

1 , . . . , Zp
ej

d

for some ej ∈ N;
iii. The class of Inxfj is a regular element at the graded ring GrOV,x

/〈Inxfi : i 6=
j〉.

By definition, if f1W
n1 , . . . , fsW

ns ∈ G is a τG,x-sequence of length s, then s ≤ τG,x.
A τG,x-sequence f1W

n1 , . . . , fsW
ns ∈ G is said to be a maximal-τG,x-sequence if τG,x =

s.

Remark 12.3. Let f1W
n1 , . . . , fsW

ns ∈ G be a τG,x-sequence. If char k = 0 then
condition (ii) says that Inxf1, . . . , Inxfs ∈ GrOV,x

are linear forms, while condition
(iii) means that they are linearly independent. If char k = p > 0, then, up to a
change of the base field, it can be assumed that Inxfj ∈ GrOV,x

is some pej -th power
of a linear form for j = 1, . . . , s. Condition (iii) indicates that these linear forms
are independent (see 7.2 and 7.3). Notice that if f1W

n1 , f2W
n2 . . . , fsW

ns is a τG,x-
sequence, then so is (f1)

p(Wn1)p, f2W
n2 . . . , fsW

ns . In particular it can always be
assumed that n1 = . . . = ns.

When G is a differential Rees algebra, then there is a maximal τG ,x-sequence
at each simple point x ∈ Sing G (see 7.3). However given a permissible monoidal
transformation,

(V (d), x) ← (V (d)′ , x′)
G G′,

in general, it is no longer true that the strict transforms of a τG ,x-sequence form a
τG′,x′-sequence. This motivates the introduction of another type of sequences: nested
sequences.

Definition 12.4. Let G(d) be a Rees algebra, and let x ∈ Sing G(d) be a simple
point with τG(d),x ≥ s. Suppose that there is a G(d)-admissible projection to some
(d− s)-dimensional smooth scheme in a neighborhood of x,

(27) (V (d), x)→ (V (d−s), xs),

and a factorization into admissible projections
(28)

(V (d), x)
βd,d−1
−→ (V (d1), x1) → . . . → (V (d−(s−1)), xs−1)

βd−(s−1),d−s
−→ (V (d−s), xs)

G
(d)

G
(d−1) . . . G

(d−(s−1))
G

(d−s).

A set of homogeneous elements f1W
n1 , f2W

n2 , . . . , fsW
ns ∈ G(d) is said to be a G(d)-

nested sequence relative to the sequence (28) if

f1W
n1 ∈ G(d), f2W

n2 ∈ G(d−1), . . . , fsW
ns ∈ G(d−(s−1)),
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and fi is transversal to βd−(i−1),d−i for i = 1, . . . , s.

If f1W
n1 , f2W

n2 , . . . , fsW
ns ∈ G is nested, then

OV (d),x/〈f
(d)
1 , f

(d−1)
2 , . . . , f (d−(s−1))

s 〉

is a complete intersection (cf. [9, 11.7]). Moreover, if V (d) ← V (d)′ is a permissible
monoidal transformation, G(d)

′

is the weighted transform of G(d) in V (d)′ , and x′ ∈
Sing G(d)

′

is a closed point dominating x, then the strict transforms of f1, f2, . . . , fs in
V (d)′ , f ′

1, f
′
2, . . . , f

′
s, form a G(d)

′

-nested sequence relative to the transform of sequence
(28) (see Theorem 10.8). In [9, Proposition 11.8 and Corollary 11.9] it is shown that
if G is a differential Rees algebra, then for any simple point x ∈ Sing G there is
a maximal τx-sequence that is also nested relative to some sequence of admissible
projections.

Remark 12.5. Observe that if x ∈ Sing G(d) is a closed point with τG(d)x = s ≥ 1,
then it follows that there is local admissible projection as in (27), a factorization as in
(28) and a G(d)-nested sequence f1W

t1 , . . . , fsW
ts such that, locally in a neighborhood

U of x, up to integral closure, G(d) can be assumed to be equal to:

OV (n)(U)
[
f1W

t1 , Dr1
1 (f1)W

t1−r1 . . . , fsW
ts , Drs

s (fs)W
ts−rs

]
⊙ G(d−s)

where Dri
i runs through all differential operators in Diff ri(V (d−(i−1))/V (d−i))) for

i = 1, . . . , s and ri = 1, . . . , ti − 1.

13. Proof of Proposition 11.4. Assume the hypotheses of Proposition 11.4.
Let U ⊂ V (n) be an étale neighborhood of a closed point x in the highest Hilbert-
Samuel stratum of X , denoted here by HSX,x (this is a closed set in U). Then
there is a standard basis f1, . . . , fm ∈ OV (n)(U) of I(X) such that, if Fbi denotes the
maximum multiplicity locus of V (〈fi〉) for i = 1, . . . ,m, then

HSX,x = ∩Fbi .

And moreover, if V (n) ← V (n)′ is a monoidal transformation with center Y ⊂ HSX,x,

and if x′ ∈ X ′ ⊂ V (d)′ is a closed point in the strict transform of X , X ′, dominating x
where the Hilbert-Samuel Function has the same value as in x, then in a neighborhood
of x′,

HSX′,x′ = ∩F ′
bi

where F ′
bi

denotes the maximum multiplicity locus of the strict transform of V (〈fi〉),
say V (〈f ′

i〉). This statement is a Rees algebra version of a well known result of
Hironaka, usually referred to as the idealistic exponent associated to the Hilbert-
Samuel stratum (cf. [26]).

Let G(n) be the differential Rees algebra generated by f1W
b1 , . . . , fnW

bn . Then

Sing G(n) = HSX,x.

Note that Sing G(n) has dimension strictly smaller than d because X is reduced and
non-smooth.
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Since G(n) is a differential Rees algebra, there is a regular system of parameters
z1, . . . , zn ∈ OV (n),x and elements g1W

pe1
, . . . , gτxW

peτx ∈ G(n) such that for i =
1, . . . , τx,

(29) Inxgi = Inxz
pei

i ∈ GrV (n),x,

i.e., the g1, . . . , gτx form a maximal τG(n),x-sequence. We assume this sequence to be
nested and attached to some sequence of local admissible projections
(30)

(V (n), x0 = x)
βn,n−1
−→ . . . → (V (n−(s−1)), xs−1)

βn−(τx−1),n−τx
−→ (V (n−τx), xτx)

g1W
pe1

∈ G
(n) . . . gτxW

peτx
∈ G

(n−(τx−1))
G

(n−τx).

This defines, by composition defines a local admissible projection,

βn,n−τx : V (n) → V (n−τx).

Up to integral closure, we can assume that the equality

G = OV (n) [g1W
pe1

, . . . , gτxW
peτx

, D
α1,j g1W

pe1−α1,j , . . . , D
ατx,jgτxW

p
eτx−ατx,j

]⊙ G
(n−τx)

holds in a neighborhood of x, where Dαi,j runs over all differentials relative to the
morphism βn−(i−1),n−iV

(n−(i−1)) → V (n−i), and G(n−τx) is not simple at βn,n−τx(x)
(see Remark 12.5). Theorem 8.7 ensures that G is weakly equivalent to

(31) G′ = OV (n) [g1W
c1 , . . . , gτxW

τx ]⊙ G(n−τx).

Denote by mx the maximal ideal in OV (n),x. Then observe that by condition (29),
for i = 1, . . . , τx,

giW
pei
∈ 〈zi〉W ⊙mai

x W di

with ai > di (since G(n−τx) is not simple at βn,n−τx(x)), and whence, by (31),

G′ ⊂ 〈z1, . . . , zτx〉W ⊙H = J ⊙H,

where H is not simple at x, and J = 〈z1, . . . , zτx〉W .
Consider the multiplication by an affine line, V (n)×A1

k, and the natural extensions
of G′, J , and H by the corresponding projection, say G′′, J ′′, and H′′ respectively.
Then the line L = V (z1, . . . , zn) ⊂ V (d) ×A1

k is contained in Sing G′′. Note here that
X×A1

k is is a closed subscheme in V (n)×A1
k, of dimension d+1, and that Sing G′′ is the

stratum corresponding to the highest value of its Hilbert-Samuel function, properly
included in X × A1

k if X is non-smooth and reduced.
Now blow-up at a closed point x0 = V (〈z1, . . . , zn, t〉) ∈ L, V1 → V (n)×A1

k (here t
is a local parameter in some point of A1

k). Continue with a finite sequence of blow-ups
at the intersection of the successive strict transforms of L, Li, and the exceptional
divisors Ei,

V (n) × A1
k ← V

(n+1)
1 ← V

(n+1)
2 ← . . . ← V

(n+1)
N

x0 E1 ∩ L1 E2 ∩ L2 . . . EN ,LN .

Then, for each i = 1, . . . , N , the weighted transform of G′′ in V
(n+1)
i , G′′i , is contained

in

J ′′
i ⊙ I(Ei)

siH′′
i ,
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where J ′′
i and H′′

i denote the weak transforms of J ′′ and H′′ in V
(n+1)
i , and

1 < s1 < s2 < . . . < sN ,

since H′′ is not simple at x0. Thus, for N large enough,

Sing G′′N ⊃ Sing JN ∩ EN ,

where the right hand side is a (τx + 1)-codimensional closed subscheme. Therefore,
Sing G′′N contains an n + 1 − (τx + 1) = n − τx-dimensional scheme. But n − τx <
dimX + 1 = d+ 1 because Sing G′′N is the closed Hilbert-Samuel stratum of a d + 1-
dimensional non-smooth reduced scheme.

Part 5. Appendix: Defining smooth morphisms on smooth schemes.
Given a closed point closed point x ∈ V (d), it is fairly easy to define a smooth
morphism, say β : V (d) −→ V (d′), for any positive integer d′ ≤ d. At least at
an étale neighborhood of x. To this end note that a regular system of parameters
{x1, . . . , xd} in OV (d),x defines an inclusion of a polynomial ring in d variables, say

k′[x1, . . . , xd], where k′ is the residue field at x. This in turn says that (V (d), x) is an
étale neighborhood of (A(d),O); and plenty of smooth morphisms (in fact, plenty of
surjective linear transformations) (A(d),O) −→ (A(d′),O) can be constructed. Finally
set β : V (d) −→ V (d′) as the composition on V (d′) = A(d′).

This simple construction is also useful in showing the existence of local retractions:
Suppose now that x ∈ X(d′) and X(d′) is a smooth subscheme in V (d) locally defined
by xd′+1 = 0, . . . , xd = 0. There is a natural restriction of β, say δ : X(d′) −→
A(d′) = Spec(k′[x1, . . . , xd′ ]), obtained by taking pull-back of the corresponding closed
immersion A(d′) ⊂ A(d). This restricted map δ is étale at x and taking the fiber
product it defines

(32)

V (d)

β
��

V
(d)
1

δ1oo

β1
��

A(d′) X(d′)
δoo

Here δ1 is étale, and the smooth morphism β1 admits a section with image
δ1

−1(X(d′)). This section corresponds to the diagonal map defined by the inclusion

X(d′) ⊂ V (d). Finally β1, together with the section, define a retraction of V
(d)
1 on

X(d′).
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Japonaises, Sémin. Congr., 10, Soc. Math. France, Paris, (2005) pp. 87–126.
[29] H. Hironaka, Program for resolution of singularities in characteristic p > 0, Notes from

lectures at the Clay Mathematics Institute, September 2008.
[30] H. Kawanoue, Toward resolution of singularities over a field of positive characteristic I, Publ.

Res. Inst. Math. Sci., 43 (2007), pp. 819–909.
[31] J. Kollár, Resolution of Singularities- Seattle Lecture, preprint: Arxiv math.AG/0508332v1+.
[32] K. Matsuki and H. Kawanoue, Toward resolution of singularities over a field of positive char-

acteristic (The Kawanoue program) Part II. Basic invariants associated to the idealistic
filtration and their properties, preprint: Arxiv math.AG/0612008.

[33] R. Narasimhan, Monomial equimultiple curves in positive characteristic, Proc. Amer. Math.
Soc., 89 (1983), pp. 402–413.

[34] O. E. Villamayor U., Constructiveness of Hironaka’s resolution, Ann. Scient. Ec. Norm. Sup.
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