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GOOD SHADOWS, DYNAMICS AND CONVEX HULLS OF

COMPLETE SUBMANIFOLDS∗

FRANCISCO FONTENELE† AND FREDERICO XAVIER‡

Abstract. Any non-empty open convex subset of Rn is the convex hull of a complete subman-
ifold M , of any codimension, but there are obstructions if the geometry of M is, a priori, suitably
controlled at infinity. In this paper we develop tools to explore the geometry of ∂[Conv(M)] when
the Grassmanian-valued Gauss map of M is uniformly continuous, a condition that, in the C2 case,
is weaker than bounding the second fundamental form of M . Our proofs are based on the Ekeland
variational principle, and on a conceptual refinement of the Omori-Yau asymptotic maximum princi-
ple that is of interest in its own right. If the Ricci (sectional) curvature of M is bounded below and f

is a C2 function on M that is bounded above, then not only there exists some maximizing sequence
for f with good properties, as predicted by the Yau (Omori) principle but, in fact, every maximizing
sequence for f can be shadowed by a maximizing sequence that has good properties. This abundance
of good shadows allows for information to be localized at infinity, revealing in our geometric setting
the relation between the asymptotic behavior of M and the supporting hyperplanes of ∂[Conv(M)]
in general position that pass through some fixed boundary point. We also introduce a new approach
to asymptotic maximum principles, based on dynamics, to prove a special case of a conjecture meant
to extend our refinement of the Yau maximum principle to manifolds that satisfy a property weaker
than inf Ric > −∞. The authors expect that this new understanding of the Omori-Yau principle
– in terms of good shadows and localization at infinity – will lead to applications in contexts other
than convexity.

Key words. Omori-Yau maximum principles, localization at infinity, convex hulls, isometric
immersions.
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1. Introduction. Any non-empty open convex subset O of Rn is the convex hull
of a C∞ complete submanifold M , of any codimension. To see this when n ≥ 3, take
a smooth embedded curve Γ ⊂ O, of infinite length on both ends, whose convex hull
is O. Let M be the union over all p ∈ Γ of smoothly varying k-dimensional spheres

S
(k)
r(p), 1 ≤ k ≤ n − 2, centered at p and contained in the normal space of Γ at p.

Taking r(p) to decay fast enough one can make sure that the resulting manifold M ,
which is automatically complete, is contained in O. Since p is in the convex hull of

S
(k)
r(p) for any p ∈ Γ, it follows that the convex hull of M satisfies Conv (M) = O.

Despite the examples of the previous paragraph, one expects that not every O
can be realized as Conv (M) if the complete submanifold M has a geometry that is, a
priori, suitably controlled at infinity. More generally, we study ∂[Convh(M)], where
h :M → R

n is an immersion, dimM = m, and the induced metric is complete. Along
the way, we introduce new tools that may be useful in other problems as well.

A natural way to control the geometry of a submanifold is to bound its second
fundamental form, but this requires the immersion to be at least of class C2. Instead,
we work here with a weaker condition that makes sense even in the C1 case: the
Grassmanian-valued Gauss map G : M → G(n−m,n), given by G(p) = [h∗TpM ]⊥, is
uniformly continuous. Indeed, if the immersion is C2 then boundedness of the second
fundamental form is equivalent to the Gauss map being Lipschitz, a condition that
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is stronger than uniform continuity (this can be seen using a Plücker-like embedding;
see Section 4).

It is shown in Theorem 2.1 that the number of supporting hyperplanes in general
position, at any point at the boundary of the convex hull of h(M), is at most the
codimension of the submanifold. This generalizes to these non-compact submanifolds
the statement that the class of all compact C1 hypersurfaces in Rn is invariant under
the operation of taking the boundary of its convex hull (see Corollary 2.3).

Our main geometric result, Theorem 2.5, valid for the convex hull of certain non-
compact immersed submanifolds in arbitrary codimension, ultimately generalizes the
classical statement that if a compact convex body in R

n has a C2 boundary, then the
second fundamental form at any boundary point is semi-definite.

On the technical side, our results on the convex hull of h(M) spring from two
sources: the Ekeland variational principle for the C1 case, and a conceptual refinement
of the Omori-Yau maximum principle if the immersion is of class Cr, r ≥ 2. In order
to convey the flavor of these new results, which are of interest in their own right, we
recall that the original Yau (Omori) maximum principle (see Section 3) guarantees,
under the appropriate curvature restrictions, the existence of a maximizing sequence
along which the gradient is small and the Laplacian (Hessian) of the function is almost
negative.

We show in Theorem 3.4 that there is actually an abundance of these good max-
imizing sequences: every maximizing sequence has a good shadow, a second sequence
which is good, in the above sense, and is such that the distance between the general
terms of the two sequences tends to zero.

The advantage of this result over the various forms of the Omori-Yau principle to
be found in the literature is that the new understanding allows for information to be
localized at infinity. In terms of our applications to convexity, this translates into one
being able to draw conclusions about the relation between the asymptotic behavior of
h(M), and the supporting hyperplanes of ∂[Conv(M)] in general position that pass
through some fixed boundary point.

In the first version of this paper our refinement of the Yau maximum principle
(one of the halves of Theorem 3.4) was proved using a new approach involving ideas
from dynamics, under the additional hypothesis that the Hessian of the function is
bounded, and we conjectured that this assumption is superfluous. Afterwards, the
possibility was raised to us that perhaps our new ideas, together with the traditional
approach to the Omori-Yau principle, using arguments from Riemannian geometry,
might be modified to yield a proof of our original conjecture on the abundance of
good shadows when inf Ric > −∞. This is implemented in Theorem 3.4, the scope
being broadened so as to cover also the Omori principle. On the other hand, most
applications to convexity given in Section 2 were already present in the first version.

Our original technique using dynamics can be adapted to prove Theorem 5.1,
still under the assumption that the Hessian of the function is bounded, but where the
condition inf Ric > −∞ has been replaced by the much weaker and flexible hypothesis
that the manifold satisfies LVP (Local Volume Property).

The latter condition means that there exist a > 0, b > 1, such that for any
p ∈ M and 0 < r < a, one has Vol B(p, r) ≤ bVol B(p, r2 ). This class of manifolds is
rather large, containing all complete manifolds that are quasi-isometric to manifolds
satisfying inf Ric > −∞. More generally, if f : (M, g) → (N, h) and there exist
c1, c2 > 0 such that c1|v| ≤ |df(v)| ≤ c2|v| for all tangent vectors v, then (M, g) is
LVP if and only if (N, h) is. We conjecture that the conclusion in the Yau maximum
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principle should hold for all complete LVP manifolds.
The main idea behind the proof of Theorem 5.1 is to establish estimates that con-

trol the volume compression under the gradient flow. In principle, a similar technique
should also work for any differential operator given in divergence form ([14]).

The authors expect that this new understanding of the Omori-Yau principle –
in terms of good shadows and localization at infinity – will lead to applications in
contexts other than convexity. In this regard, a specially interesting question is
whether the classical Ahlfors-Schwarz Lemma (or its far-reching generalization, the
Yau-Schwarz Lemma [22]) can be sharpened using Theorem 3.4.

2. Convex hulls and controlled submanifold geometry. In this section we
state our geometric results. The proofs, which are based on the Ekeland variational
principle ([5]) and on our refinements of the asymptotic maximum principles of Omori
([12]) and Yau ([4],[21]), will be given in Section 4.

Isometric C1 immersions are plentiful, thanks to the Nash-Kuiper theorem [9],
but their geometry is hard to control since one cannot make sense of extrinsic curva-
tures. Nevertheless, under the hypothesis that the Grassmanian-valued Gauss map
is uniformly continuous, one has a fairly good description of their convex hulls (an
immersion into R

n is substantial if its image is not contained in a proper affine sub-
space):

Theorem 2.1. Let M be a complete m-dimensional Riemannian manifold, n >
m, and h :M → R

n a substantial C1 isometric immersion for which the Grassmanian-
valued Gauss map G : M → G(n − m,n), given by G(p) = [h∗TpM ]⊥, is uniformly
continuous. If Conv (h(M)) 6= R

n, then each point in ∂[Conv (h(M))] admits at most
n −m supporting hyperplanes in general position. In particular, in the hypersurface
case each point in ∂[Conv (h(Mn−1))] admits a unique supporting hyperplane, and the
resulting map ∂[Conv (h(Mn−1))] → G(n− 1, n) is continuous.

Corollary 2.2. If h :Mm → R
n is a substantial C1 immersion and M is com-

pact, then each point in ∂[Conv (h(M))] admits at most n−m supporting hyperplanes
in general position. In particular, if Mn−1 is compact and h : Mn−1 → R

n is a C1

immersion, then h is substantial, each point in ∂[Conv (h(Mn−1))] admits a unique
supporting hyperplane, and the resulting map ∂[Conv (h(Mn−1))] → G(n − 1, n) is
continuous.

With the help of Thm. 25.1, p. 242, and Thm. 25.5, p. 246 of [16], the part of
Corollary 2.2 that pertains to hypersurfaces can be stated in a more succint way:

Corollary 2.3. The class of all compact C1 hypersurfaces in Rn is invariant
under the operation ∂Conv.

From the standpoint of regularity Corollary 2.3 is a sharp result. For instance,
the convex hull of a (smooth) dumbbell clearly has a boundary that is only of class
C1.

Before proceeding to discuss our results on convex hulls of C2 immersions, we
need to establish some terminology first. Given a substantial convex set A ⊂ R

n, a
supporting hyperplane H containing p ∈ A, and a unit vector e that is normal to H ,
we say that e is a positive normal for H if A intersects the component of Rn − H
determined by e.

Near the intersection of supporting hyperplanes that pass through the same point
of ∂[Conv (h(Mm))] one expects, if h is at least C2 and the geometry of h(Mm) is
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not too wild, that asymptotically the submanifold will be bending mostly towards the
positive side of the associated half-spaces. The theorem below confirms this intuition.

Theorem 2.4. Let Mm be a complete manifold with Ricci curvature bounded
from below, n > m, and h : Mm → R

n a substantial C2 isometric immersion for

which the Gauss map G : M → G(n −m,n) and the mean curvature vector field
−→
H :

M → R
n are uniformly continuous. Suppose Conv (h(Mm)) 6= R

n and let H1, . . . , Hs

be supporting hyperplanes in general position that pass through the same point in
∂[Conv (h(Mm))], with corresponding positive normals e1, . . . , es. Then s ≤ n −m,
d(h(Mm), H1 ∩ · · · ∩Hs) = 0, and

lim inf
d(h(p),H1∩···∩Hs)→0

〈−→
H (p), ei

〉
≥ 0, i = 1, . . . , s.

The previous theorem admits a version where the hypothesis on the Ricci cur-
vature is replaced by the sectional curvatures being bounded below. Accordingly,
the conclusion will be about the second fundamental form, instead of the mean
curvature vector. But before we can state this result, we need to explain what it
means to say, in our context, that the second fundamental form σ of an immersion
h : Mm → R

n is uniformly continuous. Denote by Qσ(x) the associated quadratic
form, Qσ(x)(v) = σ(x)(v, v) ∈ [h∗TxM ]⊥ for every v ∈ TxM .

Definition. The second fundamental form σ is said to be uniformly continuous
if for every ǫ > 0 there is δ > 0 such that, for all x, y ∈ M with d(x, y) < δ, the
Hausdorff distance in R

n between the sets given by the images under Qσ(x) and
Qσ(y) of the unit spheres in the respective tangent spaces is less than ǫ.

Remarks. In concrete terms, the above condition means that for all x, y in M
with d(x, y) < δ, and v ∈ TxM , |v| = 1, there exists w ∈ TyM , |w| = 1, such that

||σ(x)(v, v) − σ(y)(w,w)|| < ǫ.(2.1)

In particular, if σ is uniformly continuous, (xn, vn) is a sequence in the unit
tangent bundle of M and d(xn, yn) → 0, then there exist unit vectors wn ∈ Tyn

M
such that

||σ(xn)(vn, vn)− σ(yn)(wn, wn)|| → 0.(2.2)

The Riemannian connection onM , together with the connection∇⊥ in the normal
bundle, given by ∇⊥

Xξ = (∇Xξ)
⊥, where ∇ is the Euclidean connection and ξ is a

local extension of ξ, can be used to define the covariant derivative ∇̃uσ of the second
fundamental form, with respect to a vector u tangent toM ([8], p. 25). It is possible to
give a differential condition that implies uniform continuity of the second fundamental
form. Indeed, it will be shown in Section 4 that σ is uniformly continuous if |σ|+ |∇̃σ|
is uniformly bounded on M .

When the sectional curvatures are bounded below the conclusion in Theorem 2.4
can be sharpened. Asymptotically, the submanifold will bend towards the positive
sides of the half-spaces determined by the supporting hyperplanes in general position,
and not just in an average sense.
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An important feature of the theorem below that needs to be stressed is that it
provides a far-reaching extension, to the non-compact setting as well as to arbitrary
codimension, of a very classical result about convex bodies (see Corollary 2.6).

Theorem 2.5. LetMm be a complete manifold with sectional curvatures bounded
from below, n > m, and h : Mm → R

n a substantial C2 isometric immersion for
which the Gauss map G :M → G(n−m,n) and the vector-valued second fundamental
form σ are uniformly continuous. Suppose Conv (h(Mm)) 6= R

n and let H1, . . . , Hs

be supporting hyperplanes in general position that pass through the same point in
∂[Conv (h(Mm))], with corresponding positive normals e1, . . . , es. Then s ≤ n −m,
d(h(Mm), H1 ∩ · · · ∩Hs) = 0, and

lim inf
d(h(p),H1∩···∩Hs)→0

[
min

v∈TpM, |v|=1
〈σ(p)(v, v), ei〉

]
≥ 0, i = 1, . . . , s.

In particular, the theorem applies when Mm is complete, h(Mm) is contained in a

half-space, and |σ|+ |∇̃σ| is uniformly bounded.

Corollary 2.6. If Mn−1 is compact and h : Mn−1 → R
n is a C2 immersion

such that h(Mn−1) bounds a convex body, then the second fundamental forms of h are
semi-definite.

Examples. It is easy to illustrate Theorem 2.1, already in low dimensions:

i) Let l be a line in R
3, and P1, P2 planes such that P1∩P2 = l. Let O be a component

of R3 − (P1 ∪ P2). One can construct a complete C∞ embedded curve Γ ⊂ O such
that Conv (Γ) = O and Γ has bounded curvature. The last condition ensures that the
Gauss map G : Γ → G(2, 3) is uniformly continuous. Along l, the maximum number
of supporting hyperplanes to ∂O that are in general position is two, which is also the
codimension of Γ. This gives the equality case in Theorem 2.1.

We give an informal description of how Γ can be constructed. Start with oriented
line segments ln parallel to l, n ≥ 1, contained in O, getting longer as n → ∞, and
accumulating onto the entire oriented line l. One obtains Γ by connecting for all
n ≥ 1 the last point of ln, in a smooth way, to the first point of ln+1, by means of a
curve γn of curvature less than one. The curve γn is supposed to be very long, going
deep inside O and turning slowly, so that the curvature can be kept smaller than one.
Once γn is far from l, one can also make γn twist around, with controlled curvature,
so as to make its convex hull bigger. It is now clear that a sequence of curves γn can
be created so that Γ has curvature less than one and Conv (Γ) = O.

Observe that such a construction is impossible if, instead of a curve, one takes Γ
to be a complete surface. Indeed, as the surface gets closer and closer to l, in order for
Γ to remain in O it has to fold abruptly, thus violating the condition that the Gauss
map is uniformly continuous.

ii) Let M be an open hemisphere in S2 ⊂ R
3. Its convex hull is, of course, the

solid hemisphere. At points along the great circle, Conv (M) has two supporting
hyperplanes in general position, whereas the codimension of M is one. This shows
that Theorem 2.1 fails, as expected, if the submanifold is not complete.

Remarks. The uniform continuity condition on the Gauss map allows for the
Ricci curvature of the submanifold to be unbounded from below. In fact, it is easy
to construct smooth complete graphs in R

3 with these properties. This shows that
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the Omori-Yau minimum principle cannot be applied to prove Theorem 2.1, even if
the submanifold in question is of class C∞. We also note that Theorem 2.1 applies
to these examples, whereas Theorems 2.4 and 2.5 do not.

To put these matters in perspective we note that, by the Gauss equation, the
natural way to force the intrinsic curvatures of a submanifold to be bounded is simply
to require that the second fundamental form has bounded length. Although this is
not obvious in codimension greater than one, as it was already observed in the Intro-
duction the last condition simply means that the Gauss map is globally Lipschitzian,
which is stronger than merely requiring the Gauss map to be uniformly continuous
(see Section 4).

We stress that, in Theorem 2.1, even if the submanifold is C∞ and has bounded
second fundamental form, the original form of the Omori-Yau minimum principle
cannot be applied. Indeed, as it will be clear from the proof, one needs to find good
shadows (that are provided in the C1 context by Theorem 3.3) for arbitrary minimizing
sequences. The Omori-Yau minimum principle, on the other hand, guarantees the
existence of some minimizing sequence with good properties.

A natural question that arises is whether the condition in Theorem 2.1, stating
that the boundary points of the convex hull admits at most n − m supporting hy-
perplanes in general position, is also sufficient for the construction of examples. We
thank J. Fu for pointing out that the work of Alberti [1] may be relevant to this
question.

The Grassmanian-valued Gauss map G : M → G(n −m,n), G(p) = [h∗TpM ]⊥,
can be used in other contexts to retrieve geometric information. In this regard, we
refer the reader to [18] for its role in the problem of detecting when a family of compact
submanifolds with boundary, perhaps of different dimensions, has a non-empty stable
interior intersection. In turn, this problem is a facet of the more general question of
deciding when maps are globally invertible ([20]).

3. Abundance of good minimizing sequences. IfMm is a Riemannian man-
ifold and f :M → R is a C2-function that attains a minimum at a point p ∈M , then
||∇f(p)|| = 0 and Hessf(p)(v, v) ≥ 0 for all v ∈ TpM . Such a point p always exists
in case Mm is compact but clearly it may not exist if Mm is non-compact, even if
inf f > −∞.

For a C2-function f : Rm → R which is bounded from below, there always exists
a sequence (pn) in R

m such that

f(pn) → inf
M
f, ||∇f(pn)|| → 0, lim inf

n→∞
Hessf(pn) ≥ 0.(3.1)

The last condition means that for every ε > 0 there exists no ∈ N such that

Hessf(pn)(v, v) > −ε||v||2, v ∈ R
m, n > no.(3.2)

In case Mm is an arbitrary complete non-compact Riemannian manifold, and
f :M → R is a C2-function satisfying infM f > −∞, a sequence (pn) satisfying (3.1)
may not exist. This is the case, for instance, if M is a complete bounded minimal
surface in R

3 (see the discussion at the end of Section 5). However, Omori [12] proved
the following.

Theorem 3.1. Let M be a complete manifold whose sectional curvature is
bounded from below, and f : M → R of class C2 such that infM f > −∞. Then,
there exists a sequence (pn) in M satisfying (3.1).
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Subsequently, Yau ([4],[21]) obtained the following version for complete manifolds
with Ricci curvature bounded from below:

Theorem 3.2. Let M be a complete manifold whose Ricci curvature is bounded
from below, and f : M → R of class C2 such that infM f > −∞. Then,
there exists a sequence (pn) in M satisfying f(pn) → infM f , ||∇f(pn)|| → 0 and
lim infn→∞ ∆f(pn) ≥ 0.

Theorems 3.1 and 3.2, which together are known in the literatute as the Omori-
Yau maximum (minimum) principle, became powerful tools in geometric analysis (see,
for instance, [7],[15],[22]).

The following result can be regarded as a strong version, in the C1 category, of
the Omori-Yau minimum principle:

Theorem 3.3. Let M be a complete manifold, and f : M → R of class C1 such
that infM f > −∞. Then, for every sequence (pn) in M such that f(pn) → infM f ,
there exists a sequence (qn) in M such that d(pn, qn) → 0, f(qn) → infM f and
||∇f(qn)|| → 0.

In the proof of Theorem 3.3 we will use a well known result in control theory and
non-linear analysis ([5], [6], [17]):

The Ekeland Variational Principle. Let (X, d) be a complete metric space,
and f : X → R a function which is lower semi-continuous and bounded from below.
Then for any ε, δ > 0, and x ∈ X with f(x) ≤ infX f + ε, there is y ∈ X satisfying
i) d(x, y) ≤ δ
ii) f(y) ≤ f(x)
iii) f(y) < f(z) + ε

δd(y, z), for all z ∈ X with z 6= y.

Proof of Theorem 3.3. For each n ∈ N, let εn = f(pn) − infM f , δn =
√
εn. In

the sequel we will prove the existence of a sequence (qn) in M satisfying

f(qn) ≤ f(pn), d(pn, qn) ≤ δn(3.3)

and

||∇f(qn)|| ≤ δn.(3.4)

Since δn → 0 as n→ ∞, (qn) will have the desired properties. If f(pn) = infM f , take
qn = pn. Otherwise, we have εn > 0, δn > 0, and applying the Ekeland Variational
Principle with ε = εn, δ = δn and x = pn, we obtain qn ∈M satisfying (3.3) and

f(qn) < f(z) +
εn
δn
d(qn, z) = f(z) + δn d(qn, z),(3.5)

for all z ∈M with z 6= qn. To show (3.4), take an arbitrary unit vector v ∈ TqnM and
let γ : (−c, c) →M be the unit speed geodesic in M so that γ(0) = qn and γ′(0) = v.
Reducing c if necessary, we can suppose that the image of γ is contained in a normal
neighborhood of qn in M. From (3.5) we have, with z = γ(t),

f
(
γ(t)

)
− f(qn) > −δn d

(
γ(t), qn

)
= −δn |t|, 0 < |t| < c,(3.6)

which implies

f
(
γ(t)

)
− f(qn)

t
< δn, −c < t < 0.(3.7)
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Since f is of class C1, it follows that

〈∇f(qn), v〉 =
d

dt

∣∣∣
t=0

f ◦ γ(t) = lim
t→0−

f
(
γ(t)

)
− f(qn)

t
≤ δn,(3.8)

for all v ∈ TqnM with ||v|| = 1. Therefore,

∣∣〈∇f(qn), v〉
∣∣ ≤ δn,(3.9)

for all unit vector v ∈ TqnM , so that

||∇f(qn)|| ≤ δn, n ∈ N.(3.10)

The sequence (qn) satisfies (3.3) and (3.4) and thus the conditions of the theorem.

The result below strengthens the original asymptotic maximum principles in [12]
and [21]. It can also be understood as a version of Theorem 3.3 in the C2 setting of
the Omori-Yau maximum principle.

Theorem 3.4. Let Mm be a complete manifold with Ricci curvature (sectional
curvature) bounded from below, and f : M → R a function of class C2 such that
inf f > −∞. Then, for every minimizing sequence (pn) of f there exists a sequence
(qn) such that

d(pn, qn) → 0, f(qn) → inf
M
f, ||∇f(qn)|| → 0(3.11)

and

lim inf
n→∞

∆f(qn) ≥ 0
(
lim inf
n→∞

Hessf(qn) ≥ 0
)
.(3.12)

Proof. Given the fundamental nature of the result, we provide full details. For
each n ∈ N, let

rn = f(pn)− inf
M
f, δn = r1/4n , εn = r1/2n .(3.13)

We will construct a sequence (qn) satisfying

d(qn, pn) ≤ δn, f(qn) ≤ f(pn), ||∇f(qn)|| ≤ 2r3/4n(3.14)

and

∆f(qn) ≥ −2mCεn

(
Hessf(qn)(v, v) ≥ −2Cεn||v||2

)
,(3.15)

for some C > 1. Since rn, δn, εn → 0 as n → ∞, the sequence (qn) will then satisfy
(3.11) and (3.12).

If f(pn) = infM f , take qn = pn. If f(pn) > infM f , define a function fn :M → R

by

fn(x) = f(x) + εnd
2
n(x),(3.16)

where dn(x) = d(pn, x) is the distance in Mm from x to pn.
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We claim that infM fn is attained. If Mm is compact, this follows from the
continuity of fn. If Mm is not compact, we have, since f is bounded below and
εn > 0,

lim
x→∞

fn(x) = +∞,(3.17)

and infM fn is attained as well.
Choose qn to be any point for which fn(qn) = infM fn. Using (3.13) and (3.16),

and noting that fn(pn) = f(pn), we have, for every x /∈ B(pn, δn),

fn(x) > f(x) + εnδ
2
n = f(x) + rn = f(x) + f(pn)− inf

M
f ≥ f(pn) = fn(pn),(3.18)

which implies d(qn, pn) ≤ δn. From (3.16) we also obtain

f(pn) = fn(pn) ≥ fn(qn) = f(qn) + εnd
2
n(qn) ≥ f(qn).(3.19)

We will need to prove that fn is differentiable in a neighborhood of qn, but before
doing this let us first show how this fact can be used to obtain the inequality (3.15) and
the third inequality in (3.14). We can suppose qn 6= pn, since in the case qn = pn these
inequalities are easily obtained from ∇d2n(pn) = 0 and Hess(d2n)(pn)(v, v) = 2||v||2.
From (3.16), we have

0 = ∇fn(qn) = ∇f(qn) + 2εndn(qn)∇dn(qn).(3.20)

Recalling that ||∇dn|| ≡ 1, it follows from (3.20) and dn(qn) ≤ δn that

||∇f(qn)|| = 2εnd(pn, qn) ≤ 2εnδn = 2r3/4n .(3.21)

Using that qn is a minimum point for fn, we also have

0 ≤ Hessfn(qn)(v, v) = Hessf(qn)(v, v) + εnHess (d
2
n)(qn)(v, v),(3.22)

which implies

Hessf(qn)(v, v) ≥ −εnHess (d2n)(qn)(v, v).(3.23)

Taking the trace in (3.23), we obtain

∆f(qn) ≥ −εn∆(d2n)(qn).(3.24)

If the sectional curvature of Mm is bounded from below and ko is a positive
number such that infM K ≥ −k2o we have, by the Hessian comparison theorem [13],

Hess (d2n)(qn)(v, v) ≤ 2dn(qn)kocoth(kodn(qn))||v||2 ≤ 2δnkocoth(δnko)||v||2,(3.25)

where the last inequality follows from d(pn, qn) ≤ δn and from the fact that t 7→
t coth(t) is increasing. Since δn → 0 as n → ∞, there exists C > 1 such that
δnkocoth(δnko) ≤ C for all n ∈ N. Thus

Hess (d2n)(qn)(v, v) ≤ 2C||v||2,(3.26)

and (3.15) follows from (3.23) and (3.26).
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If the Ricci curvature of Mm is bounded from below and ko is a positive number
such that infM Ric ≥ −k2o , we have, by the Laplacian comparison theorem [13],

∆ (d2n)(qn) ≤ 2mkodn(qn)coth(kodn(qn)) ≤ 2mkoδncoth(koδn) ≤ 2mC(3.27)

and (3.15) follows from (3.24) and (3.27).
To complete the proof it remains to show that fn is differentiable at qn. The

argument we will present here is an adaptation of an argument given by Borbély [2].
In view of (3.16), it is enough to prove that dn is differentiable at qn. If not, qn is on
the cut locus of pn and we have two possibilities ([13]):

(i) There are two distinct minimizing geodesic segments γ, σ : [0, tn] → M joining pn
to qn, tn = dn(qn) = d(pn, qn).

(ii) There is a minimizing geodesic segment γ : [0, tn] →M from pn to qn along which
qn is conjugate to pn.

Suppose first that we have (i), and let v = γ′(tn), w = σ′(tn). Since fn attains a
minimum at qn, from (3.16) we have

0 ≤ lim inf
s→0+

fn(γ(tn + s))− fn(γ(tn))

s

= lim inf
s→0+

{f(γ(tn + s))− f(γ(tn))

s
+ εn

d2n(γ(tn + s))− d2n(γ(tn))

s
}

= v(f) + εn lim inf
s→0+

d2n(γ(tn + s))− d2n(γ(tn))

s
.(3.28)

Using that γ|[0,tn] is minimizing, we also have

0 ≤ lim inf
s→0+

fn(γ(tn − s))− fn(γ(tn))

s

= lim inf
s→0+

{f(γ(tn − s))− f(γ(tn))

s
+ εn

d2n(γ(tn − s))− d2n(γ(tn))

s
}

= −v(f) + εn lim inf
s→0+

(tn − s)2 − t2n
s

= −v(f)− 2εntn.(3.29)

From (3.28) and (3.29), we obtain

lim inf
s→0+

d2n(γ(tn + s))− d2n(γ(tn))

s
≥ 2tn.(3.30)

On the other hand, since v 6= w there exists 0 < c < 1 such that, for all s > 0
sufficiently small,

d(σ(tn − s), γ(tn + s)) < 2cs,(3.31)

which implies

dn(γ(tn + s)) < dn(σ(tn − s)) + 2cs = tn − s+ 2cs = tn + (2c− 1)s.(3.32)

Recalling that tn = dn(qn) = dn(γ(tn)) and 0 < c < 1, it follows from (3.32) that

lim inf
s→0+

d2n(γ(tn + s))− d2n(γ(tn))

s
≤ 2tn(2c− 1) < 2tn,(3.33)
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which contradicts (3.30).
Suppose now that we have (ii). From (3.29) we have ∇f(qn) 6= 0 and so the level

set Γ = {x ∈ M : f(x) = f(qn)} is a smooth hypersurface in a neighborhood of qn.
Let Γt be the hypersurface parallel to Γ and passing through the point γ(t). There
exists t ∈ (0, tn) such that, for all t ∈ (t, tn), Γt is smooth near γ(t).

Since γ : [0, tn] → M is minimizing, dn is differentiable at γ(t) and ∇dn(γ(t)) =
γ′(t) for all t ∈ (0, tn). Thus the geodesic sphere St with center at pn and radius t is
smooth in a neighborhood of γ(t), for all 0 < t < tn.

Also, since qn = γ(tn) is the first point that is conjugate to pn = γ(0) along
γ, there exists a Jacobi field J along γ satisfying J(0) = J(tn) = 0, J(t) 6= 0 for
t ∈ (0, tn), 〈J, γ′〉 ≡ 0. From

Hess dn(J(t), J(t)) = 〈J(t), J ′(t)〉 = 1

2
(|J(t)|2)′(3.34)

and J ′(tn) 6= 0 (because of the uniqueness of the solution of the initial value problem
for the Jacobi equation), it follows that

lim
t→tn

Hess dn

(
J(t)

|J(t)| ,
J(t)

|J(t)|

)
= −∞.(3.35)

We claim that for some t ∈ (t, tn) there exists qt ∈ Γt, sufficiently close to γ(t),
that lies inside the open ball B(pn, t) with center at pn and radius t.

If γ′(t) is not normal to Γt for some t ∈ (t, tn), Γt is transversal to St and the
claim follows trivially. Thus we may suppose γ′(t) ⊥ Γt for all t ∈ (t, tn), in which
case Γt and St are tangent at γ(t).

Given a smooth function g : M → R and a level set S of g through a point p with
∇g(p) 6= 0, one has

Hess g(w,w) = −〈σ(w,w),∇g(p)〉, w ∈ TpS,(3.36)

where σ denotes the second fundamental form of S. Indeed, denoting by ∇◦ the
connection on S and extending w to a local field on M that is tangent to S, one
computes

0 = w〈∇g, w〉 = Hess g(w,w) + 〈∇g,∇ww〉,(3.37)

and (3.36) follows since

〈∇g,∇ww〉 = 〈∇g,∇◦
ww + σ(w,w)〉 = 〈∇g, σ(w,w)〉.(3.38)

Applying (3.36) to g = dn and recalling that ∇dn(γ(t)) = γ′(t), we obtain

Hess dn(w,w) = 〈σt(w,w),−γ′(t)〉,(3.39)

for all w ∈ Tγ(t)St = Tγ(t)Γt, where σt is the second fundamental form of St.
From (3.35) and (3.39), one has

lim
t→tn

〈
σt
(
w(t), w(t)

)
,−γ′(t)

〉
= −∞,(3.40)

where w(t) = J(t)/|J(t)|. Denoting by σt the second fundamental form of Γt, it
follows from (3.40) that there exists t ∈ (t, tn) satisfying

〈
σt

(
w(t), w(t)

)
,−γ′(t)

〉
>

〈
σt
(
w(t), w(t)

)
,−γ′(t)

〉
.(3.41)
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Let α : (−δ, δ) → Γt be a smooth curve such that α(0) = γ(t) and α′(0) = w(t),
and let f(s) = d(pn, α(s)) = dn(α(s)). We have f(0) = dn(γ(t)) = t and

f ′(s) = 〈∇dn(α(s)), α′(s)〉.(3.42)

In particular, f ′(0) = 〈γ′(t), w(t)〉 = 0. It follows from (3.39) and (3.42) that

f ′′(0) = 〈∇w(t)∇dn, w(t)〉+ 〈γ′(t),∇α′α′(γ(t))〉
= Hess dn(w(t), w(t)) + 〈γ′(t), σt

(
w(t), w(t)

)
〉

= 〈σt
(
w(t), w(t)

)
,−γ′(t)〉+ 〈σt

(
w(t), w(t)

)
, γ′(t)〉,(3.43)

and using (3.41) one obtains f ′′(0) < 0. Since f(0) = t and f ′(0) = 0, we conclude
that d(pn, α(s)) = f(s) < t for all s 6= 0 sufficiently small, and the claim is proved.

Since Γt is parallel to Γ, there is a point q ∈ Γ such that d(qt, q) ≤ tn − t.
Combining this with d(qt, pn) < t yields

dn(q) = d(pn, q) ≤ d(pn, qt) + d(qt, q) < t+ tn − t = tn = dn(qn).(3.44)

From (3.16), (3.44) and the definition of Γ, one obtains

fn(q) = f(q) + εnd
2
n(q) < f(qn) + εnd

2
n(qn) = fn(qn),(3.45)

contradicting the fact that fn attains a minimum at qn.
Since both (i) and (ii) lead to contradictions, fn must be differentiable at qn. The

proof of the theorem is now complete.

The Omori-Yau minimum principle guarantees the existence of a minimizing se-
quence with good properties. By contrast, Theorems 3.3 and 3.4 guarantee the ex-
istence of a good minimizing sequence asymptotically close to any given minimizing
sequence.

Definition. We refer to any sequence that has the properties of (qn) in either
Theorem 3.3 or 3.4 as being a good shadow of the minimizing sequence (pn).

As we will see in the next section, the abundance of good shadows plays a funda-
mental role in the proofs of Theorems 2.1, 2.4 and 2.5.

4. Proofs of the geometric theorems. In the Introduction, as well as in the
Remarks at the end of Section 2, we alluded to the fact that the Grassmanian-valued
Gauss map is Lipschitzian if and only if the length of the second fundamental form
is uniformly bounded. Although this statement is not needed in order to establish
Theorems 2.1, 2.4 and 2.5 below, for the sake of completeness we provide its proof
here, especially because it does not seem to have been recorded before. In fact, we
will prove only that boundedness of the second fundamental form implies that the
Gauss map is Lipschitzian, leaving the converse to the reader.

Let h :Mn → R
N be an immersion, r = N − n its codimension, and σ its second

fundamental form. Passing to the orientable double cover, if necessary, we may assume
that Mn is orientable. Also, for notational simplicity, we assume Mn ⊂ R

N and that
h is the inclusion map.

The Grassmanian G◦(r,N) of oriented r-planes in R
N can be identified with a

subset of the r-th exterior power Λr(RN ). Indeed, the Plücker map P : G◦(r,N) →
Λr(RN ), which assigns to W the pre-dual of its volume form, is well-defined and
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injective. More concretely, if {v1, · · · , vr} is any positive orthonormal basis of W ,
then P(W ) = v1 ∧ · · · ∧ vr. A distance function can be given on G◦(r,N) by setting
d(W1,W2) = ||P(W1)− P(W2)||.

The orientations of TpM
n and R

N induce an orientation on [TpM
n]⊥, and so

one has the (oriented) Gauss map G : Mn → G◦(r,N), G(p) = [TpM
n]⊥. Let

α : [0, l(α)] → Mn be an unit-speed curve joining p and q, and {N1(t), · · · , Nr(t)},
0 ≤ t ≤ l(α), a smoothly varying orthonormal frame of G(α(t)). For a fixed unit
vector u ∈ G(p), let Su be the linear endomorphism of TpM

n given by 〈Su(X), Y 〉 =
〈σ(X,Y ), u〉. Denoting by ∇ the connection in R

N , it is easy to see that Su(X) =
−[∇Xu]

T , where u is an unitary local section of the normal bundle that extends
u and the superscript T stands for the tangential component. Suppose now that
||σ|| is uniformly bounded on Mn. In particular, ||Su|| is also uniformly bounded,
independently of p ∈Mn and the unitary normal vector u.

From

d

dt
[N1(t) ∧ · · · ∧Nr(t)] =

∑

j

N1(t) ∧ · · · ∧ [∇α′Nj(t)] ∧ · · · ∧Nr(t)

=
∑

j

N1(t) ∧ · · · ∧ [∇α′Nj(t)]
T ∧ · · · ∧Nr(t)

= −
∑

j

N1(t) ∧ · · · ∧ [SNj(t)α
′(t)] ∧ · · · ∧Nr(t),(4.1)

one has

|| d
dt
[N1(t) ∧ · · · ∧Nr(t)]|| ≤ C

for an absolute constant C. Integrating 4.1 over [0, l(α)] and taking the infimum over
α,

d((G(q),G(p)) = ||N1(q) ∧ · · · ∧Nr(q)−N1(p) ∧ · · · ∧Nr(p)|| ≤ Cd(p, q),

showing that G :Mn → G◦(r,N) is Lipschitzian.

In our comments in Section 2, following the definition of uniform continuity for
the second fundamental form, we remarked that σ is uniformly continuous if |σ| and
|∇̃σ| are uniformly bounded, say by constants D and C.

To see this, let x, y ∈ M ⊂ R
n and v ∈ TxM, |v| = 1. Consider a normalized

minimizing geodesic γ : [0, l] → M joining x and y, and denote by V (s) the parallel
vector field along γ such that V (0) = v. Denote w = V (l), and let ξ1, ..., ξr be parallel
normal vector fields along γ such that {ξ1(s), ..., ξr(s)} is an orthonormal basis of
[Tγ(s)M ]⊥ for all s ∈ [0, l]. Define g : [0, l] → R

n by

g(s) =

r∑

i=1

〈σ(V (s), V (s)), ξi(s)〉ξi(s).

Decomposing ∇ at various stages of the computation below into its tangential and
normal components, using ∇⊥

γ′ξi = 0, ∇γ′V = 0, and the definition of S given in the
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above proof, we have

∇γ′(s)g(s) =
r∑

i=1

〈
∇⊥

γ′(s)σ(V, V ), ξi(s)
〉
ξi(s) +

r∑

i=1

〈σ(V (s), V (s)), ξi(s)〉[∇γ′ξi]
T

=

r∑

i=1

〈
(∇̃γ′(s)σ)(V (s), V (s)), ξi(s)

〉
ξi(s)−

r∑

i=1

〈σ(V (s), V (s)), ξi(s)〉Sξi(s)γ
′(s),

so that

||g′(s)|| ≤
r∑

i=1

|∇̃γ′(s)σ|+
r∑

i=1

|σγ(s)|2 ≤ (C +D2)r.

Thus

||σ(w,w) − σ(v, v)|| = ||g(l)− g(0)|| ≤
∫ l

0

||g′(s)||ds ≤ (C +D2)rd(x, y).(4.2)

It is now clear that (4.2) implies (2.1), showing that σ is uniformly continuous.

Proof of Theorem 2.1. Let H1, · · · , Hs be supporting hyperplanes in general
position through a point po in the boundary of Conv (h(M)). We want to show that
s ≤ n−m. To this end, for i = 1, ..., s, denote by ei the unit vector that is normal to
Hi and points inside Conv (h(M)), and let fi : R

n → R be the height function with
respect to Hi, i.e.,

fi(y) = 〈y − po, ei〉.(4.3)

The fact that ei points inside Conv [h(M)], i = 1, . . . , s, means that

h(M) ⊂ {y ∈ R
n : fi(y) ≥ 0}, i = 1, . . . , s.(4.4)

By our assumption that the immersion is substantial, one has that h(M) is not
contained in H1 ∩ · · · ∩Hs.

We claim that there is a sequence (pk) in M , h(pk) /∈ H1 ∩ · · · ∩ Hs, such that
the distance between h(pk) and H1 ∩ · · · ∩Hs tends to zero as k → ∞ (the sequence
h(pk) may actually go to infinity in R

n).

To prove the claim we will need a formula for computing the distance to the
intersection H1 ∩ · · ·∩Hs of the affine hyperplanes H1, . . . , Hs. Let y be a fixed point
in R

n. Suppose first y /∈ H1 ∩ · · · ∩Hs and let z be the unique point in H1 ∩ · · · ∩Hs

realizing the distance between y and H1 ∩ · · · ∩Hs. Since y− z ⊥ H1 ∩ · · · ∩Hs, there
exist unique real numbers a1, ..., as such that y − z = a1e1 + · · ·+ ases. Hence,

s∑

i=1

ai〈ei, ej〉 = 〈y − z, ej〉 = 〈y − po, ej〉+ 〈po − z, ej〉 = 〈y − po, ej〉,(4.5)

which implies

aj =

s∑

i=1

〈y − po, ei〉gij , j = 1, ..., s,(4.6)
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where (gij)i,j=1,...,s is the inverse of the matrix (〈ei, ej〉)i,j=1,...,s. From (4.5) and
(4.6),

d(y,H1 ∩ · · · ∩Hs) = ||y − z||

=

〈
s∑

i=1

aiei,
s∑

j=1

ajej

〉 1
2

=




s∑

j=1

aj

s∑

i=1

ai〈ei, ej〉





1
2

=




s∑

j=1

aj〈y − po, ej〉





1
2

=




s∑

i,j=1

〈y − po, ei〉〈y − po, ej〉gij



1
2

,(4.7)

If y ∈ H1 ∩ · · · ∩Hs, we have 〈y − po, ei〉 = 0, i = 1, ..., s, and (4.7) holds in the same
way.

Assuming the claim is not true, there is ε > 0 so that

d
(
h(x), H1 ∩ · · · ∩Hs

)
≥ ε, x ∈M.(4.8)

Let H be the hyperplane of R
n that contains po and is orthogonal to the vector

e1 + · · · + es, and f : Rn → R the corresponding height function with respect to
(e1 + · · ·+ es)/a, a = ||e1 + · · ·+ es||, so that

f(y) =
〈
y − po,

e1 + · · ·+ es
a

〉
.(4.9)

If fi(y) ≥ 0, i = 1, ..., s, and f(y) < δ, it follows from (4.3) and (4.9) that

0 ≤ 〈y − po, ei〉 < aδ, i = 1, ..., s,(4.10)

which implies, with the aid of (4.7),

d(y,H1 ∩ · · · ∩Hs) < naCδ, C2 := max
i,j

|gij |.(4.11)

Choosing δ = ε/naC, we conclude that d(y,H1 ∩ · · · ∩ Hs) < ε for all y ∈ R
n

satisfying f(y) < δ and fi(y) ≥ 0, i = 1, ..., s. It follows from the above and (4.8)
that f

(
h(x)

)
≥ δ, for all x ∈ M . Since the set {y ∈ R

n : f(y) ≥ δ} is convex, we
conclude that

Conv (h(M)) ⊂ {y ∈ R
n : f(y) ≥ δ},(4.12)

contradicting the fact that po belongs to H and also to the boundary of Conv (h(M)).
Hence (4.8) cannot occur, and the claim is proved.

Since

lim
k→∞

fi
(
h(pk)

)
= inf

M
(fi ◦ h) = 0, 1 ≤ i ≤ s,

we can use Theorem 3.3 to obtain s sequences q
(i)
k ∈ M , 1 ≤ i ≤ s, k ≥ 1, such that

the distance between q
(i)
k and pk goes to zero and ∇(fi ◦ h)(q(i)k ) → 0 when k → ∞.
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Since ∇(fi ◦ h)(x) is the tangential component of ∇fi
(
h(x)

)
in TxM for all x ∈ M ,

and ei = ∇fi(y) for all y ∈ R
n, this last condition means that the angle between ei

and the normal space G(q(i)k ) is tending to zero.

Passing to a subsequence, we may assume that G(pk) →W for some W ∈ G(n−
m,n). Since the distance between q

(i)
k and pk is going to zero as k → ∞, and the Gauss

map is uniformly continuous, it follows that G(q(i)k ) is also converging to W . But, as

remarked before, the limit of G(q(i)k ) in G(n−m,n) contains ei. This proves that W
contains the s linearly independent vectors e1, . . . , es. In particular, codim h(M) =
dimW = n −m ≥ s. To conclude the proof of Theorem 2.1 we observe that, in the
hypersurface case, the assertion about continuity follows from the fact that the limit
of supporting hyperplanes is itself a supporting hyperplane.

Proofs of Theorems 2.4 and 2.5. The first assertion in Theorem 2.4, s ≤ n−m,
follows from Theorem 2.1 and our hypothesis that the Grassmanian-valued Gauss
map is uniformly continuous.

Defining fi : Rn → R by (4.3), it follows from our assumption on the vectors
e1, . . . , es that the functions fi ◦h, i = 1, . . . , s, are all nonnegative on Mm. A simple
calculation shows, for i = 1, . . . , s, that

Hess(fi ◦ h)x(v, v) = 〈σ(v, v), ei〉, x ∈M, v ∈ TxM,(4.13)

and so

∆(fi ◦ h)(x) = m〈−→H (x), ei〉, x ∈M, i = 1, . . . , s.(4.14)

Let (pk) be a sequence in Mm such that d(h(pk), H1 ∩ · · · ∩Hs) → 0 as k → ∞.
That such a sequence exists is a consequence of the proof of Theorem 2.1. It is
immediate that (pk) is a minimizing sequence for each one of the functions fi ◦ h.

Since, by assumption, the Ricci curvature of M is bounded from below, we can

apply Theorem 3.4 to obtain s sequences
(
q
(i)
k

)
in M , 1 ≤ i ≤ s, k ≥ 1, such that

lim
k→∞

d
(
q
(i)
k , pk

)
= 0,(4.15)

lim inf
k→∞

∆(fi ◦ h)
(
q
(i)
k

)
≥ 0.(4.16)

It follows from (4.14) and (4.16) that

lim inf
k→∞

〈−→
H
(
q
(i)
k

)
, ei

〉
≥ 0, i = 1, . . . , s.(4.17)

Using (4.15) and our assumption that the mean curvature vector field
−→
H is uniformly

continuous on M , we obtain ||−→H (pk) −
−→
H (q

(i)
k )|| → 0, which implies, with the aid of

(4.17), that lim infk→∞

〈−→
H (pk), ei

〉
≥ 0, i = 1, . . . , s. This concludes the proof of

Theorem 2.4.
The proof of Theorem 2.5 runs along similar lines. Let (pk) be a sequence in Mm

such that d(h(pk), H1 ∩ · · · ∩Hs) → 0 as k → ∞, and choose unit vectors vk ∈ Tpk
M .

Using the half of Theorem 3.4 that improves on the Omori theorem, one can construct

sequences (q
(i)
k ) in M , i = 1, . . . , s, such that limk→∞ d

(
q
(i)
k , pk

)
= 0 and, from (4.13),

lim inf
k→∞

min
|w|=1

〈
σ(q

(i)
k )(w,w), ei

〉
≥ 0, i = 1, . . . , s.(4.18)
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Since σ is uniformly continuous, it follows from (2.2) that there exists w
(i)
k ∈ T

q
(i)
k

M ,

|w(i)
k | = 1, such that

||σ(pk)(vk, vk)− σ(q
(i)
k )(w

(i)
k , w

(i)
k )|| → 0.(4.19)

Combining (4.18) and (4.19) one has lim infk→∞ 〈σ(pk)(vk, vk), ei〉 ≥ 0, as de-
sired.

5. Dynamics and good shadows.

Definition. A complete Riemannian manifold Mm satisfies the Local Volume
Property (LVP) if there exist a > 0, b > 1, such that for any p ∈ M and 0 < r < a,
one has

Vol B(p, r) ≤ bVol B(p,
r

2
).

Examples. If f : (M, g) → (N, h) and there exist c1, c2 > 0 such that c1|v| ≤
|df(v)| ≤ c2|v| for all tangent vectors v, then (M, g) is LVP if and only if (N, h) is.
Homogeneous manifolds are clearly LVP.

Suppose now that the Ricci curvature ofM is bounded from below. If M c stands
for the space form of curvature c < 0, where c is sufficiently negative as compared to
the lower bound of the Ricci curvature of M , Gromov’s theorem on monotonicity of
volume ratios ([3], [13]) implies that for all x ∈M the quotient

Volc(r)

Vol(x, r)
,

between the volumes of balls of radius r in M c and M , is a nondecreasing function.
In particular,

Vol
(
B(p, r)

)

Vol
(
B(p, r2 )

) ≤ Volc(r)

Volc( r2 )
,(5.1)

showing that complete manifolds with Ricci curvature bounded from below are LVP.
The previous observation about quasi-isometric manifolds indicates that an LVP

manifold need not have Ricci curvature bounded from below. Two dimensional ex-
amples can be easily constructed by taking a conformal metric λ(z)|dz|2 on R

2, with
λ varying between positive constants to ensure the LVP property, and for which the
curvature

K = − 1

2λ
∆ logλ

is unbounded below. Here, ∆ stands for the flat Laplacian and so

∆ logλ =
1

λ
∆λ− 1

λ2
|∇λ|2.

In particular, infK = −∞ if λ is chosen so as to have a sequence pn of critical points
that satisfy sup∆λ(pn) = ∞.



26 F. FONTENELE AND F. XAVIER

The hypothesis in the Yau maximum principle that the Ricci curvature is bounded
below has been weakened by several authors (e.g., [2], [14]). Here we propose a
conjecture that weakens the hypothesis on the Ricci curvature, while strengthening
the conclusion. Recall the definition of good shadows, given at the end of Section 3.

Conjecture. If M is an LVP manifold and f ∈ C2(M) is bounded below, then
any minimizing sequence of f admits a good shadow (relative to ∆).

The result below verifies the above conjecture for a special class of functions:

Theorem 5.1. Let Mm be a complete manifold that satisfies LVP, and f :
M → R a function of class C2 such that inf f > −∞ and sup ||Hessf || < ∞. Then
every minimizing sequence of f admits a good shadow (relative to ∆). Explicitly,
if f(pn) → inf f , then there exists (qn) such that f(qn) → inf f , d(pn, qn) → 0,
||∇f(qn)|| → 0, and lim inf ∆f(qn) ≥ 0.

Proof. Let φt be the local flow of X = −∇f on M , so that

d

dt
φt(p) = −∇f(φt(p)), φ0(p) = p,(5.2)

where t ∈ [0, τ(p)) = the maximal interval of existence of the forward solution.
For each n ∈ N, set

δn =
√
f(pn)− inf

M
f, rn =

√
δn.(5.3)

Since δn → 0 as n→ ∞, we may suppose, without loss of generality, that δn < rn for
all n ∈ N. We will construct a sequence (qn) in M satisfying

d(pn, qn) ≤ rn, lim inf
n→∞

∆f(qn) ≥ 0.(5.4)

For every n ∈ N for which δn = 0, we have ∆f(pn) ≥ 0 and we choose qn = pn. For
each n ∈ N so that δn > 0, we have two possibilities:

a) Every positive orbit originating in B(pn, r
2
n) remains in the open ball B(pn, rn).

b) There is at least one trajectory that joins the boundaries of B(pn, r
2
n) and B(pn, rn)

in finite time.
In the first alternative, τ(p) = ∞ for every p ∈ B(pn, r

2
n). Let µ denote the

Riemannian measure of M . By Liouville’s formula for the change of volume under a
flow [10], one has, for all t > 0, since ∆ = div∇,

µ
(
B(pn, rn)

)
≥ µ

(
φt(B(pn, r

2
n))

)
=

∫

B(pn,r2n)

exp
(∫ t

0

−∆f(φs(p))ds
)
dµ(p).(5.5)

If there exists ε > 0 such that ∆f(q) ≤ −ε for all q ∈ B(pn, rn), a contradiction can
be easily established by letting t → ∞ in the above formula. Hence one can choose
qn ∈ B(pn, rn) such that ∆f(qn) ≥ 0.

We now work under the conditions of alternative b). Consider the quantity τn
which gives the shortest time to travel from ∂B(pn, r

2
n) to ∂B(pn, rn), along a trajec-

tory of X . Formally,

τn = inf
{
t : t ∈ (0, τ(p)), p ∈ ∂B(pn, r

2
n) and φt(p) ∈ ∂B(pn, rn)

}
.(5.6)
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In particular,

φτn
(
B(pn, r

2
n)
)
⊂ B(pn, rn).(5.7)

We want to estimate the first exit time τn. Let xn ∈ ∂B(pn, r
2
n) and tn ∈

(0, τ(xn)) be such that φtn(xn) ∈ ∂B(pn, rn) and tn < 2τn.
The last integral of

f(xn)− f(φtn(xn)) = −
∫ tn

0

(f ◦ φs)′ds =
∫ tn

0

||∇f ||2(φs(xn))ds

≥ 1

tn

[∫ tn

0

||∇f ||(φs(xn))ds
]2

(5.8)

gives the length of the portion of the orbit of X = −∇f over the time interval [0, tn],
through xn. Since the last point of this orbit segment lies in ∂B(pn, rn), its length is
at least rn(1 − rn). Collecting this information, and observing (5.8), we obtain

δn(1− rn)
2

2τn
≤ r2n(1 − rn)

2

tn
≤ f(xn)− f(φtn(xn)) ≤ f(xn)− inf

M
f.(5.9)

We will now estimate the last term in (5.9). Define h : M → R by h(x) =
||∇f(x)||2 + ε, where ε is a positive real number. Given p, q ∈ M , consider an unit
speed minimizing geodesic γ : [0, a] → M joining p to q. If K is an upper bound for
the norm of the Hessian operator of f , we have

∣∣∣
d

dt
h(γ(t))

∣∣∣ = 2|〈∇γ′∇f,∇f〉| ≤ 2K||∇f || ≤ 2K
√
h(γ(t)),(5.10)

and so
∣∣√h(γ(t))−

√
h(γ(0))

∣∣ ≤ Kt, t > 0.(5.11)

Setting t = a and letting ε→ 0,
∣∣ ||∇f(p)|| − ||∇f(q)||

∣∣ ≤ Ka = Kd(p, q), p, q ∈M.(5.12)

On the other hand, from the proof of Theorem 3.3, there exists yn ∈ B(pn, δn) so
that ||∇f ||(yn) ≤ δn. Using this fact and (5.12), we obtain

||∇f(z)|| ≤ ||∇f(yn)||+Kd(yn, z) ≤ δn(1 + 2K), z ∈ B(pn, δn).(5.13)

Considering an unit speed minimizing geodesic segment γ : [0, δn] →M joining pn to
xn, it follows from (5.13) that

|f(xn)− f(pn)| ≤
∫ δn

0

|(f ◦ γ)′(t)|dt =
∫ δn

0

|〈∇f(γ(t)), γ′(t)〉|dt

≤
∫ δn

0

||∇f(γ(t))||dt ≤ δ2n(1 + 2K).(5.14)

From (5.9) and (5.14), we obtain

δn(1− rn)
2

2τn
≤ f(xn)− f(pn) + f(pn)− inf

M
f

≤ δ2n(1 + 2K) + δ2n = 2δ2n(1 +K),(5.15)
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and so

(1− rn)
2

τn
≤ 4δn(1 +K).(5.16)

Since δn → 0 and rn → 0 as n→ ∞, one has, in particular, limn→∞ τn = +∞.

From Liouville’s formula,

µ
(
φτn(B(pn, r

2
n))

)
=

∫

B(pn,r2n)

exp

(∫ τn

0

−∆f(φs(p))ds

)
dµ(p).(5.17)

Jensen’s inequality applied to the probability measure ν/ν(Ω), where ν is a finite
measure on Ω, gives

ψ

(
1

ν(Ω)

∫

Ω

gdν

)
≤ 1

ν(Ω)

∫

Ω

(ψ ◦ g)dν,(5.18)

whenever ψ is convex and g is integrable.

Applying (5.18) to (5.17),

µ(φτn(B(pn, r
2
n)))

µ(B(pn, r2n))

≥ exp

[
1

µ(B(pn, r2n))

∫

B(pn,r2n)

(∫ τn

0

−∆f(φs(p))ds

)
dµ(p)

]
.(5.19)

Using our assumption that Mm satisfies LVP, it is not difficult to see that

µ(B(p, d))

µ(B(p, c))
≤ b

d
c(5.20)

for all p ∈M and 0 < c < d < a. Indeed, from

Vol B(p, r) ≤ bVol B(p,
r

2
), r < a,

one obtains inductively, for any positive integer k,

Vol B(p, r) ≤ bkVol B(p,
r

2k
).

Hence, if 0 < c < d < a and k is the least positive integer such that d
c ≤ 2k, one has

2k−1 < d
c and so k ≤ 2k−1 < d

c . In particular, since b > 1,

Vol B(p, d) ≤ bkVol B(p,
d

2k
) ≤ bkVol B(p, c) < b

d
c Vol B(p, c).

Recalling that φτn(B(pn, r
2
n)) ⊂ B(pn, rn), it follows from (5.19) and (5.20) that

exp

[
1

µ(B(pn, r2n))

∫

B(pn,r2n)

(∫ τn

0

−∆f(φs(p))ds

)
dµ(p)

]

≤ µ(B(pn, rn))

µ(B(pn, r2n))
≤ b

1
rn ,(5.21)
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which implies

1

µ(B(pn, r2n))

∫

B(pn,r2n)

(∫ τn

0

−∆f(φs(p))ds

)
dµ(p) ≤ log b

rn
(5.22)

Next, we take Ωn = B(pn, r
2
n) × [0, τn], endowed with the probability measure ν

given by the normalization of the product measure on B(pn, r
2
n) × [0, τn]. Dividing

(5.22) by τn, and using (5.16), we obtain

∫

Ωn

−∆f(φs(q))dν(q, s) ≤
log b

τnrn
≤ 4(1 +K)rnlog b

(1− rn)2
.(5.23)

Since Ωn has mass one, it follows from (5.23) that there are sn ∈ [0, τn] and
q′n ∈ B(pn, r

2
n) such that, with qn = φsn(q

′
n), one has

d(pn, qn) ≤ rn, ∆f(qn) ≥
−4rn(1 +K)log b

(1− rn)2
,(5.24)

and (5.4) follows from the fact that rn → 0 as n→ ∞.
Next we will prove that (qn) is a minimizing sequence of f . Employing the same

argument that was used to obtain (5.13), one obtains

||∇f(z)|| ≤ rn(1 + 2K), z ∈ B(pn, rn).(5.25)

Using the above inequality and reasoning as in (5.14), we arrive at

f(qn) ≤ f(pn) + r2n(1 + 2K).(5.26)

In view of (5.4) and (5.26), to complete the proof that (qn) is a good shadow of
(pn), it remains to show that ||∇f ||(qn) → 0 as n→ ∞. By Theorem 3.3, there exists
a minimizing sequence (q′n) with d(qn, q

′
n) → 0, ||∇f ||(q′n) → 0. Applying (5.12) to

qn and q′n, one sees that ||∇f ||(qn) also tends to zero.

Adjusting the proof of Theorem 5.1 one can prove a result which, in the termi-
nology of [14], represents a “weak minimum principle”:

Theorem 5.2. Let M be a complete manifold that satisfies LVP, and f :M → R

a function of class C2 satisfying infM f > −∞. Let (pn) be a sequence in M that is
strongly minimizing for f , in the sense that there exists δ > 0 such that the oscillation
of f on B(pn, δ) tends to zero, i.e.,

lim
n→∞

[
max

B(pn,δ)
f − min

B(pn,δ)
f

]
= 0.(5.27)

Then there exists a minimizing sequence (qn) in M for f such that

lim
n→∞

d(pn, qn) = 0, lim inf
n→∞

∆f(qn) ≥ 0.(5.28)

Proof. For each n ∈ N, set

rn =

[
max

B(pn,δ)
f − min

B(pn,δ)
f

] 1
4

.(5.29)
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We will construct a sequence qn such that

d(pn, qn) ≤ rn, lim inf ∆f(qn) ≥ 0.(5.30)

From (5.27), one sees that such a sequence (qn) will satisfy (5.28). Since rn → 0 as
n → ∞, we may suppose, without loss of generality, that rn ∈ [0, δ) for all n ∈ N,
where δ is as in the statement of the theorem. If rn = 0, f is constant in B(pn, δ),
and we take qn = pn. Fix a real number κ ∈ (0, 1) and denote by φt the local flow of
X = −∇f on M . For each n ∈ N for which rn > 0, we have two possibilities: either
every positive orbit originating in B(pn, κrn) remains in the open ball B(pn, rn) or
there is at least one trajectory that joins the boundaries of B(pn, κrn) and B(pn, rn)
in finite time. In the first case we obtain, as in the proof of Theorem (5.1), a point
qn ∈ B(pn, rn) such that ∆f(qn) ≥ 0. In the second case, reasoning as in the proof
of Theorem 5.1, with r2n replaced by κrn, we obtain

(1 − κ)2r2n
2τn

≤ max
B(pn,δ)

f − min
B(pn,δ)

f,(5.31)

which implies, in view of (5.29),

(1− κ)2

2τn
≤ r2n.(5.32)

In particular, τn → ∞ as n → ∞. Continuing as in the proof of Theorem 5.1, we
arrive at

µ(B(pn, rn))

µ(B(pn, κrn))
≥ exp

[
1

µ(B(pn, κrn))

∫

B(pn,κrn)

(∫ τn

0

−∆f(φs(p))ds

)
dµ(p)

]
.(5.33)

Since M satisfies the local volume doubling condition, and rn → 0 as n → ∞, it
follows from (5.20) and (5.33) that

1

µ(B(pn, κrn))

∫

B(pn,κrn)

(∫ τn

0

−∆f(φs(p))ds

)
dµ(p) ≤ log b

k
.(5.34)

Using (5.34) and (5.32), and arguing as in Theorem 5.1, we conclude that there
exists qn ∈ B(pn, rn) so that

∆f(qn) ≥ − 2r2nlog b

k(1− k)2
.(5.35)

Now (5.30) follows from (5.35) and from the fact that rn → 0 as n → ∞. That (qn)
is minimizing is an immediate consequence of (5.27) and (5.28).

Corollary 5.3. Let B(0, 1) be the open unit ball in R
3, (M, g) a complete surface

and X : (M, g) → B(0, 1) a proper minimal isometric immersion. Then (M, g) does
not satisfy LVP.

(Examples of complete minimal surfaces that are properly immersed in the open
unit ball in R

3 have been constructed by Martin-Morales ([11])). If X : M2 →
B(0, 1) ⊂ R3 is such an immersion, let f(p) = −|X(p)|2. Since X is proper,
limp→∞ f(p) = −1 uniformly on p, and condition (5.27) holds. On the other hand,
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from the minimality ofM we obtain ∆f = −4. It now follows from Theorem 5.2 that
these surfaces are not LVP.

If true, the conjecture at the beginning of this section would imply that no com-
plete bounded minimal surface, properly immersed or not, is LVP. On the other hand,
it has long been known that such surfaces must have unbounded Gaussian curvature
(see [19] for a more general result).
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