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ON THE CREPANCY OF THE GIESEKER-UHLENBECK
MORPHISM∗

ZHENBO QIN† AND QI ZHANG‡

Abstract. The Gieseker-Uhlenbeck morphism from the moduli space of Gieseker semistable
rank-2 sheaves over an algebraic surface to the Uhlenbeck compactification was constructed by Jun
Li [Li1] (see also [Uhl, Mor]). We prove that if the anti-canonical divisor of the surface is effective
and the first Chern class of the semistable sheaves is odd, then the Gieseker-Uhlenbeck morphism is
crepant.
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1. Introduction. A well-known result of Donaldson [Don1] says that slope-
stable rank-2 vector bundles over a complex algebraic surface are in one-to-one cor-
respondence with irreducible anti-self-dual connections on certain principal bundles
over the underlying smooth 4-manifold. The moduli space of these slope-stable rank-
2 bundles has a natural compactification in algebraic geometry, namely, the moduli
space of Gieseker semistable rank-2 sheaves. On the other hand, the moduli space of
irreducible anti-self-dual connections has a natural compactification in gauge theory,
namely, the Uhlenbeck compactification [Uhl]. J. Li [Li1] (see also [Mor]) showed
that the Uhlenbeck compactification is a reduced projective scheme, and constructed
a morphism from the Gieseker moduli space to the Uhlenbeck compactification. We
define this morphism to be the Gieseker-Uhlenbeck morphism. The goal of this paper
is to study the crepancy of this morphism. For our purpose, a birational morphism
f : Y1 → Y2 is crepant if Y1 is normal, Y2 is regular in codimension-1 and Q-Gorenstein
[KMM], and KY1 = f∗KY2 .

To state our result, let X be a surface with canonical class KX . Fix a divisor c1

and an ample divisor H on X , and fix an integer c2. Let MH(c1, c2) be the moduli
space of Gieseker H-semistable rank-2 sheaves on X with Chern classes c1 and c2,
and let UH(c1, c2) be the corresponding Uhlenbeck compactification.

Theorem 1.1. Let X be a simply connected surface with −KX ≥ 0, and let H
be an ample divisor with odd (c1 · H). Assume that MH(c1, c2) is non-empty. Then
the Gieseker-Uhlenbeck morphism ΨH : MH(c1, c2) → UH(c1, c2) is crepant.

Note that X is necessarily a rational surface or a K3 surface. The basic properties
of the moduli space MH(c1, c2) are summarized in Lemma 3.1. Our main idea to
prove Theorem 1.1 is to show that when MH(c1, c2 − 1) is non-empty, ΨH drops the
Picard numbers by one, i.e., the Picard number of MH(c1, c2) is one more than that
of UH(c1, c2). First of all, we see from [Li2] that the Picard number of MH(c1, c2)
is 1 + ρ where ρ denotes the Picard number of X . Next, notice that the birational
morphism ΨH contracts the irreducible boundary divisor in MH(c1, c2) which consists
of non-locally free semistable sheaves. So the Picard number of UH(c1, c2) is at most
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ρ. On the other hand, the results in [Li1] implies that the determinant line bundle
constructed there are contained in

(ΨH)∗Pic
(
UH(c1, c2)

)
⊗Z Q.

Replacing H by other ample divisors sufficiently close to H , we obtain ρ linearly
independent determinant line bundles. Hence the Picard number of UH(c1, c2) is at
least ρ. It follows that the Picard number of UH(c1, c2) is precisely ρ.

We remark that Theorem 1.1 also follows directly from the Proposition 4.6 in
[Li3]. Our alternative approach may be viewed as an elementary proof in the case
that −KX ≥ 0. Results in this paper will be used in an upcoming joint work of
Wei-Ping Li and the first named author, where all the extremal (with respect to the
Gieseker-Uhlenbeck morphism ΨH) 1-point Gromov-Witten invariants of the moduli
space MH(c1, c2) with X = P2 have been computed.

Finally, we point out that the Gieseker-Uhlenbeck morphism is a natural gen-
eralization of the Hilbert-Chow morphism from the Hilbert scheme of points on a
surface to the symmetric product of the surface. The Hilbert-Chow morphism and
the Hilbert scheme have been studied intensively in recent years due to their elegant
connections with string theory, representation theory and Ruan’s Cohomological Res-
olution Conjecture (see [Nak, Gro, LQW, LL, Ruan] and the references there). It
would be interesting to see whether these results could be extended to the Gieseker-
Uhlenbeck morphism and the Gieseker moduli space. Indeed, a relation between the
Gieseker moduli space and representation theory has been established in [Bar]. We
plan to investigate the Gieseker-Uhlenbeck morphism and the Gieseker moduli space
in more details in our future work.

Conventions. Throughout the paper, unless otherwise specified, (semi)stability
means Gieseker (semi)stability. For a smooth variety, we make no distinctions between
its divisors and the corresponding line bundles, and between its group of divisors
modulo linear equivalence relation and its Picard group.

Acknowledgments. We thank the referee for some valuable comments.

2. Preliminaries.

2.1. The moduli space of Gieseker semistable sheaves. Let X be a
smooth complex projective surface, and let H be an ample divisor on X . For a
sheaf V on X , denote the Hilbert polynomial of V by

χH(V ; n) =
∑

i

(−1)ihi(X, V ⊗OX(nH)). (2.1)

A torsion free sheaf V on X is H-stable (resp. H-semistable) if

χH(W ; n)

rank(W )
<

χH(V ; n)

rank(V )
(resp. ≤)

for every proper subsheaf W ⊂ V and n ≫ 0. Fix a divisor c1 on X and an integer
c2. Let MH(c1, c2) be the moduli space of H-semistable rank-2 torsion free sheaves
V with Chern classes c1 and c2, and let MH(c1, c2) ⊂ MH(c1, c2) be the open subset
consisting of locally free sheaves in MH(c1, c2). It is well-known that the moduli space
MH(c1, c2) is a projective scheme with the expected dimension

d = 4c2 − c2
1 − 3χ(OX). (2.2)
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For fixed c1 and H , it is proved in [Don2, Fri2, GL, Li3, O’G, Zuo] that if c2 ≫ 0,
then MH(c1, c2) is normal and irreducible with the expected dimension.

Let Num(X) be the group of divisors on X modulo numerical equivalence relation.
Let CX ⊂ Num(X) ⊗ R be the nef cone of X .

Definition 2.1. (see Definition 1.1.1 in [Qin]) Fix c1 and c2 as above.

(i) For α ∈ Num(X) ⊗ R, we define Wα to be the subset

CX ∩ {β ∈ Num(X) ⊗ R|α · β = 0};

(ii) Define W (c1, c2) to be the set of all the subsets Wα where α is the numerical
equivalence class of a divisor of the form (2F − c1) such that

−(4c2 − c2
1) ≤ α2 < 0;

(iii) A chamber C of type (c1, c2) is a connected component of the nef cone CX cut
out by all the elements Wα ∈ W (c1, c2).

Lemma 2.2. Fix a divisor c1 on X and an integer c2.
(i) If two ample divisors H and H ′ are contained in the same chamber of type

(c1, c2), then H-(semi)stability coincides with H ′-(semi)stability;
(ii) If (c1 · H) is odd, then H is contained in certain chamber of type (c1, c2);

moreover, every sheaf V ∈ MH(c1, c2) is H-stable (in fact, H-slope-stable),
and the moduli space MH(c1, c2) is a fine moduli space.

Proof. (i) is the Theorem 1.3.3 in [Qin]. If (c1 · H) is odd, then a standard
argument shows that H is contained in certain chamber of type (c1, c2) and that
every sheaf V ∈ MH(c1, c2) is H-stable (in fact, H-slope-stable). Furthermore, by
the Remark A.7 in [Muk], a universal sheaf over MH(c1, c2) × X exists.

2.2. The Uhlenbeck compactification. Let (c1 · H) be odd, and assume
that the open subset MH(c1, c2) is dense in MH(c1, c2). By Lemma 2.2 (ii), H-
semistability implies H-stability. So the quasi-projective variety MH(c1, c2) has a
Uhlenbeck compactification

UH(c1, c2) =
∐

i≥0

MH(c1, c2 − i) × Symi(X) (2.3)

according to [Uhl, Li1, Mor]. Moreover, J. Li constructed a birational morphism

ΨH : MH(c1, c2) → UH(c1, c2) (2.4)

sending V ∈ MH(c1, c2) to the pair (V ∗∗, η) where V ∗∗ is the double dual of V and

η =
∑

x∈X

h0
(
X, (V ∗∗/V )x

)
x.

It follows that the restriction ΨH |MH (c1,c2) is the identity map on MH(c1, c2), and that

the boundary divisor MH(c1, c2)− MH(c1, c2) is contracted by ΨH to the subscheme∐
i≥1 MH(c1, c2 − i) × Symi(X) in UH(c1, c2).

Definition 2.3. We define Ψ := ΨH to be the Gieseker-Uhlenbeck morphism.
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We outline the construction of Ψ and refer to [Li1] for details. Let k be an even
integer sufficiently large, and let C ∈ |kH | be an irreducible and smooth curve with
genus gC . Choose a line bundle θ̃C on the curve C such that

deg(θ̃C) = gC − 1 −
(c1 · C)

2
. (2.5)

By Lemma 2.2 (ii), a universal sheaf V over MH(c1, c2) × X exists. Let

L(C, θ̃C) = Det
(
Rπ̃1∗(V|MH(c1,c2)×C ⊗ π̃∗

2 θ̃C)
)−1

(2.6)

where π̃1 and π̃2 are the projections on MH(c1, c2)×C. For m ≫ 0, there exists a base-
point-free linear series in H0

(
MH(c1, c2),L(C, θ̃C)⊗m

)
which induces a morphism

Ψ : MH(c1, c2) → PN for a suitable integer N . The image Ψ(MH(c1, c2)) is precisely
the Uhlenbeck compactification UH(c1, c2). It follows that

L(C, θ̃C) ∈ Ψ∗Pic
(
UH(c1, c2)

)
⊗Z Q. (2.7)

3. The Gieseker-Uhlenbeck morphism is crepant. Throughout this sec-
tion, we assume that X is a simply connected surface with effective anti-canonical
divisor −KX and that (c1 · H) is odd. So X is either a rational surface or a K3
surface. Our goal is to prove that the Gieseker-Uhlenbeck morphism Ψ = ΨH :
MH(c1, c2) → UH(c1, c2) is crepant.

3.1. The Gieseker moduli space MH(c1, c2). The moduli space MH(c1, c2)
has been studied extensively by various authors. We refer to the three books
[OSS, Fri2, HL] for further references. The following summarizes some properties
of MH(c1, c2) relevant to us.

Lemma 3.1. Let X be simply connected with −KX ≥ 0, and let H be an ample
divisor with odd (c1 · H). Assume that MH(c1, c2) 6= ∅.

(i) The moduli space MH(c1, c2) is smooth, fine and irreducible with dimension

d = 4c2 − c2
1 − 3χ(OX).

Moreover, the open subset MH(c1, c2) is dense in MH(c1, c2);
(ii) If we further assume that MH(c1, c2 − 1) 6= ∅, then the Picard number of

MH(c1, c2) is one more than the Picard number of X.

Proof. (i) By Lemma 2.2 (ii), MH(c1, c2) is a fine moduli space. The smoothness
and dimension of MH(c1, c2) can be found in [MaM]. The irreducibility follows from
the Corollary 10 in [MaE]. To show that MH(c1, c2) is dense in the irreducible variety
MH(c1, c2), it suffices to prove that MH(c1, c2) is not empty. Let V ∈ MH(c1, c2).
Then the double dual V ∗∗ is stable. By the Corollary 1.5 in [Art], the sheaf V is
smoothable. Hence MH(c1, c2) is not empty.

(ii) By the Theorem 3.8 1 of [Li2], there exists a homomorphism

Φ : Pic(X × X)σ ⊕ Z → Pic(MH(c1, c2)) ⊗Z Z

[
1

12

]

1More precisely, the proof of the Theorem 3.8 of [Li2] needs to be modified slightly since its
statement is for c2 ≫ 0. For instance, we need to replace the bundles E1 and E2 in the proof of the
Proposition 2.1 of [Li2] by two bundles E1 ∈ MH(c1, c2) and E2 ∈ MH(c1, c2 − 1). Similar remarks
apply when we use the results of [Li4] in (3.9).



ON THE CREPANCY OF THE GIESEKER-UHLENBECK MORPHISM 217

which has finite kernel and co-kernel. Here σ : X ×X → X ×X is the automorphism
exchanging the factors. Since X is simply connected, we have

Pic(X × X) = π∗
1Pic(X) ⊕ π∗

2Pic(X) (3.1)

where π1, π2 are the two projections on X × X . It follows that

Pic(X × X)σ ∼= Pic(X).

Therefore, the Picard number of MH(c1, c2) is one more than that of X .

3.2. The boundary of the moduli space MH(c1, c2). In this subsection,
we study the boundary of the moduli space MH(c1, c2), i.e., the subset consisting of
all the non-locally free sheaves in MH(c1, c2). Note that the non-emptiness of the
moduli space MH(c1, c2 − 1) implies the non-emptiness of MH(c1, c2). Assume that
MH(c1, c2 − 1) is nonempty. Let

B = MH(c1, c2) − MH(c1, c2) (3.2)

be the boundary. Recall the Gieseker-Uhlenbeck morphism Ψ from (2.4). Put

B∗ = Ψ−1(MH(c1, c2 − 1) × X) ⊂ MH(c1, c2).

Then, B∗ is an open and dense subset of the boundary divisor B. Also, B∗ parame-
trizes all the sheaves V ∈ MH(c1, c2) sitting in exact sequences of the form:

0 → V → V1 → Ox → 0

for some bundle V1 ∈ MH(c1, c2 − 1) and some point x ∈ X . To give a global
description of B∗, take a universal sheaf V0

1 over MH(c1, c2 − 1) × X . Let

P∗ = P(V0
1 ),

and let OP∗
(1) be the tautological line bundle over P∗. Then there is a surjection:

π∗V0
1 → OP∗

(1) → 0

where π : P∗ = P(V0
1 ) → MH(c1, c2 − 1) × X is the natural projection. Consider

π × IdX : P∗ × X → MH(c1, c2 − 1) × X × X.

Let ∆X be the diagonal of X×X , and α : MH(c1, c2−1)×∆X → MH(c1, c2−1)×X
be the obvious isomorphism. Then, we have the isomorphisms:

(π × IdX)−1(MH(c1, c2 − 1) × ∆X) ∼= P(α∗V0
1 ),

π̃∗V0
1 |(π×IdX )−1(MH (c1,c2−1)×∆X)

∼= α̃∗V0
1 (3.3)

where π̃ : P∗ × X → MH(c1, c2 − 1) × X is the composition of π × IdX and

MH(c1, c2 − 1) × X × X → MH(c1, c2 − 1) × X

which denotes the projection to the product of the first and third factors in
MH(c1, c2 − 1) × X × X , and α̃ : P(α∗V0

1 ) → MH(c1, c2 − 1) × X is the compo-
sition of the natural projection P(α∗V0

1 ) → MH(c1, c2 − 1) × ∆X and α.
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Combining the isomorphism (3.3) with the canonical surjection

α̃∗V0
1 → O(π×IdX)−1(MH (c1,c2−1)×∆X)(1) → 0

over (π × IdX)−1(MH(c1, c2 − 1) × ∆X), we obtain a surjection over P∗ × X :

π̃∗V0
1 → O(π×IdX )−1(MH (c1,c2−1)×∆X)(1) → 0.

Let V ′ be the kernel. Then V ′ is flat over P∗, and we have an exact sequence

0 → V ′ → π̃∗V0
1 → O(π×IdX)−1(MH(c1,c2−1)×∆X)(1) → 0. (3.4)

By the universal property of MH(c1, c2), the sheaf V ′ induces a morphism

P∗ → MH(c1, c2)

which is injective with image B∗. Since both B∗ and P∗ are smooth, B∗
∼= P∗ by the

Zariski’s Main Theorem. For simplicity, we just write B∗ = P∗. Hence,

B∗ = P∗ = P(V0
1 ). (3.5)

Lemma 3.2. Assume that the moduli space MH(c1, c2 − 1) is non-empty. Let
d = 4c2 − c2

1 − 3χ(OX). Let f ∼= P1 be a fiber of the natural projection

π : B∗ = P∗ = P(V0
1 ) → MH(c1, c2 − 1) × X,

and let N := N
f⊂MH (c1,c2)

be the normal bundle of f in MH(c1, c2). Then,

(i) f · K
MH(c1,c2)

= 0;

(ii) f · B = −2 and N ∼= O
⊕(d−2)
f

⊕Of(−2);

(iii) T
MH(c1,c2)

|f ∼= O
⊕(d−2)
f

⊕Of(−2) ⊕Of(2).

Proof. (i) Assume that f = π−1(V1, x) where (V1, x) ∈ MH(c1, c2 − 1) × X . Let
Vf = V ′|f×X . Restricting (3.4) to f × X yields the exact sequence

0 → Vf → π∗
2V1 → π∗

1Of(1)|f×{x} → 0 (3.6)

where π1 and π2 are the projections on f × X . Since H-semistability coincides with
H-stability and H1(X,OX) = 0, the tangent sheaf of MH(c1, c2) is isomorphic to
Ext1π1

(V ,V) where V denotes a universal sheaf over MH(c1, c2) × X . Hence

f · K
MH(c1,c2)

= −c1

(
Ext1π1

(Vf,Vf)
)
∈ A1(f) ∼= Z.

Note also that Ext0π1
(Vf,Vf) ∼= Of, and Ext2π1

(Vf,Vf) = 0 or Of. Therefore,

f · K
MH (c1,c2)

=

2∑

i=0

(−1)ich1

(
Extiπ1

(Vf,Vf)
)

= {π1∗

(
ch(Vf)

τ · ch(Vf) · π
∗
2td(X)

)
}1 (3.7)

where { }1 denotes the component in A1(f) ∼= Z, and τ is the action on the Chow
group A∗(·) sending an element α ∈ Ai(·) to (−1)iα. By (3.6),

ch(Vf) = π∗
2ch(V1) − π∗

1ch(Of(1)) · π∗
2ch(Ox).



ON THE CREPANCY OF THE GIESEKER-UHLENBECK MORPHISM 219

A straight-forward computation shows that f · K
MH(c1,c2)

= 0.

(ii) By (i), c1(N) = −2. Note that Nf⊂B∗

∼= O
⊕(d−2)
f

. By the exact sequence

0 → Nf⊂B∗
→ N → N

B∗⊂MH(c1,c2)
|f → 0, (3.8)

c1

(
N

B∗⊂MH(c1,c2)
|f
)

= −2. Since B∗ is an open subset of the boundary divisor B,

N
B∗⊂MH (c1,c2)

|f = N
B⊂MH (c1,c2)

|f ∼= O
MH(c1,c2)

(B)|f.

Hence f · B = −2, N
B∗⊂MH (c1,c2)

|f ∼= Of(−2), and (3.8) is simplified to

0 → O
⊕(d−2)
f

→ N → Of(−2) → 0

which must split. Therefore, we obtain N ∼= O
⊕(d−2)
f

⊕Of(−2).
(iii) The exact sequence 0 → Tf → T

MH (c1,c2)
|f → N → 0 gives rise to

0 → Of(2) → T
MH (c1,c2)

|f → O
⊕(d−2)
f

⊕Of(−2) → 0

which again splits. Thus T
MH(c1,c2)

|f ∼= O
⊕(d−2)
f

⊕Of(−2) ⊕Of(2).

3.3. The µ map. Assume that the moduli space MH(c1, c2) is non-empty. By
Lemma 3.1 (i), MH(c1, c2) is non-empty. Let g be the Kahler metric on the underlying
smooth 4-manifold X associated to the ample divisor H . Let P be the SO(3)-bundle
on X associated to a rank-2 bundle with Chern classes c1 and c2. Let B(P )∗ be
the space of gauge equivalence classes of irreducible connections on P . By [Don1],
MH(c1, c2) can be identified with the subset of B(P )∗ consisting of anti-self-dual
irreducible connections. For simplicity of notations, we regard that

MH(c1, c2) ⊂ B(P )∗.

By the Theorem 0.1 in [Li4], the restriction map is an isomorphism:

res : H2(B(P )∗; Q)
∼=
→ H2(MH(c1, c2); Q). (3.9)

A universal SO(3)-bundle Ṽ exists over B(P )∗ × X . Let

p1(Ṽ) ∈ H4(B(P )∗ × X ; Z)

be its first Pontrjagin class. It is known from gauge theory that the map

µ̃ : H2(X ; Q) → H2(B(P )∗; Q),

defined by the slant product µ̃(α) = −1/4 · p1(Ṽ)/α, is an isomorphism. Put

µ = (res ◦ µ̃) : H2(X ; Q) → H2(MH(c1, c2); Q). (3.10)

Note that if V is a universal sheaf over MH(c1, c2) × X , then

µ(α) = −
1

4
·
[
c1(V)2 − 4c2(V)

]
/α. (3.11)

Lemma 3.3. Assume that the moduli space MH(c1, c2) is non-empty.
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(i) The map µ is an isomorphism;
(ii) Let L(C, θ̃C) be the determinant line bundle defined in (2.6). Then,

L(C, θ̃C)|MH (c1,c2) = µ(C) ∈ H2(MH(c1, c2); Q). (3.12)

Proof. (i) follows from (3.9) since the map µ̃ is an isomorphism. To prove (ii),
note from (2.6) and the Proposition 3.8 (iii) in Chapter V of [FM] that

L(C, θ̃C) = −ch1

(
π̃1!(V|MH(c1,c2)×C ⊗ π̃∗

2 θ̃C)
)
. (3.13)

Let π1 and π2 be the two projections on MH(c1, c2) × X . Then,

c1(V) = π∗
1D + π∗

2c1

for some divisor D on MH(c1, c2). Let π̃1 and π̃2 be the two projections on
MH(c1, c2) × C. By the Grothendieck-Riemann-Roch Theorem,

ch
(
π̃1!(V|MH (c1,c2)×C ⊗ π̃∗

2 θ̃C)
)

= π̃1∗

(
ch(V|

MH(c1,c2)×C) · π̃∗
2ch(θ̃C) · π̃∗

2td(C)
)

=
(c1 · C)

2
D − π̃1∗c2

(
V|

MH(c1,c2)×C

)

=
(c1 · C)

2
D − c2(V)/C

where we have used (2.5) in the second equality. A direct computation yields

µ(C) = −
1

4

[
c1(V)2 − 4c2(V)

]
/C

= −
(c1 · C)

2
D + c2(V)/C.

Therefore, L(C, θ̃C) = µ(C) ∈ H2(MH(c1, c2); Q) in view of (3.13).
When c1 = 0, Lemma 3.3 (ii) is the Proposition 1.1 in Chapter V of [FM].

3.4. The Gieseker-Uhlenbeck morphism is crepant.

Proposition 3.4. Assume that the moduli space MH(c1, c2 − 1) is non-empty.
Recall the boundary divisor B from definition (3.2). Then,

(i) the Picard number of UH(c1, c2) is equal to that of X;
(ii) Pic

(
MH(c1, c2)

)
⊗Z Q = QB ⊕ Ψ∗Pic

(
UH(c1, c2)

)
⊗Z Q;

(iii) C ∈ Qf ⊂ Num
(
MH(c1, c2)

)
⊗Z Q if C is a curve contracted by Ψ.

Proof. (i) Let ρ denote the Picard number of X . For simplicity, denote the spaces
MH(c1, c2) and UH(c1, c2) by MH and UH respectively.

First of all, since the boundary divisor B is contracted by Ψ, we see from
Lemma 3.1 (ii) that the Picard number of UH is at most ρ. To see the other di-
rection, note that H is contained in certain chamber C of type (c1, c2) since (c1 · H)
is odd. Choose ample divisors H2, . . . , Hρ ∈ C such that

H1 := H, H2, . . . , Hρ

form a basis of Pic(X) ⊗Z Q. For each i, we have the Gieseker-Uhlenbeck morphism

ΨHi
: MHi

→ UHi
,
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and for a suitable choose Ci ∈ |kiHi| with ki > 0, the determinant line bundle

L(Ci, θ̃Ci
) ∈ (ΨHi

)∗Pic
(
UHi

)
⊗Z Q.

By Lemma 2.2 (i) and (2.3), the spaces MHi
, MHi

and UHi
are independent of i, and

thus can be identified with MH , MH and UH respectively. Moreover, we see from the
definition of ΨH in (2.4) that ΨHi

= ΨH1 = ΨH for all the i. So we have

L(C1, θ̃C1), . . . ,L(Cρ, θ̃Cρ
) ∈ (ΨH)∗Pic

(
UH

)
⊗Z Q ⊂ Pic

(
MH

)
⊗Z Q. (3.14)

We claim that the ρ line bundles in (3.14) are linearly independent. If they
were linearly dependent, then their restrictions to MH(c1, c2) ⊂ MH(c1, c2) would be
linearly dependent. By (3.12), the cohomology classes

µ(C1) = µ(k1H1), . . . , µ(Cρ) = µ(kρHρ)

in H2(MH(c1, c2); Q) would be linearly dependent. By Lemma 3.3 (i), the classes

k1H1, . . . , kρHρ ∈ H2(X ; Q)

would be linearly dependent. This is impossible since H1, H2, . . . , Hρ form a basis
of Pic(X) ⊗Z Q and since c1 : Pic(X) ⊗Z Q → H2(X ; Q) ∼= H2(X ; Q) is injective.

(ii) Our result follows from (i), Lemma 3.1 (ii) and the fact that

B 6∈ Ψ∗Pic(UH(c1, c2)) ⊗Z Q.

(iii) Let a = (C · B)/2 ∈ Q. Then, (C + af) · D = 0 for every divisor

D ∈ Pic(MH(c1, c2)) ⊗Z Q

in view of (ii). Hence, C + af = 0. It follows that C ∈ Qf.

Remark 3.5. Proposition 3.4 (iii) can be sharpened as follows. If there exist two
divisors D1 and D2 on X such that (D1 − D2) · (D1 + D2 + c1 − KX) = ±1, then

C ∈ Zf ⊂ Num
(
MH(c1, c2)

)
⊗Z Q

whenever C is a curve contracted by Ψ. For instance, this condition holds when
X = P2, c1 = −ℓ, D1 = −ℓ and D2 = 0, where ℓ denotes a line in X .

Theorem 3.6. Let X be a simply connected surface with −KX ≥ 0, and let H
be an ample divisor with odd (c1 · H). Assume that MH(c1, c2) is non-empty. Then
the Gieseker-Uhlenbeck morphism ΨH : MH(c1, c2) → UH(c1, c2) is crepant.

Proof. First of all, if MH(c1, c2 − 1) is empty, then MH(c1, c2) = UH(c1, c2) and
ΨH is the identity map. Hence our statement is trivially true.

Next, assume that MH(c1, c2 − 1) is non-empty. By Proposition 3.4 (ii),

K
MH (c1,c2)

= aB + Ψ∗D

for some a ∈ Q and some Q-Cartier divisor D on UH(c1, c2). Intersecting both sides
with f and applying Lemma 3.2 (i) and (ii) force a = 0. So K

MH(c1,c2)
= Ψ∗D. Note
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that the canonical class K
UH(c1,c2)

exists as a Weil divisor since UH(c1, c2) is regular

in codimension-1. Since Ψ|MH (c1,c2) is the identity map on MH(c1, c2) and

K
MH(c1,c2)

= Ψ∗D,

K
UH (c1,c2)

coincides with the Q-Cartier divisor D on the open subset

MH(c1, c2) ⊂ UH(c1, c2).

Since UH(c1, c2) − MH(c1, c2) is codimension-2 in UH(c1, c2), we obtain K
UH(c1,c2)

=
D. Hence, K

UH (c1,c2)
is Q-Cartier and K

MH(c1,c2)
= Ψ∗K

UH(c1,c2)
.

Remark 3.7. It is unclear whether the Uhlenbeck compactification UH(c1, c2)
is normal or not. However, applying the Stein Factorization Theorem (see the The-
orem 2.26 in [Iit]) to the Gieseker-Uhlenbeck morphism ΨH , we can prove that the
natural morphism from the normalization of UH(c1, c2) to UH(c1, c2) is bijective.

Remark 3.8. Under the conditions of Theorem 3.6, it has been proved in [Bar]
that the Gieseker-Uhlenbeck morphism ΨH : MH(c1, c2) → UH(c1, c2) is strictly
semi-small with respect to certain natural stratification of UH(c1, c2).
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