ON THE CREPANCY OF THE GIESEKER-UHLENBECK MORPHISM*

ZHENBO QIN[†] AND QI ZHANG[‡]

Abstract. The Gieseker-Uhlenbeck morphism from the moduli space of Gieseker semistable rank-2 sheaves over an algebraic surface to the Uhlenbeck compactification was constructed by Jun Li [Li1] (see also [Uhl, Mor]). We prove that if the anti-canonical divisor of the surface is effective and the first Chern class of the semistable sheaves is odd, then the Gieseker-Uhlenbeck morphism is crepant.

Key words. Gieseker stability, Uhlenbeck compactification, crepant

AMS subject classifications. Primary 14D20; Secondary 14D21, 14E05

1. Introduction. A well-known result of Donaldson [Don1] says that slope-stable rank-2 vector bundles over a complex algebraic surface are in one-to-one correspondence with irreducible anti-self-dual connections on certain principal bundles over the underlying smooth 4-manifold. The moduli space of these slope-stable rank-2 bundles has a natural compactification in algebraic geometry, namely, the moduli space of Gieseker semistable rank-2 sheaves. On the other hand, the moduli space of irreducible anti-self-dual connections has a natural compactification in gauge theory, namely, the Uhlenbeck compactification [Uhl]. J. Li [Li1] (see also [Mor]) showed that the Uhlenbeck compactification is a reduced projective scheme, and constructed a morphism from the Gieseker moduli space to the Uhlenbeck compactification. We define this morphism to be the Gieseker-Uhlenbeck morphism. The goal of this paper is to study the crepancy of this morphism. For our purpose, a birational morphism $f: Y_1 \to Y_2$ is crepant if Y_1 is normal, Y_2 is regular in codimension-1 and \mathbb{Q} -Gorenstein [KMM], and $K_{Y_1} = f^*K_{Y_2}$.

To state our result, let X be a surface with canonical class K_X . Fix a divisor c_1 and an ample divisor H on X, and fix an integer c_2 . Let $\overline{\mathfrak{M}}_H(c_1, c_2)$ be the moduli space of Gieseker H-semistable rank-2 sheaves on X with Chern classes c_1 and c_2 , and let $\overline{\mathfrak{U}}_H(c_1, c_2)$ be the corresponding Uhlenbeck compactification.

THEOREM 1.1. Let X be a simply connected surface with $-K_X \geq 0$, and let H be an ample divisor with odd $(c_1 \cdot H)$. Assume that $\overline{\mathfrak{M}}_H(c_1, c_2)$ is non-empty. Then the Gieseker-Uhlenbeck morphism $\Psi_H : \overline{\mathfrak{M}}_H(c_1, c_2) \to \overline{\mathfrak{U}}_H(c_1, c_2)$ is crepant.

Note that X is necessarily a rational surface or a K3 surface. The basic properties of the moduli space $\overline{\mathfrak{M}}_H(c_1,c_2)$ are summarized in Lemma 3.1. Our main idea to prove Theorem 1.1 is to show that when $\overline{\mathfrak{M}}_H(c_1,c_2-1)$ is non-empty, Ψ_H drops the Picard numbers by one, i.e., the Picard number of $\overline{\mathfrak{M}}_H(c_1,c_2)$ is one more than that of $\overline{\mathfrak{U}}_H(c_1,c_2)$. First of all, we see from [Li2] that the Picard number of $\overline{\mathfrak{M}}_H(c_1,c_2)$ is $1+\rho$ where ρ denotes the Picard number of X. Next, notice that the birational morphism Ψ_H contracts the irreducible boundary divisor in $\overline{\mathfrak{M}}_H(c_1,c_2)$ which consists of non-locally free semistable sheaves. So the Picard number of $\overline{\mathfrak{U}}_H(c_1,c_2)$ is at most

^{*}Received September 22, 2007; accepted for publication February 14, 2008.

 $^{^\}dagger Department$ of Mathematics, University of Missouri, Columbia, MO 65211, USA (zq@math.missouri.edu). Partially supported by an NSF grant.

[‡]Department of Mathematics, University of Missouri, Columbia, MO 65211, USA (qi@math. missouri.edu).

 ρ . On the other hand, the results in [Li1] implies that the determinant line bundle constructed there are contained in

$$(\Psi_H)^* \operatorname{Pic}(\overline{\mathfrak{U}}_H(c_1, c_2)) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

Replacing H by other ample divisors sufficiently close to H, we obtain ρ linearly independent determinant line bundles. Hence the Picard number of $\overline{\mathfrak{U}}_H(c_1,c_2)$ is at least ρ . It follows that the Picard number of $\overline{\mathfrak{U}}_H(c_1,c_2)$ is precisely ρ .

We remark that Theorem 1.1 also follows directly from the Proposition 4.6 in [Li3]. Our alternative approach may be viewed as an elementary proof in the case that $-K_X \geq 0$. Results in this paper will be used in an upcoming joint work of Wei-Ping Li and the first named author, where all the extremal (with respect to the Gieseker-Uhlenbeck morphism Ψ_H) 1-point Gromov-Witten invariants of the moduli space $\overline{\mathfrak{M}}_H(c_1,c_2)$ with $X=\mathbb{P}^2$ have been computed.

Finally, we point out that the Gieseker-Uhlenbeck morphism is a natural generalization of the Hilbert-Chow morphism from the Hilbert scheme of points on a surface to the symmetric product of the surface. The Hilbert-Chow morphism and the Hilbert scheme have been studied intensively in recent years due to their elegant connections with string theory, representation theory and Ruan's Cohomological Resolution Conjecture (see [Nak, Gro, LQW, LL, Ruan] and the references there). It would be interesting to see whether these results could be extended to the Gieseker-Uhlenbeck morphism and the Gieseker moduli space. Indeed, a relation between the Gieseker moduli space and representation theory has been established in [Bar]. We plan to investigate the Gieseker-Uhlenbeck morphism and the Gieseker moduli space in more details in our future work.

Conventions. Throughout the paper, unless otherwise specified, (semi)stability means Gieseker (semi)stability. For a smooth variety, we make no distinctions between its divisors and the corresponding line bundles, and between its group of divisors modulo linear equivalence relation and its Picard group.

Acknowledgments. We thank the referee for some valuable comments.

2. Preliminaries.

2.1. The moduli space of Gieseker semistable sheaves. Let X be a smooth complex projective surface, and let H be an ample divisor on X. For a sheaf V on X, denote the Hilbert polynomial of V by

$$\chi_H(V;n) = \sum_i (-1)^i h^i(X, V \otimes \mathcal{O}_X(nH)). \tag{2.1}$$

A torsion free sheaf V on X is H-stable (resp. H-semistable) if

$$\frac{\chi_H(W;n)}{\mathrm{rank}(W)} < \frac{\chi_H(V;n)}{\mathrm{rank}(V)} \qquad (\text{resp. } \leq)$$

for every proper subsheaf $W \subset V$ and $n \gg 0$. Fix a divisor c_1 on X and an integer c_2 . Let $\overline{\mathfrak{M}}_H(c_1, c_2)$ be the moduli space of H-semistable rank-2 torsion free sheaves V with Chern classes c_1 and c_2 , and let $\mathfrak{M}_H(c_1, c_2) \subset \overline{\mathfrak{M}}_H(c_1, c_2)$ be the open subset consisting of locally free sheaves in $\overline{\mathfrak{M}}_H(c_1, c_2)$. It is well-known that the moduli space $\overline{\mathfrak{M}}_H(c_1, c_2)$ is a projective scheme with the expected dimension

$$\mathfrak{d} = 4c_2 - c_1^2 - 3\chi(\mathcal{O}_X). \tag{2.2}$$

For fixed c_1 and H, it is proved in [Don2, Fri2, GL, Li3, O'G, Zuo] that if $c_2 \gg 0$, then $\overline{\mathfrak{M}}_H(c_1, c_2)$ is normal and irreducible with the expected dimension.

Let $\operatorname{Num}(X)$ be the group of divisors on X modulo numerical equivalence relation. Let $C_X \subset \operatorname{Num}(X) \otimes \mathbb{R}$ be the nef cone of X.

Definition 2.1. (see Definition 1.1.1 in [Qin]) Fix c_1 and c_2 as above.

(i) For $\alpha \in \text{Num}(X) \otimes \mathbb{R}$, we define W^{α} to be the subset

$$C_X \cap \{\beta \in \text{Num}(X) \otimes \mathbb{R} | \alpha \cdot \beta = 0\};$$

(ii) Define $W(c_1, c_2)$ to be the set of all the subsets W^{α} where α is the numerical equivalence class of a divisor of the form $(2F - c_1)$ such that

$$-(4c_2 - c_1^2) \le \alpha^2 < 0;$$

(iii) A chamber C of type (c_1, c_2) is a connected component of the nef cone C_X cut out by all the elements $W^{\alpha} \in W(c_1, c_2)$.

Lemma 2.2. Fix a divisor c_1 on X and an integer c_2 .

- (i) If two ample divisors H and H' are contained in the same chamber of type (c_1, c_2) , then H-(semi)stability coincides with H'-(semi)stability;
- (ii) If $(c_1 \cdot H)$ is odd, then H is contained in certain chamber of type (c_1, c_2) ; moreover, every sheaf $V \in \overline{\mathfrak{M}}_H(c_1, c_2)$ is H-stable (in fact, H-slope-stable), and the moduli space $\overline{\mathfrak{M}}_H(c_1, c_2)$ is a fine moduli space.

Proof. (i) is the Theorem 1.3.3 in [Qin]. If $(c_1 \cdot H)$ is odd, then a standard argument shows that H is contained in certain chamber of type (c_1, c_2) and that every sheaf $V \in \overline{\mathfrak{M}}_H(c_1, c_2)$ is H-stable (in fact, H-slope-stable). Furthermore, by the Remark A.7 in [Muk], a universal sheaf over $\overline{\mathfrak{M}}_H(c_1, c_2) \times X$ exists. \square

2.2. The Uhlenbeck compactification. Let $(c_1 \cdot H)$ be odd, and assume that the open subset $\mathfrak{M}_H(c_1,c_2)$ is dense in $\overline{\mathfrak{M}}_H(c_1,c_2)$. By Lemma 2.2 (ii), H-semistability implies H-stability. So the quasi-projective variety $\mathfrak{M}_H(c_1,c_2)$ has a Uhlenbeck compactification

$$\overline{\mathfrak{U}}_H(c_1, c_2) = \coprod_{i \ge 0} \mathfrak{M}_H(c_1, c_2 - i) \times \operatorname{Sym}^i(X)$$
(2.3)

according to [Uhl, Li1, Mor]. Moreover, J. Li constructed a birational morphism

$$\Psi_H: \overline{\mathfrak{M}}_H(c_1, c_2) \to \overline{\mathfrak{U}}_H(c_1, c_2)$$
(2.4)

sending $V \in \overline{\mathfrak{M}}_H(c_1, c_2)$ to the pair (V^{**}, η) where V^{**} is the double dual of V and

$$\eta = \sum_{x \in X} h^0(X, (V^{**}/V)_x) x.$$

It follows that the restriction $\Psi_H|_{\mathfrak{M}_H(c_1,c_2)}$ is the identity map on $\mathfrak{M}_H(c_1,c_2)$, and that the boundary divisor $\overline{\mathfrak{M}}_H(c_1,c_2) - \mathfrak{M}_H(c_1,c_2)$ is contracted by Ψ_H to the subscheme $\coprod_{i>1} \mathfrak{M}_H(c_1,c_2-i) \times \operatorname{Sym}^i(X)$ in $\overline{\mathfrak{U}}_H(c_1,c_2)$.

Definition 2.3. We define $\Psi := \Psi_H$ to be the Gieseker-Uhlenbeck morphism.

We outline the construction of Ψ and refer to [Li1] for details. Let k be an even integer sufficiently large, and let $C \in |kH|$ be an irreducible and smooth curve with genus g_C . Choose a line bundle $\tilde{\theta}_C$ on the curve C such that

$$\deg(\tilde{\theta}_C) = g_C - 1 - \frac{(c_1 \cdot C)}{2}. \tag{2.5}$$

By Lemma 2.2 (ii), a universal sheaf \mathcal{V} over $\overline{\mathfrak{M}}_H(c_1,c_2)\times X$ exists. Let

$$\mathcal{L}(C, \tilde{\theta}_C) = \operatorname{Det}\left(R\tilde{\pi}_{1*}(\mathcal{V}|_{\overline{\mathfrak{M}}_H(c_1, c_2) \times C} \otimes \tilde{\pi}_2^* \tilde{\theta}_C)\right)^{-1}$$
(2.6)

where $\widetilde{\pi}_1$ and $\widetilde{\pi}_2$ are the projections on $\overline{\mathfrak{M}}_H(c_1,c_2)\times C$. For $m\gg 0$, there exists a base-point-free linear series in $H^0\big(\overline{\mathfrak{M}}_H(c_1,c_2),\mathcal{L}(C,\widetilde{\theta}_C)^{\otimes m}\big)$ which induces a morphism $\Psi:\overline{\mathfrak{M}}_H(c_1,c_2)\to \mathbb{P}^N$ for a suitable integer N. The image $\Psi(\overline{\mathfrak{M}}_H(c_1,c_2))$ is precisely the Uhlenbeck compactification $\overline{\mathfrak{U}}_H(c_1,c_2)$. It follows that

$$\mathcal{L}(C, \tilde{\theta}_C) \in \Psi^* \operatorname{Pic}(\overline{\mathfrak{U}}_H(c_1, c_2)) \otimes_{\mathbb{Z}} \mathbb{Q}.$$
 (2.7)

- 3. The Gieseker-Uhlenbeck morphism is crepant. Throughout this section, we assume that X is a simply connected surface with effective anti-canonical divisor $-K_X$ and that $(c_1 \cdot H)$ is odd. So X is either a rational surface or a K3 surface. Our goal is to prove that the Gieseker-Uhlenbeck morphism $\Psi = \Psi_H : \overline{\mathfrak{M}}_H(c_1,c_2) \to \overline{\mathfrak{U}}_H(c_1,c_2)$ is crepant.
- 3.1. The Gieseker moduli space $\overline{\mathfrak{M}}_H(c_1, c_2)$. The moduli space $\overline{\mathfrak{M}}_H(c_1, c_2)$ has been studied extensively by various authors. We refer to the three books [OSS, Fri2, HL] for further references. The following summarizes some properties of $\overline{\mathfrak{M}}_H(c_1, c_2)$ relevant to us.

LEMMA 3.1. Let X be simply connected with $-K_X \ge 0$, and let H be an ample divisor with odd $(c_1 \cdot H)$. Assume that $\overline{\mathfrak{M}}_H(c_1, c_2) \ne \emptyset$.

(i) The moduli space $\overline{\mathfrak{M}}_H(c_1,c_2)$ is smooth, fine and irreducible with dimension

$$\mathfrak{d} = 4c_2 - c_1^2 - 3\chi(\mathcal{O}_X).$$

Moreover, the open subset $\mathfrak{M}_H(c_1, c_2)$ is dense in $\overline{\mathfrak{M}}_H(c_1, c_2)$;

- (ii) If we further assume that $\overline{\mathfrak{M}}_H(c_1,c_2-1)\neq\emptyset$, then the Picard number of $\overline{\mathfrak{M}}_H(c_1,c_2)$ is one more than the Picard number of X.
- Proof. (i) By Lemma 2.2 (ii), $\overline{\mathfrak{M}}_H(c_1,c_2)$ is a fine moduli space. The smoothness and dimension of $\overline{\mathfrak{M}}_H(c_1,c_2)$ can be found in [MaM]. The irreducibility follows from the Corollary 10 in [MaE]. To show that $\mathfrak{M}_H(c_1,c_2)$ is dense in the irreducible variety $\overline{\mathfrak{M}}_H(c_1,c_2)$, it suffices to prove that $\mathfrak{M}_H(c_1,c_2)$ is not empty. Let $V \in \overline{\mathfrak{M}}_H(c_1,c_2)$. Then the double dual V^{**} is stable. By the Corollary 1.5 in [Art], the sheaf V is smoothable. Hence $\mathfrak{M}_H(c_1,c_2)$ is not empty.
 - (ii) By the Theorem 3.8 ¹ of [Li2], there exists a homomorphism

$$\overline{\Phi}: \operatorname{Pic}(X \times X)^{\sigma} \oplus \mathbb{Z} \to \operatorname{Pic}(\overline{\mathfrak{M}}_{H}(c_{1}, c_{2})) \otimes_{\mathbb{Z}} \mathbb{Z} \left[\frac{1}{12} \right]$$

¹More precisely, the proof of the Theorem 3.8 of [Li2] needs to be modified slightly since its statement is for $c_2 \gg 0$. For instance, we need to replace the bundles \mathcal{E}_1 and \mathcal{E}_2 in the proof of the Proposition 2.1 of [Li2] by two bundles $\mathcal{E}_1 \in \mathfrak{M}_H(c_1, c_2)$ and $\mathcal{E}_2 \in \mathfrak{M}_H(c_1, c_2 - 1)$. Similar remarks apply when we use the results of [Li4] in (3.9).

which has finite kernel and co-kernel. Here $\sigma: X \times X \to X \times X$ is the automorphism exchanging the factors. Since X is simply connected, we have

$$Pic(X \times X) = \pi_1^* Pic(X) \oplus \pi_2^* Pic(X)$$
(3.1)

where π_1, π_2 are the two projections on $X \times X$. It follows that

$$\operatorname{Pic}(X \times X)^{\sigma} \cong \operatorname{Pic}(X).$$

Therefore, the Picard number of $\overline{\mathfrak{M}}_H(c_1,c_2)$ is one more than that of X. \square

3.2. The boundary of the moduli space $\overline{\mathfrak{M}}_H(c_1,c_2)$. In this subsection, we study the boundary of the moduli space $\overline{\mathfrak{M}}_H(c_1,c_2)$, i.e., the subset consisting of all the non-locally free sheaves in $\overline{\mathfrak{M}}_H(c_1,c_2)$. Note that the non-emptiness of the moduli space $\overline{\mathfrak{M}}_H(c_1,c_2-1)$ implies the non-emptiness of $\overline{\mathfrak{M}}_H(c_1,c_2)$. Assume that $\overline{\mathfrak{M}}_H(c_1,c_2-1)$ is nonempty. Let

$$\mathfrak{B} = \overline{\mathfrak{M}}_H(c_1, c_2) - \mathfrak{M}_H(c_1, c_2) \tag{3.2}$$

be the boundary. Recall the Gieseker-Uhlenbeck morphism Ψ from (2.4). Put

$$\mathfrak{B}_* = \Psi^{-1}(\mathfrak{M}_H(c_1, c_2 - 1) \times X) \subset \overline{\mathfrak{M}}_H(c_1, c_2).$$

Then, \mathfrak{B}_* is an open and dense subset of the boundary divisor \mathfrak{B} . Also, \mathfrak{B}_* parametrizes all the sheaves $V \in \overline{\mathfrak{M}}_H(c_1, c_2)$ sitting in exact sequences of the form:

$$0 \to V \to V_1 \to \mathcal{O}_x \to 0$$

for some bundle $V_1 \in \mathfrak{M}_H(c_1, c_2 - 1)$ and some point $x \in X$. To give a global description of \mathfrak{B}_* , take a universal sheaf \mathcal{V}_1^0 over $\mathfrak{M}_H(c_1, c_2 - 1) \times X$. Let

$$\mathbb{P}_* = \mathbb{P}(\mathcal{V}_1^0),$$

and let $\mathcal{O}_{\mathbb{P}_*}(1)$ be the tautological line bundle over \mathbb{P}_* . Then there is a surjection:

$$\pi^* \mathcal{V}_1^0 \to \mathcal{O}_{\mathbb{P}_n}(1) \to 0$$

where $\pi: \mathbb{P}_* = \mathbb{P}(\mathcal{V}_1^0) \to \mathfrak{M}_H(c_1, c_2 - 1) \times X$ is the natural projection. Consider

$$\pi \times \mathrm{Id}_X : \mathbb{P}_* \times X \to \mathfrak{M}_H(c_1, c_2 - 1) \times X \times X.$$

Let Δ_X be the diagonal of $X \times X$, and $\alpha : \mathfrak{M}_H(c_1, c_2 - 1) \times \Delta_X \to \mathfrak{M}_H(c_1, c_2 - 1) \times X$ be the obvious isomorphism. Then, we have the isomorphisms:

$$(\pi \times \operatorname{Id}_{X})^{-1}(\mathfrak{M}_{H}(c_{1}, c_{2} - 1) \times \Delta_{X}) \cong \mathbb{P}(\alpha^{*} \mathcal{V}_{1}^{0}),$$

$$\tilde{\pi}^{*} \mathcal{V}_{1}^{0}|_{(\pi \times \operatorname{Id}_{X})^{-1}(\mathfrak{M}_{H}(c_{1}, c_{2} - 1) \times \Delta_{X})} \cong \tilde{\alpha}^{*} \mathcal{V}_{1}^{0}$$
(3.3)

where $\tilde{\pi}: \mathbb{P}_* \times X \to \mathfrak{M}_H(c_1, c_2 - 1) \times X$ is the composition of $\pi \times \mathrm{Id}_X$ and

$$\mathfrak{M}_H(c_1,c_2-1)\times X\times X\to \mathfrak{M}_H(c_1,c_2-1)\times X$$

which denotes the projection to the product of the first and third factors in $\mathfrak{M}_H(c_1, c_2 - 1) \times X \times X$, and $\tilde{\alpha} : \mathbb{P}(\alpha^* \mathcal{V}_1^0) \to \mathfrak{M}_H(c_1, c_2 - 1) \times X$ is the composition of the natural projection $\mathbb{P}(\alpha^* \mathcal{V}_1^0) \to \mathfrak{M}_H(c_1, c_2 - 1) \times \Delta_X$ and α .

Combining the isomorphism (3.3) with the canonical surjection

$$\tilde{\alpha}^* \mathcal{V}_1^0 \to \mathcal{O}_{(\pi \times \operatorname{Id}_{\mathbf{Y}})^{-1}(\mathfrak{M}_H(c_1, c_2 - 1) \times \Delta_{\mathbf{Y}})}(1) \to 0$$

over $(\pi \times \operatorname{Id}_X)^{-1}(\mathfrak{M}_H(c_1, c_2 - 1) \times \Delta_X)$, we obtain a surjection over $\mathbb{P}_* \times X$:

$$\tilde{\pi}^* \mathcal{V}_1^0 \to \mathcal{O}_{(\pi \times \mathrm{Id}_X)^{-1}(\mathfrak{M}_H(c_1, c_2 - 1) \times \Delta_X)}(1) \to 0.$$

Let \mathcal{V}' be the kernel. Then \mathcal{V}' is flat over \mathbb{P}_* , and we have an exact sequence

$$0 \to \mathcal{V}' \to \tilde{\pi}^* \mathcal{V}_1^0 \to \mathcal{O}_{(\pi \times \operatorname{Id}_X)^{-1}(\mathfrak{M}_H(c_1, c_2 - 1) \times \Delta_X)}(1) \to 0.$$
 (3.4)

By the universal property of $\overline{\mathfrak{M}}_H(c_1,c_2)$, the sheaf \mathcal{V}' induces a morphism

$$\mathbb{P}_* \to \overline{\mathfrak{M}}_H(c_1, c_2)$$

which is injective with image \mathfrak{B}_* . Since both \mathfrak{B}_* and \mathbb{P}_* are smooth, $\mathfrak{B}_* \cong \mathbb{P}_*$ by the Zariski's Main Theorem. For simplicity, we just write $\mathfrak{B}_* = \mathbb{P}_*$. Hence,

$$\mathfrak{B}_* = \mathbb{P}_* = \mathbb{P}(\mathcal{V}_1^0). \tag{3.5}$$

LEMMA 3.2. Assume that the moduli space $\overline{\mathfrak{M}}_H(c_1,c_2-1)$ is non-empty. Let $\mathfrak{d} = 4c_2 - c_1^2 - 3\chi(\mathcal{O}_X)$. Let $\mathfrak{f} \cong \mathbb{P}^1$ be a fiber of the natural projection

$$\pi: \mathfrak{B}_* = \mathbb{P}_* = \mathbb{P}(\mathcal{V}_1^0) \to \mathfrak{M}_H(c_1, c_2 - 1) \times X,$$

and let $N := N_{\mathfrak{f} \subset \overline{\mathfrak{M}}_H(c_1, c_2)}$ be the normal bundle of \mathfrak{f} in $\overline{\mathfrak{M}}_H(c_1, c_2)$. Then,

(i)
$$f \cdot K_{\overline{\mathfrak{M}}_H(c_1,c_2)} = 0;$$

(ii)
$$\mathfrak{f} \cdot \mathfrak{B} = -2$$
 and $N \cong \mathcal{O}_{\mathfrak{f}}^{\oplus (\mathfrak{d}-2)} \oplus \mathcal{O}_{\mathfrak{f}}(-2)$

(ii)
$$f \cdot \mathfrak{B} = -2$$
 and $N \cong \mathcal{O}_{\mathfrak{f}}^{\oplus (\mathfrak{d}-2)} \oplus \mathcal{O}_{\mathfrak{f}}(-2);$
(iii) $T_{\overline{\mathfrak{M}}_{H}(c_{1},c_{2})}|_{\mathfrak{f}} \cong \mathcal{O}_{\mathfrak{f}}^{\oplus (\mathfrak{d}-2)} \oplus \mathcal{O}_{\mathfrak{f}}(-2) \oplus \mathcal{O}_{\mathfrak{f}}(2).$

Proof. (i) Assume that $\mathfrak{f}=\pi^{-1}(V_1,x)$ where $(V_1,x)\in\mathfrak{M}_H(c_1,c_2-1)\times X$. Let $\mathcal{V}_{\mathfrak{f}} = \mathcal{V}'|_{\mathfrak{f} \times X}$. Restricting (3.4) to $\mathfrak{f} \times X$ yields the exact sequence

$$0 \to \mathcal{V}_{\mathsf{f}} \to \pi_2^* V_1 \to \pi_1^* \mathcal{O}_{\mathsf{f}}(1)|_{\mathsf{f} \times \{x\}} \to 0 \tag{3.6}$$

where π_1 and π_2 are the projections on $f \times X$. Since H-semistability coincides with H-stability and $H^1(X, \mathcal{O}_X) = 0$, the tangent sheaf of $\overline{\mathfrak{M}}_H(c_1, c_2)$ is isomorphic to $\mathcal{E}xt^1_{\pi_1}(\mathcal{V},\mathcal{V})$ where \mathcal{V} denotes a universal sheaf over $\overline{\mathfrak{M}}_H(c_1,c_2)\times X$. Hence

$$\mathfrak{f}\cdot K_{\overline{\mathfrak{M}}_{H}(c_{1},c_{2})}=-c_{1}\left(\mathcal{E}xt_{\pi_{1}}^{1}(\mathcal{V}_{\mathfrak{f}},\mathcal{V}_{\mathfrak{f}})\right)\in A^{1}(\mathfrak{f})\cong\mathbb{Z}.$$

Note also that $\mathcal{E}xt^0_{\pi_1}(\mathcal{V}_{\mathfrak{f}},\mathcal{V}_{\mathfrak{f}})\cong \mathcal{O}_{\mathfrak{f}}$, and $\mathcal{E}xt^2_{\pi_1}(\mathcal{V}_{\mathfrak{f}},\mathcal{V}_{\mathfrak{f}})=0$ or $\mathcal{O}_{\mathfrak{f}}$. Therefore,

$$f \cdot K_{\overline{\mathfrak{M}}_{H}(c_{1},c_{2})} = \sum_{i=0}^{2} (-1)^{i} \operatorname{ch}_{1} \left(\mathcal{E}xt_{\pi_{1}}^{i}(\mathcal{V}_{\mathfrak{f}},\mathcal{V}_{\mathfrak{f}}) \right)$$
$$= \left\{ \pi_{1*} \left(\operatorname{ch}(\mathcal{V}_{\mathfrak{f}})^{\tau} \cdot \operatorname{ch}(\mathcal{V}_{\mathfrak{f}}) \cdot \pi_{2}^{*} \operatorname{td}(X) \right) \right\}_{1}$$
(3.7)

where $\{\}_1$ denotes the component in $A^1(\mathfrak{f}) \cong \mathbb{Z}$, and τ is the action on the Chow group $A^*(\cdot)$ sending an element $\alpha \in A^i(\cdot)$ to $(-1)^i\alpha$. By (3.6),

$$\operatorname{ch}(\mathcal{V}_{\mathsf{f}}) = \pi_2^* \operatorname{ch}(V_1) - \pi_1^* \operatorname{ch}(\mathcal{O}_{\mathsf{f}}(1)) \cdot \pi_2^* \operatorname{ch}(\mathcal{O}_{\mathsf{r}}).$$

A straight-forward computation shows that $\mathfrak{f} \cdot K_{\overline{\mathfrak{M}}_H(c_1,c_2)} = 0$. (ii) By (i), $c_1(N) = -2$. Note that $N_{\mathfrak{f} \subset \mathfrak{B}_*} \cong \mathcal{O}_{\mathfrak{f}}^{\oplus (\mathfrak{d}-2)}$. By the exact sequence

$$0 \to N_{\mathfrak{f} \subset \mathfrak{B}_*} \to N \to N_{\mathfrak{B}_* \subset \overline{\mathfrak{M}}_H(c_1, c_2)}|_{\mathfrak{f}} \to 0, \tag{3.8}$$

 $c_1(N_{\mathfrak{B}_*\subset\overline{\mathfrak{M}}_H(c_1,c_2)}|_{\mathfrak{f}})=-2.$ Since \mathfrak{B}_* is an open subset of the boundary divisor $\mathfrak{B},$

$$N_{\mathfrak{B}_*\subset\overline{\mathfrak{M}}_H(c_1,c_2)}|_{\mathfrak{f}}=N_{\mathfrak{B}\subset\overline{\mathfrak{M}}_H(c_1,c_2)}|_{\mathfrak{f}}\cong \mathcal{O}_{\overline{\mathfrak{M}}_H(c_1,c_2)}(\mathfrak{B})|_{\mathfrak{f}}.$$

Hence $\mathfrak{f}\cdot\mathfrak{B}=-2$, $N_{\mathfrak{B}_*\subset\overline{\mathfrak{M}}_H(c_1,c_2)}|_{\mathfrak{f}}\cong\mathcal{O}_{\mathfrak{f}}(-2)$, and (3.8) is simplified to

$$0 \to \mathcal{O}_{\mathfrak{f}}^{\oplus (\mathfrak{d}-2)} \to N \to \mathcal{O}_{\mathfrak{f}}(-2) \to 0$$

which must split. Therefore, we obtain $N \cong \mathcal{O}_{\mathfrak{f}}^{\oplus (\mathfrak{d}-2)} \oplus \mathcal{O}_{\mathfrak{f}}(-2)$. (iii) The exact sequence $0 \to T_{\mathfrak{f}} \to T_{\overline{\mathfrak{M}}_{H}(c_{1},c_{2})}|_{\mathfrak{f}} \to N \to 0$ gives rise to

$$0 \to \mathcal{O}_{\mathfrak{f}}(2) \to T_{\overline{\mathfrak{M}}_{H}(c_{1},c_{2})}|_{\mathfrak{f}} \to \mathcal{O}_{\mathfrak{f}}^{\oplus(\mathfrak{d}-2)} \oplus \mathcal{O}_{\mathfrak{f}}(-2) \to 0$$

which again splits. Thus $T_{\overline{\mathfrak{M}}_H(c_1,c_2)}|_{\mathfrak{f}} \cong \mathcal{O}_{\mathfrak{f}}^{\oplus(\mathfrak{d}-2)} \oplus \mathcal{O}_{\mathfrak{f}}(-2) \oplus \mathcal{O}_{\mathfrak{f}}(2)$. \square

3.3. The μ map. Assume that the moduli space $\overline{\mathfrak{M}}_H(c_1,c_2)$ is non-empty. By Lemma 3.1 (i), $\mathfrak{M}_H(c_1, c_2)$ is non-empty. Let g be the Kahler metric on the underlying smooth 4-manifold X associated to the ample divisor H. Let P be the SO(3)-bundle on X associated to a rank-2 bundle with Chern classes c_1 and c_2 . Let $\mathfrak{B}(P)^*$ be the space of gauge equivalence classes of irreducible connections on P. By [Don1], $\mathfrak{M}_H(c_1,c_2)$ can be identified with the subset of $\mathfrak{B}(P)^*$ consisting of anti-self-dual irreducible connections. For simplicity of notations, we regard that

$$\mathfrak{M}_H(c_1,c_2)\subset \mathfrak{B}(P)^*.$$

By the Theorem 0.1 in [Li4], the restriction map is an isomorphism:

res:
$$H^2(\mathfrak{B}(P)^*; \mathbb{Q}) \stackrel{\cong}{\to} H^2(\mathfrak{M}_H(c_1, c_2); \mathbb{Q}).$$
 (3.9)

A universal SO(3)-bundle $\widetilde{\mathcal{V}}$ exists over $B(P)^* \times X$. Let

$$p_1(\widetilde{\mathcal{V}}) \in H^4(B(P)^* \times X; \mathbb{Z})$$

be its first Pontrjagin class. It is known from gauge theory that the map

$$\tilde{\mu}: H_2(X; \mathbb{Q}) \to H^2(\mathfrak{B}(P)^*; \mathbb{Q}),$$

defined by the slant product $\tilde{\mu}(\alpha) = -1/4 \cdot p_1(\tilde{\mathcal{V}})/\alpha$, is an isomorphism. Put

$$\mu = (\operatorname{res} \circ \tilde{\mu}) : H_2(X; \mathbb{Q}) \to H^2(\mathfrak{M}_H(c_1, c_2); \mathbb{Q}).$$
 (3.10)

Note that if \mathcal{V} is a universal sheaf over $\mathfrak{M}_H(c_1,c_2)\times X$, then

$$\mu(\alpha) = -\frac{1}{4} \cdot \left[c_1(\mathcal{V})^2 - 4c_2(\mathcal{V}) \right] / \alpha. \tag{3.11}$$

LEMMA 3.3. Assume that the moduli space $\overline{\mathfrak{M}}_H(c_1,c_2)$ is non-empty.

- (i) The map μ is an isomorphism;
- (ii) Let $\mathcal{L}(C, \tilde{\theta}_C)$ be the determinant line bundle defined in (2.6). Then,

$$\mathcal{L}(C, \tilde{\theta}_C)|_{\mathfrak{M}_H(c_1, c_2)} = \mu(C) \in H^2(\mathfrak{M}_H(c_1, c_2); \mathbb{Q}).$$
 (3.12)

Proof. (i) follows from (3.9) since the map $\tilde{\mu}$ is an isomorphism. To prove (ii), note from (2.6) and the Proposition 3.8 (iii) in Chapter V of [FM] that

$$\mathcal{L}(C, \tilde{\theta}_C) = -\operatorname{ch}_1(\tilde{\pi}_{1!}(\mathcal{V}|_{\overline{\mathfrak{M}}_H(c_1, c_2) \times C} \otimes \tilde{\pi}_2^* \tilde{\theta}_C)). \tag{3.13}$$

Let π_1 and π_2 be the two projections on $\overline{\mathfrak{M}}_H(c_1,c_2)\times X$. Then,

$$c_1(\mathcal{V}) = \pi_1^* \mathcal{D} + \pi_2^* c_1$$

for some divisor \mathcal{D} on $\overline{\mathfrak{M}}_H(c_1, c_2)$. Let $\tilde{\pi}_1$ and $\tilde{\pi}_2$ be the two projections on $\overline{\mathfrak{M}}_H(c_1, c_2) \times C$. By the Grothendieck-Riemann-Roch Theorem,

$$\operatorname{ch}(\tilde{\pi}_{1!}(\mathcal{V}|_{\overline{\mathfrak{M}}_{H}(c_{1},c_{2})\times C}\otimes\tilde{\pi}_{2}^{*}\tilde{\theta}_{C})) = \tilde{\pi}_{1*}(\operatorname{ch}(\mathcal{V}|_{\overline{\mathfrak{M}}_{H}(c_{1},c_{2})\times C})\cdot\tilde{\pi}_{2}^{*}\operatorname{ch}(\tilde{\theta}_{C})\cdot\tilde{\pi}_{2}^{*}\operatorname{td}(C))$$

$$= \frac{(c_{1}\cdot C)}{2}\mathcal{D} - \tilde{\pi}_{1*}c_{2}(\mathcal{V}|_{\overline{\mathfrak{M}}_{H}(c_{1},c_{2})\times C})$$

$$= \frac{(c_{1}\cdot C)}{2}\mathcal{D} - c_{2}(\mathcal{V})/C$$

where we have used (2.5) in the second equality. A direct computation yields

$$\mu(C) = -\frac{1}{4} \left[c_1(\mathcal{V})^2 - 4c_2(\mathcal{V}) \right] / C$$
$$= -\frac{(c_1 \cdot C)}{2} \mathcal{D} + c_2(\mathcal{V}) / C.$$

Therefore, $\mathcal{L}(C, \tilde{\theta}_C) = \mu(C) \in H^2(\mathfrak{M}_H(c_1, c_2); \mathbb{Q})$ in view of (3.13). \square When $c_1 = 0$, Lemma 3.3 (ii) is the Proposition 1.1 in Chapter V of [FM].

3.4. The Gieseker-Uhlenbeck morphism is crepant.

PROPOSITION 3.4. Assume that the moduli space $\overline{\mathfrak{M}}_H(c_1, c_2 - 1)$ is non-empty. Recall the boundary divisor \mathfrak{B} from definition (3.2). Then,

- (i) the Picard number of $\overline{\mathfrak{U}}_H(c_1,c_2)$ is equal to that of X;
- (ii) $\operatorname{Pic}(\overline{\mathfrak{M}}_H(c_1, c_2)) \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}\mathfrak{B} \oplus \Psi^* \operatorname{Pic}(\overline{\mathfrak{U}}_H(c_1, c_2)) \otimes_{\mathbb{Z}} \mathbb{Q};$
- (iii) $C \in \mathbb{Q}\mathfrak{f} \subset \operatorname{Num}(\overline{\mathfrak{M}}_H(c_1,c_2)) \otimes_{\mathbb{Z}} \mathbb{Q}$ if C is a curve contracted by Ψ .

Proof. (i) Let ρ denote the Picard number of X. For simplicity, denote the spaces $\overline{\mathfrak{M}}_H(c_1,c_2)$ and $\overline{\mathfrak{U}}_H(c_1,c_2)$ by $\overline{\mathfrak{M}}_H$ and $\overline{\mathfrak{U}}_H$ respectively.

First of all, since the boundary divisor \mathfrak{B} is contracted by Ψ , we see from Lemma 3.1 (ii) that the Picard number of $\overline{\mathfrak{U}}_H$ is at most ρ . To see the other direction, note that H is contained in certain chamber \mathcal{C} of type (c_1, c_2) since $(c_1 \cdot H)$ is odd. Choose ample divisors $H_2, \ldots, H_{\rho} \in \mathcal{C}$ such that

$$H_1 := H, H_2, \ldots, H_{\rho}$$

form a basis of $Pic(X) \otimes_{\mathbb{Z}} \mathbb{Q}$. For each i, we have the Gieseker-Uhlenbeck morphism

$$\Psi_{H_i}: \overline{\mathfrak{M}}_{H_i} \to \overline{\mathfrak{U}}_{H_i},$$

and for a suitable choose $C_i \in |k_i H_i|$ with $k_i > 0$, the determinant line bundle

$$\mathcal{L}(C_i, \tilde{\theta}_{C_i}) \in (\Psi_{H_i})^* \operatorname{Pic}(\overline{\mathfrak{U}}_{H_i}) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

By Lemma 2.2 (i) and (2.3), the spaces $\overline{\mathfrak{M}}_{H_i}$, \mathfrak{M}_{H_i} and $\overline{\mathfrak{U}}_{H_i}$ are independent of i, and thus can be identified with $\overline{\mathfrak{M}}_H$, \mathfrak{M}_H and $\overline{\mathfrak{U}}_H$ respectively. Moreover, we see from the definition of Ψ_H in (2.4) that $\Psi_{H_i} = \Psi_{H_1} = \Psi_H$ for all the i. So we have

$$\mathcal{L}(C_1, \tilde{\theta}_{C_1}), \dots, \mathcal{L}(C_{\rho}, \tilde{\theta}_{C_{\rho}}) \in (\Psi_H)^* \operatorname{Pic}(\overline{\mathfrak{U}}_H) \otimes_{\mathbb{Z}} \mathbb{Q} \subset \operatorname{Pic}(\overline{\mathfrak{M}}_H) \otimes_{\mathbb{Z}} \mathbb{Q}.$$
 (3.14)

We claim that the ρ line bundles in (3.14) are linearly independent. If they were linearly dependent, then their restrictions to $\mathfrak{M}_H(c_1, c_2) \subset \overline{\mathfrak{M}}_H(c_1, c_2)$ would be linearly dependent. By (3.12), the cohomology classes

$$\mu(C_1) = \mu(k_1 H_1), \dots, \ \mu(C_{\rho}) = \mu(k_{\rho} H_{\rho})$$

in $H^2(\mathfrak{M}_H(c_1,c_2);\mathbb{Q})$ would be linearly dependent. By Lemma 3.3 (i), the classes

$$k_1H_1,\ldots,k_{\rho}H_{\rho}\in H_2(X;\mathbb{Q})$$

would be linearly dependent. This is impossible since H_1, H_2, \ldots, H_ρ form a basis of $\operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$ and since $c_1 : \operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \to H^2(X; \mathbb{Q}) \cong H_2(X; \mathbb{Q})$ is injective.

(ii) Our result follows from (i), Lemma 3.1 (ii) and the fact that

$$\mathfrak{B} \not\in \Psi^* \operatorname{Pic}(\overline{\mathfrak{U}}_H(c_1, c_2)) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

(iii) Let $a = (C \cdot \mathfrak{B})/2 \in \mathbb{Q}$. Then, $(C + a\mathfrak{f}) \cdot \mathfrak{D} = 0$ for every divisor

$$\mathfrak{D} \in \operatorname{Pic}(\overline{\mathfrak{M}}_H(c_1, c_2)) \otimes_{\mathbb{Z}} \mathbb{Q}$$

in view of (ii). Hence, $C + a\mathfrak{f} = 0$. It follows that $C \in \mathbb{Q}\mathfrak{f}$. \square

REMARK 3.5. Proposition 3.4 (iii) can be sharpened as follows. If there exist two divisors D_1 and D_2 on X such that $(D_1 - D_2) \cdot (D_1 + D_2 + c_1 - K_X) = \pm 1$, then

$$C \in \mathbb{Z}\mathfrak{f} \subset \operatorname{Num}(\overline{\mathfrak{M}}_H(c_1, c_2)) \otimes_{\mathbb{Z}} \mathbb{Q}$$

whenever C is a curve contracted by Ψ . For instance, this condition holds when $X = \mathbb{P}^2$, $c_1 = -\ell$, $D_1 = -\ell$ and $D_2 = 0$, where ℓ denotes a line in X.

THEOREM 3.6. Let X be a simply connected surface with $-K_X \geq 0$, and let H be an ample divisor with odd $(c_1 \cdot H)$. Assume that $\overline{\mathfrak{M}}_H(c_1, c_2)$ is non-empty. Then the Gieseker-Uhlenbeck morphism $\Psi_H : \overline{\mathfrak{M}}_H(c_1, c_2) \to \overline{\mathfrak{U}}_H(c_1, c_2)$ is crepant.

Proof. First of all, if $\overline{\mathfrak{M}}_H(c_1, c_2 - 1)$ is empty, then $\overline{\mathfrak{M}}_H(c_1, c_2) = \overline{\mathfrak{U}}_H(c_1, c_2)$ and Ψ_H is the identity map. Hence our statement is trivially true.

Next, assume that $\overline{\mathfrak{M}}_H(c_1, c_2 - 1)$ is non-empty. By Proposition 3.4 (ii),

$$K_{\overline{\mathfrak{M}}_{H}(c_{1},c_{2})} = a\mathfrak{B} + \Psi^{*}\mathfrak{D}$$

for some $a \in \mathbb{Q}$ and some \mathbb{Q} -Cartier divisor \mathfrak{D} on $\overline{\mathfrak{U}}_H(c_1, c_2)$. Intersecting both sides with \mathfrak{f} and applying Lemma 3.2 (i) and (ii) force a = 0. So $K_{\overline{\mathfrak{M}}_H(c_1, c_2)} = \Psi^*\mathfrak{D}$. Note

that the canonical class $K_{\overline{\mathfrak{U}}_H(c_1,c_2)}$ exists as a Weil divisor since $\overline{\mathfrak{U}}_H(c_1,c_2)$ is regular in codimension-1. Since $\Psi|_{\mathfrak{M}_H(c_1,c_2)}$ is the identity map on $\mathfrak{M}_H(c_1,c_2)$ and

$$K_{\overline{\mathfrak{M}}_{H}(c_{1},c_{2})} = \Psi^{*}\mathfrak{D},$$

 $K_{\overline{\mathfrak{U}}_H(c_1,c_2)}$ coincides with the Q-Cartier divisor $\mathfrak D$ on the open subset

$$\mathfrak{M}_H(c_1,c_2)\subset \overline{\mathfrak{U}}_H(c_1,c_2).$$

Since $\overline{\mathfrak{U}}_H(c_1,c_2)-\mathfrak{M}_H(c_1,c_2)$ is codimension-2 in $\overline{\mathfrak{U}}_H(c_1,c_2)$, we obtain $K_{\overline{\mathfrak{U}}_H(c_1,c_2)}=\mathfrak{D}$. Hence, $K_{\overline{\mathfrak{U}}_H(c_1,c_2)}$ is \mathbb{Q} -Cartier and $K_{\overline{\mathfrak{M}}_H(c_1,c_2)}=\Psi^*K_{\overline{\mathfrak{U}}_H(c_1,c_2)}$. \square

REMARK 3.7. It is unclear whether the Uhlenbeck compactification $\overline{\mathfrak{U}}_H(c_1, c_2)$ is normal or not. However, applying the Stein Factorization Theorem (see the Theorem 2.26 in [Iit]) to the Gieseker-Uhlenbeck morphism Ψ_H , we can prove that the natural morphism from the normalization of $\overline{\mathfrak{U}}_H(c_1, c_2)$ to $\overline{\mathfrak{U}}_H(c_1, c_2)$ is bijective.

Remark 3.8. Under the conditions of Theorem 3.6, it has been proved in [Bar] that the Gieseker-Uhlenbeck morphism $\Psi_H: \overline{\mathfrak{M}}_H(c_1,c_2) \to \overline{\mathfrak{U}}_H(c_1,c_2)$ is strictly semi-small with respect to certain natural stratification of $\overline{\mathfrak{U}}_H(c_1,c_2)$.

REFERENCES

- [Art] I.V. ARTAMKIN, Deforming torsion-free sheaves on an algebraic surface, Math. USSR Izv., 36 (1991), pp. 449–485.
- [Bar] V. Baranovsky, Moduli of sheaves on surfaces and action of the oscillator algebra, J. Differential Geom., 55 (2000), pp. 193–227.
- [Don1] S.K. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc., 50 (1985), pp. 1–26.
- [Don2] S.K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology, 29 (1990), pp. 257–315.
- [Fri1] R. FRIEDMAN, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer-Verlag, New York, 1994.
- [Fri2] R. Friedman, Stable Vector Bundles over Algebraic Varieties. Manuscript.
- [FM] R. FRIEDMAN AND J.W. MORGAN, Smooth Four-Manifolds and Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, 27, Springer, Berlin Heidelberg New York, 1994.
- [GL] D. GIESEKER AND J. LI, Irreducibility of moduli of rank two vector bundles on algebraic surfaces, J. Differ. Geom., 40 (1994), pp. 23–104.
- [Gro] I. GROJNOWSKI, Instantons and affine algebras I: the Hilbert scheme and vertex operators, Math. Res. Lett., 3 (1996), pp. 275–291.
- [HL] D. HUYBRECHTS AND M. LEHN, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31. Friedr. Vieweg & Sohn, Braunschweig, 1997.
- [Iit] S. IITAKA, Algebraic Geometry. An introduction to birational geometry of algebraic varieties. Graduate Texts in Mathematics, 76; North-Holland Mathematical Library, 24, Springer-Verlag, New York-Berlin, 1982.
- [KMM] Y. KAWAMATA, K. MATSUDA AND K. MATSUKI, Introduction to the minimal model problem, Algebraic Geometry, Sendai Adv. Stud. Pure Math, 10, pp. 283–360. Kinokuniya and Amsterdam North-Holland, Tokyo, 1987.
- [Li1] J. Li, Algebraic geometric interpretation of Donaldson's polynomial invariants, J. Differ. Geom., 37 (1993), pp. 417–466.
- [Li2] J. Li, Picard groups of the moduli spaces of vector bundles over algebraic surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), pp. 129–146. Lecture Notes in Pure and Appl. Math., 115. Dekker, New York, 1996.
- [Li3] J. Li, Kodaira dimension of moduli space of vector bundles on surfaces, Invent. Math., 115 (1994), pp. 1–40.

- [Li4] J. Li, The first two Betti numbers of the moduli spaces of vector bundles on surfaces, Comm. in Anal. and Geom., 5 (1997), pp. 625–684.
- [LL] J. Li and W.-P. Li, Two point extremal Gromov-Witten invariants of Hilbert schemes of points on surfaces, preprint.
- [LQW] W.-P. LI, Z. QIN AND W. WANG, Hilbert schemes, integrable hierarchies, and Gromov-Witten theory, Intern. Math. Res. Notices, 40 (2004), pp. 2085–2104.
- [MaE] E. MARKMAN, Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces, Adv. Math., 208 (2007), pp. 622–646.
- [MaM] M. MARUYAMA, Moduli of stable sheaves, II, J. Math. Kyoto. Univ., 18 (1978), pp. 557–614.
- [Mor] J.W. MORGAN, Comparison of the Donaldson polynomial invariants with their algebrogeometric analogues, Topology, 32 (1993), pp. 449–488.
- [Muk] S. Mukai, On the moduli space of bundles on K3 surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984), pp. 341–413. Oxford University Press, 1987.
- [Nak] H. NAKAJIMA, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. Math., 145 (1997), pp. 379–388.
- [OSS] C. OKONEK, M. SCHNEIDER AND H. SPINDLER, Vector bundles on complex projective spaces, Progress in Math., Birkhäuser, 1980.
- [O'G] K.G. O'GRADY, The irreducible components of moduli spaces of vector bundles on surfaces, Invent. Math., 112 (1993), pp. 585-613.
- [Qin] Z. Qin, Equivalence classes of polarizations and moduli spaces of sheaves, J. Differ. Geom., 37 (1993), pp. 397–415.
- [Ruan] Y. Ruan, Stringy geometry and topology of orbifolds, Contemp. Math., 312 (2002), pp. 187–233.
- [Uhl] K. UHLENBECK, Removable singularity in Yang-Mills fields, Comm. Math. Phys., 83 (1982), pp. 11–29.
- [Zuo] K. Zuo, Generic smoothness of the moduli of rank two stable bundles over an algebraic surface, Math. Z., 207 (1991), pp. 629-643.