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YAU’S PROBLEM ON A CHARACTERIZATION OF

ROTATIONAL ELLIPSOIDS∗

UDO SIMON†

Abstract. S.T. Yau stated the following problem:
Assume that the Euclidean principal curvatures k1, k2 of a closed surface in Euclidean 3-space

satisfy the relation k1 = ck3
2 for some real constant c. Is the surface a rotational ellipsoid?

We give a proof for closed analytic surfaces and study related problems.
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1. Introduction. Let the principal curvatures k1, k2 of a surface in Euclidean
3-space E3 satisfy a differentiable relation

W (k1, k2) = 0.

Such surfaces are called Weingarten surfaces. In [1] S.S. Chern generalized a theorem
of D. Hilbert and proved:

Theorem Chern. Consider a Weingarten ovaloid with the property that the
principal curvature k1 is a strictly decreasing function of k2. Then the ovaloid is a
sphere.

On a rotational ellipsoid the principal curvatures satisfy the relation k1 = ck3
2 for

some positive constant c. Chern used this as a counterexample in the sense that,
for a characterization of spheres, one cannot modify the assumption “decreasing” to
“increasing” in his Theorem. Chern’s counterexample became of great importance in
the study of relations between curvature functions (and also the support function) of
compact hypersurfaces in Euclidean space.

In analogy to the characterization of spheres in terms of curvature functions there
are also characterizations including the support function; such results are similar to
the theorems about Weingarten surfaces with monotonicity properties; see e.g. [3],
section 3.9. Following Chern’s example, this led to a study of the support function
on rotational surfaces and in particular on rotational ellipsoids; see see e.g. [3],
p. 102. During the last decade, several authors proved additional results on the
characterization of (hyper-)quadrics in terms of curvature and support functions. We
recall the following result as an example; see section 8 in [6]:

Theorem L-S-S-W. Let x : M → En+1 be a hyperovaloid. The following prop-
erties are equivalent:

(i) x is a hyperellipsoid with center at the origin.
(ii) The Gauß-Kronecker curvature satisfies the following eigenvalue equation in

terms of the third fundamental form metric g∗ = III :

∆∗(H
2

n+2
n − c) + 2(n + 1)(H

2
n+2
n − c) = 0,
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where ∆∗ denotes the Laplacian of g∗ and c is an appropriate real positive
constant.

(iii) The support function ρ :=< µ,−x > (with µ as unit normal) satisfies the
following eigenvalue equation in terms of g∗ :

∆∗(ρ2 − γ) + 2(n + 1)(ρ2 − γ) = 0,

where γ is an appropriate real positive constant.

Considering Chern’s example of the rotational ellipsoid, S.T. Yau stated the fol-
lowing problem; see [10], Problem 58, p. 290:

Problem-Yau. Does the relation k1 = ck3
2, where c is real, characterize rota-

tional ellipsoids within the class of closed surfaces in Euclidean 3-space?

A closely related problem was stated by Voss during the workshop [14]:

Problem-Voss. Consider a local piece of surface admitting a principal curvature
parametrization with Gauß basis {∂1, ∂2}. Assume that the principal curvatures satisfy
the relations

∂1(
k1

k3
2

) = 0, ∂2(
k2

k3
1

) = 0.

Is the surface an ellipsoid?

This second problem has been solved in [2] a few years ago:

Theorem I. Assume that a non-degenerate surface in E3 admits a parametriza-
tion in terms of principal curvature parameters. The principal curvatures satisfy
the two relations stated in the Problem of Voss if and only if the surface is a non-
degenerate quadric.

The authors of [2] generalized the problem and its solution to hypersurfaces in space
forms. Lemma 3.5.1 below shows the close relation of the problems of Yau and Voss,
resp. There is another result that is related to the problems of Yau and Voss; see
Corollary 8.6 in [6]:

Theorem II. Let x : M → E3 be an analytic ovaloid. Assume that, in points
with an appropriate parametrization in terms of principal curvature lines, the principal
radii of curvature R1, R2 satisfy the following two relations:

∂1(R1 + R2) = −(R1 + 3R2)∂1 ln ρ,

∂2(R1 + R2) = −(3R1 + R2)∂2 ln ρ.

Then x is an ellipsoid.

As far as we know Yau’s problem has been considered to be open up to now. In [10]
Yau already stated that an old result of Voss gives a partial answer:

Theorem Voss. [15] An analytic Weingarten surface of genus zero is rotational.

In our paper, we will use the Theorem of Voss and the following local characterization
of rotational quadrics (Theorem III) as tools to tackle Yau’s problem. A special global
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version of this result, namely a characterization of ellipsoids within the class of closed
rotational surfaces, was stated by Kühnel in [4], p.90 (18). The proof he indicates
there uses methods quite different from the methods we use for the proof of the
following local Theorem.

Theorem III. Consider a non-degenerate rotational surface in E3 with non-
vanishing Gauß curvature K and without umbilics. The principal curvatures k1, k2

satisfy the relation ki = ck3
j for i, j ∈ {1, 2}, i 6= j, for some real non-zero constant

c if and only if the surface is part of a non-degenerate quadric.

Theorem III admits a proof of Yau’s problem for analytic closed surfaces. Obviously
one did not realize so far that another proof could be given combining the Theorem
of Voss and the result of Kühnel cited above.

Theorem IV. Assume that the principal curvatures of a closed, analytic surface
in Euclidean 3-space satisfy the relation ki = ck3

j for i, j ∈ {1, 2}, i 6= j, and some
real constant c. Then the surface is a rotational ellipsoid.

In section 5 below we will study relations between principal curvatures and the
support function ρ =< µ,−x > on rotational quadrics; here we would like to point out
that the support function depends on the fact how the surface is situated in relation
to the origin; this fact influences the formulation of results. The examples in section
5 give rise to another local characterization:

Theorem V. Consider a non-degenerate rotational surface in E3 with local rep-
resentation as in (4.1) and its support function ρ. Then k2 satisfies

R2k2
2 = ρ2

with a non-zero real constant R if and only if the surface is a quadric with center at
the origin.

As corollary we get:

Theorem VI. A closed rotational surface of genus zero is an ellipsoid with center
at the origin if and only if

R2k2
2 = ρ2

for some non-zero real constant R.

The foregoing result together with Theorem L-S-S-W from above gives:

Corollary VII. On a rotational ellipsoid with center at the origin the differen-
tiable function k2

2 − k0, where k0 is an appropriate real constant, is a second eigen-
function of the Laplacian of the third fundamental form metric.

There is an affine background of the topic and methods in our paper, and we
would like to comment on this.
Recall that the proof of Theorem L-S-S-W in [6] uses transformation techniques for
PDEs relating Euclidean and affine invariants. Such relation appear also as tool for
our proof of Theorem III: In affine hypersurface theory it is well known that a non-
degenerate hypersurface is a hyperquadric if and only if the unimodular cubic form
vanishes. It is also known that the (traceless) symmetric (1.2)-tensor field associated
to the cubic form is a so called gauge invariant, that means it is independent of the
choice of the normalization of the hypersurface. We recall the basic facts for this in
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section 3 and then calculate the cubic form in terms of a curvature line parametrization
in section 3.5.
To motivate the results stated in Theorems V and VI we recall another fact well
known in affine hypersurface theory; here we state it for non-degenerate surfaces. The
Euclidean Gauß curvature, the Euclidean support function ρ(E) and the equiaffine
(unimodular) support function ρ(e) satisfy

ρ(e)4 = K−1ρ(E)4.

From this one easily verifies that, on rotational quadrics with center and with a
representation of the form (4.1) below, the following two relations are equivalent for
appropriate choice of the real constants R > 0 and c :

Rk2 = ρ(E) and k1 = ck3
2 .

The first relation appears in Theorems V and VI, the second in Theorem III. The
method of proof for both Theorems V and VI differs from that of the proof of Theorem
III.

Acknowledgement. It is a pleasure to thank K. Voss at ETH Zürich and
M. Scherfner at TU Berlin for comments and discussions.

2. Curvature line parametrization. Consider a Euclidean space E3 = R3

with its associated real vector space V and its inner product

< , >: V × V → R.

We summarize some elementary well known facts about curvature line parameters.
Let M be a connected, oriented, differentiable manifold of dimension n = 2, and
x : M → R3 an immersion. Our considerations are local s.t. we can assume x to
be an embedding. If the surface has no umbilics we can introduce curvature line
parameters s.t. the first fundamental form I =: g, the second fundamental form II
and the Weingarten operator S, resp., have the following matrix representations:

g :

(

g11 0
0 g22

)

, (2.1)

II :

(

k1g11 0
0 k2g22

)

, (2.2)

S :

(

k1 0
0 k2

)

. (2.3)

The Christoffel symbols of the Levi-Civita connection of the metric g = I satisfy:

2Γ1
11 = ∂1 ln g11, 2Γ1

12 = ∂2 ln g11, 2Γ1
22 = −

1

g11
∂1g22,

2Γ2
11 = −

1

g22
∂2g11, 2Γ2

12 = ∂1 ln g22, 2Γ2
22 = ∂2 ln g22. (2.4)
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We calculate the covariant derivative ∇II of the second fundamental form II in
terms of the Levi-Civita connection:

∇kIIij = ∂kIIij − Γr
ikIIrj − Γr

jkIIri

and get:

∇1II11 = ∂1k1g11, ∇2II11 = ∂2k1g11, ∇1II22 = ∂1k2g22, ∇2II22 = ∂2k2g22.

The support function. Define the Euclidean support function (with respect to
the origin) of a surface x : M → R3 with Euclidean normal µ by ρ :=< µ,−x >; here
x also denotes the position vector of the surface with respect to the origin.

3. The cubic form of a non-degenerate hypersurface. We are going to
apply known results about the characterization of quadrics. For a better understand-
ing we recall the affine context (a reader who is familiar with this theory can pass to
Lemma 3.5). For details on relative hypersurface theory we refer to standard mono-
graphs like [13], [7], [9].
It is a classical result in the unimodular-affine hypersurface theory that quadrics can
be characterized by the vanishing of the cubic form; in this theory the cubic form
is traceless w.r.t. the Blaschke metric (apolarity condition). Within the class of all
relative normalizations of a non-degenerate hypersurface the unimodular normaliza-
tion can be characterized by this apolarity condition; thus, if one chooses a transverse
field as “normal” field, different from the unimodular-affine normal, the associated
cubic form does not satisfy an apolarity condition. But its traceless part w.r.t. the
associated relative metric has two very interesting properties which we are going to
recall.

3.1. Non-degenerate hypersurfaces in affine space. The duality of the real
affine space Rn+1 and its dual R(n+1)∗ is described in terms of a non-degenerate scalar
product

< , >: R(n+1)∗ × Rn+1 → R.

By the same symbol ∇ we denote the canonical flat connections on Rn+1 and R(n+1)∗,
resp.
Let M be a connected, oriented, differentiable manifold of dimension n ≥ 2, and
x : M → Rn+1 a hypersurface immersion. A normalization of x is a pair (Y, z) with
< Y, z >= 1 where z : M → Rn+1 is a transversal field and Y : M → R(n+1)∗,
satisfying < Y, dz(v) >= 0 for all tangent vectors v on M , is a conormal field of x.
While a transversal field z extends a tangential basis to the ambient space, a conormal
fixes the tangent plane. A normalized hypersurface is a triple (x, Y, z).

3.2. Structure equations. The geometry ot the triple (x, Y, z) can be described
in terms of invariants defined via the structure equations of Gauß and Weingarten,
resp.:

∇vdx(w) = dx(∇vw) + h(v, w)z, (Gauß)

dz(v) = dx(−S(v)) + τ(v)z. (Weingarten)

Here and in the following u, v, w, ... denote tangent vectors and fields, resp. The
induced connection ∇ is torsion free, h is bilinear and symmetric, S is the shape or
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Weingarten operator and τ is a 1-form, the connection form; the sign in front of S
in the Weingarten equation is a convention corresponding to an appropriate choice of
the orientation of z. A normalization is called relative if τ = 0 on M. All coefficients
in the structure equations depend on the normalization, they are invariant under the
affine group of transformations in Rn+1. But it is well known that one can define affine
invariants that are independent of the choice of the normalization. We call such affine
invariants gauge invariants. We justified this terminology in [12]; there we present a
study of gauge invariant structures.
A hypersurface is called non-degenerate if rank h = dimM = n. In this case h defines
a semi-Riemannian metric. For a metric h we denote its Levi-Civita connection by
∇(h) and its associated volume form by ω(h).
It is well known that the class of all metrics, induced from all possible normalizations,
is a conformal class, and the Euclidean second fundamental form II, induced from the
Euclidean normalization, is sitting in this class. Thus a hypersurface is non-degenerate
if and only if the Euclidean second fundamental form has maximal rank, that is
the Euclidean Gauß-Kronecker curvature is nowhere zero. Obviously all conformal
invariants like the conformal curvature tensor are gauge invariants.
The non-degeneracy of x is equivalent to the fact that any conormal field Y itself is
an immersion Y : M → R(n+1)∗ with transversal position vector Y . The associated
Gauß structure equation reads

∇vdY (w) = dY (∇∗
vw) +

1

n − 1
Ric∗(v, w)(−Y )

where the conormal connection ∇∗ is torsion free and Ricci-symmetric, i.e. its Ricci
tensor Ric∗ is symmetric. The Ricci symmetry is equivalent to the existence of a
∇∗-parallel volume form ω∗ on M which is unique modulo a non-zero constant factor.
It is well known that all conormal connections are projectively related, thus they define
a projective class. This class is projectively flat. Obviously all projective invariants
like the projective curvature tensor are gauge invariants.

3.3. The cubic form and the Tchebychev field. Consider the difference
(1.2)-tensor field

C := ∇(h) −∇∗.

As both connections are torsion free C is symmetric. Its associated cubic form C♭ is
defined by C♭(u, v, w) := h(u, C(v, w)); it is totally symmetric and satisfies ∇∗h =
2C♭ = −∇h.
The trace of C is a closed one-form, defined by

nT ♭(v) := trace(w 7→ C(v, w));

it satisfies

nT ♭ = d ln
ω(h)(v1, ..., vn)

ω∗(v1, ..., vn)

on any local frame where the volume forms have the same orientation. The associated
Tchebychev field T is implicitly defined via h(v, T ) := T ♭(v). From the foregoing a
geometric interpretation of T ♭ and C is obvious: T ♭ measures the deviation of volume
forms, while C measures the deviation of the connections ∇∗ and ∇(h).
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3.4. The traceless cubic form. Define the symmetric (1.2) tensor ˜C as trace-
less part of C (see [11], [8], [13], [12]):

˜C(v, w) := C(v, w) −
n

n + 2
(T ♭(v)w + T ♭(w)v + h(v, w)T );

then
(i) ˜C is a gauge invariant, that means it is independent of the choice of the

normalization;
(ii) the vanishing of ˜C characterizes non-degenerate quadrics.

3.5. The traceless cubic form in terms of a Euclidean normalization.

We use the notational mark (E) for Euclidean invariants. In section 6.1 of [13] we
calculated the foregoing invariants in terms of a Euclidean normalization. In this case
the induced connection coincides with the Levi-Civita connection of the Euclidean
first fundamental form I: ∇ = ∇(I). We have:

(i) 2C♭(E)(u, v, w) = −(∇uII)(v, w) = −(∇II)(u, v, w);
(ii)

nT ♭(E) = d ln
ω(II)(v1, ..., vn)

ω(III)(v1, ..., vn)

where ω(II) and ω(III) denote the volume forms associated to the
(semi-)Riemannian metrics II and III of a non-degenerate hypersurface; thus

nT ♭(E) = −
1

2
d ln |K|;

here K := detS(E) denotes the Euclidean Gauß-Kronecker curvature.

Lemma 3.5.1 ([13], section 6.1). Consider a non-degenerate hypersurface.
(i) In terms of a Euclidean normalization, the traceless cubic form reads

2 ˜C♭(E)(u, v, w) = −(∇II)(u, v, w) +

+
1

n + 2
{(d ln |K|)(u)II(v, w) + (d ln |K|)(v)II(w, u) + (d ln |K|)(w)II(u, v)}.

(ii) The vanishing of ˜C♭(E) characterizes non-degenerate quadrics.
(iii) In dimension n = 2 and in terms of curvature line parameters, the coefficients

of the traceless cubic form satisfy:

˜C♭(E)111 =
1

8
k1g11[∂1 ln

k3
2

k1
]; ˜C♭(E)112 =

1

8
k1g11[∂2 ln

k2

k3
1

];

˜C♭(E)122 =
1

8
k2g22[∂1 ln

k1

k3
2

]; ˜C♭(E)222 =
1

8
k2g22[∂2 ln

k3
1

k2
].

4. Surfaces of revolution in Euclidean 3-space. We summarize well known
properties of surfaces of revolution which we will need for our discussion.
Consider a surface of revolution in Euclidean space E3 given in terms of parameters
(u1, u2) by

x(u1, u2) = (r(u1) cosu2, r(u1) sin u2, h(u1)), r ≥ 0, (4.1)
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where u1 parametrizes the meridians as arc length parameter and u2 parametrizes the
parallels of latitude with radius r(u1); r and h are differentiable functions.
For a function f = f(u1) we write f ′ := df/du1; then we have

r′(u1)2 + h′(u1)2 = 1. (4.2)

u1, u2 are curvature line parameters for all points with r(u1) > 0. In case that the
functions r(u1) > 0, h(u1) are defined for 0 < u1 < Λ and also for u1 = 0 or u1 = Λ
such that

r(0) = 0, r′(0) = 1 or r(Λ) = 0, r′(Λ) = −1, (4.3)

we call such points “poles” PS or PN (u1 = 0 or u1 = Λ); for symmetry reasons they
are umbilics. Near a pole, x1 = r(u1) cos u2 and x2 = r(u1) sin u2 are parameters for
the surface. The parameter u2, first of all, will be taken modulo 2π, i.e. u2 ∈ S1; if
necessary one will have to pass to a covering surface by taking u2 ∈ R. In every case,
according to the domain of the parameters, there is a manifold M of dimension two
such that (4.1) defines an immersion x : M → E3 into Euclidean 3-space E3.
It follows by straightforward computations that we have the following matrix repre-
sentations for the first fundamental form I = g, the second fundamental form II, and
the Weingarten (shape) operator S, resp., on M\{PN , PS}; as already stated, k1, k2

denote the principal curvatures.

g :

(

1 0
0 r2

)

, (4.4)

II :

(

k1 0
0 k2r

2

)

, (4.5)

S :

(

k1 0
0 k2

)

. (4.6)

We calculate the principal curvatures in terms of the functions r and h :

S∂1 = k1∂1 = (r′h′′ − r′′h′)∂1 (4.7)

and

S∂2 = k2∂2 = h′

r
∂2, (4.8)

where {∂1, ∂2} denotes the Gauß basis associated to the local parameters. It is a
particular consequence of the parametrization and of (4.7-8) that both principal cur-
vatures k1, k2 only depend on the parameter u1. The Codazzi equations reduce to the
equation

k′
2 =

r′

r
(k1 − k2), (Cod)

while the Gauß integrability condition with K = k1k2 as Gauß curvature reads

r′′ + Kr = 0. (Gauß).
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The Christoffel symbols of the Levi-Civita connection of the metric satisfy:

Γ1
11 = 0, Γ1

12 = 0, Γ1
22 = −rr′

Γ2
11 = 0, Γ1

12 = (ln r)′, Γ1
22 = 0. (4.9)

We calculate the covariant derivative ∇II of the second fundamental form II in terms
of the Levi-Civita connection ∇ = ∇(I)

∇kIIij = ∂kIIij − Γr
ikIIrj − Γr

jkIIri

and get:

∇1II11 = ∂1k1, ∇2II11 = ∂2k1 = 0, ∇1II22 = r2∂1k2, ∇2II22 = r2∂2k2 = 0.
(4.10)

The Tchebychev form reads

Ti = −
1

4
∂i ln |K| (4.11)

thus T1 = −(ln |k2|)
′ and T2 = 0. Now the coefficients of ˜C♭(E) read:

˜C♭(E)111 =
1

8
k1g11[∂1 ln

k3
2

k1
]; ˜C♭(E)112 = 0;

˜C♭(E)122 =
1

8
k2g22[∂1 ln

k1

k3
2

]; ˜C♭(E)222 = 0. (4.12)

Here we can use (4.7-8) to express k1, k2 in terms of the functions r, h.

The support function. For a surface of revolution with representation (4.1)
the support function satisfies the relation

ρ = rh′ − r′h. (4.13)

5. Examples: Rotational quadrics. We list relations between curvature func-
tions and the support function ρ =< µ,−x > and we denote r(u1) = R cosu2 and
h(u1) = c sin u1, where R > 0 and c are real constants. For central quadrics, we
choose the origin as center, for the paraboloid we choose the origin as apex.
Ellipsoid.

k1 =
R4

c2
k3
2 and ρ = R2k2.

Two-sheeted hyperboloid.

k1 =
R4

c2
k3
2 and ρ = −R2k2.

One-sheeted hyperboloid.

k1 = −
R4

c2
k3
2 and ρ = R2k2.

Elliptic paraboloid.

k1 =
R4

4
k3
2 and ρ =

1

2
R2k2.
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6. Proofs.

Proof of Theorem I. According to the assumptions we consider a surface of revo-
lution with the representation from section 4. The assertion immediately follows from
Lemma 3.5.1 and (4.12).

Proof of Theorem III. We use the representation (4.1). As x is rotational we
know that the principal curvatures only depend on the parameter u1. This implies
˜C♭(E)112 = 0 and ˜C♭(E)222 = 0. Then x is a quadric if and only if the other two

coefficients of ˜C♭ vanish, i.e. if and only if k1 = ck3
2 for some constant c.

Proof of Theorem IV. On a compact surface there is a point p ∈ M where the
Gauß curvature is positive. This together with the assumption k1 = ck3

2 implies that c
is positive and thus sign k1 = sign k2. From this the Gauß curvature is non-negative
on M and therefore the surface has genus zero.
For an umbilic q ∈ M there are two possibilities:

k1(q) = 0 = k2(q) or k1(q) = k2(q) = c−
1
2 .

The surface has genus zero thus from Voss’ Theorem and the assumptions it is rota-
tional and therefore the poles are umbilics. They are the only points that might be
flat, and for M\{PN , PS} the surface is locally strictly convex and admits principal
curvature parameters a.e. From Theorem III the surface is a quadric and thus an
ellipsoid.

Proof of Theorem V. Again we use the representation (4.1) but drop the assump-
tion that u1 is an arc length parameter for the meridians. In analogy to section 4 one
easily calculates the fundamental invariants. From the assumptions we have

Rk2 = ρ or Rk2 = −ρ.

These equations lead to the ODE

±R
h

r
(h′2 + r′2)−

1
2 = ±Rk2 = ρ = (rh′ − r′h)(h′2 + r′2)−

1
2 .

(In fact, we arrive at the same ODE as in case that (4.2) yields). The ODE

−
h′

h
=

1

2

(r2)′

r2 ± R2

gives

ln |h| = lnα2 + ln |r2 ± R2|
1
2

for some non-zero real α. Depending on the sign of the arguments in the foregoing
equation we have to discuss three different cases, given by

(i)

r2

R2
+

h2

α2R2
= 1

(ii-iii)

r2

R2
−

h2

α2R2
= ±1.
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As solutions we get
(i) r = R cosu1 and h = αR sin u1 (ellipsoid),
(ii) r = R cosh u1 and h = αR sinh u1 (1-sheeted hyperboloid),
(iii) r = R sinh u1 and h = αR coshu1 (2-sheeted hyperboloid).

Note added in proof. Our Theorem IV was proved as Proposition 10 in the
paper [5] cited below under the additional assumption that the analytic surface has
genus zero.
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