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The purpose of this paper is to examine bundle-theoretic conditions which are
equivalent to a manifold admitting a generic immersion into CN . In the first section
we state the main result and discuss its application to the most familiar case of totally
real immersions. We establish the main result in the second section, by applying
Gromov theory as presented by Eliashberg and Mishachev [7]. We discuss a technical
point related to complex structures in section 3, which shows the limitations of the
argument in the previous section. Section 4 is a summary of results, mostly established
in the 1980’s, on totally real immersions and embeddings; these are presented from a
topological perspective. Open questions are collected in the final section.

1. Generic Immersions. Let n and k be integers with n ≥ 0 and k ≥ 1. Call
an immersion π : M2n+k → Cn+k generic if it satisfies any of the following equivalent
conditions (here J denotes the standard complex structure on the tangent bundle to
Cn+k):

1. At each point p ∈ M , the real vector space π∗TM ∩Jπ∗TM has the smallest
possible dimension (which is 2n).

2. At each point p ∈ M , π∗TM + Jπ∗TM = TCn+k|π(p).

3. At each point p ∈ M , the complex vector space π∗CTM ∩T 0,1(Cn+k) has the
smallest possible dimension (which is n).

4. At each point p ∈ M , π∗(dz1 ∧ · · · ∧ dzn+k) 6= 0 where (z1, . . . , zn+k) are the
usual coordinates on Cn+k.

5. At each point p ∈ M , the map Ψ : CTpM → T 0,1
π(p)(C

n+k) is surjective, where

Ψ is given by projecting

π∗ζ ∈ CTπ(p)C
n+k = T 1,0

π(p)(C
n+k) ⊕ T 0,1

π(p)(C
n+k)

into the second factor.
And for generic embeddings, we add one more equivalent condition:

6. π(M) is given by equations

ρj(z, z̄) = 0, j = 1, . . . , k

on C
n+k with

∂ρ1 ∧ · · · ∧ ∂ρk 6= 0 at each point of π(M).
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Note that this condition could have also been stated, in terms of local defining func-
tions, for immersions.

A generic immersion Mk → Ck (i.e., n = 0) is also called totally real. This usage
is justified by the fact that with these dimensions TM ∩ JTM = {0} at all points of
M and so TM contains no complex line. Some authors, for example [4], allow totally
real to also apply when dimM ≤ k and distinguish the case of equality by calling it
maximally totally real. A real subspace R of Cn+k may, or may not, contain a nonzero
complex subspace. If d = dim R > n + k then R does contain a complex subspace.
Indeed, R must contain a complex subspace of complex dimension at least d− n− k.
For R = π∗TM |p, d − n − k = n. Thus π∗TM |p must contain a complex subspace
of complex dimension n. Generic means that it contains no larger complex subspace.
That is, the largest complex subspace in π∗TM |p is as small as possible.

The bundle H ⊂ TM defined by

H = {v ∈ TM : π∗v ∈ π∗TM ∩ Jπ∗TM} (1)

is called the CR bundle of M . For a generic map the codimension of this bundle
in TM (that is, the rank of TM/H) is the same as the codimension of π(M) as an
immersed submanifold of Cn+k.

To be generic is a pointwise condition, so the equivalent formulations also apply,
mutatis mutandis, for immersions of M2n+k into any complex manifold Xn+k.

Proof that the conditions are equivalent. Conditions 1 and 2 are equivalent
because of a basic result about the dimension of sums and intersections of subspaces
of a vector space.

We have ζ ∈ {π∗(dz1), . . . , π
∗(dzn+k)}⊥ if and only if π∗(ζ) ∈ T 0,1(Cn+k). So

π∗(dz1 ∧ · · · ∧ dzn+k) 6= 0 if and only if rank(π∗CTM ∩ T 0,1(Cn+k)) = n. So 3 and 4
are also equivalent.

To see that 1 and 3 are equivalent, note that for any subspace V ⊂ CT (Cn+k),
we have that J maps V to itself if and only if

V = V ∩ T 1,0(Cn+k) ⊕ V ∩ T 0,1(Cn+k).

Further, if V = V then rankV ∩ T 1,0(Cn+k) = rankV ∩ T 0,1(Cn+k). Thus for
V = C ⊗ (π∗TM ∩ Jπ∗TM) we have

rankR(π∗TM ∩ Jπ∗TM) = 2 rankC C ⊗ (π∗TM ∩ Jπ∗TM ∩ T 0,1(Cn+k)).

Now note that for any subspace V ⊂ CT (Cn+k),

V ∩ T 1,0(Cn+k) = V ∩ JV ∩ T 0,1(Cn+k),

because if ζ ∈ V ∩ T 1,0(Cn+k) , then Jζ = −iζ ∈ V ∩ JV ∩ T 0,1(Cn+k). So

rankR(π∗TM ∩ Jπ∗TM) = 2 rankC(π∗CTM ∩ T 0,1(Cn+k)).

In particular, the left hand side is minimal if and only if the right hand side is minimal.
We now show 3 and 5 are equivalent. Note that Ψ is surjective if and only if kerΨ

has rank n. Since

kerΨ = {ζ ∈ CTM : π∗ζ ∈ T 1,0(Cn+k)},

we have

π∗ kerΨ = π∗CTM ∩ T 1,0(Cn+k).
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Since the right hand side has the same rank as π∗CTM ∩ T 0,1(Cn+k),

rank kerΨ = rankπ∗CTM ∩ T 0,1(Cn+k).

Thus Ψ is surjective if and only if rankπ∗CTM ∩ T 0,1(Cn+k) = n.
Finally, we show that condition 6 holds at a point if and only if condition 5 holds

at that point. For convenience, we identify M with its image π(M) in Cn+k. Let
η ∈ T 0,1(Cn+k). Note that ξ ∈ CTM if and only if dρj(ξ) = 0 for j = 1, . . . , k. So η is
in the range of Ψ if and only if there exists some ξ ∈ T 0,1(Cn+k) with dρj(ξ + η) = 0.
Since d = ∂ + ∂ and the one-form ∂f is zero acting on T 0,1(Cn+k), for all functions
f , and similarly for ∂ acting on T 1,0(Cn+k), we see that Ψ is surjective if and only if

∂ρ(ξ) = aj , j = 1, . . . , k

is solvable for all a ∈ Ck. This happens precisely when condition 6 holds.

Theorem 1.1. If π : M2n+k → Cn+k is a generic immersion, then

CTM = A ⊕ B

where A is a trivial bundle of complex rank n + k isomorphic to T 0,1(Cn+k)|π(M) and

B is of complex rank n with B ∩ B = {0}.

Remark 1. As is well-known, CTMk is trivial if Mk has a totally real immersion
into Ck.

Proof of the Theorem. We know that

Ψ : CTM → T 0,1(Cn+k)|π(M)

is surjective. Thus CTM = A ⊕ B with

A ∼= T 0,1(Cn+k)|π(M)

and B = kerΨ. If ζ and ζ are both in B, then π∗(ζ) ∈ T 1,0(Cn+k) ∩ T 0,1(Cn+k).
Thus π∗(ζ) = 0. This shows that B ∩ B = {0}.

Remark 2. Replacing Cn+k by any complex manifold X of the same dimension,
we see that if π : M → X is a generic immersion, we have that

CTM/B ∼= T 0,1(X)|π(M).

At first glance, this does not appear to be useful, since π(M) is not “known”, but it
does suggest an interesting analogy (for which, see the end of this section).

It is convenient to have a sufficient condition for π to be an immersion.

Lemma 1.1. Let π : M2n+k → Cn+k have components (F1, . . . , Fn+k). If either
of the two equivalent conditions holds:

1. dF1 ∧ · · · ∧ dFn+k 6= 0 and {dF} ∪ {dF} spans CT ∗M
2. For B = {dF}⊥, we have rankB = n and B ∩ B = {0}
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then CTM = A ⊕ B as above and π is a generic immersion.

Proof. It is easy to see that these conditions are equivalent. Since B is the
annihilator of a trivial bundle, there is a trivial bundle A of rank n + k such that
CTM = A ⊕ B. Further, for any map

(π∗CTM) ∩ T 0,1 = π∗({dF}⊥),

so rank{dF} = n + k implies rankπ∗CTM ∩ T 0,1(Cn+k) = n. Further, since {dF} ∪
{dF̄} spans CT ∗M , π∗ is injective. Thus π is a generic immersion.

We will use a result of Gromov to prove the converse of Theorem 1.1. Then we
will have:

Theorem 1.2. M2n+k has a generic immersion into Cn+k if and only if CTM =
A ⊕ B with A trivial of rank n + k and B ∩ B = {0}.

Here are three well known corollaries about totally real immersions. For the first
two, we may use the following lemma, which is of independent interest.

Lemma 1.2. Let F be a complex vector bundle over a manifold M with rankF ≥
(dim M)/2. If F is stably trivial, then F is trivial.

Recall that a complex bundle is stably trivial if it becomes trivial when a product
bundle M × Ck is added to it. For a real bundle, one adds M × Rk.

Proof of Lemma. It will suffice to show that if rankF = k ≥ (dim M)/2 and
F ⊕ (M ×C) is trivial, then also F is trivial. We use the standard fibration S2k+1 →
BU(k) → BU(k+1) with projection p and inclusion of the fiber i, noting that S2k+1 =
U(k + 1)/U(k). Let f : M → BU(k) be a classifying map for F. Then p ◦ f is
nullhomotopic, and so by the homotopy lifting property there is a map g : M → S2k+1

so that f ≃ i◦g. Since dimM ≤ 2k, the cellular approximation theorem (taking M to
be a CW-complex, or replacing it by a homotopy equivalent CW-complex of dimension
at most 2k) implies that g is nullhomotopic. Hence also f is nullhomotopic, and F is
trivial.

Remark 3. As a complement to the lemma which will be useful in section 5,
we note that when rankF > (dimM)/2, the sphere bundle S(F ) has a cross-section,
which implies that F is the Whitney sum of a sub-bundle and a trivial complex line
bundle. Taking M to be a CW-complex, one easily constructs a cross-section of the
sphere bundle by induction over the skeleta of M.

If TM is stably trivial, then so is CTM . So TM stably trivial implies the existence
of totally real immersions. This gives the following two corollaries. The third is even
simpler, because TM3 itself is trivial.

Corollary 1. Any compact orientable M2 has a totally real immersion into C2.

Corollary 2. Every sphere Sn has a totally real immersion into Cn.

Corollary 3. Any compact orientable M3 has a totally real immersion into C
3.

Remark 4. As we explain in sections 4 and 5, among compact orientable sur-
faces only the torus has a totally real embedding. On the other hand, every compact
orientable M3 has a totally real embedding into C3 [9]. Again see section 4.
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Note that the triviality of TM also implies, via Smale-Hirsch theory, that M3 im-
merses into R4. Any real hypersurface in C2 is generic. Thus any compact orientable
M3 has a generic immersion into C2.

Another proof of Corollary 2. This is a direct verification of the fact that CTSn

is trivial. It was shown to one of the authors several years ago by Gerardo Mendoza.
Using parallel translation in Rn+1 and the usual correspondence of the vector spaces
T0(R

n+1) and Rn+1, we identify each v ∈ TpS
n with its translation to the origin. Let

n = (0, . . . , 0, 1) ∈ R
n+1, s = −n, U+ = Sn − s and U− = Sn − n. For v ∈ Tn(Sn),

we have v = (ṽ, 0), ṽ ∈ Rn, but, allowing the abuse of notation, we write this as
v = (v, 0). The same abuse holds for v ∈ Ts(S

n).
Each v ∈ Tn(Sn) determines the parametrized great circle

γ+
v (t) = ((sin t) v, cos t),

and each v ∈ Ts(S
n) determines the parametrized great circle

γ−
v (t) = ((sin t) v,− cos t).

Consider some vector w ∈ Tn(Sn). If w is normal to v, then parallel translation along
γ+

v within Sn coincides with parallel translation within Rn+1 and so produces the
vector w at the point γ+

v (t). If w = av then parallel transport of w along γ+
v produces

aγ̇+
v (t) at γ+

v (t). Thus for a general w, parallel transport produces the vector

φ+(t, v, w) = (w − (w · v)v + (w · v)(cos t) v,−(w · v) sin t)

at the point γ+
v (t). Likewise, starting from s, parallel transport of w′ along γ−

v (t)
produces

φ−(t, v, w′) = (w′ − (w′ · v)v + (w′ · v)(cos t) v, (w′ · v) sin t).

Using φ+(t, v, w) we identify TSn|{U+ − n} with

{(t, v, w) : 0 < t < π, |v| = 1, w ∈ Tn(Sn)}.

and similarly for Ts(S
n)n|{U− − s}. It is now easy to determine the gluing map

T (Sn)|{U+ − n} → T ((Sn)|{U− − s}.

A point (t, v, w) of T (Sn)|{U+ − n} is glued to a point (t, v, w′) of T (Sn)|{U− − s}
when

φ+(t, v, w) = φ−(t, v, w′).

It is sufficient to solve this equation when t = π/2. So the equations become

(w − (w · v)v,−(w · v)v) = (w′ − (w′ · v)v, (w · v)v).

Hence

w′ = w − 2(w · v)v.

Thus at the point v ∈ Sn−1, the gluing map takes w to its reflection across the plane
normal to v. Write this map as

w′ = w − (w · v)v − (w · v)v

= (πv⊥ − πv)w
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and use the homotopy

w′ = πv⊥ − eiτππv

for 0 ≤ τ ≤ 1.

An almost CR structure on M is a complex sub-bundle B ⊂ CTM for which
B ∩B = {0}. This is a CR structure when, in addition, B is involutive. That is, if u
and v are sections of B over some open set, then the vector field bracket [u, v] is also
a section of B over that set. See, for instance [4], §2.1. In particular, a generically
immersed manifold has an induced CR structure. The CR bundle H defined in (1) is
the underlying real bundle of B.

Corollary 4. If M2n+k admits an almost CR structure B of complex rank n
for which CTM/B is trivial, then B may be deformed, through almost CR structures,
into a CR structure.

Proof of Corollary 4. This is actually a corollary to the proof of Theorem 1.2
presented in the next section. The resulting CR structure is induced by a generic
immersion into Cn+k.

We can relate the data in Theorem 1.2 to the Smale-Hirsch Immersion Theorem.
Recall that this latter states, among other things, that a manifold M has an immersion
into a higher dimensional manifold N provided there exists a bundle map, injective
on the fibers, of TM into TN . The decomposition CTM = A⊕B defines a projection
CTM → A and its restriction TM → A. We claim that this restriction is injective.
For, assume there is a real vector which projects to zero. Then this real vector is in
B. But B∩B = {0} and so this vector must be zero. Thus our map is injective. Since
A is trivial, we obtain an injective map of TM into TR2(n+k). And the Smale-Hirsch
Theorem guarantees that there is an immersion of M2n+k into C

n+k. In particular,
our proof of Theorem 1.2 contains a proof of the Smale-Hirsch Theorem in this context.
One can hope to go a step further in this direction and relate the generic immersions
of M2n+k into X to the set of bundle maps Φ : CTM → T 1,0(X), where X is a
complex manifold of dimension n + k.

2. Proof of Theorem 1.2. Here is the essence of the proof.

Claim. Let M be a manifold of dimension N and let θ1, . . . , θr be global one-
forms with θ1 ∧ · · · ∧ θr different from zero at each point of M . Then there exist
complex-valued functions F1, . . . , Fr and a deformation of one-forms θt

1, . . . , θ
t
r such

that

θ0
j = θj

θt
1 ∧ · · · ∧ θt

r 6= 0, for 0 ≤ t ≤ 1

{θt
1, . . . , θ

t
r, θ

t
1, . . . , θ

t
r} spans CT ∗M,

θ1
j = dFj .

Further, maxM |F | can be made less than any preassigned positive number.

Note that the real analogue of this result is clearly false. The existence of a real
global one-form which never is zero certainly does not imply the existence of a real
function without critical points. See also the discussion following the statement of
Lemma 2.2 below.
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Theorem 1.2 follows immediately from this claim. Take {a1, . . . , an+k} to be a
global basis for A. Define corresponding one-forms by

θi(aj) = δij

θi|B = 0.

Note that θ1 ∧ · · · ∧ θn+k 6= 0 and B = {θ1, . . . , θn+k}
⊥.

Define π : M → Cn+k by setting π = (F1, . . . , Fn+k). Since

π∗(dz1 ∧ · · · ∧ dzn+k) = dF1 ∧ · · · ∧ dFn+k 6= 0,

π would be a generic immersion provided it is an immersion at all. That it is an
immersion follows from the fact that {dF1, . . . , dFn+k} spans CT ∗M .

We now outline a proof of the claim. We will use the notation of [7] and in
particular Theorem 18.4.1 on page 171 which states that if R ⊂ X(1) is an open
ample relation then all forms of the h-principle hold. Here is the basic set-up. Note
that r ≤ N ≤ 2r.

dim M = N

X = M × C
r = M × (R ⊕ R)r

Z = Λ1
C(M)r = CT ∗(M)r = (Λ1(M) ⊕ Λ1(M))r

d : SecX → Sec Z is given by d(f1, . . . , fr) = (df1, . . . , dfr).

For the jet space X(1) = J1(M, X) we use local coordinates

{(p, c, aj
i ), i = 1, . . . , r, j = 1, . . . , N}

where

p ∈ M, c ∈ C
r, and for each i and j, aj

i ∈ C.

The point (p, c, aj
i ) may be thought of as the 1-jet at p ∈ M of f(x) =

(f1(x), . . . , f r(x)), with f i = ci +
∑N

j=1 aj
ixj . The differential relation R is given

by

R = {(p, c, aj
i )}

where

aj
1dxj ∧ · · · ∧ ak

rdxk 6= 0

and

{aj
1dxj , . . . , a

k
rdxk, aj

1dxj , . . . , ak
rdxk} spans CT ∗

p M.

All repeated indices are summed from 1 to N . Let Pa be any coordinate principal
subspace, say,

Pa = {(p, c, aj
i ) : aj

i has a fixed value for j = 2, . . . , N and i = 1, . . . , r}

= {(p, c, ζ, a2
i , . . . , a

N
i ) : ζ ∈ C

r, aj
i fixed }.

So Pa is a copy of Cr and

R ∩ Pa = {(p, c, ζ, a)}
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where

(ζ1dx1 + aj
1dxj) ∧ · · · ∧ (ζrdx1 + ak

rdxk) 6= 0 (2)

and

{ζ1dx1 + aj
1dxj , . . . , ζrdx1 + aj

rdxj} spans CT ∗M. (3)

Let A(ζ) denote the r × N matrix (ζ, a). So the first column of A is the vector ζ
and the jth column, for j = 2, . . . , N is the vector aj

i . Let

B(ζ) =

(

ζ a
ζ̄ ā

)

be the associated 2r × N matrix.
We think of p and c as fixed and identify R ∩ Pa with

{ζ : rankA(ζ) = r and rankB(ζ) = N}. (4)

R is ample in the direction Pa provided either R ∩ Pa is empty or the convex hull of
each component of R ∩ Pa is all of Pa.

Equation (2) is equivalent to rankA = r and Equation (3) is equivalent to
rankB = N .

Lemma 2.1. Assume that R ∩ Pa is non-empty. Then ranka = r or r − 1 and

rank

(

a
ā

)

= N or N − 1.

Proof. We are assuming that for some ζ the rank of A(ζ) is r and the rank of
B(ζ) is N . Since the column space of the matrix A(ζ) = (ζ, a) has dimension r, the
column space of the matrix a has dimension r or r − 1. Similarly for B(ζ).

We proceed to prove that R ∩ Pa is ample by considering each of these four
possibilities on the ranks. We use the following simple result.

Lemma 2.2. Let Q be a real plane in Rq with codim Q ≥ 2. Then Rq − Q is
connected and its convex hull is all of R

q.

In particular, the lemma applies to the span of r − 1 complex vectors in Cr.
Thus the complement of a plane of (complex) dimension r − 1 in Cr is ample but the
complement of a plane of dimension r − 1 in Rr is not. This is the reason that the
(false) analogue of results such as Theorem 1.2 cannot be proved in this way.

1. ranka = r and rank

(

a
a

)

= N

Here R ∩ Pa = Pa and so R is ample in the direction Pa.

2. ranka = r − 1 and rank

(

a
a

)

= N

Here R ∩ Pa = {ζ : ζ /∈ Colspace(a)} and this space is connected. Its convex
hull is Pa. Let A(ζ : a) and A(z : a) both be in R∩Pa (using the identification
(4)). Thus ζ and z are each independent of the column vectors of B. Now B
defines, via its columns, a complex hyperplane in Cr and ζ and z are points
of Cr which do not lie on this plane. Clearly, there is a path which connects
ζ and z and avoids the plane.
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3. ranka = r and rank

(

a
a

)

= N − 1

Now we have

R ∩ Pa =

{

ζ :

(

ζ

ζ

)

/∈ Colspace

(

a
a

) }

(5)

= C
r − spanR Colspace(a). (6)

Again, this is an ample set.

4. ranka = r − 1 and rank

(

a
a

)

= N − 1

It is easy to see that in this case, ζ ∈ R ∩ Pa if and only if ζ /∈ Col(a). Thus
R ∩ Pa is ample.

This covers all cases.

R is an ample relation. Since it is clearly open, we have that all forms of the
h-principle hold. In particular, the Claim is established. More explicitly, using local
coordinates we write θi = aj

idxj . Let G : M → R ⊂ J1(M, X) be given by

G(p) = (p, 0, aj
i ).

G is a formal solution (in the sense of Gromov, see [7], page 56) and so, by the h-
principle, G is homotopic to a genuine solution. That is, there exists F : M → R ⊂
J1(M, X) of the form

F (p) = (p, F1(p), . . . , Fr(p), dF1(p), . . . , dFr(p))

and, since F maps into R, at each p ∈ M we have

dF1 ∧ · · · ∧ dFr 6= 0 and {dF1, . . . , dFr} spans CT ∗M.

Further, by the C0-dense version of the h-principle, for any given ǫ > 0, the homotopy
may be chosen to satisfy

max
p∈M

|F (p)| < ǫ.

As we show in the next section, the h-principle does not hold for complex structures.
That is, the h-principle may not be used, as it is used above, to prove that if M2n

admits a complex bundle B with B ⊕B = CTM and CTM/B trivial then M admits
an involutive bundle B1 with B1 ⊕ B1 = CTM . However, it may be used to prove
that if M admits a real bundle B with TM/B trivial, then M admits a real involutive
bundle B1 with the same rank as that of B. Hence there is a foliation of M with
tangent bundle B1. This is an exercise on page 106 of [11]. (This is actually somewhat
different than what we have done above, since the foliation cannot be produced by a
map into some Rn.)

3. Complex structures. We have seen that if

CTM2n+k = A ⊕ B

with A trivial and of rank n + k, and B ∩B = {0}, then M has a generic immersion.
This immersion induces a CR structure. The one-forms which annihilate B are de-
formed into exact one-forms. These one-forms annihilate some other bundle B1 and,
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because of exactness, B1 is involutive. That is, if B is an almost CR structure and
CTM/B is trivial, then B may be deformed to a CR structure.

Recall that we have always assumed k ≥ 1. What if k = 0? Then

CTM = A ⊕ B.

where we may take A = B. So the assumption that CTM/B is trivial implies that
B is trivial which then implies that TM is trivial. We have this question: Let M be
parallelizable and let B be a trivial bundle which defines an almost complex structure.
Does it follow that B may be deformed to a complex structure?

It is easy to see where the proof of our claim breaks down in this context. In
fact, it is not only the proof which fails: as was pointed out to the authors by L.
Lempert and P. Wong, these conditions on M do not imply that M admits a complex
structure. There are parallelizable four dimensional manifolds which do not admit
any complex structures (Yau [19]). We want to indicate where the proof of the claim
breaks down. It is enough to exhibit some Pa for which R ∩ Pa is not ample. To do
this, let

a =

(

1 0 i
0 1 0

)

.

Then

A =

(

ζ1 1 0 i
ζ2 0 1 0

)

and rank A = 2 for all ζ. We have

B =









ζ1 1 0 i
ζ2 0 1 0

ζ1 1 0 −i

ζ2 0 1 0









.

So R ∩ Pa = {ζ : rank B = 4}. Let ζ1 = a + ib. Subtract a times the second column
and b times the fourth column from the first column to get









0 1 0 i
ζ2 0 1 0
0 1 0 −i

ζ2 0 1 0









.

This matrix, and hence also B, has rank four if and only if Im ζ2 6= 0. Thus, in real
coordinates

R ∩ Pa = {(x, y, u, v) : v 6= 0}

and so consists of two connected components. The convex hull of either one of these
two components is not all of Pa. So R is not ample.

4. Manifolds admitting totally real immersions and embeddings into

CN . For the convenience of readers, we survey some results concerning the existence
of totally real immersions of a smooth N -manifold M into CN , as well as the more
delicate question of the existence of totally real embeddings into CN . These results
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were largely obtained during the 1980’s. Our coverage is regretably selective. The
most complete studies of these questions were made by F. Forstnerič [9] and M. Audin
[3], and rely heavily on work by M. Gromov in the 1970’s.

If MN admits a totally real immersion into CN , then the complexified tangent
bundle CTM is a trivial complex N -plane bundle. Applying Theorem 1.2 with B = 0
(a case covered by Gromov’s work in the 1970’s), the triviality of CTM implies the
existence of such an immersion. This applies whenever the tangent bundle TM is
stably trivial.

Indeed, T. Duchamp [6] has given a K-theoretic classification of totally real im-
mersions into CN . Assuming that one such immersion exists, he establishes a bijection
between regular homotopy classes of totally real immersions of MN into CN and the
K-theory group K1(M) (which can be defined as homotopy classes of continuous maps
from M to the infinite unitary group U).

Knowing that all spheres SN admit totally real immersions into CN , it is next
interesting to examine the real projective spaces RPN . Using the known K-theory of
real projective spaces, one shows easily that the complexified tangent bundle of RPN

is nontrivial for N 6= 1, 3, 7. Since RP1 ≈ S1, RP3 ≈ SO(3), and RP7 are parallelizable
(use Cayley number for the latter), each of them admits a totally real immersion.

If MN admits a totally real immersion into CN , the triviality of CTM implies that
TM ⊕TM is also a trivial real bundle, and so the squares of all Stiefel-Whitney class
of M vanish (Audin [2]). L. Smith and R. Stong [16] have examined the “exotic”
cobordism theory based on compact manifolds M for which CTM is trivial, and
concluded that the resulting cobordism classes form a polynomial ring

Z/2 [z5, z9, z11, . . .]

on odd dimensional generators zk = [Mk] for all odd dimensions so that k + 1 is not
a power of 2.

As is conventional, [Mk] denotes the cobordism class of a k-dimensional manifold
Mk. The product of cobordism classes is induced by the Cartesian product of man-
ifolds, and the sum is induced by disjoint union. There is a single generator for the
cobordism ring in each of the odd dimensions indicated above. To establish that a
manifold represents a nonzero cobordism class, it is sufficient to show that CTM is
trivial and that some Stiefel-Whitney number is nonzero. The cobordism class of a
manifold Mk is a generator if the Stiefel-Whitney number sk[Mk] is nonzero, where
sk is the polynomial in the Stiefel-Whitney classes wi that equals the sum of kth pow-
ers of variables x1, . . . , xk when each wi is written as the ith elementary symmetric
polynomial of these variables.

Since the 5-manifold SU(3)/SO(3), commonly known as the Wu manifold, admits
a totally real embedding into C5 (Audin [3], Prop. 0.8), and w2w3 6= 0 ([13], p. 393),
one can take this homogeneous space as a representative of z5. Indeed, an exploration
of the problem of deciding which homogeneous spaces SU(n)/SO(n) admit totally real
embeddings for n ≥ 3 has been carried out, based on the results of Audin [3]. One
needs to work out some elementary properties of the mod 2 cohomology ring and the
second Stiefel-Whitney class of the tangent bundle for SU(n)/SO(n). The conclusion
is that for n ≥ 3, a totally real embedding exists in the majority of cases; namely, the
only cases in which this is not assured (but might still exist) are when

n = 8, n ≡ 0 (mod 16), and n ≡ −1 (mod 8).
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In the case n ≡ 8 (mod 16) with n > 8, so that n = 16l + 8, SU(n)/SO(n) has
dimension 8[4(2l + 1)2 + l] + 3, and one needs to know that 4(2l + 1)2 + l is not a
power of 2 in order to apply Audin [3], Thm. 0.5(c); we thank R. E. Stong for proving
that this is true for l > 0, by an argument based on Pell’s equation.

Let MN admit a totally real embedding π : MN → CN , and denote by J the
standard complex structure on TC

N . Then TM ⊕JTM = π∗TC
N , so we can identify

the normal bundle of M in CN with JTM. Since J maps TM isomorphically onto
JTM, the normal bundle to M in CN is isomorphic to the tangent bundle TM. Now
assume that M is compact and oriented; it then follows that the Euler class of the
normal bundle to M in CN is zero (Milnor and Stasheff [15], p. 120), and so the
Euler class e(TM) must vanish. Hence, if MN is compact and oriented and admits
a totally real embedding into CN , then the Euler characteristic χ(M) must vanish.
This argument is due to Wells [18].

Which spheres SN admit totally real embeddings? Since χ(SN ) = 2 for even N,
we restrict attention to odd dimensions. Of course, S1 is a totally real submanifold of
C. The first challenging case is S3, for which an explicit totally real embedding into
C3 was found by Ahern and Rudin [1].

Turning to odd spheres with N > 3, Gromov ([11], p. 193) outlined a proof that
no totally real embedding SN → CN exists. A detailed argument has been given
by Stout and Zame [17] in the case of S7; they rule out other odd spheres by citing
Kervaire’s result [12] that any embedding of SN in CN has trivial normal bundle, so
also trivial tangent bundle, which forces N to be 1, 3, or 7.

As was the case for totally real immersions, it is also interesting to examine totally
real embeddings of real projective spaces RPN . Only RP1 ≈ S1, RP3 ≈ SO(3), and
RP7 admit totally real immersions, so the challenges remaining are posed by RP3 and
RP7. For the case of RP3, Forstnerič [8] produced an explicit totally real embedding
into C3, and then went on in [9] (based on Gromov [10]) to show that every compact
orientable 3-manifold M3 admits a totally real embedding into C3.

The case of RP7 was treated by Audin [3], as part of a thorough and wide-
ranging study of Lagrangian immersions and totally real embeddings (Lagrangian
immersions are special cases of totally real immersions; if one exists so does the other.
But a manifold may admit a totally real embedding without admitting a Lagrangian
embedding.) Audin shows that a totally real embedding RP7 → C7 does indeed exist,
as follows. It has been noted that RP7 is parallelizable. Hence there is a totally real
immersion π : RP7 → C7, which wecan assume to be a Lagrangian immersion. Let
d(π) ∈ Z/2 be the number (taken mod 2) of double points of an approximation to π
with normal crossings; the vanishing of d(π) is a necessary and sufficient condition for
π to be regularly homotopic to an embedding. By Theorem 1.2 of Forstnerič [9], it
follows from the vanishing of d(π) that there is a totally real embedding of RP7 into C7.
To establish that d(π) = 0, Audin [3] Theorem 0.5 (a) proves that d(π) = χ̂Z/2(M),
where for an odd dimensional compact manifold M with dimM = 2k + 1, χ̂Z/2(M)
denotes the Kervaire semi-characteristic ([14])

χ̂Z/2(M) =

k
∑

i=0

dimHi(M ; Z/2) mod 2.

It therefore suffices to verify (as one does immediately) that χ̂Z/2(RP7) = 0.
Finally we state several of Audin’s results from the introduction of [3] in full

generality:
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1. If MN is a compact connected orientable manifold of even dimension and
M admits a totally real immersion into CN , then M admits a totally real
embedding into CN if and only if χ(M) vanishes.

2. If MN is a compact connected nonorientable manifold of even dimension and
M admits a totally real immersion into C

N , then M admits a totally real
embedding into CN if and only if χ(M) ≡ 0 mod 4.

3. If MN is a compact connected orientable manifold of dimension N = 4k +
1(k ≥ 1) and M admits a totally real immersion into CN , then M admits a
totally real embedding into CN if and only if χ̂Z/2(M) ∈ Z/2 vanishes.

One will find further results (and a wide selection of arguments) in Audin’s paper,
and in several other papers, including results stated in terms of regular homotopy of
totally real immersions. It is our hope that some of the results collected here will
point the way to more general results for generic immersions and embeddings.

5. Open Questions.

1. Here are two natural classes of problems for compact orientable manifolds.
One is to distinguish those manifolds that admit totally real embeddings
from those that admit only totally real immersions. Many cases of this
problem have been settled (see the previous section), but others remain. The
second is to extend to generic embeddings (or immersions) results that hold
for totally real embeddings (or immersions). As an example of the first class
of problems, consider the fact that Wells [18] showed that among compact
orientable manifolds only those with zero Euler characteristic can have generic
embeddings. (Thus the torus is the only 2-dimensional compact orientable
manifold with a totally real embedding into C2. But, as we have seen in
Corollary 1, all 2-dimensional compact orientable manifolds have totally real
immersions into C2.) Wells’ result of course does not give any information
about odd dimensional manifolds. For dimension n = 4k + 1, Audin [3]
showed that the Kervaire semi-characteristic must be zero to have a totally
real embedding. This leaves open the more delicate case of n = 4k+3; Audin
[3] gives partial result in this case, assuming that M is a Spin manifold of
dimension 8k + 3. Sometimes if M has a totally real immersion it also has a
totally real embedding. So, for instance, if M7 has a totally real immersion
into C7, must it also have a totally real embedding? In general the answer
is no. This follows from the well understood distinction between embeddings
and immersions for spheres: Sn has a totally real immersion into C

n for each
n (as above) but only S1 and S3 have totally real embeddings (Gromov [11],
p. 193, Ahern-Rudin [1], Stout-Zame [17]). As an example of the second class
of questions one could ask if every M5 which admits an embedding into C4

and satisfies the necessary condition for generic immersions given by Theorem
1.2 has a generic embedding into C4 or if the Kervaire semi-characteristic is
still restricted.

2. Another type of question starts with the observation that generic means each
fiber of TM has only a complex subspace of the smallest possible rank. What
if we ask for larger subspaces? Let m, N, l be integers with 0 ≤ m−N ≤ l ≤
m. When does there exist an immersion

Φ : Mm → C
N

for which rankΦ∗CTM ∩ T 0,1 = l? For l = m − N , we are seeking a generic
immersion. But for l = m we would be seeking a complex submanifold and
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so we would fail unless M admits a Stein complex structure. So an obvious
necessary condition would be that M is orientable and noncompact. Or
one could drop the requirement the Φ is an immersion while keeping that
Φ∗CTM ∩ T 0,1 has constant rank.

3. Questions about CR structures might be easier than the corresponding ones
about complex structures, in analogy with the observation that the proof of
our Claim does not hold for complex structures.
(a) What manifolds have almost CR structures?

CTMN has sub-bundles of all ranks (and trivial subbundles of all ranks
less than or equal to N), in view of the remark following the proof
of Lemma 1.2. Let B have rank r ≤ N . What is the obstruction to
deforming B to obtain B ∩B = {0}? (For N = 2n and rankB = n, this
is the question of which manifolds admit an almost complex structure.)
This can be reformulated as an abstract bundle question. Let A be a
complex bundle over M and let J be a fiberwise involution J : A → A.
Assume that the fixed point set of J is a subbundle C. Now let B be any
subbundle of A. When can B be deformed through sub-bundles so that
B ∩ C becomes only the zero section? The relation to CR structures is
when A = CTM , J is conjugation, and C = TM .

(b) Assume M has an almost CR structure. What is the obstruction to
deforming it to a CR structure?
We have seen in Corollary 4 that CTM/B trivial is a sufficient condition.
But maybe there is a much more general condition, perhaps just that M
is open. Here is a related question: Drop the restriction that B∩B = {0}
and ask if B can be deformed to an involutive sub-bundle. Again, this
is always possible when CTM/B is trivial and we seek more general
conditions. Bott’s topological obstruction for foliations will play a role
here ([5]).

(c) On the subject of deformations of CR structures: Can any C∞ CR
structure be deformed to a real analytic CR structure? The CR bun-
dle B, thought of as an n-plane distribution can be deformed to a Cω

distribution, but how can we keep the Frobenius condition?
(d) Forstnerič proved in [9] that if a totally real immersion is regularly ho-

motopic to an embedding, then it is regularly homotopic to a totally
real embedding. The proof uses Whitney’s study of n-dimensional man-
ifolds in R2n. Is there an analogous result for generic immersions?
The interesting point would be to find additional conditions on the
immersion to allow something like Whitney’s methods to apply when
dimM > codim M .
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