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NON-UNIFORM CONTINUITY IN H1 OF THE SOLUTION MAP

OF THE CH EQUATION∗

A. ALEXANDROU HIMONAS† , GERARD MISIO LEK‡ , AND GUSTAVO PONCE§

Abstract. We show that the solution map of the Camassa-Holm equation is not uniformly
continuous in the initial data in the Sobolev space of order one on the torus and the real line. The
proof relies on a construction of non-smooth travelling wave solutions. We also extend to all H

s an
earlier result known to hold for peakons.
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1. Introduction and statement of the result. We study the Cauchy problem
for the nonlinearly dispersive Camassa-Holm equation

∂tu + u∂xu + (1 − ∂2
x)−1∂x

(
u2 +

1

2
(∂xu)2

)
= 0,

u(0) = u0, t ≥ 0, x ∈ T or R.
(1.1)

This equation appeared initially in the context of hereditary symmetries studied by
Fuchssteiner and Fokas [FF]. However, it was first written explicitly as a water wave
equation by Camassa and Holm [CH], who also studied its “peakon” solutions (see
formula (1.2)).

In order to put our work in context it will be helpful to summarize the relevant
known results concerning local well-posedness of this equation. In the periodic case
the Cauchy problem (1.1) is locally well-posed in the Sobolev space Hs(T) if s > 3/2
(see for example [HM1], Danchin [D] or [Mi]), while if 1 ≤ s ≤ 3/2 then it is locally
well-posed in Hs(T) ∩ Lip(T) (see DeLellis, Kappeler and Topalov [DKT]) and the
solution u depends continuously on initial data u0 in the Hs-norm. Furthermore, it
is also known that the problem (1.1) is locally well-posed in C1(T) with solutions
depending continuously on the data in the C1-norm (see [Mi]).

Similarly, if s > 3/2 then the non-periodic Cauchy problem (1.1) is locally well-
posed in Hs(R) with solutions depending continuously on initial data (see Constantin
and Escher [CoE], Li and Olver [LO], Rodriguez-Blanco [R], [D] or a survey in Molinet
[Mo]).

On the other hand, it was recently shown in [HM3] that for s ≥ 2 the data-to-
solution map u0 → u of (1.1) is not uniformly continuous from any bounded set in
Hs(T) into C([0, T ], Hs(T)). Therefore, in this Sobolev range continuous dependence
on the data is the best one can expect. A key step in the proof of that result was a
construction of a sequence of smooth travelling wave solutions of the form u(x, t) =
f(x − t) depending on two parameters ε and δ, which were related to the maximum
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and the amplitude of the solution. This construction was motivated by the fact that
the CH equation has only one scaling parameter (namely if u = u(x, t) is a solution
then uc = cu(x, ct) is also a solution, for any constant c). An earlier result of [HM1]
used this simple scaling and the less regular “peakon” solution

(1.2) u(x, t) = ce−|x−ct|

as well as its periodic analogue, to produce two sequences of solutions in Hs with
s < 3/2, whose distance in Hs approached zero at the initial time while growing to
infinity at any other time but which could not be confined to any ball in Hs. In
fact, in Section 2 we will show that the assumption s < 3/2 can be dropped once
the “peakon” solution is replaced with a suitable smooth travelling wave solution. As
already mentioned, the result of [HM3] used sequences of smooth solutions. It turns
out however that such sequences cannot work in H1. This will also be explained in
Section 2.

In this paper we will construct two appropriate sequences of non-smooth solutions
and use them to provide a straightforward proof that the data-to-solution map of the
CH equation is not uniformly continuous in the space H1 on the torus as well as on
the real line.

Theorem 1.1. In both periodic and non-periodic cases the data-to-solution map
uo → u of the Camassa-Holm equation is not uniformly continuous from any bounded
set in H1 into C([0, T ], H1).

An argument for the periodic case can be found in Byers [B]. The proof of
Theorem 1.1 given here is more transparent and is easily extended to the case of the
real line.

A few more remarks are in order. First, observe that a result of this type sets
a restriction on the possible way of obtaining local well posedness results. More
precisely, the fact that the data-to-solution map is not uniformly continuous on a
Banach space X tells us that the local wellposedness in X cannot be established by
a solely contraction principle argument.

In [KPV2], two parameter families of explicit solutions of the KdV, its modified
version (mKdV) and the semi-linear Schrodinger equations were used to prove that
the data-to-solution map is not uniformly continuous in Sobolev spaces Hs(R) with
indices (s < −3/4 for KdV, s < 1/4 for mKdV and s < 0 for 1-D cubic NLS) which
are larger than the value suggested by the scaling argument (s = −3/2 for KdV,
s = −1/2 for mKdV and s = −1/2 for the 1-D cubic NLS). In particular, this result
showed that the “strong” local well posedness available for these equations (see [CW],
[KPV1], and [KPV2] and references therein) are the best possible in the Sobolev scale.

In [MST], Molinet, Saut and Tzvetkov showed that for the data-to-solution map
the Cauchy problem for the Benjamin–Ono equation fails to be smooth in any Sobolev
space Hs(R), s ∈ R. As it was remarked above, this implies that the local wellposed-
ness in those spaces cannot be obtained by a direct iteration scheme based on the
Duhamel formula.

Finally, we should mention that equation (1.1) exhibits many other remarkable
properties. For example, it is known to admit solutions that blow up in finite time,
see McKean [Mc]. For a result on the stability of the peakon solution in H1 we
refer to Constantin and Strauss [CS]. Moreover, recent results on unique continuation
properties of (1.1) are proved in [HMPZ]. Many other results and references can be
found in the survey article [Mo].
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The remainder of the paper is structured as follows. In the next section we
summarize the construction of smooth travelling wave solutions and generalize a result
from [HM1]. In section 3 we construct non-smooth traveling wave solutions and prove
Theorem 1.1 in the periodic case. The last section contains the proof in the non-
periodic case.

2. Smooth traveling waves and dependence in Hs. We begin by rewritting
the CH equation in its local form

(2.1) ∂tu − ∂t∂
2
xu + 3u∂xu − 2∂xu∂2

xu − u∂3
xu = 0.

Looking for traveling wave solutions of the form

u(x, t) = f(x − t)

we find that f must satisfy the differential equation

(2.2) (1 − f)f ′2 = −f3 + f2 + af + b, a, b ∈ R.

Substituting

(2.3) y = 1 − f

and choosing the parameters a, b appropriately we obtain

(2.4) (y′)2 =
(δ + ε − y)(y − δ)(2 − 2δ − ε − y)

y
.

In fact, equation (2.4) admits a non-constant solution of period 2ℓ, for some ℓ > 0,
which satisfies the following second order initial value problem

(2.5) y′′ = y − 1 +
δ(δ + ε)(2 − 2δ − ε)

2y2
, y(0) = δ, y′(0) = 0.

We summarize this in the following lemma, whose proof can be found in [HM3].

Lemma 2.1. For any 0 < ε, δ < 1/5 there exist a positive number ℓ = ℓ(ε, δ) and
an even 2ℓ-periodic smooth function y = y(x) which solves the initial value problem
(2.5) and equation (2.4). Moreover, the function y satisfies the bounds (see Figure 1)

δ ≤ y(x) ≤ δ + ε

and the function u(x, t) = f(x−t), where f(x) = 1−y(x), is a travelling wave solution
of the CH equation. Finally, the half-period ℓ satisfies

ℓ =

∫ δ+ε

δ

√
y

(δ + ε − y)(y − δ)(2 − 2δ − ε − y)
dy ≃

√
δ + ε.

y=1-f

x
0

ll- δ+ε

δ+ε

δ

Fig. 1
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For a given positive integer n choosing δ and ε such that

π

n
= ℓ ≃

√
δ + ε

we obtain a 2π periodic solution with frequency equal to n.
It is also worth pointing out that these traveling wave solutions are in fact globally

analytic functions in both variables x and t, since the solution y to the initial value
problem (2.5) is an analytic function on the torus. Using a method of Baouendi and
Goulaouic [BG] it was shown in [HM2] that solutions to the CH equation with analytic
initial data are globally analytic in x and locally analytic in t.

Next, with the help of one of the smooth traveling wave solutions described in
Lemma 2.1 we can now generalize Theorem 1 in [HM1] so that it holds for arbitrary
Sobolev index s.

Theorem 2.2. There exist two sequences of smooth traveling wave solutions such
that at time t = 0 their distance in Hs-norm goes to zero, while for any t > 0 the
distance goes to infinity.

Proof. For fixed δ and ε let f be the solution constructed in Lemma 2.1. Then
uc(x, t) = cf(x− ct) is a smooth traveling wave solution of the CH equation (also, see
Lenells [L] for a similar construction of such solutions). A simple computation shows

ûc(ξ, t) =
c√
2π

∫ 2π

0

e−ixξf(x − ct)dx = ce−ictξf̂(ξ).

Therefore, for any positive constants c1 and c2 we have

‖uc2
(·, t) − uc1

(·, t)‖2
Hs =

‖uc1
(·, 0) − uc2

(·, 0)‖2
Hs + 2c1c2

∑

ξǫZ

(
1 + ξ2

)s ∣∣f̂(ξ)
∣∣2(1 − cos (c2 − c1)tξ

)

and if we choose c1 = c1(n) and c2 = c2(n) such that

c2 − c1 =
1

n

then at t = 0 we have

‖uc1
(·, 0) − uc2

(·, 0)‖Hs =
1

n
‖f‖Hs −→ 0, as n → ∞.

Next, define

g(n) =
∑

ξǫZ

(
1 + ξ2

)s ∣∣f̂(ξ)
∣∣2

(
1 − cos

tξ

n

)

and note that g(n) −→ 0 as n → ∞ by the dominated convergence theorem. Choosing
for each n, such that g(n) 6= 0, the constant

c1(n) =
1

g(n)
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and substituting into the expression for the Hs norm of the difference we get

∥∥uc2
(·, t) − uc1

(·, t)
∥∥2

Hs
≥ 2

1

g(n)

(
1

n
+

1

g(n)

)
g(n) −→ ∞, as n → ∞,

for any positive t. It is clear that with the choices of the constants made above the
Hs norms of uc1

and uc2
must grow without bound.

As already mentioned in the introduction, the constructions in [HM3] lead to
sequences of smooth solutions which yield a non-uniform continuity of the data-to-
solution map u0 → u on bounded subsets of Hs whenever s ≥ 2. Next, we show that
such sequences cannot work in H1. For this it suffices to show the following

Proposition 2.3. For any smooth travelling wave solution u(x, t) = f(x − t),
where f is as in Lemma 2.1, the norm ‖f ′‖L2 → 0 as the parameters δ and ε approach
zero.

Proof. Given any δ and ε in (0, 1/5) let y = 1 − f be the corresponding solution
to the second order differential equation in (2.5). Integrating by parts and using (2.5)
we obtain

‖y′‖2
L2(0,2π) =

∫ 2π

0

y′(x)y′(x)dx = −
∫ 2π

0

y(x)y′′(x)dx

= −
∫ 2π

0

y(x)
(
y(x) − 1 +

δ(δ + ε)(2 − 2δ − ε)

2y(x)2

)
dx

=

∫ 2π

0

y(x)dx −
∫ 2π

0

y2(x)dx − 1

2
δ(δ + ε)(2 − 2δ − ε)

∫ 2π

0

1

y(x)
dx.

Since δ ≤ y ≤ δ + ε from the calculation above we get

‖y′‖2
L2(0,2π) ≤ 2π(δ + ε),

showing that it is impossible to obtain a positive lower bound on ‖y′‖L2 which is
independent of δ and ε when these two parameters go to zero.

Now, choosing the sequence as in [HM3], that is

un(x, t)
.
= fn(x − t) and vn(x, t)

.
= cnfn(x − cnt),

where cn = 1 + 1/n, and computing the H1 norm of their difference we have

‖vn(t0) − un(t0)‖2
H1(T) . (δ + ε)2 +

1

n2
−→ 0

as δ, ε go to zero and (consequently) n goes to infinity.

3. Non-smooth waves and Non-uniform dependence in H1(T). In this
section we prove Theorem 1.1 in the periodic case. Using the same substitution
y = 1 − f of the dependent variable in equation (2.2) but choosing the parameters a
and b differently (to ensure an infinite slope of the graph at one of the two endpoints
of the half-period) we obtain the differential equation

(3.1) y′2 =
(ε − y)(β + y)(2 + β − ε − y)

y
,

where 0 < ε < 1/5 and β is any fixed constant in the interval (0, 1/5].
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The next result provides the non-smooth analogue of Lemma 2.1.

Lemma 3.1. For any 0 < ε < 1/5 there is a 2ℓ-periodic, even and continuous
function 0 ≤ y(x) ≤ ε solving (3.1) such that y ∈ C∞(R r 2ℓ Z) and y′(ℓ) = 0,
y′(0±) = ±∞ (see Figure 2). Moreover

‖y′‖2
L2(−ℓ,ℓ) ≃ ε,

where

ℓ =

∫ ε

0

√
y

(ε − y)(β + y)(2 + β − ε − y)
dy ≃ ε.

f=1-y

x
0

ll- ε

1− ε

1

Fig. 2

Proof. To construct y = y(x), first pick any 0 < y0 < ε and apply the fundamental
ODE theorem to equation(3.1) with the initial condition y(x0) = y0. Next, translating
and reflecting with respect to the y-axis we obtain the solution y over its basic period
(−ℓ, ℓ). Extending periodically to the whole line gives the solution with the desired
properties.

Next, from equation (3.1) we have

ℓ =

∫ ε

0

√
y

(ε − y)(β + y)(2 + β − ε − y)
dy

and therefore

(3.2) ℓ ≤
√

ε

β

∫ ε

0

dy√
ε − y

≃ 2
ε√
β

.

On the other hand, we similarly get

(3.3) ℓ ≥ 1√
3
√

β + ε

∫ ε

0

√
y dy√
ε − y

≥ ε√
3
√

β + ε
.

These two inequalities imply that ℓ ≃ ε, since β > 0 is fixed (for simplicity, in what
follows, we will assume β = 1/5).
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To estimate the L2-norm of the derivative we have

‖y′‖2
L2(−ℓ,ℓ) = 2‖y′‖2

L2(0,ℓ) = 2

∫ ℓ

0

y′(x) dy(x)

= 2

∫ ε

0

√
(ε − y)(β + y)(2 + β − ε − y)

y
dy

≤ 2
√

2
√

β + ε

∫ ε

0

√
ε − y

y
dy ≤ 8ε

√
β + ε.

(3.4)

Estimating from below we obtain

(3.5) ‖y′‖2
L2(−ℓ,ℓ) ≥ 2

√
β

∫ ε

0

√
ε − y

y
dy ≥ ε

√
β.

This completes the proof.

Construction of non-smooth solutions un and vn. Let fn = 1 − yn be the
2ℓ = 2π

n
periodic non-smooth solution constructed in Lemma 3.1, where the frequency

n satisfies

n ≃ 1/ε.

Define the following two sequences of solutions

un(x, t) = fn(x − t) and vn(x, t) = cnfn(x − cnt),

and for any fixed t0 > 0 choose

cn = 1 +
π

nt0
.

Now we are ready to show boundedness of these solutions. From Lemma 3.1 we have
‖y′

n‖2
L2(−π

n
, π

n
) ≃ 1/n. It follows that

‖vn(t)‖2
H1(−π,π) = ‖cnfn‖2

H1(−π,π) . 1 + c2
n‖yn‖2

H1(−π,π)

. 1 + ‖y′
n‖2

L2(−π,π) . 1 + n‖y′
n‖2

L2(−π

n
, π

n
)

. 1 + n
1

n
= 2.

Furthermore, with the choices made above we now easily compute

‖vn(0) − un(0)‖2
H1(T) = (cn − 1)2‖fn‖2

H1 ≃ 1

(nt0)2
→ 0,

as n → ∞.
On the other hand, for any positive time t0, we have

‖vn(t0) − un(t0)‖2
H1(T) =

∥∥∥
(
1 +

π

nt0

)
fn

(
· −t0 −

π

n

)
− fn(· − t0)

∥∥∥
2

H1(T)

=
∥∥∥
(
1 +

π

nt0

)
fn

(
· −π

n

)
− fn(·)

∥∥∥
2

H1(T)

&
∥∥∥
(
1 +

π

nt0

)
f ′

n

(
· −π

n

)
− f ′

n(·)
∥∥∥

2

L2(T)

& ‖f ′
n(·)‖2

L2(T) ≃ 1.
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The last estimate from below in these inequalities was possible because the function
f has been constructed to satisfy the crucial property

f ′
n(x) · f ′

n(x − π

n
) ≤ 0,

as shown in Figure 3.

f(x)

x
0

ll- ε

1− ε

1

Fig. 3

This completes the proof ot Theorem 1.1 in the periodic case.

4. Non-uniform dependence in H1(R). Finally, we turn to the non-periodic
case. The main idea is to exploit the periodic construction of the previous section.
Starting with the periodic solution we modify it outside the interval [−2π, 2π] to look
like a “peakon” solution. More precisely, for each ε = εn we extend the periodic
function fn given in Lemma 3.1 as follows

gn(x) =

{
fn(x), if |x| ≤ 2π

e2π−|x|, if |x| > 2π.

For n = 3, the graph of gn is shown in Figure 4 below.

f (x)

x
0 l ε 2π

1

1− ε

−2π

n

Fig. 4

One can check that y = 1 − gn satisfies the equation

(4.1) (y′)2 =
(ε − y)(β + y)(2 + β − ε − y)

y
,
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in the interval (−2π, 2π) and the equation

(4.2) (y′)2 = (1 − y)2

in the intervals |x| > 2π, where as before 0 < ε < 1/5 and β = 1/5. Note that each
gn is a continuous function on R, which is smooth except at finitely many points {xk}
and is a classical solution in R r {xk}.

The next lemma follows from the definition of gn and Lemma 3.1.

Lemma 4.1. Let 0 < ε < 1/5. For any sufficiently large positive integer n = n(ε)
there is a continuous weak solution gn to the differential equations (4.1) and (4.2)
with 0 ≤ gn(x) ≤ 1 and such that

‖g′n‖2
L2(R) ≃ 1,

and gn ∈ C∞(R r {xk}).

Given gn as in Lemma 4.1 we again define the following two sequences of weak
solutions to the CH equation

un(x, t) = gn(x − t) and vn(x, t) = cngn(x − cnt)

and, for any fixed t0 > 0, we choose cn = 1 +
π

nt0
.

To see that that the solution defined above stay bounded we estimate as follows

‖vn(t)‖2
H1(R) = ‖cngn‖2

H1(R)

= c2
n‖fn‖2

H1(−2π,2π) + 2c2
ne4π

∫

|x|>2π

e−2|x|dx

. c2
n ≃ 1.

It remains to estimate the distance between the two sequences. At t = 0, we have

‖vn(0) − un(0)‖H1(R) = (cn − 1)2‖gn‖2
H1 ≃ 1

(nt0)2
→ 0.

On the other hand at any time t0 > 0 we have

‖vn(t0) − un(t0)‖2
H1(R) =

∥∥∥
(
1 +

π

nt0

)
gn

(
· −t0 −

π

n

)
− gn(· − t0)

∥∥∥
2

H1(R)

=
∥∥∥
(
1 +

π

nt0

)
gn

(
· −π

n

)
− gn(·)

∥∥∥
2

H1(R)

&
∥∥∥
(
1 +

π

nt0

)
gn

(
· −π

n

)
− gn(·)

∥∥∥
2

H1(−π,π)

&
∥∥∥
(
1 +

π

nt0

)
f ′

n

(
· −π

n

)
− f ′

n(·)
∥∥∥

2

L2(−π,π)

& ‖f ′
n(·)‖2

L2(−π,π) ≃ 1,

since f ′
n(x) · f ′

n(x − π
n
) ≤ 0. The proof of Theorem 1.1 is complete.
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