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1. Introduction. This Note is a continuation of the paper “Exceptional Blowup
Solutions to Quasilinear Wave Equations” [1]. In this previous paper, we constructed,
for some quasilinear wave equations, solutions blowing up at the origin like t−2, which
we considered to be an exceptional rate (the standard one in this context being t−1, see
[6]). We were encouraged by questions of the Referee (whom we thank) to investigate
more precisely the stability of such solutions (an issue vaguely touched upon in [1]).
It turns out that, depending on the perturbation of the Cauchy data, we can make
the singularity of the solution either disappear, or go back to the generic t−1 case.

Since this paper is dedicated to M. S. Baouendi, we are happy to underline the
similarity in spirit between previous constructions of conterexamples [7], [8], and the
present work : in both cases, the insight is obtained through a careful self-contained
construction.

2. Notation and main result. The notation and the framework is the same
as in [1]. For simplicity, we restrict our attention to n = 2, and do not handle the 1D
case (though it is straightforward). Thus the variables and dual variables are

x = (x1, x2, x3), y = x2, t = x3, ξ = (ξ1, ξ2, ξ3), η = ξ2, τ = ξ3.

We consider a quasilinear wave equation with real analytic coefficients

P (u) = Σpij(∂u)∂2
iju = 0, pij = pji, p3,3 = 1.

We denote here

∂u = (∂1u, ∂2u, ∂3u), p(∂u; ξ) = Σpij(∂u)ξiξj .

We assume given a point (∂u, ξ̄) where

p(∂u; ξ̄) = 0, (∂τp)(∂u; ξ̄) 6= 0, ξ̄1 = −1,

and the frozen operator Σpij(∂u)∂2
ij is strictly hyperbolic with respect to t. Noting

Djp = ∂(∂ju)p, we assume moreover that the given point is linearly degenerate, that is

(ξ̄.D)p(∂u; ξ̄) = 0.
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In this Note, our aim is to improve the results of [1] by constructing a family of
solutions uǫ, containing the solution constructed in [1] as u0, and such that,

i) For ǫ > 0, the solution does not blow up,
ii) For ǫ < 0, the solution blows up at time tǫ like (tǫ − t)−1.

The assumptions of our main result below are the same as those of Theorem 2.3
of [1].

Theorem. Assume that, at the given point (∂u, ξ̄), ∂ηp 6= 0, and one of the
following three quantities is not zero :

−(D2p)((ξ̄D)∂ηp + D2p) − 1/2(∂2
ηp)(ξ̄D)2p + (∂ηp)(ξ̄D)D2p,

−(D3p)((ξ̄D)∂ηp + D2p) − (D2p)((ξ̄D)∂τp + D3p)−

−(∂2
τηp)(ξ̄D)2p + (∂τp)(ξ̄D)D2p + (∂ηp)(ξ̄D)D3p,

−(D3p)((ξ̄D)∂τp + D3p) − (ξ̄D)2p + (∂τp)(ξ̄D)D3p.

Then there exist
a. A domain D defined by

−t1 ≤ t ≤ t2, x2
1 + x2

2 ≤ (R − kt)2, t1 > 0, t2 > 0, R > 0, k > 0.

We call the disk t = −t1, ||(x1, x2)|| ≤ R + kt1 the base of D.
b. A family of solutions uǫ (depending continuously on ǫ along with its derivatives),

defined for ǫ close to zero such that
i) For ǫ = 0, let

D0 = D ∩ {t < 0}.

Then u0 ∈ C1(D̄0), u0 is analytic in D̄0 away from the origin, D0 is an influence
domain of its base, and ∂2u0 blows up at the origin like (−t)−2, as explained
precisely in [1].

ii) For ǫ > 0, uǫ is defined and analytic in D,
iii) For ǫ < 0 and some tǫ < 0, let

Dǫ = D ∩ {t < tǫ}.

Then uǫ ∈ C1(D̄ǫ), uǫ is analytic in D̄ǫ away from the origin, Dǫ is an influence
domain of its base, and ∂2uǫ blows up at a point mǫ = (pǫ, tǫ), close to zero, like (tǫ −
t)−1 (more precisely, mǫ is a geometric blowup point of cusp type, in the terminology
of [2], [3]).

Remark 1. We cannot describe which modifications of the Cauchy data on
t = −t1 lead to which singularities for the solution. What we do is show that some
modifications of the data make the singularity disappear, while some other transform
the singularity back to the generic type.

Remark 2. What we call “geometric blowup of cusp type”, or more rapidly
“generic blowup”, is indeed stable, as shown in [5] in the more general context of
quasilinear symmetric systems.

This Note is closely related to [1] : though the statements and the strategy of the
proof are understandable without [1], the actual details are based on computations of
[1], and can only be understood in connection with [1].
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3. Proof of the main result.

3.1. Outline of the strategy. We recall here the basic facts from [1], section 3,
keeping the same notation. For a broader introduction to the concepts and tools used
here, see for instance [2], [3], [4]. We introduce a change of variables Φ (depending on
a still unknown function φ)

(s, y, t) 7→ (x1 = φ(s, y, t), y, t),

and set
w(s, y, t) = u(φ(s, y, t), y, t), v(s, y, t) = (∂1u)(φ(s, y, t), y, t).

Setting
∂̄ = (0, ∂y, ∂t), φ̂ = (−1, ∂yφ, ∂tφ),

we define now
A = ws − vφs,

E = Σpij(v, wy − vφy, wt − vφt)φ̂iφ̂j ,

R = Σpij(v, wy − vφy , wt − vφt)[∂̄2
ijw − v∂̄2

ijφ − (φ̂i∂̄jv + φ̂j ∂̄iv)].

Using the formula for the first and second order derivatives of u in terms of (v, φ, w),
we see easily that

(Pu)(Φ) =
E

φs
+ R.

Hence we associate to P the blowup system on (φ, v, w)

A = 0, E = 0,R = 0.

Rotating the variables by

T = s + t, S = t − s, y = y,

the write the subsystem A = 0, E = 0 as

wT = wS − 2vφS + vλ, φT = −φS + λ,

where
λ ≡ λ(v, wy − vφy, 2(wS − vφS);−1, φy).

Using these equations, and introducing the new unknowns φS , φy, wS , wy, we can
view the blowup system as a fully nonlinear first order system in the unknowns
v, φS , φy, wS , wy , resolved with respect to the T -derivative. Our aim is to construct,
using the Cauchy-Kovalevski theorem, a family of (smooth) solutions (near the origin)
of the blowup system.

Heuristically, the construction of the family uǫ is based on a simple geometric
deformation argument which goes as follow : we will construct φ such that, very
roughly,

φs = ǫ + s2 + y2 + t2.

Then
i) For ǫ = 0, we have the exceptional blowup described in [1],
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ii) For ǫ > 0, we have no blowup at all in a fixed neighbourhood of the origin,
iii) For ǫ < 0, φs = 0 at the point Mǫ = (0, 0, tǫ = −(−ǫ)1/2) and is stricly positive

for t < tǫ.

3.2. Choice of the jets at the origin. We modify now the construction of [1]
by choosing a larger family of jet conditions at the origin. We still impose

φy = η̄, (v, wy − vφy, 2(wS − vφS)) = ∂̄u,

but we take now, for ǫ small enough (positive and negative)

λ − 2φS = ǫ.

Remark that, from Lemma 3.2 de [1], T = 0 is still non characteristic for the blowup
system. Note also that, at the origin, Λ is no longer zero, but only O(ǫ).

We choose now the values of the blocks Byy, BSy, BSS just as before for ǫ = 0, in
order to ensure that Q 6= 0. With φyy(0) = 0, we then choose successively φSy(0) and
φSS(0) to obtain from Lemma 4.1

Fy(0) = 0, FS(0) = 0,

but now of course FT need not be zero, but only O(ǫ).
For the third order jets, we proceed exactly as in 4.4.3 of [1], choosing the blocks

BSSS , BSSy, etc. to be zero ; then

φyyy(0) = 0, A = −φSyy(0) >> 0, 2φSSy(0) = −∂ηλA, φSSS = −B = −
1

2
(∂ηλ)2A.

Since, according to Lemma 4.2 of [1], second order derivatives of F involve also second
order derivatives of v, we fix for clarity, say,

vyy(0) = vSy(0) = vSS(0) = 0.

We fix now the value of A as for the case ǫ = 0. For small enough ǫ, the hessian of F
at the origin will still be positive definite.

3.3. Uniformity. Once the jets of φ, v, w are fixed as above, we solve the blowup
system taking for φ, v, w polynomials of degree respectively 3, 2, 3 with these jets. Us-
ing a precise version of the Cauchy-Kovalevski theorem (for instance that of Baouendi
and Goulaouic [9]), we see that we obtain a family of solutions defined in a fixed
neighbourhood of the origin, whose derivatives are continuous in ǫ.

Two facts remain to be proved :
i) If ǫ > 0, there is a fixed neighbourhood of 0 where F remains positive.
ii) If ǫ < 0, there is a point close to 0 where F = 0, and the corresponding solution

blows up.

4. Case ǫ > 0. This is the easy case. In fact, expanding F by Taylor up to
second order and using the fact that the hessian is uniformly positive definite in a
fixed neighbourhood of the origin, we obtain, for some C′ > 0,

F (S, y, T ) ≥ F (0) − Cǫ||(S, y, T )||+ C′(S2 + y2 + T 2), F (0) = ǫ.
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Hence F > 0 for ǫ < 4C′/C2.

5. Case ǫ < 0.

a. For given (ǫ, T ), we look first for a point where φss = φsy = 0, that is

FT − FS = 0, Fy = 0.

For ǫ = 0 and T = 0, the origin is such a point. To apply the implicit function
theorem, it is enough to check that, at the origin,

d = Fyy(FST − FSS) − FSy(FTy − FSy) 6= 0.

With the above choices of jets, we have

d = −δ + FST Fyy − FSyFTy = −2(∂ηλ)2A2 + O(A).

We can always assume that A has been already chosen so big that d 6= 0. So we have
now functions S(ǫ, T ) and y(ǫ, T ), smoothly defined near zero, such that φss = φsy = 0
at the point

M(ǫ, T ) = (S = S(ǫ, T ), y = y(ǫ, T ), T ).

b. We set now
F̃ (ǫ, T ) = F (S(ǫ, T ), y(ǫ, T ), T ),

and look for T = Tǫ such that
F̃ (ǫ, Tǫ) = 0.

Lemma 5.1.For ǫ = 0, T = 0, if we choose (vT − vS)Q > 0 and vT − vS small
enough, then

F̃TT (0, 0) > 0.

Proof. We have
F̃T (ǫ, T ) = FT + FSST + FyyT .

Since at M(ǫ, T ), FT = FS and Fy = 0, we obtain

FT = FS = (1/2)(vT − vS)Λ + ∗F,

hence
F̃T = (ST + 1)FS = (1/2)(ST + 1)(vT − vS)Λ + ∗F,

F̃TT (0) = (1/2)(ST + 1)(vT − vS)(∂T Λ + ∂SΛST + ∂yΛyT ).

Now, differentiating the identities which define S and y, we obtain

FTT − FST + ST (FTS − FSS) + yT (FTy − FSy) = 0,

FyT + ST FyS + yT Fyy = 0.

Replacing FTT , FTS , FTy using the formula of Lemma 4.2 of [1], we see that the equal-
ities are satisfied, up to some term O(vT − vS), if we take ST = 1, yT = −∂ηλ. Hence

ST = 1 + O(vT − vS), yT = −∂ηλ + O(vT − vS),
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ΛT + ST ΛS + yT Λy = Q + O(vT − vS).

This proves the claim.

Lemma 5.2.There exists, for ǫ < 0 small enough, a smooth function Tǫ =
T ((−ǫ)1/2), such that

Tǫ = −c(−ǫ)1/2 + O(ǫ), c > 0,

F̃ (ǫ, Tǫ) = 0.

Proof. Let us write the Taylor expansion of F̃ at (0, 0) :

F̃ (ǫ, T ) = F̃ (0, 0)+ǫ∂ǫF̃ (0, 0)+T F̃T (0, 0)+O(ǫ2)+O(ǫT )+(T 2/2)F̃TT (0, 0)+O(T 3).

Since

F̃ (0, 0) = 0, F̃T (0, 0) = 0, ∂ǫF̃ (0, 0) = (∂ǫF )(0, 0) + ∗FS(0, 0) + ∗Fy(0, 0) = 1,

we get
F̃ (ǫ, T ) = ǫ(1 + O(ǫ) + O(T )) + (T 2/2)F̃TT (0)(1 + O(T )).

Introducing µ = (−ǫ)1/2 and applying Morse’s Lemma, we obtain the claim, thanks
to Lemma 5.1.

We now finish the proof of the Theorem. Let Mǫ be the point

Mǫ = M(ǫ, Tǫ) = (S(ǫ, Tǫ), y(ǫ, Tǫ), Tǫ).

The t = tǫ coordinate of this point is

2t = S(ǫ, Tǫ) + Tǫ = 2Tǫ + O(ǫ),

and is negative for ǫ small enough. Consider now the set φs = F = 0 ; in a small
enough neighbourhood of the origin, it is a compact submanifold. At a point of this
submanifold where t is minimum, we necessarily have

φss = φsy = 0.

But, from the above considerations, we know that there is only one such point, namely
Mǫ. Since, for t = tǫ, φs has at Mǫ a critical point with definite positive hessian, it is
non negative then, and φs > 0 for t < tǫ. Hence the image mǫ by Φ of the point Mǫ

corresponds to a blowup point of cusp type, as usual, for the solution of the equation.
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