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FLOER COHOMOLOGY AND DISC INSTANTONS OF

LAGRANGIAN TORUS FIBERS IN FANO TORIC MANIFOLDS
∗

CHEOL-HYUN CHO
†

AND YONG-GEUN OH
‡

Abstract. In this paper, we first provide an explicit description of all holomorphic discs (“disc

instantons”) attached to Lagrangian torus fibers of arbitrary compact toric manifolds, and prove

their Fredholm regularity. Using this, we compute Fukaya-Oh-Ohta-Ono’s (FOOO’s) obstruction

(co)chains and the Floer cohomology of Lagrangian torus fibers of Fano toric manifolds. In par-

ticular specializing to the formal parameter T 2π
= e−1

, our computation verifies the folklore that

FOOO’s obstruction (co)chains correspond to the Landau-Ginzburg superpotentials under the mirror

symmetry correspondence, and also proves the prediction made by K. Hori about the Floer cohomol-

ogy of Lagrangian torus fibers of Fano toric manifolds. The latter states that the Floer cohomology

(for the parameter value T 2π
= e−1

) of all the fibers vanish except at a finite number, the Euler

characteristic of the toric manifold, of base points in the momentum polytope that are critical points

of the superpotential of the Landau-Ginzburg mirror to the toric manifold. In the latter cases, we also

prove that the Floer cohomology of the corresponding fiber is isomorphic to its singular cohomology.

We also introduce a restricted version of the Floer cohomology of Lagrangian submanifolds, which

is a priori more flexible to define in general, and which we call the adapted Floer cohomology. We

then prove that the adapted Floer cohomology of any non-singular torus fiber of Fano toric manifolds

is well-defined, invariant under the Hamiltonian isotopy, which is isomorphic to the Bott-Morse Floer

cohomology of the fiber.

Key words. Floer cohomology, Lagrangian submanifold, holomorphic disc, toric manifold,

Landau-Ginzburg model.
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1. Introduction. Floer cohomology of Lagrangian intersections was introduced

by Floer [Fl] in symplectic geometry. Since then, its construction has been further

generalized [O1] and an obstruction theory to its definition has been developed by

Fukaya-Oh-Ohta-Ono [FOOO]. It has been proven to be a powerful tool in studying

various problems in symplectic geometry (see [Fl], [O4], [Che], [P], [Se], [FOOO], [BC],

and [TY], for example). The theory itself was greatly enhanced by the advent of the

Fukaya category [Fu1] and the homological mirror symmetry proposal by Kontsevich

[Ko], and also by the open string theory of D-branes in many physics papers, among

which [HV], [H] will be the most relevant to the content of the present paper.

Even in the midst of these theoretical enhancement and successful applications

of the Floer theory, actual computation of Floer cohomology itself for specific ex-

amples remains to be a non-trivial task, especially with Z-coefficients (not just with

Z2-coefficients), except for the cases where there is no quantum contribution [Fl] or for

the case of real manifolds i.e., the fixed point sets of anti-holomorphic involutions [O2],

[FOOO]. Indeed, computation of the Floer cohomology in the presence of nontrivial

holomorphic discs requires detailed understanding of the quantum contribution of the

holomorphic discs (or the effect of “open string instantons” in the physics terminol-

ogy) to the cohomology of the Lagrangian submanifolds. In this respect, the recent
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computation [Cho1] by the junior author of the Floer cohomology of the Clifford torus

in P
n sheds some light on a general procedure of computing the Floer cohomology

“by direct calculation of disc instanton effects” in the context of A-model without

relying on the B-model calculations and the mirror symmetry correspondence, which

still remains conjectural.

In this paper, we extend this computation and compute the (adapted) Floer co-

homology of all the non-singular torus fibers of smooth Fano toric varieties equipped

with symplectic (Kähler) form subject to a convex restriction. As in [Cho1], we

will carry this out by computing the Bott-Morse version HFBM (L; J0) of the Floer

cohomology of Lagrangian submanifold L that was introduced in [FOOO]. Our com-

putation, when the Floer cohomology is twisted with the flat line bundles and the

formal parameter T is set T 2π = e−1, verifies the prediction made by Hori-Vafa [HV]

for the Lagrangian torus fibers of Fano toric manifolds based on the mirror symmetry

correspondence via the linear sigma models [Wi], [HV]. However due to a technical

problem regarding rectifiability of the moduli chain with a sphere bubble component,

we impose rather a strict assumption 6.1, convexity of the symplectic manifold, which

is not used in any other parts of the paper. In this case, all the relevant moduli

chain is already rectifiable without perturbing the standard complex structure of the

toric manifold if we equip the latter with the canonical symplectic form which natu-

rally arises from the linear sigma model description of toric manifolds of Witten [Wi].

But we believe, based on Theorem 6.1 and Corollary 6.5, the computation should go

through in general toric Fano manifolds, which we leave for a further research.

In the point of view of the obstruction theory developed in [O1], [FOOO], a priori,

the torus fibers of general toric manifolds are neither monotone nor unobstructed, and

may carry holomorphic discs of non-positive Maslov indices. Recall that the Clifford

torus is also obstructed as an object in the A∞-category [O1], [FOOO], but the fact

that it is monotone enables one to define the Floer cohomology [O1],[O4] which the

junior author computed in [Cho1]. Combination of these facts prevent us from directly

applying the general construction of the Floer cohomology from [FOOO] and forces

us to manually construct a restricted version of the Floer cohomology and to prove

the invariance property. For this purpose, some specific geometry of the moduli of

holomorphic discs associated to the pair (L, J0) of the torus fiber L and the canonical

complex structure J0 on the toric variety will play an essential role both for the

definition and computation of the Floer cohomology. We will prove that there exists

no non-constant holomorphic discs of non-positive Maslov indices for the torus fibers,

although its Hamiltonian deformations of them may allow such (pseudo-)holomorphic

discs. Our definition of the adapted Floer cohomology exploits this specific feature

of the pair (L, J0). We call this version of the Floer cohomology the adapted Floer

cohomology. It appears that in general this adapted Floer cohomology is more flexible

to define and exploits best specific features of the moduli of holomorphic discs of the

given pair (L, J0). In our particular situation of convex toric manifolds, this adapted

Floer cohomology is known to be isomorphic to the Bott-Morse Floer cohomology

HFBM (L; J0) with the bounding chain b = 0 in the sense of [FOOO]. We refer to the

final version of [FOOO] for more detailed explanation on this aspect.

In this paper, we compute HFBM (L; J0) with the bounding chain b = 0 and

its computation largely follows the scheme used by the first named author [Cho1]:

Firstly, we derive general Maslov index formula of holomorphic discs in terms of the

intersection number of natural divisors associated to the toric manifolds. Secondly

we explicitly classify all the holomorphic discs and prove the Fredholm regularity of
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the discs. Then using this information, we compute HFBM (L; J0) with respect to

the complex structure J0.

In the course of our computation, we also derive an area formula Theorem 8.1 for

the holomorphic discs of the Maslov index 2 (and so of all holomorphic discs) in terms

of the location of the base point of the Lagrangian fiber and the relative homology class

of the disc (or the divisor of the toric manifold that the disc intersect). This formula is

crucial for our proof of the prediction that the base points in the momentum polytope

at which the corresponding fiber has non-trivial Floer cohomology are indeed those

corresponding to the critical points of the superpotential of the Landau-Ginzburg

mirror.

We would like to emphasize that the mirror symmetry prediction made both in

the Kontsevich proposal or by physicists does not really concern the standard Floer

cohomology in symplectic geometry which uses the Novikov ring as its coefficients,

but its convergent power series version. One byproduct of our classification of disc

instantons is that this latter version of the Floer cohomology is defined and so sub-

stitution of the formal parameter T 2π by the number e−1 is allowed in the Fano toric

case. However the latter version of the Floer cohomology is not known to be invariant

in general under the Hamiltonian isotopy of the Lagrangian torus fiber and so the

mirror symmetry prediction concerns the Kähler geometry of the Lagrangian torus

fibers (with respect to the natural complex structure J0 and the Kähler form ω),

rather than the symplectic geometry of its Hamiltonian isotopy class. For example, it

is possible that a fiber has trivial Floer cohomology with Novikov ring as its coeffi-

cients, but non-trivial one with the parameter value T 2π = e−1 (see section 13 for an

explicit example of Hirzebruch surfaces).

Our work also provides some concrete mathematical evidence in the toric case for

the conjectural relation between the superpotential and the “open Gromov-Witten

invariants” which has been advocated by physicists (see [KKLM] for example). More

precisely, we verify that under the mirror symmetry correspondence of a torus fiber,

the one-point open Gromov-Witten invariant, which is essentially FOOO’s obstruction

chain [FOOO], maps to the superpotential W of the Landau-Ginzburg mirror, and

two-point invariants, which is essentially the Floer differential δ2〈pt〉 in the Bott-Morse

setting, maps to the derivative ∂W
∂Θ

. We refer to section 15 for more discussion on this

point or [Cho2] for a generalization of this correspondence.

One general distinction between the Fano and the non-Fano cases lies in the

transversality property of the singular strata of various compactified moduli spaces.

More precisely, non-Fano manifolds carry spheres of non-positive Chern numbers and

so the compactified moduli space may contain singular strata that contain sphere

bubbles (especially their multiple covers) of non-positive Chern numbers. As the

study in [FOOO] demonstrated, such problems in the moduli space of holomorphic

discs in relation to the Floer theory (or to open Gromov-Witten invariants) are much

more troublesome than the case of spheres. We refer to section 16 for more detailed

discussion on this.

We like to thank K. Hori for explaining us the mirror symmetry correspondence

via the Landau-Ginzburg models and his B-model calculation that leads to his con-

jectural description of the Floer cohomology of the fibers of Fano toric manifolds. The

junior author would like to thank L. Borisov and S. Hu for helpful discussions. Both

authors thank K. Fukaya, H. Ohta and K. Ono for their interest in the results of this

paper and some interesting discussion on the homotopy identity defined in [FOOO]

during the senior author’s visit of Kyoto University in August, 2003.
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2. Complex structures on toric manifolds. We consider smooth and com-

pact toric varieties. Here we closely follow the Batyrev [B1] with minor notational

changes (See M. Audin [Au] for more details)

In order to obtain an n-dimensional compact toric manifold V , we need a com-

binatorial object Σ, a complete fan of regular cones, in a n-dimensional vector space

over R.

Let N be the lattice Z
n, and let M = Hom

Z
(N,Z) be the dual lattices of rank

N . Let N
R

= N ⊗ R and M
R

= M ⊗ R.

Definition 2.1. A convex subset σ ⊂ N
R

is called a regular k-dimensional cone

(k ≥ 1) if there exists k linearly independent elements v1, · · · , vk ∈ N such that

σ = {a1v1 + · · ·+ akvk | ai ∈ R, ai ≥ 0},

and the set {v1, · · · , vk} is a subset of some Z-basis of N . In this case, we call

v1, · · · , vk ∈ N the integral generators of σ.

Definition 2.2. A regular cone σ′ is called a face of a regular cone σ (we write

σ′ ≺ σ) if the set of integral generators of σ′ is a subset of the set of integral generators

of σ.

Definition 2.3. A finite system Σ = σ1, · · · , σs of regular cones in N
R

is called

a complete n-dimensional fan of regular cones, if the following conditions are satisfied.

1. if σ ∈ Σ and σ′ ≺ σ, then σ′ ∈ Σ;

2. if σ, σ′ are in Σ, then σ′ ∩ σ ≺ σ and σ′ ∩ σ ≺ σ′;

3. N
R

= σ1 ∪ · · · ∪ σs.

The set of all k-dimensional cones in Σ will be denoted by Σ(k).

Example 2.4. Consider basis vectors e1, · · · , en in a n-dimensional real vector

space. Let vi = ei for i = 1, · · · , n and let vn+1 = −e1 − e2 − · · · − en. Any k-
element subset I ⊂ {v1, · · · , vn+1} for (k ≤ n) generates a k-dimensional regular cone

σ(I). The set Σ(n) consisting of 2n+1 − 1 cones σ(I) generated by I is a complete

n-dimensional fan of regular cones, with which later we will associate a projective

space P
n.

Definition 2.5. Let Σ be a complete n-dimensional fan of regular cones. Denote

by G(Σ) = {v1, · · · , vN} the set of all generators of 1-dimensional cones in Σ ( N =

Card Σ(1)). We call a subset P = {vi1 , · · · , vip} ⊂ G(Σ) a primitive collection if

{vi1 , · · · , vip} does not generate p-dimensional cone in Σ, while for all k (0 ≤ k < p)
each k-element subset of P generates a k-dimensional cone in Σ.

Example 2.6. Let Σ be a fan from Example 2.4. Then there exists the unique

primitive collection P which is the set of all generators {v1, · · · , vn+1}.

Definition 2.7. Let C
N be N -dimensional affine space over C with the set

of coordinates z1, · · · , zN which are in the one-to-one correspondence zi ↔ vi with

elements of G(Σ). Let P = {vi1 , · · · , vip} be a primitive collection in G(Σ). Denote

by A(P) the (N − p)-dimensional affine subspace in C
n defined by the equations

zi1 = · · · = zip = 0.
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Remark 2.8. Since every primitive collection P has at least two elements, the

codimension of A(P) is at least 2.

Definition 2.9. Define the closed algebraic subset Z(Σ) in C
N as follows

Z(Σ) = ∪PA(P),

where P runs over all primitive collections in G(Σ). Put

U(Σ) = C
N \ Z(Σ).

Definition 2.10. Let K be the subgroup in Z
N consisting of all lattice vectors

λ = (λ1, · · · , λN ) such that

λ1v1 + · · ·+ λNvN = 0.

Obviously K is isomorphic to Z
N−n and we have the exact sequence:

0→ K→ Z
N π
→ Z

n → 0, (2.1)

where the map π sends the basis vectors ei to vi for i = 1, · · · , N .

Definition 2.11. Let Σ be a complete n-dimensional fan of regular cones. Define

D(Σ) to be the connected commutative subgroup in (C∗)N generated by all one-

parameter subgroups

aλ : C
∗ → (C∗)N ,

t 7→ (tλ1 , · · · , tλN )

where λ = (λ1, · · · , λN ) ∈ K.

It is easy to see from the definition that D(Σ) acts freely on U(Σ). Now we are

ready to give a definition of the compact toric manifold Xσ associated with a complete

n-dimensional fan of regular cones Σ.

Definition 2.12. Let Σ be a complete n-dimensional fan of regular cones. Then

the quotient

XΣ = U(Σ)/D(Σ)

is called the compact toric manifold associated with Σ.

Example 2.13. Let Σ be a fan Σ(n) from Example 2.4. By 2.6, U(Σ(n)) = C
n+1\

{0}. By the definition of Σ(n), the subgroup K is generated by (1, · · · , 1) ∈ Z
n+1.

Thus D(Σ) ⊂ (C∗)N consists of the elements (t, · · · , t), where t ∈ C
∗. So the toric

manifold associated with Σ(n) is the ordinary n-dimensional projective space.

There exists a simple open coverings of U(Σ) by affine algebraic varieties.
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Proposition 2.1. Let σ be a k-dimensional cone in Σ generated by

{vi1 , · · · , vik}. Define the open subset U(σ) ⊂ C
N as

U(σ) = {(z1, · · · , zN ) ∈ C
N | zj 6= 0 for all j /∈ {i1, · · · , ik}}.

Then the open sets U(σ) have the following properties:

1.

U(Σ) = ∪σ∈ΣU(σ);

2. if σ ≺ σ′, then U(σ) ⊂ U(σ′);

3. for any two cone σ1, σ2 ∈ Σ, one has U(σ1) ∩ U(σ2) = U(σ1 ∩ σ2); in partic-

ular,

U(Σ) =
⋃

σ∈Σ
(n)

U(σ).

Proposition 2.2. Let σ be an n-dimensional cone in Σ(n) generated by

{vi1 , · · · , vin}, which spans the lattice N . We denote the dual Z-basis of the lattice M
by {ui1 , · · · , uin}. i.e.

〈vik , uil〉 = δk,l (2.2)

where 〈·, ·〉 is the canonical pairing between lattices N and M .

Then the affine open subset U(σ) is isomorphic to C
n × (C∗)N−n, the action

of D(Σ) on U(σ) is free, and the space of D(Σ)-orbits is isomorphic to the affine

space Uσ = C
n whose coordinate functions xσ

1
, · · · , xσn are n Laurent monomials in

z1, · · · , zN :















xσ
1

= z
〈v1,ui1

〉

1
· · · z

〈vN ,ui1
〉

N
...

xσn = z
〈v1,uin

〉
1

· · · z
〈vN ,uin

〉

N

(2.3)

The last statement yields a general formula for the local affine coordinates

xσ
1
, · · · , xσn of a point p ∈ Uσ as functions of its “homogeneous coordinates” z1, · · · , zN .

3. Symplectic forms of toric manifolds. In the last section, we associated

a compact manifold XΣ to a fan Σ. In this section, we review the construction of

symplectic (Kähler) manifold associated to a convex polytope P .

Let M be a dual lattice, we consider a convex polytope P in M
R

defined by

{x ∈M
R
| 〈x, vj〉 ≥ λj for j = 1, · · · , N} (3.1)

where 〈·, ·〉 is a dot product of M
R

∼= R
n. Namely, vj ’s are inward normal vectors to

the codimension 1 faces of the polytope P . We associate to it a fan in the lattice N as

follows: With any face Γ of P , fix a point m in the (relative) interior of Γ and define

σΓ = ∪r≥0r · (P −m).

The associated fan is the family Σ(P ) of dual convex cones

σ̌Γ = {x ∈ N
R
| 〈y, x〉 ≥ 0 ∀y ∈ σΓ} (3.2)

= {x ∈ N
R
| 〈m,x〉 ≤ 〈p, x〉 ∀p ∈ P,m ∈ Γ} (3.3)
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where 〈·, ·〉 is dual pairing M
R

and N
R
. Hence we obtain a compact toric manifold

X
Σ(P )

associated to a fan Σ(P ).

Now we define a symplectic (Kähler) form on X
Σ(P )

as follows. Recall the exact

sequence :

0→ K
i
→ Z

N π
→ Z

n → 0.

It induces another exact sequence :

0→ K → R
N/ZN → R

n/Zn → 0.

Denote by k the Lie algebra of the real torus K. Then we have the exact sequence of

Lie algebras:

0→ k → R
N π
→ R

n → 0.

And we have the dual of above exact sequence:

0→ (Rn)∗ → (RN )∗
i∗
→ k∗ → 0.

Now, consider C
N with symplectic form i

2

∑

dzk ∧ dzk. The standard action T n

on C
n is hamiltonian with moment map

µ(z1, · · · , zN) =
1

2
(|z1|

2, · · · , |zN |
2). (3.4)

For the moment map µK of the K action is then given by

µK = i∗ ◦ µ : C
N → k∗.

If we choose a Z-basis of K ⊂ Z
N as

Q1 = (Q11, · · · , QN1), · · · , Qk = (Q1k, · · · , QNk)

and {q1, · · · , qk} be its dual basis of K
∗. Then the map i∗ is given by the matrix Qt

and so we have

µK(z1, · · · , zN) =
1

2
(

N
∑

j=1

Qj1|zj |
2, · · · ,

N
∑

j=1

Qjk|zj|
2) ∈ R

k ∼= k∗ (3.5)

in the coordinates associated to the basis {q1, · · · , qk}. We denote again by µK the

restriction of µK on U(Σ) ⊂ C
N .

Proposition 3.1 (Audin [Au], Proposition 6.3.1.). Then for any r =

(r1, · · · , rN−n) ∈ µK(U(Σ)) ⊂ k∗, we have a diffeomorphism

µ−1

K (r)/K ∼= U(Σ)/D(Σ) = XΣ. (3.6)

And for each (regular) value of r ∈ k∗, we can associate a symplectic form ωP on the

manifold XΣ by symplectic reduction [MW].

To obtain the original polytope P that we started with, we need to choose r as

follows: Consider λj for j = 1, · · · , N which we used to define our polytope P by the

set of inequalities 〈x, vj〉 ≥ λj . Then, for each a = 1, · · · , N − n, let

ra = −

N
∑

j=1

Qjaλj .
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Then we have

µ−1

K (r1, · · · , rN−n)/K ∼= X
Σ(P )

and for the residual T n ∼= TN/K action on X
Σ(P )

, and for its moment map µT , we

have

µT (X
Σ(P )

) = P.

In fact, Guillemin [Gu] proved the following explicit closed formula for the Kähler

form

Theorem 3.2 (Guillemin). Let P , X
Σ(P )

, ωP and

µT : X
Σ(P )

→ (RN/k)∗ ∼= (Rn)∗

be the moment map defined as above. Define the functions on (Rn)∗

ℓi(x) = 〈x, vi〉 − λi for i = 1, · · · , N (3.7)

ℓ∞(x) =

N
∑

i=1

〈x, vi〉 = 〈x,

N
∑

i=1

vi〉. (3.8)

Then we have

ωP =
√
−1∂∂µ∗

T

(

N
∑

i=1

λi(log ℓi) + ℓ∞

)

(3.9)

on int(P ).

4. Adapted Floer cohomology of the torus fibers. Let (X
Σ(P )

, ωP ) be a 2n-

dimensional symplectic toric manifold with T n-action constructed from the polytope

P ⊂M
R
. Each T n orbit associated to an interior point in P is a Lagrangian subman-

ifold of X
Σ(P )

. Such an orbit can be obtained as µ−1

T (A) for A ∈ int(µT (X
Σ(P )

)) for

the moment map µT .

We fix one such orbit (non-singular) and denote it by L. In this paper, we will

study the Floer cohomology of these Lagrangian tori and compute this by computing

its Bott-Morse theory version HFBM (L; J0) as in [Cho1]. This is the m1-homology

of the A∞-algebra of Lagrangian submanifolds defined in [FOOO]. It will be shown

that in this case, obstruction class, m0, turned out to be non-zero, but is a multiple

of fundamental class, which makes m2

1
= 0 (See Theorem 7.1). Note that in this case

we can set the bounding cochain b = 0 (See [FOOO] for its defintion). The explicit

computation of Bott-Morse Floer cohomology is given in section 10.

A natural question is its relation to the Floer cohomology groups HF (L, φ(L)) for

a Hamiltonian isotopy of M . One important difference between the Clifford torus and

the general torus fibers is that the former is monotone [O1], [O4] while the latter are

not. Since the obstruction classes defined in [FOOO] do not vanish for the Lagrangian

submanifold L, it is not clear whether the standard Floer cohomology HF (L, φ(L))

is defined and invariant under the change of Hamiltonian isotopy, or whether it is

isomorphic to the Bott-Morse version HFBM (L; J0) when L is not monotone.

In this section, we will define a restricted version of the Floer cohomology which

exploits some special geometry of Lagrangian torus fibers in the toric manifolds. We
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will call this adapted Floer cohomology and denote it by HF ad(L; J0). Important

ingredients for the construction of the adapted Floer cohomology HF ad(L; J0) are

the following three theorems whose proof will be postponed to the next two sections.

[Maslov index formula] For a symplectic toric manifold X
Σ(P )

, let L be a La-

grangian T n orbit. Then the Maslov index of any holomorphic disc with boundary

lying on L is twice the sum of intersection multiplicities of the image of the disc with

the codimension 1 submanifolds V (vj) for vj ∈ Σ(1) for all j = 1, · · · , N .

[Classification theorem] Let ˜L ⊂ C
N \ Z(Σ) be a fixed orbit of the real N -torus

(S1)N . Any holomorphic map w : (D2, ∂D2)→ (X
Σ(P )

, L) can be lifted to a holomor-

phic map

w̃ : (D2, ∂D2)→ (CN \ Z(Σ), ˜L)

so that each homogeneous coordinates functions z1(w̃), · · · , zN(w̃) are given by

Blaschke products with constant factors.

i.e. zj(w̃) = cj ·

µj
∏

k=1

z − αj,k
1− αj,kz

for cj ∈ C
∗ and non-negative integers µj for each j = 1, · · · , N . In particular, there

is no non-constant holomorphic discs of non-positive Maslov indices.

[Regularity theorem] The discs in the classification theorem are Fredholm regular,

i.e., its linearization map is surjective.

Assuming these theorems for the moment, we proceed construction of

HF ad(L; J0) of (L; J0). We denote the standard integrable complex structure on

X by J0. Let φ be a Hamiltonian diffeomorphism such that φ(L) intersects L trans-

versely. Let Jω(X) be the set of almost complex structures of X compatible to ω.

We consider the set of paths J ′ : [0, 1]→ Jω(X) with

J ′(0) = J0, J ′(1) = φ∗J0

denote it by j
(φ,J0)

.

Similar theorems obviously hold for the pair (φ(L), φ∗J0) as for (L; J0). In par-

ticular, there is no non-constant holomorphic discs of non-positive Maslov indices for

the pair (φ(L), φ∗J0) either.

Remark 4.1. The set j
(φ,J0)

was considered and played an important role in [O6]

in relation to the formulation of Floer homology of Hamiltonian diffeomorphisms over

the mapping torus of φ. It appears that considering this set of paths depending on the

triple (L, J0;φ) enable us to define the Floer homology of Lagrangian submanifolds

in a more flexible way when the given pair (L; J0) has some special structure of the

moduli of J0-holomorphic discs attached to L as in our case.

Now we restrict to the paths J ′ ∈ j
(φ,J0)

for the study of Floer’s equations

{

∂u
∂τ + J ′

t
∂u
∂t = 0

u(τ, 0) ∈ L, u(τ, 1) ∈ φ(L)
(4.1)

in the definition of the Floer boundary operator. Now for given pair x, y ∈ L ∩ φ(L),

we study the moduli space

M(x, y; J ′)
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for the Fredholm index µ(x, y) = 0, 1 or 2. It is easy to see that for a generic

J ′ ∈ j
(φ,J0)

the (uncompactified) moduli space M(x, y; J ′) is transversal(See [O5]).

The following proposition is the reason why we restrict J ′ to the ones coming from

j
(φ,J0)

.

Proposition 4.1. Assume X
Σ(P )

is Fano. Let φ be a Hamiltonian diffeomor-

phism such that φ(L) intersects L transversely and choose a generic J ′ ∈ j
(φ,J0)

.

Assume that x, y ∈ L ∩ φ(L) with µ(x, y) = 0, 1 or 2. Then the following holds:

1. When µ(x, y) = 0, M(x, y; J ′)/R is empty.

2. When µ(x, y) = 1, M(x, y; J ′)/R is a compact manifold of dimension zero

3. When µ(x, z) = 2,

(a) if x 6= z, M(x, z; J ′)/R can be compactified into a compact manifold

with boundary of dimension one, whose boundary consists of the form

v1♯v2 (4.2)

where v1 ∈M(x, y; J ′) and v2 ∈M(y, z; J ′).

(b) if x = z, M(x, x; J ′) can be compactified into a compact manifold with

boundary of dimension one, whose boundary consists of the types

v1♯v2

where vi’s are types either of (4.2) or that for which one of vi’s is con-

stant and the other is a J0-holomorphic disc with boundary lying on L
or a φ∗(J0)-holomorphic disc with boundary lying on φ(L).

Proof. First note that non-constant holomorphic discs with boundary on one of

the Lagrangian submanifold, L or φ(L), have positive Maslov indices (and so greater

than or equal to 2). Once this is in our disposition, the proof of this fact follows by the

dimension counting arguments from [O1], [O4]. We omit the details of the argument

referring to [O1].

Remark 4.2. Unlike the case [O1] or [O4] where we allow to vary the almost

complex structures, since we prefer to keep the usage of integrable complex structure

J0, we also need to prove that the singular curves in part (3b) are also regular (or more

precisely the relevant evaluation maps are transverse in forming the fiber products).

This follows from the fact that L is a torus orbit of the torus action on X
Σ(P )

.

Corollary 4.2. Under the hypothesis as in Proposition 4.1, the Floer cohomol-

ogy HF (L, φ(L); J ′) is well-defined.

We can now compare two Floer cohomology HF (L, φ(L); J ′) with J ′ ∈ j
(φ,J0)

and HF ∗(L,ψ(L)); J ′′) with J ′′ ∈ j
(ψ,J0)

by considering paths

Φ = {φs}0≤s≤1; φ
0 = φ, φ1 = ψ

J = {Js}0≤s≤1; J
0 = J ′, J1 = J ′′, Js ∈ j

(φs,J0)

and the continuity equation

{

∂u
∂τ + J

ρ(τ)
t

∂u
∂t = 0

u(τ, 0) ∈ L, u(τ, 1) ∈ φρ(τ)(L)
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where ρ : R→ [0, 1] is a monotonically increasing function

ρ =

{

0 for τ ≤ −R

1 for τ ≥ R

for some sufficiently large R > 0. Again by the same reasoning using the choice

Js ∈ j
(φs,J0)

, we can prove that the continuity equation defines a chain map

h
(Φ,J)

: CF (L, φ(L); δJ′)→ CF (L,ψ(L); δJ′′)

which is an isomorphism. We refer to [O1], [O4] for the proof in the monotone

case, which obviously generalizes in the current Fano toric case if we use the set-up

of the adapted Floer cohomology. More specifically we use the special property of

the pair (L, J0) mentioned in the three theorems in the beginning of this section.

This proves the well-definedness and the invariance property of HF (L, φ(L); J ′). We

denote the canonical isomorphism class of HF (L, φ(L); J ′) over φ and J ′ ∈ j
(φ,J0)

by

HF ad(L; J0).

We will compute this group by computing the Bott-Morse version of the Floer co-

homology, which we denote by HFBM (L; J0). Because the above structure theorems,

this latter Floer cohomology group is well-defined. The following theorem permits us

to do this for the computation of HF (L, φ(L); J ′).

Theorem 4.3. Assume X
Σ(P )

is Fano and let L and φ, J ′ as above. Then

HFBM (L; J0) is well-defined and isomorphic to HF ad(L; J0). More specifically,

HFBM (L; J0) is isomorphic to HF (L, φ(L); J ′) for any Hamiltonian diffeomorphism

φ with L intersection φ(L) transversely and a path J ′ ∈ j
(φ,J0)

.

Proof. The well-definedness of HFBM (L; J0) follows from the classification theo-

rem which in particular implies that all holomorphic discs have positive Maslov indices

and are regular, by examining the details of the construction from [section 7, FOOO].

For the second statement, it is enough to consider the case when φ is C2-close

to the identity. We refer to [O4] for the proof in the monotone case which obviously

generalizes to the semi-positive case, in particular the Fano case (X,ω). A complete

proof will be given in the revision of [FOOO].

Remark 4.3. Here we use the canonical complex structure J0 and directly verify

that the Floer cohomology HFBM (L; J0) is well-defined. Once this is done, the

general theory from [FOOO] (2006) implies that the Floer homology is defined and

invariant under the Hamiltonian isotopy, as long as either the Bott-Morse case with

time-independent J or the adapted Floer cohomology are considered. This general

result is not used in this paper. We refer interested readers to [FOOO] for the detailed

explanations.

Having Theorem 4.3 in mind, we will compute the Bott-Morse Floer cohomology

group HFBM (L; J0) in the rest of the paper.

5. Index formula and the classification of holomorphic discs. In this sec-

tion, we will prove the Maslov index formula and the classification theorem mentioned

in section 4. Let us first recall the definition of the Maslov index in this setting. If

w : (D2∂D2) → (X,L) is a smooth map of pairs, we can find a unique trivialization

(up to homotopy) of the pull-back bundle w∗TX ∼= D2 × C
n. This trivialization
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defines a map from S1 = ∂D2 to Λ(Cn) = the set of lagrangian planes in C
n, where

there is a well-known Maslov class µ ∈ H1(Λ(Cn),Z); see [Ar]. We define

Iµ,L(w) := µ(∂D2) ∈ Z.

For the smooth maps w̃ : (Σ, ∂Σ)→ (X,L) from the Riemann surface with boundary,

one can define its Maslov index similarly by taking the sum of Maslov indices along

∂Σ using the fact that symplectic vector bundle w̃∗TX is always trival.

Before we state the theorem, we recall that for each generator vj ∈ Σ(1), there

is associated a codimension 1 subvariety V (vj). For the principle bundle (U(Σ)
π
→

X
Σ(P )

), π−1(V (vj)) is defined by the equation zj = 0 in U(Σ).

Theorem 5.1 (The Maslov index formula). For a symplectic toric manifold

X
Σ(P )

, let L be a Lagrangian T n orbit. Then the Maslov index of any holomorphic

disc with boundary lying on L is twice the sum of intersection multiplicities of the

image of the disc with the codimension 1 submanifolds V (vj) for vj ∈ Σ(1) for all

j = 1, · · · , N .

Proof. As in [Cho1], we deform a holomorphic disc w : (D2, ∂D2)→ (X,L) near

the intersections with V (vj)’s. It is easy to see that the intersections are discrete and

there are only finitely many of them because of holomorphicity of the map w. Denote

by p1 ∈ D
2 a point in the preimage of the intersection. i.e. p1 ∈ w

−1(image(w) ∩
V (vj)) for some j. We describe how to deform w as a smooth map near the point p1

and such deformation will be carried out near every preimages of intersections.

Note that w(p1) may lie in the intersection of several V (vj)’s: Denote them by

V (vi1), · · · , V (vik). Then, We have

w(p) ∈ V (vi1) ∩ · · · ∩ V (vik) (5.1)

The fact that V (vi1 )∩· · ·∩V (vik ) 6= 0 implies that {vi1 , · · · , vik} is not a primitive

collection (See Definition 2.5). Since the fan Σ is complete, we may choose (n − k)
generators vik+1

, · · · , vin so that 〈vi1 , · · · , vin〉 defines a n-dimensional cone σ in Σ.

We may consider the map w near p1 as a map into the affine open set C
n =

Spec(σ̌∩M) as in [Ful]. More precisely, the coordinate functions of this affine open set

C
n is given as in Proposition 2.2. Denote by d1, · · · , dk the intersection multiplicities

of the map w with V (vi1), · · · , V (vik). In other words, if we represent the map w
in terms of homogeneous coordinates, then the homogeneous coordinate functions

zi1 , · · · , zik will have order of zero d1, · · · , dk at p1 and other homogeneous coordinate

functions are non-vanishing near p1.

As in Proposition 2.2, let {ui1 , · · · , uin} be the basis of M dual to {vi1 , · · · , vin}.

〈uij , vik〉 = δj,k

Then, the affine coordinate function xσ
1

is

xσ
1

= z
〈v1,ui1

〉

1
· · · z

〈vN ,ui1
〉

N

= C(z) · z
〈vi1

,ui1
〉

i1

= C(z) · zi1

where C(z) is a function nonvanishing near p1. Therefore, the affine coordinate

function xσ
1

has order of zero d1 at p1. Similarly, xσ
2
, · · · , xσk have order of zero
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d2, · · · , dk at p1. For j > k, xσj is non-vanishing near p1. We may further assume

that p1 = 0 ∈ D2. Then, the map w near p1 can be written in affine coordinates as

(a1z
d1 +O(zd1+1), · · · , akz

dk +O(zdk+1), ak+1 +O(z), · · · , an +O(z)).
Now we are in the same situation as in [Cho1] Theorem 9.1. From now on, we

will only sketch the arguments and refer readers to [Cho1] for details.

We label by p2, · · · , pm ∈ D2 all the other points whose image intersect with

V (vj) for some j. We find disjoint open balls Bǫ(p1) ⊂ D2 centered at pi with fixed

radius ǫ for sufficiently small ǫ for all i = 1, 2, · · · ,m.

Now we smoothly deform the map w inside the ball Bǫ(p1), so that the deformed

map w̃ satisfies

w̃|∂Bǫ/2(p1) ⊂ L (5.2)

and as a map into the affine open set C
n near p1, the map w̃ on Bǫ/2(p1) is given by

( a1z
d0

|a0|(
ǫ
2
)d1

, · · · ,
akz

dk

|ak|(
ǫ
2
)dk

,
ak+1

|ak+1|
, · · · ,

an
|an|

)

. (5.3)

We perform the same kind of deformations for p2, p3, · · · , pm inside the ball

Bǫ(p2), · · · , Bǫ(pm) and write the resulting map as w̃. Over the punctured disc

Σ = D2 \ (Bǫ(p1) ∪ · · ·Bǫ(pm)),

the deformed map w̃ does not intersect with the hyperplanes, and it intersects with

the Lagrangian torus L along the boundaries of the punctured disc.

Since the Maslov index is a homotopy invariant, we have µ(w) = µ(w̃). Hence,

we may compute the Maslov index of the map w̃. Note that the boundary ∂Σ is

∂D2 ∪ (∪i∂Bǫ/2(pi)).
Since the image of the map w̃ on the boundaries of the balls Bǫ/2(pi)

′s lies on the

Lagrangian submanifold L, the map w̃ : (Σ, ∂Σ) → (X,L) satisfies the Lagrangian

boundary condition. Furthermore, since every intersection with the hyperplane occurs

inside the balls Bǫ/2, w̃|Σ does not meet the hyperplanes. Hence, it can be considered

as a map into the cotangent bundle of L, (If we take out all such codimension 1

submanifolds V (vj)’s from X
Σ(P )

, there remains (C∗)n which can be considered as

the cotangent bundle of the torus orbit L). Therefore we have

µ(w̃|Σ) = 0. (5.4)

On the other hand, the Maslov index of the map w̃|Σ is given by the sum of the

Maslov indices along ∂Σ after fixing the trivialization.

Now consider the map w̃ : D2 → X and we fix a trivialization Φ of the pull-

back bundle w̃∗TX . It gives a trivialization ΦΣ of the pull-back bundle (w̃|Σ)∗TX
restricted over Σ. In this trivialization, it is easy to see that

µ(ΦΣ, ∂D
2) = µ(Φ, ∂D2) = µ(w̃) = µ(w).

Since the boundary of the balls Bǫ/2 are oriented in the opposite way, and from the

explicit description (5.3) of the deformed map on the ball Bǫ/2(pi), we have

µ(ΦΣ, ∂Bǫ/2(pi)) = −2(sum of intersection multiplicities in Bǫ/2(pi)).

From the equation (5.4), we have

µ(w) − 2(sum of intersection multiplicities ) = 0.
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Now, we use this index formula to classify all holomorphic discs with boundary

lying on L. It is much easier if we describe them in terms of “homogeneous coordi-

nates” of toric varieties. Namely we claim that homogeneous coordinate functions of

any holomorphic discs with boundary on L can be written as just Blaschke products

with constant coefficients.

We recall that the homogeneous coordinates come from C
N \ Z(Σ) in Definition

2.9 and (CN \ Z(Σ))/D(Σ) = X
Σ(P )

. We denote by

p
C

: (CN )∗ → (CN )∗/D(Σ) ∼= (C∗)n

pT : (TN)∗ → (TN)/T (Σ)) ∼= T n.

the natural projections.

Theorem 5.2 (Classification theorem). Let ˜L ⊂ C
N \ Z(Σ) be a fixed orbit of

the real N -torus (S1)N . Any holomorphic map w : (D2, ∂D2) → (X
Σ(P )

, L) can be

lifted to a holomorphic map

w̃ : (D2, ∂D2)→ (CN \ Z(Σ), ˜L)

so that each homogeneous coordinates functions z1(w̃), · · · , zN(w̃) are given by the

Blaschke products with constant factors: i.e.,

zj(w̃) = cj ·

µj
∏

k=1

z − αj,k
1− αj,kz

(5.5)

for cj ∈ C
∗ and non-negative integers µj for each j = 1, · · · , N . And two such liftings

w̃, w̃′ of w are related by

w̃′ = t · w̃

where t ∈ T (Σ) is a constant element in the real torus T (Σ) ⊂ D(Σ).

Proof. Suppose the map w meets the submanifold V (v1) at w(α) for α ∈ int(D2).

We multiply the torus element

p
C

((

1− αz

z − α
, 1, 1, · · · , 1

))

∈ (C∗)N/D(Σ) ∼= (C∗)n (5.6)

to w and denote the modified map by w1. Note that the map w1 still satisfies the

boundary condition because we multiplied the element (5.6) of the torus (C∗)N/D(Σ)

and the L is an orbit thereof and | 1−αzz−α | = 1 on ∂D2. And the intersection multiplicity

of w1 with V (v1) is one less than that of w.

By repeating the process, we may assume that we obtain a map wd which does

not meet V (v1). Repeat the process for each V (vj) for j = 1, · · · , N . Hence we

obtain a holomorphic map w′ : (D2, ∂D2) → (X,L) does not meet any codimension

1 submanifolds V (vj)’s. This map has Maslov index 0 and is contained in any affine

open sets C
n of toric variety. It is easy to see that this map is indeed constant. Due

to the boundary condition, this last map w′ must be the constant map

w′ ≡ x0
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for some point x0 ∈ L ⊂ XΣ(P )
. We choose any point

(c1, · · · , cN ) ∈ π−1(x0) ∩ ˜L (5.7)

and then define w̃ : D2 → C
N by the map whose j-th component is given by the

formula

zj(w̃) = cj ·

µj
∏

k=1

z − αj,k
1− αj,kz

where
∏µj

k=1

z−αj,k

1−αj,kz
is the reciprocal to the factors

1−αj,kz
z−αj,k

multiplied to cancel the

intersection of w with the divisor V (vj) in the above process.

Hence, we may deduce that homogeneous coordinates of any holomorphic disc

can be written as Blaschke products. The map w̃ obviously maps ∂D2 to ˜L since

we made the choice (5.7) for (c0, · · · , cN ) and so ˜L is a fixed TN -orbit (c0, · · · , cN ),

and all the Blaschke factor has unit norm on ∂D2. This proves the first part of the

theorem.

For the second statement, we note that in the above formula (5.5) the data αj,k
and µj are completely determined by w but not on the lifting, the coordinates func-

tions of w̃′(z) and w̃(z) have common zeros and poles. Therefore the ratios

w̃′
j(z)

w̃j(z)

defines a non-zero holomorphic function. Therefore if we define

gj =
w̃′
j

w̃j
, g = (g1, · · · , gN ) ⊂ D(Σ) ⊂ (C∗)N ,

g defines a well-defined holomorphic map from D2 to D(Σ) ⊂ (C∗)N each of whose

components has the unit norm on ∂D2. Since (D(Σ), T (Σ)) is holomorphically iso-

morphic to the pair ((C∗)N−n, TN−n), the argument in the first part proves that g
must be constant.

This finishes the proof.

Remark 5.1.

1. In the case of P
N , a similar formula was proved in [Cho1].

2. The Maslov index of w is
∑N
j=1

µj by Theorem 5.1.

6. Fredholm regularity of discs. In this section, we justify the use of the

standard complex structure in the computation of the Floer cohomology. In general,

to make a good moduli space of J-holomorphic discs M(X,L, β) is very difficult. It

is especially so since all perturbations of the moduli spaces had to be compatible for

all homotopy classes of the J-holomorphic discs. (See [FOOO] for details). But, we

will show that the moduli space of holomorphic discs in toric Fano manifolds with

boundary on torus fibers behaves rather nicely.

First we show the Fredholm regularity of the holomorphic discs. This implies that

the moduli space of holomorphic discs (before compatification) are smooth manifolds

of expected dimensions.

Theorem 6.1 (Regularity theorem). The discs in Theorem 5.2 are Fredholm

regular.
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Proof. We have only to prove the surjectivity of the linearization of ∂ at each holo-

morphic disc. Since the standard complex structure is integrable, linearized operator

Dw for a holomorphic disc w is complex linear and exactly the Dolbeault derivative

∂. And we will prove the surjectivity of this linearized operator.

We first recall the exact sequence

0→ K→ Z
N π
→ Z

n → 0.

This induces the exact sequence of the complex vector space

0→ C
K → C

N π
→ C

n → 0

via tensoring with C where C
K is the N − n dimensional subspace of C

N spanned by

K ⊂ Z
N . Note that this exact sequence is equivariant under the natural actions by

the associated complex tori.

Now we explain implication of the existence of the above equivariant exact se-

quence on the study of Fredholm property of holomorphic map

w : (D2, ∂D2)→ (X,L)

where L ⊂ X is a torus fiber L = µ−1(η), η ∈ P ⊂M
R
.

We first need some general discussion on the sheaf of holomorphic sections of

bundle pairs (E,F ) where E is a complex vector bundle over D2 and F a real vector

bundle over ∂D2 such that F ⊗ C is identified with E|∂D2 . We denote by (E ,F)

the sheaf of holomorphic sections of E with boundary values lying in F . We will be

interested in the sheaf cohomology of (E ,F) which we denote by

Hq(D2, ∂D2;E,F ) = Hq(E,F ).

Here the sheaf cohomology functors are the right derived functors of the global section

functor from the category of sheaves of (O,O
R
)-modules on D2 to the category of

R modules, where (O,O
R
) is the sheaf of holomorphic functions on D2 with real

boundary values. Denote by A0(E,F ) the sheaf of C∞ sections of E with boundary

values in F , and denote by A(0,1)(E) the sheaf of C∞ E-valued (0, 1)-forms. The

following is easy to check (see section 3.4 of [KL]).

Lemma 6.2. The sequence

0→ (E ,F)→ A0(E,F )
∂
→ A0,1(E)→ 0

defines a fine resolution of (E ,F).

Hence, the sheaf cohomology of (E ,F) is given by the cohomology of the two term

elliptic complex

0→ A0(E,F )
∂
→ A0,1(E)→ 0,

where A0(E,F ) is the space of global C∞ sections of E with boundary values in F ,

and A0,1(E) is the space of global C∞ E-valued (0, 1)-forms. From this, it follows

that

H0(E,F ) ∼= ker ∂

H1(E,F ) ∼= coker ∂.
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Next let (X,L) be a pair of Kähler manifold X and a Lagrangian submanifold L ⊂ X .

Consider a holomorphic disc w : (D2, ∂D2)→ (X,L) and denote

E = w∗TX, F = (∂w)∗TL.

In terms of the sheaf cohomology group Hq(D2, ∂D2;E,F ), the surjectivity of the

linearization of the disc w is equivalent to the vanishing result

H1(D2, ∂D2;E,F ) = {0}. (6.1)

Now we restrict to the case of our main interest as in Theorem 6.1. Let w :

(D2, ∂D2)→ (X,L) be a holomorphic disc obtained in section 5 and w̃ : (D2, ∂D2)→

(CN , ˜L) be the lifting obtained in Theorem 5.2. From the expression of w̃ in Theorem

5.2, it follows that w̃(∂D2) is contained in a torus orbit of (S1)N

˜L = (S1)N · (c1, · · · , cN ) ⊂ π−1(L) ⊂ C
N .

We denote by

(E,F ) = (w∗TX, (∂w)∗TL)

( ˜E, ˜F ) = (D2 × C
N , (∂w̃)∗(T ˜L)))

(E
K
, F

K
) = ((w̃)∗(TOrb

(C∗)
K), (∂w̃)∗(TOrbK))

and by

(E ,F), (˜E , ˜F), (E
K
,F

K
)

the corresponding sheaves of holomorphic sections.

Lemma 6.3. The natural complex of sheaves

0→ (E
K
,F

K
)→ (˜E , ˜F)→ (E ,F)→ 0 (6.2)

is exact.

Proof. We need to prove the sequence of stalks

0→ (E
K
,F

K
)z → (˜E , ˜F)z → (E ,F)z → 0

is exact at each z ∈ D2. When z ∈ IntD2, this immediately follows from the ∂-

Poincaré lemma. It remains to prove exactness when z ∈ ∂D2. We will give details

of the proof of surjectivity of the last map

(˜E , ˜F)z → (E ,F)z (6.3)

and leave the rest to the readers.

Let z0 ∈ ∂D2. By choosing a sufficiently small neighborhood U of z0, we can

holomorphically identify (E
K
, F

K
)|U with the trivial bundle (CN−n,RN−n)→ (U,U ∩

∂D2). By shrinking U if necessary, we may choose a holomorphic frame

{f1, · · · , fN−n, fN−n+1, · · · , fN}

of ( ˜E, ˜F ) so that fj = ej , 1 ≤ j ≤ N − n the standard real constant basis of R
N−n ⊂

C
N−n and the projections of {[fN−n+1], · · · , [fN ]} defines a holomorphic frame of E.
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Now let η be a given holomorphic section of E defined in a neighborhood z ∈
V ⊂ V ⊂ U such that

η|V ∩∂D2 ∈ F.

We can write

η = bN−n+1[fN−n+1] + · · ·+ bN [fN ]

where bj ’s are holomorphic functions on V . Then it is obvious that

ξη := bN−n+1fN−n+1 + · · ·+ bNfN

defines a holomorphic section of ˜E which projects to η. However ξη may not satisfy

the boundary condition

(ξη)|V ∩∂D2 ⊂ ˜F

and so we need to correct it by adding a suitable holomorphic section of (E
K
, F

K
) ∼=

(CN−n,RN−n). Since (ξη)|∂D2 ⊂ F , there exists a map g : V ∩ ∂D2 → F = R
N−n,

g = (g1, · · · , gN−n) such that

ξη|V ∩∂D2(z)−

N−n
∑

i=1

gi(z)ei ∈ ˜F (6.4)

for all z ∈ V ∩ ∂D2.

Now we solve the following Riemann-Hilbert problem for the map G :

(D2, ∂D2)→ (CN−n,RN−n), G = (G1, · · · , GN−n)

{

∂G
∂z = 0

G(z) = g(z) z ∈ V ∩ ∂D2.
(6.5)

It is well-known that this equation can be solved (see [O3] for example) on a neigh-

borhood V ′ ⊂ V
′
⊂ V by multiplying a cut-off function ρ such that

ρ(z) =

{

1 for z ∈ V
′

0 for z in a neighborhood of ∂V .

Now it follows that if we define ξ

ξ(z) = ξη(z)−

N−n
∑

i=1

Gi(z)ei,

it satisfies

[ξ] = [ξη] and ξ(z) ∈ ˜Fz , z ∈ V ∩ ∂D
2.

This finishes the proof of surjectivity of (6.3).

The exact sequence (6.2) of the sheaves induces the long exact sequence of coho-

mology

0→ H0(E
K
, F

K
)→ H0( ˜E, ˜F )→ H0(E,F ) −→

→ H1(E
K
, F

K
)→ H1( ˜E, ˜F )→ H1(E,F )→ 0. (6.6)
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Therefore to prove H1(D2, ∂D2;E,F ) = {0}, it is enough to prove the following

lemma.

Lemma 6.4. H1( ˜E, ˜F ) = {0}.

Proof. From the definition of the bundle pair ( ˜E, ˜F )→ (D2, ∂D2), we have

˜E = D2 × C
N , ˜F = ℓ1 ⊕ · · · ⊕ ℓN .

Here for each j = 1, · · · , N , ℓj is the line bundle which is the tangent space of the

circle

θ 7→ e2πµjθ · cj ⊂ C

with µj ≥ 0 is an integer given in Theorem 5.2. Now the lemma immediately follows

from the study of the one-dimensional Riemann-Hilbert problem with this Lagrangian

loop (see e.g., [O3] for this kind of analysis).

This finishes the proof of the vanishing result

H1(E,F ) = {0}

and so the discs w obtained in Theorem 5.2 and so all the discs in X with boundary

lying on L are Fredholm-regular.

Now, let us consider the compactification of the moduli space of holomorphic

discs.

Corollary 6.5. Singular strata of the compactified moduli space of holomorphic

discs which consist of only disc components, have expected dimensions.

Proof. First note that from the classification theorem, all evaluation maps from

the moduli space to the Lagrangian submanifold are submersions. This also may be

seen from the torus action on the space of holomorphic discs. Hence, any singular

stratum which consists of only disc components is given by transversal intersections of

appropriate moduli spaces of holomorphic discs. Hence it has expected dimension.

When there is a singular stratum with sphere bubble, it may cause a trouble,

since the standard complex structure is not always Fredholm regular for holomorphic

spheres. Hence, the moduli spaces of holomorphic spheres may have dimensions dif-

ferent from expected dimensions. But since we only evaluate only at the boundary of

the discs (not on spheres), with Fano condition, the evaluation image of such stratum

is always of codimension of two or higher. Hence, it is plausible that these moduli

spaces with evaluation maps define well-defined currents on L. We still believe that

the moduli chains in the general Fano toric case are rectifiable. Since we have not been

able to prove this statement in general, we make a following additional assumption

on the toric Fano manifold for the computation of Floer cohomology.

Assumption 6.1. The toric Fano manifold M is assumed to be convex. Namely

we require that for any genus 0 stable map f : Σ→M , f∗TM is generated by global

sections.

In fact, the above assumption may be replaced by the following slightly less re-

strictive condition.

1. All holomorphic spheres with chern number less than (n+ 2)/2 in toric Fano

manifold are Fredholm regular, or
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2. The Chern number of the holomorphic spheres are at least (n+ 2)/2, where

2n = dim(X).

In the first case, all singular strata of the moduli space of holomorphic discs (relevant

in Floer cohomology) will have expected dimensions. The convex algebraic manifolds

(tangent sheaf is generated by global sections) satisfy the first assumption, hence

complex projective spaces and products of complex projective spaces satisfy our as-

sumption. In the second case, note that the moduli spaces of holomorphic discs with

Maslov index greater than (n+ 1) does not contribute to the Bott-Morse Floer coho-

mology by the dimension counting. And with the second assumption, all the relevant

moduli spaces can not have sphere bubbles due to the index restriction, hence Floer

cohomology is well-defined.

7. Holomorphic discs of Maslov index two. We briefly recall the definition

of the Bott-Morse Floer coboundary operator from [FOOO], while refering readers

for the precise definition to [FOOO] or [Cho2]. : For [P, f ] ∈ C∗(L,Q) and non-zero

β ∈ π2(M,L),

{

δβ([P, f ]) = (M2(β) ev1 ×f P, ev0)

δ0([P, f ]) = (−1)n[∂P, f ].
(7.1)

And the boundary operator is defined as

δ([P, f ]) =
∑

β∈π2(M,L)

δβ([P, f ])⊗ Tω(β)q
µ(β)

2 . (7.2)

And we extend it linearly over the universal Novikov ring Λnov. The following bound-

ary property follows from the proof of [Theorem 6.24, FOOO] in which is considered

the case where all the obstructions vanish, after combined with some additional can-

cellation arguments used in [addenda, O1], [Theorem 4.9, Cho] to deal with the case

where the obstruction does not vanish but is a multiple of the fundamental cycle. We

omit the proof referring to that of [Theorem 4.9, Cho].

Theorem 7.1. Assume that X
Σ(P )

is Fano and L is as before. Then

δ ◦ δ = 0.

Since the standard complex structure J0 in these toric manifolds are regular as

proved in the last section, we may proceed to compute the actual Floer boundary

map with respect to J0. The relevant calculations in our cases will be reduced to the

study of discs of Maslov index two as in [Cho1] because of the following proposition.

Proposition 7.2. Let δk to be the formal sum of δβ with µ(β) = k. Then we

have δk ≡ 0 for k ≥ 4.

Proof. Consider the homotopy class β ∈ π2(X,L) with the Maslov index µ(β) ≥ 4.

The fiber productM2(β)ev1 ×f P for the current Lagrangian torus fiber of the Fano

toric manifolds is always transversal and so becomes a smooth manifold of dimension

dim(P ) + µ(β)− 1. Now we consider the chain

ev0 :M2(β)ev1 ×f P → L.

We would like to show that this is zero as a current on L. Note that if its image has

dimension less than that ofM2(β)ev1 ×f P , the value of the boundary operator of P
is zero as a current of dimension dim(P ) + µ(β) − 1 (See [FOOO] for details).
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It is immediate to check from the transversality of the fiber product that if all

the elements in M(β) is of multiplicity greater than one, the dimension of the image

of ev0 is strictly less than that ofM2(β)ev1 ×f P ( = dim(P ) + µ(β)− 1).

Therefore it remains to prove the statement in the case where generic elements

in M(β) are simple. In this case, the lifting of w in Theorem 5.2 must have the

representation

zj(w̃) = cj

µj
∏

k=1

z − αj,k
1− αj,kz

such that the set {µj}1≤k≤N of non-negative integers is relatively prime, i.e, does not

have a common factor. In particular, there are at least two µj ’s that are not zero

since we assume µ(β) ≥ 4. For the simplicity of the exposition, we consider the case

where µ1 = µ2 = 1 and all others are zero. Other cases can be dealt similarly. In this

case, we have µ(β) = 4 and soM2(β)ev1 ×f P have dimension dimP + 3, unless it is

empty.

Noting that

ev0(M2(β)ev1 ×f P ) =
⋃

p∈P

ev0(M2(β)ev1 ×f 〈p〉)

it is enough to consider the case that P is a point cycle 〈pt〉 in X . The fiber product

M2(β)ev1 ×f 〈pt〉 has dimension 3 and the image ev0(M2(β)ev1 ×f P ) is nothing but

the set of the boundary image points of holomorphic discs in M(β) that meets the

point 〈pt〉.
We claim that in the case of the current Lagrangian torus fiber of the Fano toric

manifolds this latter image cannot have dimension bigger than two. To prove this,

we consider the lifts of the holomorphic discs to U(Σ). From the expression of lifted

discs in Theorem 5.2 and by the uniqueness of the liftings upto the action of T (Σ),

the image of the boundary of the lifted discs is the union

⋃

t∈T (Σ),

z∈∂D2

t · (
z − α1

1− α1z
,
z − α2

1− α2z
, 1 · · · , 1) ⊂ C

N .

However it follows from Theorem 5.2 that the projection of this to L by π, which is

precisely the image ev0(M2(β)ev1 ×f 〈pt〉) ⊂ L, has dimension always less than or

equal to two. This finishes the proof for the case µ1 = µ2 = 1. Other cases can be

done similarly.

Based on this theorem, we will be mainly interested in the holomorphic discs

of Maslov index two for the computation of HFBM (L; J0). From the classification

theorem, it is easy to see that there exists exactly N distinct holomorphic discs of

Maslov index 2 (up to an automorphism of the disc) passing a given point in L. We

denote the homotopy class of such discs by βj ∈ π2(X,L) for j = 1, · · · , N :

Definition 7.1. For the homogeneous coordinates z1, · · · , zN , we denote by

D(vj) the holomorphic disc of class βj ∈ π2(X,L) associated to the lifted disc

{

zk = ck for k 6= j

zj = cj · z
(7.3)

for z ∈ D2, where (c1, · · · , cN ) ∈ (C∗)N are chosen to satisfy the boundary condition.
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Now we want to express each such disc in terms of the coordinates of the torus

(C∗)n ⊂ X
Σ(P )

to compute the boundary operator. Recall that in toric varieties, the

torus (C∗)n corresponds to 0-cone in N or the dual cone M
R
.

(C∗)n ∼= Spec C[x1, x
−1

1
, x2, x

−1

2
, · · · , xn, x

−1

n ].

Its coordinate can also be obtained by applying Proposition 2.2 for the cone σ which

is generated by the standard basis vectors 〈e1, · · · , en〉 (Such cone may not exist in

the fan Σ, but the coordinate expression of (C∗)n obtained this way is still true).

Hence we use Proposition 2.2 to find the relation with the (C∗)n coordinates

and the homogeneous coordinates. If we choose the generators of the cone (vij ) in

Proposition 2.2 to be 〈e1, · · · , en〉, its dual basis becomes

uij = e∗j .

From the equation (2.3), we have















xσ
1

= z
〈v1,e

∗

1
〉

1
· · · z

〈vN ,e
∗

1
〉

N
...

xσn = z
〈v1,e

∗

n
〉

1
· · · z

〈vN ,e
∗

n
〉

N .

(7.4)

Hence for the holomorphic disc D(vj), by substituting (7.3) into the above equations,

we get the following :














xσ
1

= c′
1
· z〈vj ,e

∗

1
〉 = c′

1
· zv

1

j

...

xσn = c′n · z
〈vj,e

∗

n
〉 = c′n · z

vn

j

(7.5)

where vj = (v1

j , · · · , v
n
j ).

Proposition 7.3. For i = 1, · · · , N , the holomorphic disc D(vj) given by (7.3)

can be written in terms of coordinates of the torus (C∗)n as

(C1z
v1

j , C2z
v2

j , · · · , Cnz
vn

j ) (7.6)

where constants Ci ∈ C are chosen to satisfy the given Lagrangian boundary condition.

Example 7.2. For the Clifford torus case, the holomorphic discs of index two

are

[z : c1 : · · · : cn], · · · , [1 : c1 : · · · : cnz],

which in the standard open set U0 are

(c1
1

z
, · · · , cn

1

z
), (c1z, · · · , cn), · · · , (c1, · · · , cnz).

Now, the image of the moment map of P
n is the standard n simplex, which can be

written as follows:

For v1 = e1, vn = en, vn+1 = (−1,−1, · · · ,−1) ∈ R
n,

{

〈x, vi〉 ≥ 0 for i ≤ n

〈x, vn+1〉 ≥ −1.
(7.7)
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Now one can see the theorem is true in this case.

{

vn+1 =⇒ (c1
1

z , · · · , cn
1

z )

vj =⇒ (c1, · · · , cjz, · · · , cn).
(7.8)

We have the classification theorem, Theorem 5.2 in terms of the homogeneous

coordinates, but it is also convenient to look at them in the open sets C
n corresponding

to n-dimensional cones in Σ. But one should note that not all discs are contained

in these affine open sets. More precisely, if the holomorphic disc intersects with

V (vi1), · · · , V (vij ) (possibly at different points), and if {vi1 , · · · , vij} is a primitive

collection, then such disc can not be contained in the affine open sets. But as the

primitive collections have two or more elements, the discs of Maslov index two which

intersect only one of the submanifolds V (vj)’s are always contained in the affine open

sets.

Proposition 7.4. For the affine open set C
n corresponding to n-dimensional

cone σ = 〈vi1 , · · · , vin〉 in Σ, the holomorphic discs with Maslov index 2 contained in

this open set C
n ⊂ X are just D(vi1 ), · · · , D(vin) up to an automorphism of a disc.

Proof. For such an open set C
n ⊂ X , the Lagrangian torus fiber L is defined

by |zi| = ci for i = 1, · · · , n for some ci ∈ R. And the holomorphic discs which are

mapped into this open set C
n are indeed easy to classify. More precisely, the i-th

coordinate of such maps are just given by the Blaschke products times the constant

ci. Hence, holomorphic discs of Maslov index 2 are (up to automorphism of disc) can

be written in terms of coordinates of C
n as

(c1z, c2, · · · , cn)

(c1, c2z, · · · , cn)

...

(c1, c2, · · · , cnz).

As the coordinate of C
n is determined by the dual cone σ̌ of the cone σ =

〈vi1 , · · · , vin〉. The primitive generators of σ̌ are given by the dual Z-basis 〈u1, · · · , un〉
in M since X is smooth.

Let z1, · · · , zn be the coordinates of the torus (C∗)n ⊂ X given by M
R
. From

[Ful], the affine coordinates xσ
1
, · · · , xσn are given by the primitive generators as follows:

For ui := (ui1, · · · , uin) ∈M ,















xσ
1

= zu11

1
zu12

2
· · · zu1n

n

...

xσn = zun1

1
zun2

2
· · · zunn

n .

(7.9)

Then, the torus coordinates zk can be recovered from the affine coordinates

xσ
1
, · · · , xσn: Take

(xσ
1
)v

k

i1 · (xσ
2
)v

k

i2 · · · (xσn)v
k

in = z
(u11v

k

i1
+···+un1v

k

in
)

1
· · · z

(u1nv
k

i1
+···+unnv

k

in
)

n

= z
(V t·U)1k

1
· · · z(V t·U)nk

n = zk
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where U , V are (n × n) matrices whose j-th rows are given by the vectors vij , uj
respectively. The last equality follows from the duality between vij and uj.

Hence the holomorphic disc in C
N given by

(c1, · · · , cjz, · · · , cN)

can be rewritten in the coordinates of the torus (C∗)n as















z1 = (xσ
1
)v

1

i1 · · · (xσn)v
1

in = C1 · z
v1

ij

...

zn = (xσ
1
)v

n

i1 · · · (xσn)v
n

in = Cn · z
vn

ij

(7.10)

for (C1, · · · , Cn) ∈ (C∗)n. This is nothing but the expression of the disc D(vij ) in

Proposition 7.3. This proves the proposition.

8. The areas of holomorphic discs. In this section we compute the symplec-

tic areas of the holomorphic discs. For each such holomorphic disc D(vj), there exists

S1-action on its image from the torus action on the toric variety. From the coordi-

nate expression of holomorphic discs in Theorem 7.3, this S1 can be easily seen as a

subgroup of T = (S1)n via the monomorphism

S1 → T : eiθ 7→ (eiv
1

j
θ, · · · , eiv

n

j
θ) (8.1)

for each given j = 1, · · · , N . We will fix one such j in the rest of this section.

In the level of Lie algebra, the S1 ⊂ T is generated by the element

ξ = v1

j e1 + v2

j e2 + · · ·+ vnj en ∈ Lie(T
n) ∼= R

n. (8.2)

From now on, we denote by µT for the moment map of the whole torus (T ∼=
(S1)n) action. The image µT (D(vj)) of holomorphic discs D(vj) under the moment

map µT can be easily seen to be 1-dimensional because it is invariant under the

S1 action generated by ξ, and it meets with the boundary of the moment polytope

because when the disc meets the submanifold V (vj). The intersection point is a fixed

point of the S1 action we described above. Indeed, µT (Dj) meets the hyperplane

defined by

〈x, vj〉 = λj ,

since the preimage under the moment map µT of this hyperplane has the stabilizer vj .
Also recall that the image of the Lagrangian torus fiber under µT is a point, which

we denote by

A = (a1, a2, · · · , an) ∈ (Rn)∗.

Let (r, θ) be the standard polar coordinate of D2(1) ⊂ C and consider the map

(r, θ) 7→ µT (w(r, θ))

where

w = D(vj) : (D2, ∂D2)→ (X,L)
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provided in Proposition 7.3. Since the disc is invariant under the S1-action (8.1), the

map is independent of θ. We write the corresponding curve by

α : [0, 1]→ (Rn)∗ = (Lie(T n))∗; α(r) := µT (w(r, ·)).

We are now ready to prove the following area formula of the disc D(vj), which will

play a crucial role later when we relate our computation of the Floer cohomology to

Hori-Vafa’s Landau-Ginzburg B-model calculation.

Theorem 8.1. The area of the holomorphic disc D(vj) in Proposition 7.3 is

2π(〈A, vj〉 − λj).

Proof. Let η ∈ Lie(T n) be any element and ηX be the vector field on X generated

by η. By definition of the moment map µT , we have the following defining formula of

the moment map

d〈µT , η〉 = ηX⌋ωP

in general [MW]. We apply this identity to η = ξ defined in (8.2) to have

d〈µT , ξ〉 = ξX⌋ωP . (8.3)

Therefore we derive

d

dr
〈α(r), ξ〉 = 〈dµT

(∂w

∂r

)

, ξ〉

= d〈µT , ξ〉
(∂w

∂r

)

= ξX⌋ωP

(∂w

∂r

)

(8.4)

where we regard µT both as the map fromX to (Lie(T n))∗ and as a (Lie(T n))∗-valued

function.

And it follows from the coordinate formula (7.6) that

ξX(w(r, θ)) =
∂w

∂θ
(r, θ).

By substituting this into (8.4), we have derived

d

dr
〈α(r), ξ〉 = ωP

(∂w

∂θ
,
∂w

∂r

)

. (8.5)

From this, we derive

Area(D(vj)) =

∫

D2

w∗ωP =

∫

1

0

∫

2π

0

ωP

(∂w

∂r
,
∂w

∂θ

)

dθ dr

= −2π

∫

1

0

d

dr
〈α(r), ξ〉 dr

= 2π(〈α(0), ξ〉 − 〈α(1), ξ〉).

The value of α(1) ≡ µT (w(1, θ)) is the base of the Lagrangian torus fiber L which is

nothing but 〈A, ξ〉 and α(1) is in the hyperplane determined by

〈x, ξ〉 = λj .

Therefore we have proved that the area of the disc is 2π(〈A, ξ〉 − λj). Finally noting

that ξ = vj in (8.2), we have finished the proof.
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9. Standard spin structure. We recall the notion of the standard spin struc-

ture introduced in [Cho1] for the case of the Clifford torus in P
n. A spin structure of

L is equivalent to the homotopy class of a trivialization of the tangent bundle of L
over the one skeleton of L, which can be extended over two skeleton. We also recall

that a framing of the manifold L is defined to be the homotopy class of a trivialization

of the tangent bundle TL. Therefore each framing canonically fixes a spin structure

of L.

Recall that a Lie group has a natural framing of its tangent bundle. In particular

a Lie group with an orientation has a preferred spin structure. Now a torus (S1)n =

R
n/Zn has a canonical orientation on its Lie algebra which is canonically isomorphic

to R
n. And we have a canonical framing of (S1)n. Then, any orbit of the torus (S1)n

in toric manifolds has a canonically induced trivialization and orientation. We fix the

orientation of a torus orbit to be the induced orientation. And we call the induced

spin structure on any torus orbit standard spin structure.

For the space of holomorphic discs with a given homotopy class, say ˜M(β), consid-

eration of the deformations of discs via torus action gives the subspace of the tangent

space T ˜M(β). This subspace can be oriented by the orientation of the torus group,

which determines the orientation of the moduli space of holomorphic discs via the

Proposition 21.3 of [FOOO]. Also note that there exists 2n = |H1(L; Z/2)| different

spin structures for the torus L. Other spin structures besides the standard one can

be naturally considered in the setting of the Floer cohomology twisted by the flat line

bundles on L: Calculations of the Floer cohomology with different spin structures can

be substituted by the Floer cohomology twisted by the flat line bundles on L with

holonomy eπi along appropriate generators of π1(L).

Our computations will be carried out in the rest of the paper in terms of the

standard spin structure. We refer readers to [Cho1] for more detailed discussions on

the orientation and computations for different spin structures.

10. Computation of the Bott-Morse Floer cohomology. Now, we are

ready to compute the Bott-Morse Floer cohomology of any Lagrangian torus fiber

L in symplectic toric manifold X
Σ(P )

. We will assume in this section that X
Σ(P )

is

Fano.

The Bott-Morse Floer cohomology defined in section 7 satisfies

δ ◦ δ = 0

for our torus fiber. Note that we do not need to deform the boundary operator of the

Floer complex by introducing obstruction cycles since all non-constant holomorphic

discs have positive Maslov indices in our case.

We fix the standard spin structure of L, which fixes the orientation of the moduli

space of holomorphic discs. The orientation of the boundary (7.1) not only depends

on the orientation of the moduli spaceM2(β), but also the fiber product orientation.

It was studied in great detail in [Cho1], [FOOO], and so we restrict our discussion

about orientation to a minimum.

Recall that the Floer cochain complex in [FOOO] is constructed using currents.

From now on, the cycles we write actually represents their Poincaré duals, and we will

not distinguish homology H∗(L,Q) and cohomology H∗(L,Q) in our presentation.

The filtration on the boundary operator δ with energy induces a spectral sequence

E∗,∗
r which converges to the Floer cohomology HFBM (L; J0). Recall from [FOOO]

that

Ep,q
2

∼= (H∗(L,Q)⊗ eq)p
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where ( )p means the total degree p. To compute the Floer cohomology, we work

with this spectral sequence and the main step is to compute the boundary δ2 of the

cohomology generators. Here δ2 is the boundary operator given by considering only

Maslov index 2 discs.

We first compute the boundary for a point class 〈pt〉. We denote the generators of

H∗(L,Q) by L1, · · · , Ln. More precisely, by Lj we denote a cycle given by the image

of the map

S1 → (C∗)n : eiθ 7→ (c1, · · · , cje
iθ, · · · , cn).

In view of Proposition 7.3 and considering an orientation as in [Cho1], we have

δβj
〈pt〉 = (−1)n(v1

jL1 + · · ·+ vnj Ln) (10.1)

where βj = [D(vj)] ∈ π2(X,L). Hence,

δ2(〈pt〉) =

N
∑

j=1

(−1)nTArea(βj) · q · (v1

jL1 + · · ·+ vnj Ln)

=

N
∑

j=1

(−1)nT 2π(〈vj,A〉−λj) · q · (v1

jL1 + · · ·+ vnj Ln).

We can also compute the Floer cohomology with flat line bundle L on it, which we

denote by

HFBM ((L,L); J0).

If we denote by

hα = eiνα

the holonomy of the line bundle L along the cycle Lα for α = 1, · · · , n, Proposition

5.2 implies that the holonomy along the boundary of the disc D(vj), becomes

h
v1

j

1
· · ·h

vn

j

n = ei〈ν,vj〉 := hvj (10.2)

where the vector ν = νL is defined by

ν = (ν1, · · · , νn) (10.3)

which we call the holonomy vector of L.

In this case, the boundary operator of the Floer cochain complex is defined as

follows [Fu2]:

{

δβ([P, f ]) = (M2(β) ev1 ×f P, ev0) · (hol∂βL)⊗ q for β 6= 0

δ0([P, f ]) = (−1)n[∂P, f ].
(10.4)

Therefore, we have

δ2(〈pt〉) =
∑

j

(−1)nhvjT 2π(〈vj ,A〉−λj) · q · (v1

jL1 + · · ·+ vnj Ln). (10.5)
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By identifying H1(L : Q) with Q
n via Li 7→ ei, we may write the condition to have

δ2(〈pt〉) = 0 as

∑

j

(−1)nhvjT 2π(〈vj,A〉−λj) · vj = 0. (10.6)

It is not hard to see that if δ2(〈pt〉) = 0, we would have δ2(P ) = 0 in H∗(L,Q) for any

cycle P ∈ H∗(L,Q) (see [Cho] for the relevant computations). Therefore, in this case,

the Floer cohomology HFBM ((L,L); J0) is isomorphic to the singular cohomology of

L. In particular, it is non-vanishing. The following proposition implies that, one only

needs to consider δ2(〈pt〉) for the computation of Floer cohomology.

Theorem 10.1. If δ2(〈pt〉) = 0, then Bott-Morse Floer cohomology is isomorphic

to the singular cohomology of L as a Λnov-module, i.e.,

HFBM ((L,L); J0) ∼= H∗(L; ΛC

nov)

where ΛC

nov is the Novikov ring twisted by the line bundle L in an obvious way.

If δ2(〈pt〉) 6= 0, then the Floer cohomology HFBM ((L,L); J0) vanishes.

Proof. It remains to prove the second statement. Suppose δ2(〈pt〉) 6= 0, and

consider the lowest energy terms of δ2〈pt〉 which gives rise to a non-zero term: Suppose

the terms with this energy are given by δβi1
, · · · , δβi

ℓ

. Denote by ˜δ2 the sum

˜δ2 := δβi1
+ · · ·+ δβi

ℓ

.

By the assumption δ2〈pt〉 6= 0, we have ˜δ2 6= 0. It follows from the construction of the

spectral sequence in [FOOO] that this becomes the boundary operator of the spectral

sequence of a certain step, say r. From our choice of βi∗ , lower energy terms give rise

to zero boundary maps in the spectral sequence. Therefore we have,

Ep,qr
∼= Ep,q

2

∼= (H∗(L,Q)⊗ eq)p.

We will show that

Er+1

∼= 0.

For this we will compute ˜δ2 for the cohomology generators of H∗(L,Q).

In H∗(L,Q), we may write, omitting the common factor of formal parameter

TAreaq,

˜δ2〈pt〉 = c1[L1] + c2[L2] + · · ·+ cn[Ln]. (10.7)

At least one of ci is non-zero from our assumption. It is not hard to see that

˜δ2〈Li〉 =
n

∑

j=1

cj〈Lj × Li〉

where Li × Li is 0-cycle. Or more generally,

˜δ2(Lii × Li2 × · · · × Lik) =

n
∑

j=1

cj〈Lj × (Lii × Li2 × · · · × Lik)〉
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where the latter is a 0-cycle if j ∈ {i1, i2, · · · , ik} (See [Cho1] for the case of Clifford

torus in P
n).

From now on, for index sets, say J with j = |J | elements, we denote its elements

as J = {j1, · · · , jj} with j1 < j2 < · · · < jj . And we denote Jbs = J \ {js}.
Now we denote an arbitrary element of k dimensional cycles as

∑

I,|I|=k

AILI

for I ⊂ {1, 2, · · · , n} and AI ∈ Q. The boundary of this element is

˜δ2(
∑

I,|I|=k

AILI) =
∑

I

AI(˜δ2LI)

=
∑

I

AI(c1L1 + · · ·+ cnLn)× LI

=
∑

J,|J|=k+1

k+1
∑

s=1

AJbs(−1)s−1cjsLJ .

Hence, the element
∑

I,|I|=kAILI is in the kernel of ˜δ2 if for any set J ⊂

{1, 2, · · · , n} with |J | = k + 1, the following equation holds:

k+1
∑

s=1

AJbs(−1)s−1cjs = 0. (10.8)

Set

{

S := {i ∈ {1, 2, · · · , n} | ci = 0}

Sc := {1, 2, · · · , n} \ S.
(10.9)

Then, the equation (10.8) is exactly the same equation as we had in Theorem 13.3 in

[Cho1] with (his − h0) replaced by cis .
Hence, by applying the same method, one can show that such elements in the

kernel of ˜δ2 lies in the image of ˜δ2. This finishes the proof.

Since for a fiber to has a non-trivial Floer cohomology is a very special geometric

property, it seems to deserves a name to them.

Definition 10.1. We call balanced a Lagrangian fiber that has a non-vanishing

Floer cohomology.

In the next section, we will provide a geometric description of balanced torus

fibers.

11. Description of the balanced torus fibers. In this section, we now ex-

amine the equation (10.6) in terms of toric geometry. In particular, in the case of

no line bundle twisted, we provide a concrete toric description of the conditions for a

fiber to satisfy the equation.

For given A ∈ intP , we partition G = G(Σ) = {vj}1≤j≤N into the disjoint union

G =
∐

a

G
(A;a)



802 C.-H. CHO AND Y.-G. OH

where G
(A;a) is the set of vj ∈ G with the symplectic area of the associated homotopy

class βj = [D(vj)] ∈ π2(X,L)

ωP (βj) = a

for each given positive number a. Obviously G
(A;a) = ∅ except for a finite number of

values of a’s

0 < a1 < a2 < · · · < aLA

and 1 ≤ LA ≤ N . Then (10.6) becomes

∑

vj∈G(A;a
ℓ
)

hvjvj =
∑

vj∈G(A;a
ℓ
)

ei〈ν,vj〉vj = 0 (11.1)

for all 1 ≤ ℓ ≤ LA.

Proposition 11.1. Assume X
Σ(P )

is Fano and let L = µ−1(A) ⊂ (X
Σ(P )

, ωP )

be a fiber for A ∈ int P and L be a flat line bundle with the holonomy vector ν =

(ν1, · · · , νn) such that A and ν satisfy (11.1). Then we have the isomorphism

HFBM ((L,L); J0) ∼= H∗(L; ΛC

nov).

For all other cases, HFBM ((L,L); J0) is trivial.

Now we specialize to the case without L, i.e., all hvj ≡ 1. In the remaining section,

we will provide a more concrete description of the balanced fibers by analyzing (11.1)

in terms of toric data.

Note that in this case (11.1) just becomes

∑

vj∈G(A;a
ℓ
)

vj = 0. (11.2)

We denote by

{1, · · · , N} =

LA
∐

ℓ=1

Iℓ

the partition of {1, · · · , N} corresponding to the partition of G =
∐LA

ℓ=1
G

(A;aℓ)
. We

also denote

eIℓ
=

∑

j∈Iℓ

ej , (11.3)

where {ej} are the standard basis vectors of Z
n. By the exact sequence

0→ K
i
→ Z

N π
→ Z

n → 0

(11.2) implies that there exists δℓ ∈ K such that

i(δℓ) = eIℓ
∈ Z

Iℓ

for each 1 ≤ ℓ ≤ LA, where Z
Iℓ is the obvious product space. We denote by

∆ℓ ⊂ (S1)Iℓ
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the obvious diagonal circle group generated by the vector eIℓ
∈ Z

Iℓ and by ∆ their

products as a subgroup of (S1)N . By construction, we have

∆ ⊂ K

with dim ∆ = LA ≤ dimK = N − n.

We will now carry out the “reduction by stages” to describe our toric manifolds

X
Σ(P )

and the Lagrangian torus fiber L in a two-step process. We denote δ = Lie(∆)

and by

µ∆ : C
N → δ∗

the moment map of the action of ∆ on C
N . We denote

j : ∆ →֒ K(⊂ (S1)N ) or j : δ →֒ k(⊂ R
N )

the inclusion homomorphism and T∆ := (S1)N/∆.

We note that (S1)N acts on C
N as the direct product of the actions of dℓ-

dimensional torus (S1)Iℓ on C
Iℓ . By carrying out the first reduction by the action of

∆, we have obtained the reduced space

Y∆ = µ−1

∆
(j∗(r))/∆ ∼= P

(d1−1) × · · · × P
(dL

A
−1)

ω∆ = ω1 ⊕ · · · ⊕ ωLA

where we have

j∗(r) =

LA
∑

ℓ=1

(−λIℓ
)e∗Iℓ
∈ δ∗, λIℓ

=
∑

i∈Iℓ

(λi)

with respect to the basis {e∗I1 , · · · , e
∗
Iℓ
} dual to the basis {eI1 , · · · , eIℓ

} of δ, and ωℓ
is the Fubini-Study form on P

(dℓ−1) associated to the value λIℓ
of the momentum

function µ∆ℓ
: C

dℓ → δ∗ℓ
∼= R, which becomes nothing but the standard momentum

function of the S1 action on C
dℓ i.e.,

z ∈ C
dℓ 7→

1

2
|z|2 ∈ R.

Furthermore the residual torus T∆ = (S1)N/∆ is the direct product

T∆ =
∏

ℓ

T∆ℓ

with T∆ℓ := (S1)Iℓ/∆ℓ, and canonically acts on the reduced space Y∆ as the direct

product action of the standard torus action of T∆ℓ ∼= (S1)dℓ/∆ℓ on P
(dℓ−1). We

denote

t∆ℓ = Lie((S1)Iℓ/∆ℓ) ∼= R
(dℓ−1).

This action of the torus T∆ℓ on P
(dℓ−1) naturally extends to the action of the product

U∆ :=
∏

ℓ

U(dℓ)
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as the Kähler isometry with respect to the canonical complex and symplectic struc-

tures induced from the ones on Y∆ = µ−1

∆
(j∗(r))/∆.

Now the quotient group K/∆ := K∆ acts on Y∆. We denote its moment map by

µK∆
: Y∆ → k∗

∆

and the natural projection K → K∆ by π∆. Then we have the identity

π∗
∆
◦ µK∆

= µK .

and the second reduction provides the description of (X
Σ(P )

, ωP ) as the reduced space

X
Σ(P )

∼= µ−1

K∆
(s)/K∆

where s ∈ k∗
∆

such that π∗
∆

(s) = r.
In terms of this identification, the Lagrangian torus L = µ−1(A), A = (a1, · · · , an)

can be written as

µ−1

T∆(A1, · · · , ALA)/K∆

∼=
(

µ−1

T∆1
(A1)× · · · × µ−1

T
∆

L
A

(ALA)
)

/K∆

where Aℓ ∈ (t∆ℓ)∗ and (A1, · · · , ALA) ∈ ⊕ℓ(t
∆ℓ)∗ and

µT∆
ℓ

: P
(dℓ−1) → (t∆ℓ)∗ ∼= R

(dℓ−1)

is the standard moment map on P
(dℓ−1) of the action by the torus T∆ℓ . Here

(A1, · · · , ALA) = π∗(A) where

π : T∆ = (S1)N/∆→
(S1)N/∆

K/∆
∼= (S1)N/K = T n.

By the symmetry consideration, it follows that µ−1

T∆
ℓ
(Aℓ) is the Clifford torus of

P
(dℓ−1).

We summarize the above discussion into the following theorem

Theorem 11.2. Let X
Σ(P )

= µ−1(r)/K be a Fano toric manifold with the

symplectic form ωP associated to the polytope P . Then each balanced Lagrangian

torus fiber in X
Σ(P )

has the form

L ∼= (L1 × · · · × LLA
)/K∆ ⊂ µ

−1

K∆
(s)/K∆

∼= X
Σ(P )

where K∆ = K/∆ and Lℓ is the Clifford torus of (P(dℓ−1), ωℓ) with ωℓ the Fubini-Study

form associated to the normalization

P
dℓ−1 = µ−1

∆ℓ

(−λIℓ
)/S1, λIℓ

=
∑

i∈Iℓ

λi.

12. Hori-Vafa’s B-Model Calculation. In this section and the next, we will

relate the equation (10.6) with the critical point equation of the superpotential of

the Landau-Ginzburg mirror to the toric manifold (X
Σ(P )

, ωP ), after substituting

T 2π = e−1. We will closely follow the notations from [HV] with few minor exceptions,

and exclusively use convention that the letter i runs over 1, · · · , N , a over 1, · · · , k(=
N − n) and α over 1, · · · , n.
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In this section, we first describe the prediction of Floer cohomology by Hori via

the mirror symmetry correspondence from Hori and Vafa [HV] or Hori [H].

Suppose the k-dimensional torus K = (S1)k acts on C
N as follows.

(eiθ1 , · · · , eiθk) · (z1, · · · , zN ) = (

k
∑

a=1

eiQ1aθaz1, · · · ,

k
∑

a=1

eiQNaθazN).

The moment map of this action is given by

µ : C
N → (Rk)∗

(z1, · · · , zN) 7→
1

2
(
∑

i

Qi1|zi|
2, · · · ,

∑

i

Qik|zi|
2)

(See section 3 for more detailed discussion on this). Now we consider the quotient

µ−1(r)/K as toric manifolds where r = (r1, · · · , rk) lies in (Rk)∗.

With some physical arguments, Hori and Vafa [HV] introduce the dual geometry

by introducing periodic variables Yi, i = 1, · · · , N with Yi ≡ Yi + 2πi such that for

a = 1, · · · , k,

N
∑

i=1

QiaYi = ta (12.1)

where ta = ra − iθa.

Remark 12.1. Here we consider the case where the B-field is zero.

The real part of Yi represents the position of the Lagrangian torus fiber and

imaginary part represents the holonomy of the line bundle on this torus fiber. And

one considers the superpotential

W :=

N
∑

i=1

e−Yi . (12.2)

The critical points of the superpotential correspond to specific fibers and holonomies

whose Floer cohomology are non-vanishing.

For a given Q, we consider the equation

N
∑

i=1

viQia = 0, vi ∈ Z. (12.3)

The space of solutions of (12.3) form an integral lattice of rank n = N − k in R
N . We

denote a Z-basis of this lattice by {vα}1≤α≤n ⊂ R
N with

vα = (vα
1
, · · · , vαN )

each of them satisfying

N
∑

i=1

vαi Qia = 0. (12.4)
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Therefore the general solutions for the constraint equation
∑

iQiaYi = ta have the

form

Yi =

n
∑

α=1

vαi Θα + yi (12.5)

with n = N −k periodic variables Θα ( mod 2πi) where y = (y1, · · · , yN) is a special

solution of

N
∑

i=1

QiaYi = ta.

(In [HV], the letters ti’s are used for yi’s which is somewhat confusing with the other

usage of ta’s.)
Now the superpotential (12.2) of the mirror theory can be expressed as

W =

N
∑

i=1

exp(−yi − 〈Θ, vi〉), (12.6)

where

vi := (v1

i , v
2

i , · · · , v
n
i ) ∈ R

n ∼= N
R

and 〈Θ, vi〉 is the short hand notation for
∑n

α=1
vαi Θα. Note that the condition

∂W
∂Θα

= 0 is the same as

N
∑

i=1

e−Yi · vαi =

N
∑

i=1

exp(−yi − 〈Θ, vi〉) · v
α
i = 0 (12.7)

for α = 1, · · · , n. One can already see the similarity between equation (10.6) and the

equation (12.7). In the next section, we show that two equations indeed coincide, if

we substitute

T 2π = e−1, and then yi = −λi.

13. Equivalence when T 2π = e−1
. In this section, we show that our calculation

of the (Bott-Morse) Floer cohomology indeed verifies the mirror symmetry prediction

made by Hori-Vafa’s B-model calculation. More precisely, the condition (10.6) to have

non-vanishing Floer cohomology with T 2π = e−1 exactly corresponds to the critical

points of the superpotential, with a canonical definition of the variables Yi’s.
To see the correspondence for the compact toric manifold X

Σ(P )
, we define Yi as

follows:

Definition 13.1. For i = 1, · · · , N , define Yi ∈ R× i(R/2πZ) as

{

Re(Yi) = Area(βi)/2π

Im(Yi) = i log(hvi) = −〈ν, vi〉 mod 2π
(13.1)

where vi’s are the generators of the one dimensional cones of the fan Σ associated

the toric manifold X
Σ(P )

as in section 2 and βi ∈ π2(X,L) is its associated homology

class, and ν is the holonomy vector of the flat line bundle L defined in (10.3).



FLOER COHOMOLOGY OF LAGRANGIAN TORUS FIBERS 807

Then it follows from Theorem 8.1 that

Yi = (〈A, vi〉 − λi)− i〈ν, vi〉 = 〈A− iν, vi〉 − λi (13.2)

and hence

e−Yi = e−(〈A−iν,vi〉−λi) or (13.3)

= hvie−(〈A,vi〉−λi). (13.4)

Consider the choice of ta’s given by the real numbers

ta = −
N

∑

i=1

Qiaλi

for a = 1, · · · , N − n. Then by the choice of ta’s,

yi = −λi, i = 1, · · · , N

is a special solution of (12.1).

Proposition 13.1. For any vectors A and ν above, Yi’s defined by (13.2) satisfy

the constraint equation

N
∑

i=1

QiaYi = ta for each a = 1, · · · , N − n.

Proof. First note that we have the following equality from the exact sequence

(2.1) or equation (12.4)

N
∑

i=1

Qiav
α
i = 0 for all α,

and so we have

N
∑

i=1

Qiavi = 0. (13.5)

From this, we derive

N
∑

i=1

QiaYi =

N
∑

i=1

Qia(〈A− iν, vi〉 − λi)

= 〈A− iν,

N
∑

i=1

Qiavi〉 −

N
∑

i=1

Qiaλi

= 0 + ta = ta

which finishes the proof.

Now identifying the variable Θ

Θ = A− iν,
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Yi’s defined in (13.2) coincide with (12.5).

Now, it remains to show that the condition (10.6) to have non-vanishing Floer

cohomology corresponds to the critical points of the superpotential W =
∑N
i=1

e−Yi ,

if we substitute T 2π = e−1.

Proposition 13.2. The Θ = A − iν is a critical point of the superpotential W
if and only if A and ν (or hvi ’s) satisfy (10.6), i.e., δ2〈pt〉 = 0.

Proof. The condition (10.6)

∑

i

hviT 2π(〈A,vi〉−λi) · vi = 0

becomes the following equation, after we substitute T 2π = e−1:

∑

i

hvie−(〈A,vi〉−λi) · vi = 0. (13.6)

Then from (13.4) and from the choice yj = −λj , the above equation is same as

∑

i

e−Yivαi = 0 ∀ α, (13.7)

which is precisely the condition for Yi to be the critical points of the superpotential

W as in the equation (12.7).

14. Examples.

14.1. The complex projective space P
2
. In [Cho], Floer cohomology of the

Clifford torus T 2 with a flat line bundle is computed. This example extends the results

by showing that there are no other fibers in P
2 with non-vanishing Floer cohomology.

We consider P
2 associated with the moment polytope P defined by











〈x, (1, 0)〉 ≥ 0

〈x, (0, 1)〉 ≥ 0

〈x, (−1,−1)〉 ≥ r.

(14.1)

Let (a1, a2) ∈ int(P ). For the Lagrangian submanifold L := µ−1

T (a1, a2), there exist

three Maslov index 2 discs (up to Aut(D2)) with boundary in L. It is not hard to

check that its moment map µT trajectories are in fact straight lines. To find the torus

fiber whose Floer cohomology is non-vanishing, we check the condition (10.6).

δ2(〈pt〉) = h1T
2πa1(1, 0)+h2T

2πa2(0, 1)+h−1

1
h−1

2
T 2π(−a1−a2+r)(−1,−1) = 0. (14.2)

Since hi ∈ U(1), we have

{

h1 = h−1

1
h−2

2

a1 = −a1 − a2 + r
(14.3)

{

h2 = h−1

1
h−2

2

a2 = −a1 − a2 + r.
(14.4)
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Hence, we have

a1 = a2 = r/3,

h1 = h2 and h3

1
= 1.

The Lagrangian fiber µ−1

T (r/3, r/3) is called the the Clifford torus and the holonomies

(h1, h2) of the line bundle L for the non-vanishing Floer cohomologies on the Clifford

torus are

(1, 1), (e2πi/3, e2πi/3), (e4πi/3, e4πi/3).

14.2. Hirzebruch surface F1. This example illustrates well the difference be-

tween the actual Floer cohomology with Λnov-coefficient and the Floer cohomology

with the parameter value T 2π = e−1. The latter was predicted by Hori-Vafa [HV]

by the B-model calculation. However the latter version of the Floer cohomology is

not invariant under the Hamiltonian isotopy of the Lagrangian torus fiber while the

former version is so. The latter Floer cohomology has Euler number of fibers whose

Floer cohomology is non-vanishing for toric Fano manifolds ([HV]), especially there

exists four such fibers for Hirzebruch surface F1. But we will show that the former

version has no fiber whose Floer cohomology is non-vanishing.

We consider F1 associated with the moment polytope P1 defined by



















〈x, (1, 0)〉 ≥ −1

〈x, (0, 1)〉 ≥ −1

〈x, (0,−1)〉 ≥ −1

〈x, (−1, 1)〉 ≥ −1

(14.5)

(The compuation here can be generalized to the case of other polytopes). This poly-

tope is reflexive [B2], thus F1 is Fano. Let (a1, a2) ∈ int(P1). For the Lagrangian

submanifold L := µ−1

T (a1, a2), there exist four Maslov index 2 discs (up to Aut(D2))

with boundary in L. In the torus coordinates, these are given as

(c1, c2z), (c1z, c2), (c1,
c2
z

), (
c1
z
, c2z).

To find the torus fiber whose Floer cohomology is non-vanishing, we check the condi-

tion (10.6).

0 = δ2(〈pt〉) = h1T
2π(a1+1)(1, 0) + h2T

2π(a2+1)(0, 1) +

h−1

2
T 2π(−a2+1)(0,−1) + h−1

1
h2T

2π(−a1+a2+1)(−1, 1).

From the first coordinate, we obtain,

{

h1 = h−1

1
h2

T 2π(a1+1) = T 2π(−a1+a2+1).
(14.6)

Therefore we have

h2 = h2

1
, a2 = 2a1.
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From the second coordinate, we have

h2

1
T 2π(2a1+1) − h−2

1
T 2π(−2a1+1) + h1T

2π(a1+1) = 0.

Or, equivalently

(h1T
2πa1)4 − 1 + (h1T

2πa1)3 = 0. (14.7)

Now, we substitute T 2π = e−1. Then, the equation (14.7) becomes

(h1e
−a1)4 − 1 + (h1e

−a1)3 = 0. (14.8)

By setting X := h1e
−a1 , we have

X4 +X3 − 1 = 0. (14.9)

It is not hard to check the four solutions of this equation indeed gives the location

of the four fibers inside the polytope P1, whose Floer cohomology with the value

T 2π = e−1 is non-vanishing. This agrees with the B-model calculation from [HV].

For the Floer cohomology with Λ0,nov-coefficients, note that we regard T as a

formal parameter. Hence to have a solution of the equation (14.7), we should have

a1 = 0. (14.10)

In this cases, the equation becomes,

h4

1
+ h3

1
− 1 = 0. (14.11)

It is easy to check that this equation does not have a solution for h1 ∈ U(1). Hence,

there exists no torus fiber in F1(from the polytope P1) whose Floer cohomology with

Λnov-coefficient is non-vanishing.

Also note that the Hirzbruch surface F1 is not convex, however, it satisfies the

generalized assumption. Or one may observe that holomorphic discs of index 4 does

not come into play in the computation of Floer cohomology due to dimensional reason,

and it is clear that holomorphic discs of index two cannot bubble off the holomorphic

sphere of chern number 1, since such holomorphic sphere does not intersect fiber tori

whose moment map image lie in the interior of the moment polytope. Hence, Floer

cohomology in this case is well-defined.

Remark 14.1. For F0

∼= P
1 × P

1, it is easy to find the torus fiber (at the

centor of the rectangle) with four possible holonomies whose Floer cohomology with

Λnov-coefficient is non-vanishing.

15. Obstruction classes, open Gromov-Witten invariants and superpo-

tentials. Fukaya-Oh-Ohta-Ono [FOOO] have defined the obstruction cycles of the

filtered A∞-algebra associated to each Lagrangian submanifold and developed a de-

formation theory thereof, which tells whether one can kill the m0-term by a suitable

gauge equivalence. The m0 is defined by a collection of currents induced by the

(co)chains

[M1(β), ev0]

for all β ∈ π2(M,L). More precisely, we have

m0(1) =
∑

β∈π2(M,L)

[M1(β), ev0] · T
Area(β)qµ(β)/2 ∈ C∗(L)⊗ Λnov,0. (15.1)
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The sequence {ok(L)}1≤k<∞ of the obstruction classes introduced in [FOOO] is the

iterative obstructions to deforming the filtered A∞-structure so that

m0 ≡ 0 mod T λk+1 as k →∞.

Here we order those λ’s that appear as the area of β, i.e., as ω(β).

Since the paper [FOOO] appeared, it became a folklore among some mathemati-

cians and physicists alike that under the mirror symmetry correspondence FOOO’s

obstruction (co)chain of the A-model should correspond to the Landau-Ginzburg su-

perpotential of the B-model.

In fact, our computation confirms this test in the toric case. We now explain this

correspondence precisely. We first recall from Theorem 5.2 and the orientability of

the torus that there is no holomorphic discs of Maslov index less than 2. According

to [section 7, FOOO], all obstruction classes o(β) are well-defined and the only non-

trivial obstruction classes (as currents) are the ones given by

o(β) := [M1(β), ev0] for β with µ(β) = 2 (15.2)

for the torus fibers in this paper (see [section 7, FOOO] for more explanation), which

also coincides with m0(1) in this case. In view of Proposition 7.3 and consideration

of the sign from [Cho], we also have

o(β) = [L] (= 1)

the fundamental class of L for any β with µ(β) = 2. Therefore we have obtained the

formula for the obstruction class of L

o(L) =

N
∑

i=1

hvjTArea(βj) · q (15.3)

from the definition of obstruction classes [Definition 4.6 & 4.8, FOOO]. However it

follows, by the same substitution T 2π by e−1 as before, that the right hand side of

(15.3) precisely becomes

N
∑

i=1

exp(−yi − 〈Θ, vi〉) = W (Θ)

if we ignore the harmless grading parameter q. Therefore we have confirmed the exact

correspondence

o(L)←→W

for the case of Lagrangian torus fibers in toric manifolds.

In addition, comparing (10.6) with the derivative

∂W

∂Θ
=

( ∂W

∂Θ1

, · · · ,
∂W

∂Θn

)

after substitution of T 2π = e−1, we have also verified the correspondence

δ2〈pt〉 ←→
∂W

∂Θ
.
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Recall from [addenda, O1] that the senior author observed that the obstruction class

is determined by the (genus zero) one-point open Gromov-Witten invariants in the

monotone case, which obviously generalizes to the toric Fano case (because the fiber

does not have holomorphic discs of non-positive Maslov indices). Similarly in general,

δ2〈pt〉 is determined by the two-point open Gromov-Witten invariants from the def-

initions (7.1) and (7.2) [FOOO]. Here we would like to emphasize that in this case

of torus fibers in the Fano toric manifolds, the (genus zero) open Gromov-Witten

invariants considered here are rigorously well-defined (with respect to the canoni-

cal complex structure). This correspondence between adding one marked point and

taking the derivative is consistent with the well-known principle in the calculus of

correlation functions in physics. In the subsequent work, the first author showed the

exact correspondence between products of A∞ algebra of Lagrangian submanifold and

derivatives of the superpotential([Cho2]).

Combination of these facts suggests an intriguing relation between the derivatives

of W of the superpotential (or of the obstruction o(L)) and the “open Gromov-Witten

invariants” of L in general. (Here we put the quotation mark because the open

Gromov-Witten invariants in general has not been rigorously defined.) In fact, there

has been conjectured by physicists that the superpotential is related by the mirror

symmetry correspondence to the “open Gromov-Witten potential” (see [KKLM] for

example), and our work provides a concrete mathematical evidence via an A-model

calculation. As far as we understand, most calculations, if not all, in the physics

literature in this respect have been done in the B-model side. We hope to further

investigate this relation in the future.

16. Discussion: non-convex cases. We believe that our calculation of the

Floer cohomology in this paper should remain to be true for the non-Fano toric

manifolds. In this section, we explain what remains to be proved for the non-Fano

cases.

The structure and regularity theorem of smooth holomorphic discs still hold for

the non-Fano case. However for singular curves, distinction occurs in the transver-

sality problem because of the presence of multiple covered spheres of negative Chern

numbers. Therefore it is essential to use the abstract perturbation in the framework

of Kuranishi structure [FOn], even if all disc components are already regular. With

this transversality problem taken care of, all the theorems, especially those in sections

4 and 10 should remain to be true, possibly except the statement

HF (L, φ(L); J ′) ∼= HFBM (L, J0).

The proof of this isomorphism is expected to use a singular degeneration argument

as those used in [FOh1] in the presence of non-trivial instantons which may not be

transversal. One really has to construct a Kuranishi structure in the limit config-

urations and to prove other non-trivial convergence statements. This singular de-

generation problem is currently being studied by the senior author with K. Fukaya

[FOh2].

In the end, we expect that the above isomorphism still holds but details of the

proof remain to be worked out. Because of this, we restrict ourselves to the Fano case

for sections 4, 10 and the beginning of section 7 in this paper.
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