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MAXIMAL SUBBUNDLES OF PARABOLIC VECTOR BUNDLES∗

USHA N. BHOSLE† AND INDRANIL BISWAS†

Abstract. Let X be a complex irreducible smooth projective curve of genus at least two and
M(r, d) a moduli space of stable parabolic vector bundles over X of rank r and degree d with a fixed
parabolic structure. For any parabolic bundle E∗ ∈ M(r, d) and a subbundle F ⊂ E of rank r′ and
fixed induced parabolic structure, set spar(E∗, F∗) := dr′ − deg(F )r, where F∗ is F equipped with
the induced parabolic structure. If E∗ has a subbundle of rank r′ with the fixed induced parabolic
structure, then let s

par

r′
(E∗) be the minimum of spar(E∗, F∗) taken over all such subbundles F . We

investigate the strata of M(r, d) defined by values of s
par

r′
(E∗).
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1. Introduction. Let X be a connected smooth projective curve defined over
C of genus g, with g ≥ 2, and P a finite set of distinct closed points of X . The
canonical line bundle of X will be denoted by K, and K(P ) will denote the line
bundle K ⊗OX(P ).

Let M(r, d) denote the moduli space of all stable parabolic vector bundles E∗

over X of rank r and degree d with fixed parabolic structures over P . We will assume
that all the parabolic weights are rational numbers. For parabolic vector bundles E∗

and F∗, let Hom(E∗, F∗) (respectively, Homst(E∗, F∗)) denote the sheaf of parabolic
(respectively, strongly parabolic) homomorphisms from E∗ to F∗ (see Definition 2.2).

By a general parabolic vector bundle we will mean a parabolic bundle correspond-
ing to a general point of M(r, d) for some r and d. We have the following analogue of
Yoneda pairing.

Proposition 1.1 (Proposition 3.3). (1) Let E∗ and F∗ be general stable parabolic
vector bundles. Then the cup product pairing

H1(Hom(E∗, E∗)) ⊗H0(Hom(E∗, F∗)) −→ H1(Hom(E∗, F∗))

is identically zero.
(2) Let the assumptions be as in (1). The pairing of vector spaces (defined by

composition of homomorphisms)

H0(Hom(E∗, F∗))⊗ H0(Homst(F∗, E∗ ⊗K(P ))) −→ H0(Homst(E∗, E∗ ⊗K(P )))

is identically zero.

For a vector bundle E, let µE := degree(E)/rank(E) be the slope of E.

Theorem 1.2 (Theorem 4.2). Let A∗ and B∗ be two general stable parabolic
vector bundles over X. Then

(A) (1) : H0(Hom(A∗, B∗)) = 0 if µB − µA ≤ g − 1 + tA,B ,
(A) (2) : H1(Hom(A∗, B∗)) = 0 if µB − µA ≥ g − 1 + tA,B ,
(B) (1) : H0(Homst(A∗, B∗)) = 0 if µB − µA ≤ g − 1 + tA,B + t0A,B ,

(B) (2) : H1(Homst(A∗, B∗)) = 0 if µB − µA ≥ g − 1 + tA,B + t0A,B .
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Here tA,B and t0A,B are rational numbers determined by the parabolic structures on
A∗ and B∗ (see Eqn. (2.3) for the definition).

This result was proved earlier for ordinary vector bundles by Hirschowitz [Hi].
In case of ordinary vector bundles, the statements (A) (1) and (A) (2) are equivalent
under Serre duality and one needs to prove only one statement. This is no longer true
for parabolic vector bundles, hence both the statements have to be proved separately.
The statements (B) (1), (B) (2) follow from (A) (2), (A) (1) respectively by duality. It
may be noted that the known proofs of the theorem in the vector bundle case ([Hi],
[RT]) do not generalize to the parabolic case, one of the problems being that the
parabolic degrees are not integers.

Let E∗ be a parabolic vector bundle of rank r, degree d and rational parabolic
weights αi(p), p ∈ P , with multiplicities ni(p). Set wtE =

∑

p

∑

i αi(p)ni(p). We fix
the parabolic data of the induced parabolic structure of subbundles of E∗ of fixed rank.
So let E′

∗ denote a parabolic subbundle of E∗ of (fixed) rank r′, (non–fixed) degree d′,
and weights αi(p), p ∈ P , with (fixed) multiplicities n′

i(p) ≤ ni(p), where n′
i(p) = 0

if αi(p) is not a weight of E′
∗; the parabolic structure on E′

∗ is the one induced by E∗.
Let E′′

∗ = E∗/E
′
∗ and r′′ = r − r′ = rank(E′′

∗ ). Define spar(E∗, E
′
∗) := r′d− rd′.

Definition 1.3. Fix integers r′ and {n′
i(p)}p∈P with 1 ≤ r′ < r and 0 ≤

n′
i(p) ≤ ni(p) with

∑

i n
′
i(p) = r′ for all p ∈ P . Set n′′

i (p) = ni(p) − n′
i(p) and

tn′,n′′ =
∑

p∈P

∑

i>j n
′
i(p)n

′′
j (p) (in tn′,n′′ , the suffix n′ stands for the tuple ((n′

i(p))i,p)
and the suffix n′′ stands for the tuple ((n′′

i (p))i,p) ) . If a parabolic vector bundle E∗

has a parabolic subbundle E′
∗ of rank r′ and weight αi(p) of multiplicity n′

i(p), p ∈ P ,
then we define

spar
r′ (E∗) := min spar(E∗, E

′
∗) ,

where the minimum is taken over all parabolic subbundles E′
∗ ⊂ E∗ of rank r′ and

weight αi(p) of multiplicity n′
i(p), p ∈ P .

One has spar
r′ (E∗) ≡ r′d mod r. We prove that there is an upper bound

spar
r′ (E∗) ≤ r′r′′(g + tn′,n′′) .

We use the correspondence between parabolic vector bundles onX and vector bundles
equipped with the action of the Galois group on a suitable normal covering of X to
get this upper bound.

The stability condition of E∗ gives a lower bound on spar
r′ (E∗), E∗ ∈M(r, d). We

prove that for a general parabolic bundle E∗, either E has no subbundle of given type
or one has

spar
r′ (E∗) ≥ r′r′′(g − 1 + tn′,n′′) .

Let spar
max and spar

min denote respectively the maximum and minimum possible values
of spar

r′ (E∗), where the maximum (or minimum) is taken by moving E∗ over a moduli
space of stable parabolic bundles (fixing r′ and the induced parabolic structure of the
subbundle).

Let s denote an integer such that

spar
min ≤ s ≤ spar

max , s ≡ r′d mod r .

Let Mr′,s be the subset of M(r, d) defined by

Mr′,s = {E∗ ∈M(r, d) | spar
r′ (E∗) = s} .
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For a fixed E∗ and fixed α′
i(p), n

′
i(p), let Apar

r′,d′(E∗) := {E′
∗ | E′

∗ ⊂ E∗ parabolic
subbundle of rank r′, degree d′ and weights α′

i(p) with multiplicities n′
i(p), p ∈ P}.

Theorem 1.4. (1) If s ≤ r′r′′(g − 1 + tn′,n′′) and Mr′,s is nonempty, then

dimMr′,s = dimM(r, d) + s− r′r′′((g − 1) + tn′,n′′) .

A general element E∗ in Mr′,s has only finitely many subbundles of rank r′, degree d′

and with given induced parabolic structure, i.e., dimApar
r′,d′(E∗) = 0.

(2) If s ≥ r′r′′((g − 1) + tn′,n′′), then

dimApar
r′,d′(E∗) ≤ s− r′r′′((g − 1) + tn′,n′′) ,

and

dimMr′,s = dimM(r, d).

(3) (A) Let w =
∑

p

∑

i αi(p)ni(p), w
′ =

∑

p

∑

i αi(p)n
′
i(p), w

′′ = w − w′. Assume
that

g ≥ 1 + (r′′p0 − [w′′])/r′,

where p0 is the number of parabolic points and [w′′] denotes the integral part of w′′.
Then Mr′,s is nonempty if and only if s0 ≤ s ≤ sp

max and s ≡ r′d mod r, where s0 is
the unique integer satisfying

rw′ − r′w < s0 ≤ r + rw′ − r′w, s0 ≡ r′d mod r.

(B) If r′ = r − 1, then the conclusion of (A) holds for all g ≥ 2.

Note that from part 2 of Theorem 1.4 it follows that

spar
max = r′r′′(g − 1 + tn′,n′′) + ǫ ,

where ǫ is the unique integer 0 ≤ ǫ ≤ r − 1 with spar
max ≡ r′d mod r.

The condition in Theorem 1.4.3(A) is used to prove that Mr′,s0
is nonempty.

This is the most difficult part (Proposition 5.6). The nonemptiness of Mr′,s, s > s0
is deduced from the nonemptiness of Mr′,s0

using elementary transformations and
dimension estimates (Lemmas 5.4, 5.2, 5.3, Proposition 5.5). Some of the subsets
Mr′,s, s > s0 could possibly be nonempty under weaker (or different) conditions than
those in 3(A) (for example, see Proposition 4.3).

The layout of the paper is as follows. In Section 2, all the general results on
parabolic bundles needed in the paper are given. The upper bound on spar

r′ and the
analogue of Yoneda pairing are proved in Section 3. Theorem 1.2 is proved in Section
4. The final Section 5 deals with maximal parabolic subbundles of parabolic vector
bundles ending with the proof of Theorem 1.4.

2. Parabolic vector bundles. Let X be a connected smooth projective curve
of genus g, with g ≥ 2 over the field of complex numbers and P a finite set of distinct
closed points of X . Let p0 be the number of points p ∈ P .

For a vector bundle E on X , we denote the rank, degree and slope of E by r(E),
d(E) and µE respectively.

Definition 2.1. Let P be a finite set of distinct closed points of X . A parabolic
structure on a vector bundle E on X at p ∈ P consists of the following.
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(1) A flag of the fiber of E at p

Ep = Ep,1 ⊃ Ep,2 ⊃ · · · ⊃ Ep,lp ⊃ Ep,lp+1 = 0 .

(2) A sequence of real numbers

0 ≤ α1(p) < α2(p) < · · · < αlp(p) < 1 .

These numbers {αi(p)} are called parabolic weights at p. The integer

ni(p) = dimEp,i/Ep,i+1 ,

1 ≤ i ≤ lp is called the multiplicity of αi(p).
A parabolic structure at p is called trivial if lp(p) = 1.
A parabolic vector bundle E∗ on X is a vector bundle E on X together with a

parabolic structure at each p ∈ P .

We shall fix P . We also assume that the parabolic weights are rational, hence
there is an integer N such that the weights are integral multiples of 1/N . Let

wtp(E) =

lp
∑

i=1

ni(p)αi(p)

and wt(E) =
∑

p∈P wt(Ep). The (parabolic) degree and slope of E∗ are defined by

d(E∗) = d(E) + wt(E) , µ(E∗) = d(E∗)/r(E)

(Semi)stability of parabolic bundles is defined using parabolic slope. See [MeS] for
the details.

Let M(r, d) denote the moduli space parametrizing all stable parabolic vector
bundles with rank, degree and parabolic structure fixed. It is an irreducible smooth
quasi-projective variety with

dim M(r, d) = r2(g − 1) + 1 +
∑

p

∑

i>j

ni(p)nj(p) .

Definition 2.2. A parabolic homomorphism (respectively, strongly parabolic ho-
momorphism) of parabolic bundles

f : E∗ −→ F∗

is a homomorphism of vector bundles f : E → F such that if {γi(p)} and {βj(p)}
are weights at p ∈ P of E and F respectively, then f(Ep,i) ⊂ Fp,j+1 if γi(p) > βj(p)
(respectively, γi(p) ≥ βj(p)).

Let Hom(E∗, F∗) (respectively, Homst(E∗, F∗)) denote the vector space of par-
abolic (respectively, strongly parabolic) homomorphisms from E∗ to F∗.

Definition 2.3. The sheaf of parabolic homomorphisms from E∗ to F∗ is defined
by

Hom(E∗, F∗)(U) := {Hom(E∗ |U −→ F∗ |U )}
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for any open set U ⊂ X . The sheaf of strongly parabolic homomorphisms
Homst(E∗, F∗) is defined similarly.

Therefore, there are short exact sequences

(2.1) 0 −→ Hom(E∗, F∗) −→ Hom(E,F ) −→ TE,F −→ 0 ,

(2.2) 0 −→ Homst(E∗, F∗) −→ Hom(E∗, F∗) −→ T 0
E,F −→ 0 .

Here TE,F and T 0
E,F are torsion sheaves supported on P with

dimTE,F =
∑

p∈P

∑

γi(p)>βj(p)

nE
i (p)nF

j (p)

and

dimT 0
E,F =

∑

p∈P

∑

γi(p)=βj(p)

nE
i (p)nF

j (p) .

Define rational numbers tE,F and t0E,F by

(2.3) r(E)r(F )tE,F = dimTE,F and r(E)r(F )t0E,F = dim T 0
E,F .

For p ∈ P , let WE(p) and WF (p) denote the sets of weights of E∗ and F∗ re-
spectively, and set W (p) = WE(p) ∪ WF (p). Arrange the elements of W (p) in a
sequence

0 ≤ α1(p) < α2(p) < · · · < α#W (p)(p) < 1 .

In particular, αi(p) = γj(p) or αi(p) = βk(p) for some j, k. For any αi(p) ∈ W (p),
we again denote by nE

i (p) the multiplicity of αi(p) in the fiber Ep, with the convention
that nE

i (p) = 0 if αi is not a weight of E at p. It is easy to check that

r(E)r(F )tE,F =
∑

p∈P

∑

i>j

nE
i (p)nF

j (p)

and

r(E)r(F )t0E,F =
∑

p∈P

∑

i

nE
i (p)nF

i (p) .

More generally, we have the following lemma.

Lemma 2.4. Consider an exact sequence of parabolic vector bundles

0 −→ E′
∗ −→ E∗ −→ E′′

∗ −→ 0 ,

with E∗, E
′
∗ and E′′

∗ of ranks r, r′ and r′′ respectively. If F∗ is any parabolic vector
bundle, then

1. r2tE,E = r′
2
tE′,E′ + r′′

2
tE′′,E′′ + r′r′′(tE′,E′′ + tE′′,E′) ,

2. r′tE′,F + r′′tE′′,F = rtE,F ,
3. r′tF,E′ + r′′tF,E′′ = rtF,E, ,
4. p0 = tE,F + tF,E + t0E,F (recall that p0 := #P ).
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Proof. (1) We have nE
i (p) = nE′

i (p) + nE′′

i (p) for all i. Substituting this in the
left hand side of (1) and expanding terms, we get the result.

(2) We have r′r(F )tE,F =
∑

p∈P

∑

i>j n
E
i (p)nF

j (p). The result follows easily by

substituting for nE
i (p) as in the proof of (1).

(3) This follows exactly as (2).
(4) Note that r(E) =

∑

i n
E
i (p) for each p ∈ P . Hence

r(E)r(F ) =
∑

i,j

nE
i (p)nF

j (p) =
∑

i>j

nE
i (p)nF

j (p) +
∑

j>i

nE
i (p)nF

j (p) +
∑

i

nE
i (p)nF

i (p) .

The result follows by summing over p ∈ P .

Lemma 2.5. Let B∗ and C∗ be parabolic vector bundles.
1. r(B)wtp(C) − r(C)wtp(B) +

∑

i>j n
B
i (p)nC

j (p) ≥ 0 for each p ∈ P , and
equality holds if and only if the union of weights of B and C (at p) is a
singleton set.

2. r(B)wt(C) − r(C)wt(B) + r(B)r(C)tB,C ≥ 0 with the equality holding if and
only if the union of weights of B and C at each p ∈ P is a singleton set.

3. χ(Hom(B∗, C∗)) = r(B)d(C) − r(C)d(B) + r(B)r(C)(1 − g − tB,C).

Proof. (1) Since we are fixing p, we shall omit (p) in the calculations in this proof.
Note that r(B) =

∑

i n
B
i and r(C) =

∑

j n
C
j . Hence the left hand side of (1) is

∑

i,j

nB
i n

C
j αj −

∑

i,j

nC
j n

B
i αi +

∑

i>j

nB
i n

C
j =

∑

i,j

nB
i n

C
j (αj − αi) +

∑

i>j

nB
i n

C
j

=
∑

i≤j

nB
i n

C
j (αj − αi) +

∑

i>j

(1 + αj − αi)n
B
i n

C
j .

Since αj ≥ αi (respectively, αj > αi) for j ≥ i (respectively, j > i), the first summa-
tion is nonnegative and it is zero if and only if nB

i n
C
j = 0 ∀i < j. Since 1−αi > 0 ∀i,

the second summation is nonnegative and it is zero if and only if nB
i n

C
j = 0 ∀i > j.

The result now follows.
The part (2) follows from part (1) by summing over p ∈ P .
Part (3) follows easily from the exact sequence Eqn. (2.1).

Definition 2.6. A parabolic vector bundle E∗ is (l,m)-stable if for every proper
subbundle F∗ of E∗, the inequality

d(F∗) + l

r(F )
<

d(E∗/F∗) −m

r(E/F )

holds.

Clearly an (l,m)-stable parabolic bundle is (0, 0)-stable (i.e., stable in the usual
sense) if l,m ≥ 0. Let x ∈ X be a closed point with x /∈ P . Let

0 −→ E′
∗ −→ E∗ −→ Cx −→ 0

be an exact sequence of coherent sheaves and the parabolic structure on E′
∗ is the

one induced by E∗ using the inclusion map, that is, E′
∗ is obtained from E∗ by an

elementary transformation. It is easy to see from the above definition that if E∗ is
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(l,m)-stable, then E′
∗ is (l,m−1)-stable and if E′

∗ is (l,m)-stable then E∗ is (l−1,m)-
stable.

Proposition 2.7. (1) Assume that the fixed parabolic structure on elements
in M(r, d) is not trivial at some parabolic point p. Then the (0, 1)-stable parabolic
bundles form a nonempty Zariski open subset of the moduli space M(r, d) for g ≥ 2.

If the parabolic structure is trivial at each parabolic point, then the above assertion
holds for g ≥ 3.

(2) The statement in (1) holds when (0, 1)-stable bundles are replaced by (1, 0)-
stable bundles.

Proof. (1) A stable parabolic bundle E∗ fails to be (0, 1)-stable if it has a sub-
bundle E′

∗ of rank r′, degree d′ such that

(2.4)
d′ + wtE′

r′
≥

d′′ + wtE′′ − 1

r′′
.

Hence the ranks r′′, degrees d′′ and weight-multiplicities n′′
i,p for quotients E′′

∗ of
elements of M(r, d) vary over finite sets. Using the properness of (parabolic) Quot
schemes, it follows that the complement of the subset consisting of (0, 1)-stable bundles
in M(r, d) is a finite union of closed sets. Thus the (0, 1)-stable bundles form an open
set in M(r, d).

Let h1 := h1(Hom(E′′
∗ , E

′
∗)). Since E∗ is stable, h0(Hom(E′′

∗ , E
′
∗)) = 0. Hence

h1 = −χ(Hom(E′′
∗ , E

′
∗)) = r′d′′ − r′′d′ + r′r′′(g − 1 + tE′′,E′)

by Lemma 2.5(3). The above inequality Eqn. (2.4) is equivalent to

r′d′′ − r′′d′ ≤ r′′wtE′ − r′wtE′′ + r′ .

Hence h1 ≤ r′r′′(g−1+tE′′,E′)+r′′wtE′−r′wtE′′+r′. The corresponding component
of the subvariety of non-(0, 1)-stable bundles in M(r, d) has dimension δ, then

δ ≤ dimM(r′, d′) + dimM(r′′, d′′) + h1 − 1

= r2(g − 1) + 1 + r2tE,E − r′r′′(g − 1) + r′ − r′r′′tE′,E′′ + r′′wtE′ − r′wtE′′

Thus δ ≤ dimM(r, d) − r′r′′(g − 1) + r′ and the equality holds if and only if E∗ has
all weights equal at all p ∈ P (Lemma 2.5(2)). Since r′′(g − 1) − 1 ≥ 0 for g ≥ 2, it
follows that δ < dimM(r, d) for g ≥ 2 if E∗ does not have all weights equal at some
p ∈ P . Otherwise, δ < dimM(r, d) for r′′(g − 1) − 1 > 0 which holds if g ≥ 3. This
completes the proof of (1). We remark that all weights equal at p is equivalent to
trivial parabolic structure at p.

(2) The proof is similar to that of (1). A stable bundle E∗ fails to be (1, 0)-stable
if and only if it has a subbundle E′

∗ with r′d′′ − r′′d′ ≤ r′′wtE′ − r′wtE′′ + r′′. The
corresponding component of the variety of non-(1, 0)-stable bundles in M(r, d) has
dimension δ ≤ dimM(r, d)− r′r′′(g− 1) + r′′ + (r′′wtE′ − r′wtE′′ − r′r′′tE′,E′′). The
result follows as in (1).

The following corollary follows immediately from Proposition 2.7.

Corollary 2.8. An elementary transformation of a general parabolic bundle
E at a nonparabolic point is a general parabolic bundle. The same holds for dual
elementary transformations.
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3. Vector bundles with Γ-action. The main results of this section are the
following. (1): an analog for vector bundles with finite group actions of the result of
Mukai and Sakai in [MS] giving lower bound on the degree of maximal subbundles
of a vector bundle; (2): Yoneda pairing for vector bundles with the action of a finite
group; and (3): corresponding results for parabolic vector bundles. In fact, here we
prove the analogue of Mukai–Sakai bound for parabolic G–bundles, where G is any
complex reductive algebraic group.

Definition 3.1. Let Y be a connected smooth projective curve over C and Γ
a finite subgroup of the automorphism group of Y . A vector bundle E′ on Y with
Γ-action is a vector bundle E′ on Y with an action of Γ on E′ as automorphisms of
vector bundle over the action of Γ on Y . In other words, the action of any γ ∈ Γ on
E′ is an automorphism of the vector bundle E′ over the automorphism of Y defined
by γ.

A vector bundle E′ with Γ-action is called stable if for any Γ-invariant proper
subbundle F ′ ⊂ E′ of positive rank the inequality

degree(F ′)

rank(F ′)
<

degree(E′)

rank(E′)

is valid.

Given a vector bundle E′ over Y with Γ-action, the direct image h∗E
′, where

h : Y −→ Y/Γ is the quotient map, is equipped with an action of Γ as vector bundle
automorphisms. The vector bundle (h∗E

′)Γ over Y/Γ defined by the invariant part
has a natural parabolic structure. The parabolic structure on (h∗E

′)Γ is defined using
the subsheaves

(h∗E
′ ⊗OY (−kD))Γ ⊂ (h∗E

′)Γ

where k ≥ 0, and D ⊂ Y is the reduced divisor where h is ramified; see [Bi] for the
details of the construction of parabolic structure.

Let X be a complex projective curve and P ⊂ X a finite set of points. Fix the
parabolic weights and their multiplicities over P . Then there exists a Galois covering
of order N

h : Y −→ X

ramified over P such that all parabolic bundles over X (of the given parabolic type)
arise from vector bundles on Y with Γ-action (of fixed topological type). This gives
a bijective correspondence between vector bundles with Γ-action on Y and parabolic
vector bundles on X [Bi]. The bijective correspondence preserves (semi)stability [Bi].

We will always fix the rank, degree and the parabolic structure, or equivalently,
the topological type of the Γ-action. Then the moduli spaces of stable parabolic vector
bundles, or of stable vector bundles with Γ-action, are irreducible quasiprojective
varieties. By a general bundle we mean a general element of the corresponding moduli
space.

The Γ-action on a vector bundle induces an action of Γ on any of its cohomolo-
gies. Let Hi(Y,E′)Γ and Hom(E′, F ′)Γ denote the Γ-invariants in Hi(Y,E′) and
Hom(E′, F ′) respectively.

We shall need the following known facts (the proofs can be found in [Bi]).

Lemma 3.2. For any vector bundles E′ and F ′ on Y with Γ-action and the
associated parabolic bundles E∗ and F∗ on X = Y/Γ
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1. d(E′) = Nd(E∗), N =| Γ |, and r(E′) = r(E∗);
2. Hi(Y,E′)Γ ∼= Hi(X,E), where E is the vector bundle underlying the par-

abolic bundle E∗;
3. (h∗Hom(E′, F ′))Γ ∼= Hom(E∗, F∗).

Proposition 3.3. (1) Let E′ and F ′ be general stable vector bundles with Γ-
action. Consider the pairing

ϕ : H1(End(E′))Γ −→ Hom((H0(E′∗ ⊗ F ′))Γ, (H1(E′∗ ⊗ F ′))Γ)

defined by ϕ(ξ)(α) = ξ ∪α for any ξ ∈ H1(End(E′))Γ and α ∈ H0(E′∗ ⊗F ′)Γ. Then
this pairing is identically zero.

(2) Let E∗ and F∗ be general stable parabolic vector bundles. Then the cup product
pairing

H1(Hom(E∗, E∗)) ⊗H0(Hom(E∗, F∗)) −→ H1(Hom(E∗, F∗))

is identically zero.
(3) Let the assumptions be as in (2). Then the pairing of vector spaces (defined

by composition of homomorphisms)

Hom(E∗, F∗) × Homst(F∗, E∗ ⊗K(P )) −→ Homst(E∗, E∗ ⊗K(P ))

is identically zero. Here K denotes the canonical bundle of X.

Proof. Let T = Speck[ǫ]/ǫ2. The closed point of T will be denoted by t0. Let

pY : Y × T −→ Y

be the natural projection. Let E −→ Y × T be a versal deformation, where E
is a family of vector bundles with Γ-action such that E|Y ×t0

∼= E′. Define F :=
(E∗ ⊗ p∗Y F

′). One has the exact sequence

0 −→ ǫF −→ F −→ ǫF = F mod ǫ −→ 0 ,

where the projection is given by multiplication by ǫ. Taking pY ∗ gives the exact
sequence

0 −→ V0 −→ V −→ V0 −→ 0

on Y , where V := (pY )∗(F), V0 := E′∗⊗F ′ and V ′
0
∼= V0. Let ξ ∈ H1(Y, End(V0))

Γ

be the element corresponding to this short exact sequence of vector bundles. The
above sequence of vector bundles gives the long exact sequence of cohomologies

(3.1) · · · −→ H0(V )Γ −→ H0(V0)
Γ δ
−→ H1(V0)

Γ −→ · · ·

where the connecting homomorphism δ satisfies the identity δ(α) = ξ ∪ α for all
α ∈ H0(V0)

Γ. Consequently, ξ∪α = 0 if and only if α lifts to an element of H0(V )Γ.
We shall check that the map H0(V )Γ → H0(V0)

Γ is surjective.
The moduli space of stable vector bundles with Γ-action is reduced and irre-

ducible. Hence there exists a locally complete family E ′ −→ Y × S of stable vector
bundles, with Γ-action, of rank r and degree d parametrized by a variety S such that
E ′

|Y ×s0

∼= E′ for some s0 ∈ S. The condition that the family is locally complete
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means that the morphism from S to the corresponding moduli space of stable vector
bundles with Γ-action is dominant.

Let F ′ = E ′∗ ⊗ p∗Y F
′. Going to an open subset U of S (if necessary), we may

assume that R0pU∗
(F ′) and R1pU∗

(F ′) are locally free, where pU : Y × U −→ U
is the natural projection. Then R0pU∗

(F ′) is compatible with base change. In other
words, for all f : T ′ → U , if F ′

T ′ is the pull back of F ′ to Y × T ′ by the morphism
idY × f , then one has (pT ′)∗F ′

T ′
∼= f∗(pU∗

F ′), where pT ′ : Y × T ′ −→ T ′ is the
natural projection.

Let q : T −→ U be a morphism with q(t0) = s0. The above mentioned
compatibility condition of R0pU∗

(F ′) under base change for the morphism f = q
says that pT ∗(F) ∼= q∗pU∗(F

′). Since the latter is locally free, so is the former.
Therefore, we have

(3.2) H0(T, pT∗F) ∼= H0(Y × T,F) ∼= H0(Y, V ) ,

where pT is the projection of Y × T to T . On the other hand, the restriction homo-
morphism

(3.3) H0(T, pT∗F) −→ H0(t0, (pT∗F)|t0)
∼= H0(Y,Ft0)

is surjective (restriction of the sections of a vector bundle over T to its fiber over t0
is surjective). Since the homomorphism

H0(Y, V )Γ ∼= H0(T, pT∗F)Γ −→ H0(Y,Ft0)
Γ = H0(Y, V0)

Γ

obtained from the combination of Eqn. (3.2) and Eqn. (3.3) coincides with the
homomorphism

H0(Y, V )Γ −→ H0(Y, V0)
Γ

in Eqn. (3.1), we conclude that the homomorphism H0(Y, V )Γ −→ H0(Y, V0)
Γ in

Eqn. (3.1) is surjective. Thus any α ∈ H0(V0)
Γ lifts to an element of H0(V )Γ. This

completes the proof of part 1.

Proof of part (2): The part (1) says that the cup-product pairing

H1(Hom(E′, E′))Γ ×H0(Hom(E′, F ′))Γ → H1(Hom(E′, F ′))Γ

is zero. Since Hi(Hom(E′, F ′))Γ ∼= Hi(Hom(E∗, F∗)) (see Lemma 3.2), the result
follows.

Proof of part (3): We claim that

Hom(E∗, F∗)
∗ ∼= Homst(F∗, E∗(P )).

One has Hom(E,F (−P )) ⊂ Hom(E∗, F∗) ⊂ Hom(E,F ). Dualizing gives
Hom(F,E) ⊂ Hom(E∗, F∗)

∗ ⊂ Hom(F,E(P )) with succesive quotients isomorphic
to Cr′r′′tE,F and Cq, where q = r′r′′(t0F,E + tF,E) = r′r′′(p0− tE,F ). The claim follows
from the commutative diagram
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0 0




y





y

0 −→ Homst(F∗, E∗) −→ Hom(E∗, F∗)
∗ −→ Cr′r′′p0 −→ 0





y





y

||

0 −→ Hom(F,E) −→ Hom(F,E(P )) −→ Cr′r′′p0 −→ 0




y





y

Cq = Cq




y





y

0 0 .

By Serre duality, H1(Hom(E∗, F∗))
∗ ∼= H0((Hom(E∗, F∗))

∗ ⊗K). By the claim,
the latter is isomorphic to Homst(F∗, E∗ ⊗K(P )). The result now follows from part
(2).

Remark 3.4. Given any integer δ, the general line bundle L ∈ Picδ(X) has the
property that H0(X, L) 6= 0 if and only if δ ≥ g. Therefore, if H0(X, L) 6= 0 for
the general line bundle L ∈ Picδ(X), then H0(X, L∗ ⊗K) = 0 for the general line
bundle L ∈ Picδ(X). This gives a proof of Proposition 3.3(1) when E′ and F ′ are
line bundles with E′ ⊗ F ′ = K.

3.1. Parabolic principal bundles. Let H be a connected linear algebraic
group over C. Let E′

H be a connected smooth quasiprojective variety over k and

f : E′
H ×H −→ E′

H

an algebraic right action of H on E′
H .

A parabolic H–bundle over X with parabolic structure over P is (E′
H , f) as above

together with a dominant morphism

ψ : E′
H −→ X

satisfying the following conditions:
1. ψ ◦ f = ψ ◦ p1 on E′

H ×H , where p1 is the projection of E′
H ×H to E′

H , that
is, the map ψ is equivariant for the action of H ;

2. for each point x ∈ X , the action of H on the reduced fiber ψ−1(x)red is
transitive;

3. the restriction of ψ to ψ−1(X \ P ) makes ψ−1(X \ P ) a principal H–bundle
over X \ P , that is, the map ψ is smooth over ψ−1(X \ P ) and the map to
the fiber product

ψ−1(X \ P ) ×H −→ ψ−1(X \ P ) ×X\P ψ−1(X \ P )

defined by (z , g) 7−→ (z , f(z, g)) is an isomorphism;
4. for each point z ∈ ψ−1(P )red, the isotropy at z for the action of H is a finite

subgroup of H .
See [BBN] for the details.

For notational convenience, a parabolicH–bundle defined as above will be denoted
by E∗.
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A parabolic GL(n,C)-bundle is same as a parabolic vector bundle of rank n
with rational parabolic weights. Using the standard action of GL(n,C) on Cn, the
principal GL(n,C)–bundle over X \ P , defined by a parabolic GL(n,C)–bundle E∗,
gives a vector bundle over X \ P . This vector bundle has a natural extension, which
is constructed using E∗, that carries the parabolic structure of the parabolic vector
bundle corresponding to E∗.

There is a finite Galois covering

(3.4) h : Y −→ X

and a Γ–linearized G–bundle EG over Y , where Γ is the Galois group of the covering
h, such that EG corresponds to E∗ (see [BBN]). The covering h is ramified over
P and for any x ∈ P , the order of ramification is a multiple of the order of the
isotropy subgroup for any point in ψ−1(x)red. See [KMM, Ch. 1.1, p. 303–305] for
the construction of such a covering.

Let E∗ be a parabolic G–bundle over X with parabolic structure over the divisor
P . Let Q denote a parabolic subgroup of G. A reduction of structure group to Q of
a parabolic G–bundle E∗ is a section

σ : X −→ E′
G/Q

of the natural projection of E′
G/Q to X , where E′

G is the underlying variety for E∗.
Note that q−1(σ(X)), where q is the projection of E′

G to E′
G/Q, is parabolicQ–bundle.

Conversely, if E′
Q ⊂ E′

G is a parabolic Q–bundle, then it defines a section σ of E′
G/Q

as above. This section σ has the property that q−1(σ(X)) coincides with E′
Q.

We noted above that there is a Γ–linearized principal G–bundle EG over Y that
corresponds to the parabolic G–bundle E∗ over X . Moreover, the reductions of E∗

to Q are in bijective correspondence with the Γ–invariant reductions of EG to Q (see
[BBN]).

Consider the Q–module g/q, where g and q are the Lie algebras of G and Q
respectively. For a reduction E′

Q ⊂ E′
G of a parabolic G–bundle E∗ to the parabolic

subgroup Q, the pair (E′
Q , g/q) defines a parabolic vector bundle E′

Q(g/q) over X .
Note that E′

Q(g/q) is a quotient of the parabolic vector bundle E∗(g) associated to E∗

for the adjoint representation of G on g. Therefore, there is a constant N(E∗) ∈ Z

such that the parabolic degree

par-deg(E′
Q(g/q)) ≥ N(E∗)

for every reduction E′
Q ⊂ E′

G to Q. Let

(3.5) c(E∗) ∈ Z

be the smallest value of par − deg(E′
Q(g/q)) taken over all reductions of E∗ to Q.

Proposition 3.5. Let E′
Q ⊂ E′

G be a reduction to Q of the parabolic G–bundle
E′

G to a parabolic subgroup Q ⊂ G such that par-deg(E′
Q(g/q)) = c(E∗). Then

degree(E′
Q(g/q)) ≤ gX · dimG/Q ,

where gX is the genus of X.

Proof. Let EG be the Γ–linearized G–bundle over Y corresponding to the par-
abolic G–bundle E′

G. In the earlier mentioned bijective correspondence between Γ–
invariant reductions of EG to Q and reductions of E′

G to Q, we have

#Γ · par-deg(E′
Q(g/q)) = degree(ad(EG)/ad(EQ)) ,
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where EQ is the reduction of EG corresponding to the reduction E′
Q of E′

G. So, if
E′

Q ⊂ E′
G is a reduction such that par-deg(E′

Q(g/q)) = c(E∗), then the correspond-
ing reduction EQ ⊂ EG has the property that degree(ad(EG)/ad(EQ)) = c(EG),
where c(EG) is the smallest value of degree(ad(EG)/ad(EQ)) taken over Γ–invariant
reductions of EG to Q.

The vector bundle (h∗(ad(EG)/ad(EQ)))Γ over X defined by the invariant direct
image is identified with the underlying vector bundle of the parabolic vector bundle
E′

Q(g/q) [BBN]. Consequently, we have

Hi(Y, ad(EG)/ad(EQ))Γ ∼= Hi(X, E′
Q(g/q)) .

Now [BB, Proposition 3.1] and the Riemann–Roch for the underlying vector bundle
for E′

Q(g/q) give

dimG/Q ≥
1

∑

i=0

(−1)i dimHi(Y, ad(EG)/ad(EQ))Γ

= degree(E′
P (g/q)) + (1 − gX) dimG/Q .

So, gX · dimG/Q ≥ degree(E′
Q(g/q)), and the proof of the proposition is complete.

Definition 3.6. Let E′ be a vector bundle on Y with Γ-action. A nonzero
proper Γ-invariant subbundle F ′ ⊂ E′ is said to be Γ-maximal if it has the maximal
degree among all Γ-invariant subbundles of E′ of the same rank.

Proposition 3.7. Let F ′ be a Γ-maximal subbundle of a vector bundle E′ with
Γ-action. Let F∗ and E∗ be the parabolic vector bundles corresponding to F ′ and E′

respectively. Then F∗ is a maximal parabolic subbundle of E∗. Also,
1. µE/F − µF ≤ g + tF,E/F , and
2. µE′/F ′ − µF ′ ≤ N(g + tF,E/F + wt(E/F )/r(E/F ) − wt(F )/r(F )).

Proof. That F∗ is maximal follows form the first assertion in Lemma 3.2. Also,
note that (2) is equivalent to (1) by Lemma 3.2(1).

The part (1) is a particular case of Proposition 3.5. In the notation of Proposition
3.5, taking G = GL(r,C) and Q the parabolic subgroup determined by the flag Cr1 ⊂
Cr, where r1 = r(F ), one has

degree(Hom(F∗, (E/F )∗)) = degree(EQ(g/q)) ≤ g · r(F )r(E/F ) .

Here E is the parabolic principal GL(r,C)-bundle corresponding to E∗, and g and q

are the Lie algebras of G and Q respectively. The statement (1) follows using the fact
that d(Hom(F∗, (E/F )∗) = r(F )r(E/F )(µE/F − µF − tF,E/F ).

4. General parabolic vector bundles. As before, let M(r, d) be the moduli
space of all stable parabolic vector bundles overX of rank r, degree d and fixed rational
parabolic weights of fixed multiplicities at finitely many distinct closed points P ⊂ X .

Proposition 4.1. Consider an exact sequence of the form

(4.1) 0 −→ C∗ −→ E∗ −→ B∗ −→ 0

with C∗, E∗ and B∗ parabolic vector bundles of ranks k, r and r − k with slopes µC ,
µ and µB respectively, and with fixed given parabolic structures. Assume that E∗ is
in M(r, d), in particular, it is stable. Then one has the following.
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1. A general E∗ ∈M(r, d) does not occur in an exact sequence of the form Eqn.
(4.1) with µB − µC < g − 1 + tC,B.

2. Let µB − µC = g − 1 + tC,B. Then a general parabolic bundle E∗ has only
finitely many (saturated) subbundles C∗ of rank k, slope µC and having a given
induced parabolic structure. Moreover these subbundles C∗ and corresponding
quotients B∗ must be general stable parabolic vector bundles in M(k, kµC)
and M(r − k, (r − k)µB) respectively.

Proof. (1) The extensions of the form as in Eqn. (4.1) are parametrized by the
projective space P(H1(Hom(B∗, C∗)) where Hom(B∗, C∗) is the sheaf of parabolic
homomorphisms. Since stable parabolic bundles are simple, it is easy to see that the
stability of E∗ implies that H0(Hom(B∗, C∗)) = 0. By Riemann–Roch theorem and
Lemma 2.5(3), one then has

dimH1(B∗, C∗) = k(r − k)(g − 1 + µB − µC + tB,C) .

Let δ be the dimension of the space of extensions of type Eqn. (4.1) with B∗, C∗

varying over parabolic bundles of the fixed type. Then

δ ≤ dimM(r − k, d(B)) + dimM(k, d(C)) + dim PH1(Hom(B∗, C∗)) .

One has

dimM(r − k, d(B)) = (r − k)2(g − 1) + 1 + (r − k)2tB,B

and dimM(k, d(C)) = k2(g − 1) + 1 + k2tC,C . Hence

δ ≤ dimM(r, d) = r2(g − 1) + 1 + r2tE,E

(respectively, δ < dimM(r, d) = r2(g − 1) + 1 + r2tE,E) if one has

k(r − k)(µB − µC − (g − 1)) ≤ r2tE,E − (r − k)2tB,B − k2tC,C − k(r − k)tB,C

(respectively, k(r−k)(µB−µC−(g−1)) < r2tE,E−(r−k)2tB,B−k2tC,C−k(r−k)tB,C).
It follows from Lemma 2.4(1) that δ ≤ dimM(r, d) (respectively, δ < dimM(r, d)) if
µB − µC ≤ g − 1 + tC,B (respectively, µB − µC < g − 1 + tC,B). Thus, for a general
E∗ ∈M(r, d), one must have µB − µC ≥ g − 1 + tC,B. This proves (1).

(2) If B∗ (or C∗) is not general in M(r− k, d(B)) (respectively M(k, d(C))), then
it is determined by parameters whose number is strictly less than dimM(r− k, d(B))
(respectively M(k, d(C))). Consequently, δ < r2(g−1)+1+ r2tE,E. Hence for a gen-
eral E∗, both B∗ and C∗ must be general stable parabolic vector bundles. Moreover,
if E∗ has infinitely many such subbundles C∗ then again E∗ will be determined by the
number of parameters which is strictly less than δ ≤ r2(g − 1) + 1 + tE,E and hence
cannot be general. Thus E∗ has only finitely many subbundles C∗.

Theorem 4.2. Let A∗ and B∗ be general stable parabolic vector bundles. Then

(A) (1) : H0(Hom(A∗, B∗)) = 0 if µB − µA ≤ g − 1 + tA,B ,
(A) (2) : H1(Hom(A∗, B∗)) = 0 if µB − µA ≥ g − 1 + tA,B ,
(B) (1) : H0(Homst(A∗, B∗)) = 0 if µB − µA ≤ g − 1 + tA,B + t0A,B ,

(B) (2) : H1(Homst(A∗, B∗)) = 0 if µB − µA ≥ g − 1 + tA,B + t0A,B .

Proof. (A) (1) The short exact sequence

0 −→ Hom(A∗, B∗) −→ Hom(A,B) −→ TA,B −→ 0
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gives a long exact sequence of cohomologies

(4.2) 0 −→ H0(Hom(A∗, B∗)) −→ H0(Hom(A,B)) −→ H0(TA,B)

−→ H1(Hom(A∗, B∗)) −→ H1(Hom(A,B)) −→ 0 .

Note that the underlying vector bundle of a general parabolic vector bundle is a
general vector bundle. Hence if µB − µA ≥ g − 1 then H1(Hom(A,B)) = 0 and if
µB − µA ≤ g − 1 then H0(Hom(A,B)) = 0 ([Hi, Theorem 4.6]). It follows from the
sequence Eqn. (4.2) that H0(Hom(A∗, B∗)) = 0 for µB − µA ≤ g − 1. Hence for
proving (A)(1) we may assume that

g − 1 < µB − µA ≤ g − 1 + tA,B .

Under this assumption, one has χ(Hom(A∗, B∗)) ≤ 0.
Suppose that

H0(Hom(A∗, B∗)) 6= 0 .

Then H1(Hom(A∗, B∗)) 6= 0, or equivalently, H0(Homst(B∗, A∗ ⊗K(P )) 6= 0.
Let

f : A∗ −→ B∗

be a nonzero homomorphism and

h : B∗ −→ A∗ ⊗K(P )

be a nonzero strongly parabolic homomorphism. By Proposition 3.3(3) we have h◦f =
0. If B∗ is a line bundle, then h is a generic injection and h◦f = 0 implies that f = 0,
a contradiction. Thus (A)(1) holds if r(B) = 1.

We shall prove (A)(1) by induction on r(B). Since (A)(1) is valid for r(B) = 1,
we may assume that r(B) ≥ 2. Let r1 and r2 be positive integers with r1 +r2 = r(B).
Let d1 and d2 be integers with d1 + d2 = d(B). If {γ1, · · · , γr(B)} is the set of all
the parabolic weights of B∗ with 0 ≤ γ1 ≤ · · · ≤ γr(B), we split this set into two
subsets S1, S2 of cardinalities r1, r2 respectively. Take a general parabolic vector
bundle B1∗ (respectively, B2∗) of rank r1 and degree d1 (respectively, rank r2 and
degree d2) and parabolic structure determined by S1 (respectively, S2). Then one has
TA,B = TA,B1

+ TA,B2
and hence r(B)tA,B = r1tA,B1

+ r2tA,B2
.

Case 1 (i) µB − µA ≤ g − 2 + tA,B.
In this case, the closed interval

[d(B) − r2(µA + g − 1 + tA,B2
) , r1(µA + g − 1 + tA,B1

)]

has length ≥ 1. Hence there exists an integer d1 satisfying

(4.3) d(B) − r2(µA + g − 1 + tA,B2
) ≤ d1 ≤ r1(µA + g − 1 + tA,B1

) .

The first inequality in Eqn. (4.3) implies that µB2
− µA ≤ g − 1 + tA,B2

, while
the second one implies that µB1

− µA ≤ g − 1 + tA,B1
. By induction, this gives

H0(Hom(A∗, B1∗)) = 0 and H0(Hom(A∗, B2∗)) = 0, and hence H0(Hom(A∗, B1∗ ⊕
B2∗)) = 0. By semicontinuity of dimH0( ) and the fact that any parabolic vector
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bundle (of fixed parabolic type) can be deformed to a stable parabolic vector bundle
(of the same type), it follows that H0(Hom(A∗, B∗)) = 0 for a general parabolic
vector bundle B∗ in case 1(i).

Case 1 (ii) g − 2 + tA,B < µB − µA ≤ g − 1 + tA,B.
One has r(A)r(B)(g−2+tA,B) < r(A)d(B)−r(B)d(A) ≤ r(A)r(B)(g−1+tA,B).

Since r(A)d(B′)− r(B′)d(A) ≤ r(A)r(B)(g−2+ tA,B′) for a general parabolic bundle
B′

∗ with r(B′) = r(B), d(B′) ≤ d(B) − r(B) and same parabolic structure as B. It
follows by Case 1(i) that H0(Hom(A∗, B

′
∗)) = 0. Suppose that H0(Hom(A∗, B∗)) 6=

0. Then, as seen before, there exists a nonzero morphism f : A∗ → B∗ and a nonzero
strongly parabolic homomorphism h : B∗ → A∗ ⊗K(P ).

We claim that f is a generic surjection. If f is not a generic surjection, then we can
do elementary transformations on B∗ at finitely many non-parabolic points to get a
parabolic vector bundleB′

∗ with image of f contained inB′
∗ with d(B′) ≤ d(B)−r(B)

and having the same parabolic structure as B∗. Since elementary transformation of a
general parabolic bundle is stable (Corollary 2.8), we can get a general stable bundle
B′ with the above properties. Then by Case 1(i) we have f = 0, a contradiction.
Thus we have proved that f is a generic surjection.

By Proposition 3.3(3), h ◦ f = 0. Then the generic surjectivity of f implies that
h = 0, a contradiction. This completes the proof of (A)(1).

(B)(1), (B)(2). We can deduce (B)(2) from (A)(1) as follows. Let A′
∗, B

′
∗ be

general parabolic bundles. One has

deg(Homst(B
′
∗, A

′
∗)) = deg(A′)r(B′) − deg(B′)r(A′) − dimTB′,A′ − dimT 0

A′,B′

= deg(A′)r(B′) − deg(B′)r(A′) − r(A′)r(B′)(tB′,A′ + t0A′,B′)

= deg(A′)r(B′) − deg(B′)r(A′) + r(A′)r(B′)(tA′,B′ − p0) ,

by Lemma 2.4(4). Hence, µHomst(B′
∗,A′

∗) = µ′
A − µ′

B + tA′,B′ − p0 and therefore

µHomst(B′
∗,A′

∗⊗K(P )) = µ′
A − µ′

B + tA′,B′ + 2g − 2 .

Thus µHomst(B′
∗,A′

∗⊗K(P )) ≥ g − 1 (respectively, µHomst(B′
∗,A′

∗⊗K(P )) ≤ g − 1) if
µ′

B −µ′
A ≤ g− 1 + tA′,B′ (respectively, if µ′

B −µ′
A ≥ g− 1 + tA′,B′). By Serre duality,

H0(Hom(A′
∗, B

′
∗)) = 0 if and only if H1(Homst(B

′
∗, A

′
∗ ⊗ K(P ))) = 0. Hence

(A)(1) may be restated as

H1(Homst(B
′
∗, A

′
∗ ⊗K(P ))) = 0

if µHomst(B′
∗,A′

∗⊗K(P )) ≥ g−1. Since A′
∗⊗K(P ) is a general bundle if A′

∗ is so, taking
A∗ = B′

∗ and B∗ = A′
∗ ⊗K(P ) we get H1(Homst(A∗, B∗)) = 0 if µHomst(A∗,B∗) ≥

g − 1 (that is, µB − µA ≥ g − 1 + tA,B + t0A,B) for general bundles A∗, B∗.
Similarly (B)(1) can be deduced from (A)(2). It only remains to prove (A)(2).
(A)(2). Let µB − µA ≥ g − 1 + tA,B. Since tA,B ≥ 0, one has

H1(Hom(A,B)) = 0

([Hi, Theorem 4.6]). Also χ(Hom(A∗, B∗)) ≥ 0 in this case, which means that

H0(Hom(A∗, B∗)) 6= 0
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provided H1(Hom(A∗, B∗)) 6= 0. Let f : A∗ → B∗ be a nonzero parabolic homo-
morphism and h : B∗ → A∗ ⊗ K(P ) be a strongly parabolic homomorphism. As in
(A)(1), we conclude that (A)(2) holds for r(B) = 1. Assume that r(B) ≥ 2.

Case 2 (i) µB − µA ≥ g + tA,B.
We choose B1 and B2 with ranks and weights as in the proof of (A)(1). Choose

d1 satisfying

deg(B) − r2(µA + g − 1 + tA,B2
) ≥ d1 ≥ r1(µA + g − 1 + tA,B1

) .

Then µB2
− µA ≥ g − 1 + tA,B2

and µB1
− µA ≥ g − 1 + tA,B1

. The result can now
be proved using induction and semicontinuity as done in case 1(i).

Case 2 (ii) g − 1 + tA,B ≤ µB − µA < g + tA,B.
We claim that any nonzero parabolic homomorphism f : A∗ −→ B∗ is a generic

surjection. Indeed, if it is not, then by elementary transformation of B∗ outside
parabolic points, we can find a general bundle B′

∗ such that the image of f is contained
in B′

∗, with r(B) = r(B′) and deg(B′) ≤ r(B)(g − 1 + tA,B + µA). Then by (A)(1),
we have

H0(Hom(A∗, B
′
∗)) = 0 ,

so that f = 0. We therefore conclude that any nonzero f is a generic surjection.
For h : B∗ −→ A∗ ⊗K(P ), by Proposition 3.3,

h ◦ f = 0 .

Hence the generic surjectivity of f implies that h = 0, which is a contradiction. This
completes the proof of the theorem.

Proposition 4.3. Let E′
∗ and E′′

∗ be general stable parabolic vector bundles of
slopes µ′ and µ′′, and ranks r′ and r′′ with r′ + r′′ = r and µ′′ − µ′ ≥ g − 1 + tE′,E′′

and with the fixed parabolic structures. Then a general parabolic extension E∗ of E′′
∗

by E′
∗ is a (general) parabolic stable vector bundle.

Proof. In a neighborhood of F∗ = E′
∗⊕E

′′
∗ , the extensions of a deformation of E′′

∗

by a deformation of E′
∗ occur in a family parametrized by a smooth germ W whose

tangent space has the following description

TFW = H1(Hom(E′
∗, E

′
∗)) ⊕H1(Hom(E′′

∗ , E
′′
∗ )) ⊕H1(Hom(E′′

∗ , E
′
∗)) .

One has

H1(Hom(E∗, E∗))

∼= H1(Hom(E′
∗, E

′
∗))⊕H

1(Hom(E′′
∗ , E

′′
∗ ))⊕H1(Hom(E′′

∗ , E
′
∗))⊕H

1(Hom(E′
∗, E

′′
∗ )) .

By Theorem 4.2, H1(Hom(E′
∗, E

′′
∗ )) = 0 as µ′′ − µ′ ≥ g − 1 + tE′,E′′ . It follows

that the map TF (W ) → H1(Hom(E∗, E∗)) is an isomorphism, so that the family
parametrized by W is a versal family. Every parabolic vector bundle can be deformed
to a stable parabolic vector bundle. Therefore, using openness of versality it follows
that a general bundle in this family is a parabolic stable bundle.
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5. The stratification of M(r, d). Let E∗ be a parabolic vector bundle of rank
r and degree d with rational parabolic weights αi(p) of multiplicities ni(p) for p ∈ P .
Let w = wtE. Fix integers r′, r′′ = r − r′ and {n′

i(p)}p∈P with 1 ≤ r′ < r,

0 ≤ n′
i(p) ≤ ni(p)

and
∑

i n
′
i(p) = r′ for all p ∈ P . Let E′

∗ denote a parabolic subbundle of E∗ of rank
r′, degree d′ with n′

i(p) the multiplicity of αi(p), p ∈ P , equipped with the induced
parabolic structure. Recall that we take n′

i(p) = 0 if αi(p) is not a weight of E′
∗. Note

that for all such subbundles, w′ = wt(E′) and tn′,n′′ = tE′,E/E′ are kept fixed. Let
spar(E∗, E

′
∗) = r′d− rd′.

Definition 5.1. If E∗ has a subbundle E′
∗ of rank r′ and induced parabolic

structure with weights αi(p) of multiplicity n′
i(p), p ∈ P , define

spar
r′ (E∗) = min spar(E∗, E

′
∗) ,

where the minimum is taken over all parabolic subbundles E′
∗ ⊂ E∗ of rank r′ and

weights αi(p) of multiplicity n′
i(p), p ∈ P .

One has spar
r′ (E∗) ≡ r′d mod r. There is an upper bound on spar

r′ (E∗) given by

spar
r′ (E∗) ≤ r′r′′(g + tn′,n′′)

(Proposition 3.7(1)). If E∗ is stable, then spar
r′ (E∗) > rw′−r′w. By Proposition 4.1(1),

for a general parabolic bundle E∗, one has spar
r′ (E∗) ≥ r′(r− r′)((g−1)+ tn′,n′′). Let

spar
max, s

par
min denote the maximum and minimum of possible values of spar

r′ .

5.1. The subsets W par
r′,s , V

par
r′,s and Upar

r′,s . Fix an integer s such that spar
min ≤

s ≤ spar
max, s ≡ r′d mod r. Let d′ = (r′d − s)/r, d′′ = d − d′, µ′ = d′/r′, µ′′ = d′′/r′′

and µ = d/r. In the following we always assume that E′
∗ is of rank r′, degree d′ and

parabolic weights αi(p) with multiplicities n′
i(p), p ∈ P , and E′′

∗ has rank r′′, degree
d′′ and weights αi(p) with multiplicities n′′

i (p) = ni(p) − n′
i(p).

Let Mr′,s be the subset of M(r, d) defined by

Mr′,s = {E∗ ∈M(r, d) | spar
r′ (E∗) = s} .

Let W par
r′,s denote the subset of M(r, d) consisting of stable parabolic bundles E∗ which

are extensions of a stable parabolic vector bundle E′′
∗ by a stable parabolic vector

bundle E′
∗. The construction of W par

r′,s in the parabolic case works similarly as that
of the corraesponding set Wr′,s in the case of ordinary vector bundles ([La, Section
4], [RT, 1.3], [BL]); one has to replace H1(Hom(E′′, E′)) by H1(Hom(E′′

∗ , E
′
∗)) to

extend the construction to the case of parabolic vector bundles. As M(r′, d′) and
M(r′′, d′′) are irreducible and smooth, W par

r′,s is irreducible. By Proposition 4.3, W par
r′,s

is nonempty for s ≥ r′r′′((g − 1) + tn′,n′′).
Let V par

r′,s be the subset of M(r, d) consisting of stable parabolic bundles which
are extensions of parabolic vector bundles E′′

∗ by parabolic vector bundles E′
∗ (the

parabolic bundles E′
∗, E

′′
∗ are not necessarily stable). One has W par

r′,s ⊂ V par
r′,s and

Mr′,s ⊂ V par
r′,s .

For a fixed E∗, let Apar
r′,d′(E∗) = {E′

∗ | E′
∗ ⊂ E∗ parabolic subbundle of rank r′,

degree d′ and weight multiplicities n′
i(p), p ∈ P}.

Lemma 5.2. Assume that W par
r′,s is nonempty. Let E∗ be a general element in

W par
r′,s .
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(1) If s ≤ r′r′′((g − 1) + tn′,n′′), then E∗ has only finitely many subbundles of
rank r′, degree d′ and of given parabolic structure, i.e., dimApar

r′,d′(E∗) = 0, and

dimW par
r′,s = dimM(r, d) + s− r′r′′((g − 1) + tn′,n′′) .

(2) If s ≥ r′r′′((g − 1) + tn′,n′′), then

dimApar
r′,d′(E∗) = s− r′r′′((g − 1) + tn′,n′′) ,

dimW par
r′,s = r2(g − 1) + 1 + r2tn,n = dimM(r, d) .

Proof. By the construction of W par
r′,s , there is a morphism p from an irreducible

variety P onto W par
r′,s with

dimP = dimM(r′, d′) + dimM(r′′, d′′) + h1(Hom(E′′
∗ , E

′
∗)) − 1

= r′
2
(g−1)+1+r′

2
tn′,n′ +r′′

2
(g−1)+r′′

2
tn′′,n′′ +1+r′r′′(µ′′−µ′+g−1+ tn′′,n′)−1

= r2(g − 1) + 1 + s− r′r′′(g − 1) + r′
2
tn′,n′ + r′′

2
tn′′,n′′ + r′r′′tn′′,n′

= dimM(r, d) + s− r′r′′((g − 1) + tn′,n′′) .

The last step is obtained by using Lemma 2.4(1).
A general parabolic bundle E∗ of W par

r′,s is an extension of E′′
∗ by E′

∗, with E′
∗ and

E′′
∗ being general stable parabolic vector bundles. The fiber of p at E∗ is Apar

r′,d′(E∗).

The set Apar
r′,d′(E∗) can be identified with the parabolic Quot scheme of E∗ corre-

sponding to torsionfree quotients E′′
∗ of E∗ of rank r′′, degree d′′ and fixed parabolic

structure. The tangent space to this Quot scheme at E′′
∗ is H0(Hom(E′

∗, E
′′
∗ )).

(1) For general bundles E′
∗ and E′′

∗ , one has

H0(Hom(E′
∗, E

′′
∗ )) = 0

for s ≤ r′r′′((g−1)+ tn′,n′′) (Theorem 4.2). Hence dim Apar
r′,d′ = 0 and thus Apar

r′,d′ has
finitely many points.

Hence dimW par
r′,d′ = dimP, and the result follows.

(2) For s ≥ r′r′′((g − 1) + tn′,n′′), one has

dimH1(Hom(E′
∗, E

′′
∗ )) = 0

(Theorem 4.2), so that h0(Hom(E′
∗, E

′′
∗ )) = s − r′r′′((g − 1) + tn′,n′′). Hence for

s ≥ r′r′′(g − 1 + tn′,n′′),

dimApar
r′,d′(E∗) = s− r′r′′((g − 1) + tn′,n′′)

at general points. Thus the general fibers of p have dimension equal to s− r′r′′((g −
1) + tn

′,n′′

) and

dimW par
r′,s = dimP − dimApar

r′,s(E∗) = dimM(r, d) .
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Lemma 5.3.
1. If V par

r′,s is nonempty, then W par
r′,s is nonempty.

2. V par
r′,s is contained in the closure of W par

r′,s .

3. dimV par
r′,s = dimW par

r′,s , and V par
r′,s is irreducible.

Proof. The proof is similar to that of the corresponding result for ordinary
vector bundles ([Tb], [RT, Proposition 1.6]). One shows that any parabolic bundle
E0∗ ∈ V par

r′,s can be deformed to an element of W par
r′,s . Suppose that E0∗ is an extension

of E′′
∗ by E′

∗. There exist irreducible families T ′ and T ′′ of parabolic vector bundles
containing E′

∗ and E′′
∗ respectively such that the generic members are stable parabolic

vector bundles. Let T be the family of extensions of bundles in T ′′ by bundles in T ′

and T s its subset giving stable parabolic bundles. Since E0∗ ∈ T s, the general member
of T s is in W par

r′,s .

Lemma 5.4.
1. Let

0 −→ E′
∗ −→ E∗ −→ E′′

∗ −→ 0

be an exact sequence of parabolic vector bundles with E∗ stable. Then, there
exists an exact sequence of parabolic vector bundles

0 −→ E′
1∗ −→ E1∗ −→ E′′

1∗ −→ 0

such that E1∗ is stable, has same rank, degree and parabolic structure as E∗,
also deg(E′

1) = deg(E′) − 1, deg(E′′
1 ) = deg(E′′) + 1 and E′

1∗ (respectively,
E′′

1∗) has the same parabolic structures as E′
∗ (respectively, E′′

∗ ).
2. If V par

r,s is nonempty for some s = s1, then it is nonempty for all possible
values s ≥ s1.

Proof. (1) This can be proved by using elementary transformations and dual
elementary transformations at non-parabolic points, see [RT, Proposition 1.11] for
details.

(2) This can be proved by using (1) repeatedly s− s1 times.

Proposition 5.5. Suppose that V par
r′,s is nonempty. Then

1. Mr′,s is nonempty for s ≤ r′r′′(g − 1 + tn′,n′′) + r − 1;
2. dimMr′,s = r2(g − 1) + 1 + r2tn,n + s− r′r′′(g − 1 + tn′,n′′).

Proof. Any E∗ ∈ V par
r′,s is an extension of E′′

∗ by E′
∗, and hence E∗ can have a

maximum subbundle E′
0∗ with degree(E′

0∗) ≥ degree(E′), so that E∗ ∈Mr′,s′ , s′ ≤ s.
Thus,

V par
r′,s ⊂

∐

s′≤s

Mr′,s′

and hence

(5.1) V par
r′,s = Mr′,s

∐

(
∐

s′<s

(Mr′,s′ ∩ V par
r′,s )) .

Since Mr′,s′ ⊂ V par
r′,s′ , we have dimMr′,s′ ≤ dimV par

r′,s′ ∀s′. Hence

dimMr′,s′ ∩ V par
r′,s ≤ dimMr′,s′ ≤ dimV par

r′,s′ .
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By Lemma 5.2 and Lemma 5.3,

dimV par
r′,s′ < dim V par

r′,s

for s′ < s. It follows that dim
∐

s′<s(Mr′,s′ ∩ V par
r′,s ) < dimV par

r′,s . Then Eqn. (5.1)

implies that Mr′,s is nonempty and a general element of V par
r′,s belongs to Mr′,s. Hence

dimMr′,s = dimV par
r′,s . The second part now follows from Lemma 5.2 and Lemma 5.3.

5.2. Nonemptiness of the strata.

Proposition 5.6. Let E′
∗ and E′′

∗ be general stable parabolic vector bundles of
rank r′, r′′, degree d′, d′′ respectively, with r = r′ + r′′, d = d′ + d′′, wtE′ = w′, and
wtE′′ = w′′. Let

(5.2) r′′w′ − r′w′′ < r′d− rd′ ≤ r + r′′w′ − r′w′′ .

Then
(A) A parabolic vector bundle E∗ which is a general extension of E′′

∗ by E′
∗ is stable

for g ≥ 1+(r′′p0− [w′′])/r′, where p0 = #P is the number of parabolic points
and [w′′] denotes the integral part of w′′. One has s0 := spar

r′ (E∗) = spar
min.

(B) If r′′ = 1, then (A) holds for g ≥ 2.

Proof. Note that Eqn. (5.2) is equivalent to

(5.3) µ(E∗) < µ(E′′
∗ ) ≤ µ(E∗) +

1

r′′

(5.4) µ(E′
∗) < µ(E∗) ≤ µ(E′

∗) +
1

r′
.

Suppose that E∗ is not stable. Then it has a destabilizing subsheaf F∗ with
µ(F∗) ≥ µ(E∗). Choose F∗ having maximum parabolic slope. Consider the com-
posite homomorphism

(5.5) h : F∗ →֒ E∗ −→ E′′
∗ .

If h = 0, then F∗ ⊂ E′
∗, µ(F∗) ≤ µ(E′

∗) as E′
∗ is stable. But µ(F∗) ≥ µ(E∗) and

µ(E∗) > µ(E′
∗) by Eqn. (5.4) so that µ(F∗) > µ(E′

∗), a contradiction. Hence h 6= 0.
Let F ′′

∗ and F ′
∗ respectively be the image and kernel of h.

Claim 1: r(F ′′) = r′′.
For proving this, one may assume that F∗ is stable by replacing F∗ with a sub-

bundle of the same parabolic slope and minimum rank. Assume that r(F ′′) < r′′.
Since E′′

∗ is a general bundle, by Proposition 4.1 one has

µE′′ − µF ′′ ≥ (1 −
r(F ′′)

r′′
)(g − 1 + tF ′′,E′′/F ′′) .

This is equivalent to

(5.6) µ(E′′
∗ ) ≥ µ(F ′′

∗ ) +
w′′

r′′
−
wtF ′′

r(F ′′)
+
r′′ − r(F ′′)

r′′
(g − 1 + tF ′′,E′′/F ′′) .
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By Eqn. (5.3), one has µ(E′′
∗ ) ≤ µ(E∗) + 1

r′′
≤ µ(F∗) + 1

r′′
. Since F∗ is stable,

µ(F∗) ≤ µ(F ′′
∗ ). Thus

(5.7) µ(F ′′
∗ ) +

1

r′′
≥ µ(E′′

∗ ) ,

and the equality holds only if F∗ = F ′′
∗ . Now, Eqn. (5.6) and Eqn. (5.7) give

(5.8) µ(F ′′
∗ ) +

1

r′′
≥ µ(E′′

∗ ) ≥ µ(F ′′
∗ ) +

1

r′′
+ T1 + T2 ,

where T1 = (w′′)/r′′ − (wtF ′′)/r(F ′′) + tF ′′,E′′/F ′′(r′′ − r(F ′′))/r′′ and

T2 =
(g − 2)(r′′ − r(F ′′))

r′′
+
r′′ − r(F ′′) − 1

r′′
.

Note that

r′′r(F ′′)T1 = r(F ′′)wt(E′′/F ′′) − (r′′ − r(F ′′))wtF ′′ + (r′′ − r(F ′′))r(F ′′)tF ′′,E′′/F ′′ .

Hence T1 is nonnegative and it is zero if and only if at each p ∈ P both E′′
∗ and

F ′′
∗ have same unique parabolic weight with multiplicity r′′ and r(F ′′) respectively

(Lemma 2.5(2)). In particular, for T1 = 0, we have

wtE′′

r′′
=

wtF ′′

r(F ′′)

and tF ′′,E′′/F ′′ = 0. For g ≥ 2, one has T2 ≥ 0, with the equality being valid only
if g = 2 as well as r(F ′′) = r′′ − 1. Clearly, if T1 + T2 > 0, then Eqn. (5.8) gives a
contradiction.

Suppose that T1 = T2 = 0. Then all the above inequalities are equalities so that

µ(E′′
∗ ) = µ(F ′′

∗ ) +
1

r′′
= µ(F∗) +

1

r′′
= µ(E∗) +

1

r′′
.

Thus, µ(F ′′
∗ ) = µ(F∗) which, by the stability condition of F∗, implies that F∗

∼= F ′′
∗

and F ′
∗ = 0. One has µE′′ − µF ′′ = µ(E′′

∗ ) − µ(F ′′
∗ ) = 1/r′′. It follows that F ′′

∗ is a
maximal subbundle of E′′

∗ (of given fixed parabolic type) and sp
r′′−1(E

′′
∗ ) = r′′ − 1.

Since E′′
∗ is a general stable bundle, by Proposition 4.1 there are finitely many F ′′

∗ = F∗

possible, say F1∗, · · · , Fm∗, and they are general parabolic bundles.
Let

(5.9) [e] := [E∗] ∈ H1(Hom(E′′
∗ , E

′
∗))

be the extension class for the exact sequence

0 −→ E′
∗ −→ E∗ −→ E′′

∗ −→ 0 .

Consider F∗ = Fi∗. Since hi : F∗ → E′′
∗ lifts to F∗ → E∗, the cohomology class [e]

defined in Eqn. (5.9) is in the kernel of the map

hi : H1(Hom(E′′
∗ , E

′
∗)) −→ H1(Hom(F∗, E

′
∗)) .

Since µ(E∗) = µ(F∗) > µ(E′
∗) (by Eqn. (5.4)), and F∗, E

′
∗ are stable, we have

H0(Hom(F∗ , E
′
∗)) = 0 .
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Then

h1(Hom(F∗ , E
′
∗)) = r′d(F ) − r(F∗)d

′ + r′(r′′ − 1) + (tF,E′)r′(r′′ − 1)

= r′(r′′ − 1)(µ(F ) − µ(E′) + 1 + tF,E′) .

Since µ(F∗) > µ(E′
∗), we have µ(F ) − µ(E′) > wtE′

r′
− wtF

r′′−1 . Hence

h1(Hom(F∗ , E
′
∗)) > r′(r′′ − 1)(

wtE′

r′
−

wtF

r′′ − 1
+ tF,E′ + 1) ≥ r′(r′′ − 1) ≥ 0

(by Lemma 2.5(2)). Thus h1(Hom(F∗ , E
′
∗)) > 0.

Note that hi is surjective and Ki = Kerhi is a proper subspace (as
h1(Hom(Fi∗ , E

′
∗)) 6= 0). If the extension E∗ is so chosen that the extension class

[e] /∈
⋃

i

Ki

(defined in Eqn. (5.9)), then E∗ cannot have a destabilizing subbundle Fi of rank
r′′ − 1. This proves claim 1.

Claim 2: F ′
∗ = 0, F∗ = F ′′

∗ , h is a generic isomorphism.

Proof. The bundles E′
∗
∨

and E′′
∗
∨

are general parabolic bundles as E′
∗ and E′′

∗ are
so. One has spar(E∗

∨, E′′
∗
∨

) = spar(E∗, E
′
∗) and (E/F )∨∗ is a subbundle of maximum

slope of E∨
∗ . Applying the argument of Claim 1 to E∨

∗ one sees that (E/F )∨∗ −→ E′
∗
∨

is a generic surjection. Hence E′
∗ −→ (E/F )∗ is a generic injection, i.e., r(F ) ≤ r′′.

From Claim 1, r(F ) ≥ r(F ′′) = r′′. Hence r(F ) = r′′, so that F∗ ։ F ′′
∗ has zero

kernel. Thus F ′
∗ = 0, proving Claim 2.

Since h : F∗ −→ E′′
∗ is a generic isomorphism, µ(F∗) ≤ µ(E′′

∗ ). Moreover,
equality implies that h is an isomorphism of parabolic bundles, since E′′

∗ is stable and
F∗ is semistable. If h is an isomorphism, then the sequence splits and E∗ is not given
by a generic extension. Therefore, we may assume that µ(F∗) < µ(E′′

∗ ). By Eqn.
(5.3) we have

µ(E′′
∗ ) ≤ µ(E∗) +

1

r′′
≤ µ(F∗) +

1

r′′
.

Thus µ(E′′
∗ ) − 1

r′′
≤ µ(F∗) < µ(E′′

∗ ), i.e., d(E′′
∗ ) − 1 ≤ d(F∗) < d(E′′

∗ ). Writing
d(E∗) = d(E) + wtE and δ = w′′ − wtF , this gives

(5.10) d′′ − 1 + δ ≤ d(F ) < d′′ + δ .

Since h is a generic isomorphism, d(F ) ≤ d′′. Thus d′′−1+δ ≤ d(F ) ≤ Min(d′′ , d′′+
δ) . Since wtF < r′′p0, where p0 is the number of parabolic points, one has δ >
w′′ − r′′p0. Hence we have

(5.11) d′′ + [w′′] − r′′p0 ≤ d(F ) ≤ d′′ ,

where [w′′] denotes the integral part of w′′. This shows that d(F ) can have only
finitely many values; let d(F ) = d′′ − δ′, where δ′ is a nonnegative bounded integer.
By Eqn. (5.10), δ − 1 ≤ −δ′ < δ, so

−δ′ < δ ≤ −δ′ + 1 .
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In particular,

δ + δ′ > 0 .

Consider the exact sequence

(5.12) 0 −→ Hom(E′′
∗ , E

′
∗) −→ Hom(F∗, E

′
∗) −→ Q −→ 0 ,

note that Q is a torsion sheaf. The extensions of E′′
∗ by E′

∗ which give E∗ containing
a fixed destabilizing F∗ as above are given by (parametrized by) the kernel of the
homomorphism

(5.13) H1(Hom(E′′
∗ , E

′
∗))

h
−→ H1(Hom(F∗ , E

′
∗))

induced by h (defined in Eqn. (5.5)).
The cohomology exact sequence of the exact sequence Eqn. (5.12) gives

H0(Q) −→ H1(Hom(E′′
∗ , E

′
∗)) −→ H1(Hom(F∗, E

′
∗)) −→ 0

Hence dimKer h ≤ dimH0(Q) = dimQ, where h is defined in Eqn. (5.13).
Set

a :=
∑

p∈P

∑

i>j

n′′
i,pn

′
j,p and b :=

∑

p∈P

∑

i>j

nF
i,pn

′
j,p .

Since µ(E′′
∗ ) > µ(E′

∗), H
0(Hom(E′′

∗ , E
′
∗)) = 0. Hence

h1(Hom(E′′
∗ , E

′
∗)) = −χ(Hom(E′′

∗ , E
′
∗)) = r′d′′ − r′′d′ + r′r′′(g − 1) + a .

Since µ(E∗) ≤ µ(F∗) one has

r′d′′ − r′′d′ ≥ r′′(w′′ − wtF ) + (r′′w′ − r′wtF ) + rδ′ .

Hence

h1(Hom(E′′
∗ , E

′
∗)) ≥ r′r′′(g − 1) + rδ′ + r′′(w′′ − wtF ) + (r′′w′ − r′wtF ) + a

≥ r′r′′(g − 1) + rδ′ + r′′δ + a− b

by Lemma 2.5.
One has a commutative diagram

0




y

0 0 −→ K




y





y





y

0 −→ Hom(E′′
∗ , E

′
∗) −→ Hom(F∗, E

′
∗) −→ Q −→ 0





y





y





y

0 −→ Hom(E′′, E′) −→ Hom(F,E′) −→ Q′ −→ 0




y





y





y

0 −→ K −→ A −→ B −→ C −→ 0




y





y





y

0 0 0
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where A, B, C, K, Q, Q′ are torsion sheaves, with A, B and Q′ of dimensions a, b
and q′ = δ′r′ respectively. The bottom horizontal exact sequence gives

dimK − a+ b− dimC = 0 .

The last column gives

dimK − dimQ+ δ′r′ − dimC = 0 .

Adding the two equations one has a− b−dimQ+ δ′r′ = 0. i.e., a− b = dimQ− δ′r′.
Using this, one has
h1(Hom(E′′

∗ , E
′
∗)) ≥ r′r′′(g − 1) + δ′r + r′′δ + dimQ− δ′r′

= r′r′′(g − 1) + δ′r′′ + r′′δ + dimQ
> r′r′′(g − 1) + dimQ,
as δ′ + δ > 0.

Since F∗ is given by

0 −→ F∗ −→ E′′
∗ −→ kδ′

−→ 0 ,

the destabilizing subbundles F∗ (with maximum parabolic slope) are given by δ′r′′

parameters. Hence extensions of E′′
∗ by E′

∗ which give E∗ containing such F∗ are given
by parameters N ≤ dimQ+ δ′r′′. By Eqn. (5.11), one has δ′ ≤ δ′0 = r′′p0 − [w′′].
Hence N ≤ dimQ+δ′0r

′′ Thus h1(Hom(E′′
∗ , E

′
∗)) > dimQ+δ′r′′ if r′r′′(g−1) ≥ δ′0r

′′,
i.e.,

g ≥ 1 +
r′′p0 − [w′′]

r′
.

Then a general extension of E′′
∗ by E′

∗ gives a stable parabolic bundle.
(B) If rank E′′ = 1, then (A) holds for g ≥ 2.

Proof. Let {α′′
p} and {αF

p } denote the weights of E′′ and F at p. Let P ′ = {p ∈

P |αF
p > α′′

p}. Then

δ =
∑

p∈P

(α′′
p − αF

p ) ≥
∑

p∈P ′

(α′′
p − αF

p ) .

Since −1 < α′′
p − αF

p < 0 for p ∈ P ′, one has δ ≥ −p′ (p′ = #P ′) the inequality
being strict if P ′ 6= ∅.

For P ′ = ∅, one has wtFp ≤ wtE′′
p for all p ∈ P , so that δ > 0, and δ′ = 0.

From the proof of (A) one then has

h1(Hom(E′′
∗ , E

′
∗)) > r′(g − 1) + dimQ ,

N ≤ dimQ. Hence h1(Hom(E′′
∗ , E

′
∗)) > N if r′(g − 1) ≥ 0, i.e., g ≥ 1.

For P ′ 6= ∅, note that since r′′ = 1, we have h vanishes at all p ∈ P ′, and hence
δ′ ≥ p′. Since δ′ ≤ 1 − δ and we saw that δ > −p′, one has δ′ < 1 + p′, i.e., δ′ ≤ p′.
Thus δ′ = p′ and h vanishes precisely on the divisor P ′. Therefore, F = E′′(−P ′).
Since p0, p

′ are finite, F∗ varies over a finite set and hence N ≤ dimQ. It follows
that h1(Hom(E′′

∗ , E
′
∗)) > N if g ≥ 1. This completes the proof of part (B).

Proof of Theorem 1.4. Since Mr′,s ⊂ V par
r′,s , if Mr′,s is nonempty, then so is V par

r′,s .
Hence part (1) follows from Proposition 5.5(2).
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Part (2) follows from Lemma 5.2(2).

By Proposition 5.6, Mr′,s0
is nonempty for g ≥ 1 + r′′p0−[w′′]

r′
. Hence V par

r′,s0
is

nonempty. By Lemma 5.4(2), V par
r′,s is nonempty for all permissible s. Therefore, (3)

follows from Proposition 5.5(1).
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