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VOLUME MINIMIZATION AND ESTIMATES FOR CERTAIN
ISOTROPIC SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACES*

EDWARD GOLDSTEINT

Abstract. In this note we show the following result using the integral-geometric formula of
R. Howard: Consider the totally geodesic RP?™ in CP™. Then it minimizes volume among the
isotropic submanifolds in the same Z/2 homology class in CP™ (but not among all submanifolds in
this Z/2 homology class). Also the totally geodesic RP?™~! minimizes volume in its Hamiltonian
deformation class in CP™. As a corollary we’ll give estimates for volumes of Lagrangian submanifolds
in complete intersections in CP™.
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1. Introduction. On a Ké&hler n-fold M there is a class of isotropic submani-
folds. Those are submanifolds of M on which the K&hler form w of M vanishes. The
maximal dimension of such a submanifold is n (the middle dimension) in which case
it is called Lagrangian.

In this papers we’ll exhibit global volume-minimizing properties among isotropic
competitors for certain submanifolds of the complex projective space. In gen-
eral global volume-minimizing properties of minimal/Hamiltonian stationary La-
grangian/isotropic submanifolds in Kéhler (particularly Kéahler-Einstein) manifolds
are still poorly understood. In dimesion 2 there is a result of Schoen-Wolfson [ScW]
(extended to isotropic case by Qiu in [Qiu]) which shows existence of Lagrangian cy-
cles minimizing area among Lagrangians in a given homology class. Still it is not clear
whether a given minimal Lagrangian has any global volume-minimizing properties.
The only instance where we have a clear cut answer to global volume-minimizing prob-
lem is Special Lagrangian submanifolds which are homologically volume-mimizing in
Calabi-Yau manifolds [HaL]. In Kéahler-Einstein manifolds of negative scalar cur-
vature, besides geodesics on Riemann surfaces of negative curvature, we have some
examples [Lee] of minimal Lagrangian submanifolds which are homotopically volume-
minimizing. The author has a program for studying homotopy volume-minimizing
properties for Lagrangians in Kéahler-Einstein manifolds of negative scalar curvature
[Gold1], but so far there are no satisfactory results.

In positive curvature case there is a result of Givental-Kleiner-Oh which states that
the canonical totally geodesic RP™ in CP™ minimizes volume in its Hamiltonian de-
formation class, [Giv]. The proof uses integral geometry and Floer homology to study
intersections for Hamiltonian deformations of RP™. Those arguments can be gener-
alized to products of Lagrangians in a product of symmetric Kéhler manifolds, [IOS].
There is a related conjecture due to Oh that the Clifford torus minimizes volume
in its Hamiltonian deformation class in CP™, [Oh]. Some progress towards this was
obtained in [Gold2]. Also general lower bounds for volumes of Lagrangians in a given
Hamiltonian deformation class in C™ were obtained in [Vit].

In this note we extend and improve the result of Givental-Kleiner-Oh to isotropic
totally geodesic RP¥ sitting canonically in CP™. Our main result is the following
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theorem:

THEOREM 1. Consider the totally geodesic RP?™ in CP™. Then it minimizes
volume among the isotropic submanifolds in the same 7Z/2 homology class in CP™
(but not among all submanifolds in this Z/2 homology class). Also consider the totally
geodesic RP?™~1 jn CP™. Then it minimizes volume in its Hamiltonian deformation
class.

A corollary of this is:

COROLLARY 1. Let f1,..., fr be real homogeneous polynomials of odd degree in
n—+ 1 variables with 2m +k = n. Let N be the zero locus of f; in CP™ and L be their
real locus. Then vol(L) < Ildeg(f;)vol(RP*™) and if L' is a Lagrangian submanifold
of N homologous mod 2 to L in N then vol(L') > vol(RP?*™).

Acknowledgement. The author would like to thank Aleks, Olga and Nelly
Neimark for their hospitality during his stay in Princeton, NJ.

2. A formula from integral geometry. In this section we establish a formula

from integral geometry for volumes of isotropic submanifolds of CP™ following the
exposition in R. Howard [How].
In our case the group SU(n + 1) acts on CP™ with a stabilizer K ~ U(n). Thus
we view CP" = SU(n 4+ 1)/K and the Fubini-Study metric is induced from the
bi-invariant metric on SU(n + 1). Let P?™ be an isotropic submanifold of CP" of
dimension 2m and let @@ be a linear CP"~™ C CP™. For a point p € P and q € @
we define an angle o(p, ¢) between the tangent planes T, P and T,Q as follows: First
we choose some elements g and h in SU(n + 1) which move p and ¢ respectively to
the same point » € CP". Now the tangent planes ¢.7,P and h,T,(Q are in the same
tangent space T,-CP™ and we can define an angle between them as follows: take an
orthonormal basis u; ...ug, for g.T,P and an orthonormal basis vy ...v2,—2pm, for
h.T,Q and define

U(g*TpP, h*TqQ) = |u1 AN ’Ugn_gml.

The later quantity o(g.T,P, h.T,Q) depends on the choices g and h we made. To
mend this we’ll need to average this out by the stabilizer group K of the point 7.
Thus we define:

U(p,q):/ 0(9+TpP, ki hi T, Q) dk.
K

Since SU(n + 1) acts transitively on the Grassmanian of isotropic planes and the
complex planes in CP™ we conclude that this angle is a constant depending just on
m and n:

0(]9, q) = Cm,n'

There is a following general formula due to R. Howard [How]:

[ #PN9Qus= [ atva)dpds = Cpol(Preol(@)
SU(n+1) PxQ

Here #(P () gQ) is the number of intersection points of P with g@Q, which is finite for
a generic g € SU(n + 1). To use the formula we need to have some control over the
intersection pattern of P and g@). We have the following lemma:
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LEMMA 1. Let P be the totally geodesic RP?*™ C CP", let Q = CP"~™ C CP".
Let g € SU(n+1) s.t. P and gQ intersect transversally. Then #(P(gQ) = 1. Also
let f1,..., fx be real homogeneous polynomials in n+ 1 variables with 2m+k = n and
let P' be their real locus. If P’ is transversal to gQ then #(P'(gQ) < Ideg(f;).

Proof. For the first claim we have gQ is given by an (n —m + 1)-plane H C C**!
and hence it is a zero locus of m linear equations on C"*. Hence (P[)gQ) is cut out
by 2m linear equations in RP*™,

For the second claim we note that as before g@ (JRP™ is the zero locus of 2m linear
polymonials h1,...,hs, on RP™ Moreover P’ is a zero locus of fi,..., fn_2m on
RP™. For generic g € SU(n + 1) we’ll have that g@Q and P’ intersect transversally in
RP™. By Bezout’s theorem (see [GH], p. 670) the common zero locus of hq, ..., ham
and f1,..., fn—om is CP" is Ildeg(f;) points. Now P’(gQ is a part of this locus,

hence #(P’' (N gQ) < Ideg(f;).

3. Proof of the volume minimization. Now we can prove the result stated
in the Introduction:

THEOREM 1. Consider the totally geodesic RP*™ in CP™. Then it minimizes
volume among the isotropic submanifolds in the same 7Z/2 homology class in CP™
(but not among all submanifolds in this Z/2 homology class). Also consider the totally
geodesic RP?™ =1 in CP™. Then it minimizes volume in its Hamiltonian deformation
class.

Proof. Let P be an isotropic submanifold homologous to RP?™ mod 2 and let
@ = CP" ™. By Lemma 1 the intersection number mod 2 of P and g@ is 1. Hence
the formula in the previous section tells that

Con.nv0l(P)vol (Q) = /SU( o #(P(9Q)dg > vol(SU(n + 1))

and
Crnnv0l(RP?™) 0ol (Q) = /S . #(RP*™ () 9Q)dg = vol(SU(n + 1))
n+

and this proves the first part. We also note that that CP! is homologous to RP? mod
2 in CP™ but

vol(CP') < vol(RP?).

The second assertion will follow from the first one. Consider C**! and a unit sphere
S§2n+l c C"*tl. We have a natural circle action on S$?"! (multiplication by unit
complex numbers). Let the vector field u be the generator of this action. We have a
1-form o on S2n+1

alv) =u-v.

Also da = 2w where w is the Kihler form of C**!. The kernel of « is the horizontal
distribution. We have a Hopf map p : §?"+1 +— CP". We have RP?>™~1 ¢ CP" and
§2m=1  §2n+1 which is a horizontal double cover of RP?™~1,

Let f be a (time-dependent) Hamiltonian function on CP™. Then we can lift it to a
Hamiltonian function on C"*! — (0) and its Hamiltonian vector field H is horizontal
on $?"*1. Consider now the vector field

w=—-2f-u+ Hy.



248 E. GOLDSTEIN

The vector field w is S'-invariant. We also have:
PROPOSITION 1. The Lie derivative Lo = 0.
Proof. We have

Ly = d(iya) 4 iyda = —2df + 2df.

Let now ®; be the time ¢ flow of w on S2"*! and let =; be the Hamiltonian flow of
f on CP™. Then ®;(S?"~1) is horizontal and isotropic and it is a double cover of
Z(RP?™~1). Hence

vol (D4 (S?™ 1)) = 200l (Z;(RP*™ 1)),
Let S; = ®;(S?™~1). We build a suspension 3S; of S; in §?"*3 c C"*2
2S5, = ((sinf - z,cos0) e C"? =C""' @ Cl0<O <7, 2 €5,).

One immediately verifies that 3.5; is horizontal and it is a double cover of an isotropic
submanifold L; (with a conical singularity) of CP"*! with Ly = RP?*™. Also one
readily checks that
vol(3St) = vol (Sy) - / sin®™~1 6 db.
=0
Hence
200l(Ly) = vol (£S;) = 2vol(Z:(RP*™ 1)) . / sin®™~1 9 df.
6=0
Now the first part of our theorem implies that vol(L:) > vol(Lg). Hence we conclude
that vol (Z;(RP?™~1)) > vol(RP?>™~1). O

REMARK. One notes from the proof that for RP?™~! it would be suffient to
use exact deformations by isotropic immersions of RP?™~!. A family L, of isotropic
immersions of RP?™~1 ig called ezact if the 1-form i,w is exact when restricted to each
element of the family. Here v is the deformation vector field and w is the symplectic
form. Thus embeddedness is not important for the conclusion of the theorem.

The theorem has the following corollary:

COROLLARY 1. Let fi1,..., fr be real homogeneous polynomials of odd degree in
n+ 1 variables with 2m +k = n. Let N be the zero locus of f; in CP™ and L be their
real locus. Then vol(L) < Hdeg(f;)vol(RP?™) and if L' is a Lagrangian submanifold
of N homologous mod 2 to L in N then vol(L') > vol(RP?*™).

Proof. We note that N is a complex 2m-fold and L is its Lagrangian submanifold.
Since the degrees of f; are odd, we have by adjunction formula that L and RP?™
represent the same homology class in Ha,, (RP™,Z/2). Let Q be a linear CP™™™ in
CP™ and g € SU(n+1). The intersection munber mod 2 of g@ with L’ is 1. We have
that

Con.nvol (RP*™)vol(Q) = / 1dg
SU(n+1)

Con.nvol(L")vol(Q) = /SU( " #(L’ﬂgQ)dg.
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Also using Lemma 1:

Conmvol (L)vol (Q) = /S . #(L()9Q)dg < Tdeg(f;)vol(SU(n + 1))

and our claims follow. 0
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