VOLUME MINIMIZATION AND ESTIMATES FOR CERTAIN ISOTROPIC SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACES*

EDWARD GOLDSTEIN†

Abstract. In this note we show the following result using the integral-geometric formula of R. Howard: Consider the totally geodesic $\mathbb{R}P^{2m}$ in $\mathbb{C}P^n$. Then it minimizes volume among the isotropic submanifolds in the same $\mathbb{Z}/2$ homology class in $\mathbb{C}P^n$ (but not among all submanifolds in this $\mathbb{Z}/2$ homology class). Also the totally geodesic $\mathbb{R}P^{2m-1}$ minimizes volume in its Hamiltonian deformation class in $\mathbb{C}P^n$. As a corollary we'll give estimates for volumes of Lagrangian submanifolds in complete intersections in $\mathbb{C}P^n$.

Key words. Isotropic submanifolds, Lagrangian submanifolds, volume minimization

AMS subject classifications. 53XX

1. Introduction. On a Kähler n-fold M there is a class of isotropic submanifolds. Those are submanifolds of M on which the Kähler form ω of M vanishes. The maximal dimension of such a submanifold is n (the middle dimension) in which case it is called Lagrangian.

In this papers we'll exhibit global volume-minimizing properties among isotropic competitors for certain submanifolds of the complex projective space. In general global volume-minimizing properties of minimal/Hamiltonian stationary Lagrangian/isotropic submanifolds in Kähler (particularly Kähler-Einstein) manifolds are still poorly understood. In dimesion 2 there is a result of Schoen-Wolfson [ScW] (extended to isotropic case by Qiu in [Qiu]) which shows existence of Lagrangian cycles minimizing area among Lagrangians in a given homology class. Still it is not clear whether a given minimal Lagrangian has any global volume-minimizing properties. The only instance where we have a clear cut answer to global volume-minimizing problem is Special Lagrangian submanifolds which are homologically volume-minimizing in Calabi-Yau manifolds [HaL]. In Kähler-Einstein manifolds of negative scalar curvature, besides geodesics on Riemann surfaces of negative curvature, we have some

examples [Lee] of minimal Lagrangian submanifolds which are homotopically volume-minimizing. The author has a program for studying homotopy volume-minimizing properties for Lagrangians in Kähler-Einstein manifolds of negative scalar curvature [Gold1], but so far there are no satisfactory results. In positive curvature case there is a result of Givental-Kleiner-Oh which states that the canonical totally geodesic $\mathbb{R}P^n$ in $\mathbb{C}P^n$ minimizes volume in its Hamiltonian de-

formation class, [Giv]. The proof uses integral geometry and Floer homology to study intersections for Hamiltonian deformations of $\mathbb{R}P^n$. Those arguments can be generalized to products of Lagrangians in a product of symmetric Kähler manifolds, [IOS]. There is a related conjecture due to Oh that the Clifford torus minimizes volume in its Hamiltonian deformation class in $\mathbb{C}P^n$, [Oh]. Some progress towards this was obtained in [Gold2]. Also general lower bounds for volumes of Lagrangians in a given Hamiltonian deformation class in \mathbb{C}^n were obtained in [Vit].

In this note we extend and improve the result of Givental-Kleiner-Oh to isotropic totally geodesic $\mathbb{R}P^k$ sitting canonically in $\mathbb{C}P^n$. Our main result is the following

^{*}Received August 3, 2004; accepted for publication December 16, 2004.

[†]School of Mathematics, Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey, 08540, USA (egold@ias.edu).

theorem:

THEOREM 1. Consider the totally geodesic $\mathbb{R}P^{2m}$ in $\mathbb{C}P^n$. Then it minimizes volume among the isotropic submanifolds in the same $\mathbb{Z}/2$ homology class in $\mathbb{C}P^n$ (but not among all submanifolds in this $\mathbb{Z}/2$ homology class). Also consider the totally geodesic $\mathbb{R}P^{2m-1}$ in $\mathbb{C}P^n$. Then it minimizes volume in its Hamiltonian deformation class.

A corollary of this is:

COROLLARY 1. Let f_1, \ldots, f_k be real homogeneous polynomials of odd degree in n+1 variables with 2m+k=n. Let N be the zero locus of f_i in $\mathbb{C}P^n$ and L be their real locus. Then $vol(L) \leq \Pi deg(f_i)vol(\mathbb{R}P^{2m})$ and if L' is a Lagrangian submanifold of N homologous mod 2 to L in N then $vol(L') \geq vol(\mathbb{R}P^{2m})$.

Acknowledgement. The author would like to thank Aleks, Olga and Nelly Neimark for their hospitality during his stay in Princeton, NJ.

2. A formula from integral geometry. In this section we establish a formula from integral geometry for volumes of isotropic submanifolds of $\mathbb{C}P^n$ following the exposition in R. Howard [How].

In our case the group SU(n+1) acts on $\mathbb{C}P^n$ with a stabilizer $K \simeq U(n)$. Thus we view $\mathbb{C}P^n = SU(n+1)/K$ and the Fubini-Study metric is induced from the bi-invariant metric on SU(n+1). Let P^{2m} be an isotropic submanifold of $\mathbb{C}P^n$ of dimension 2m and let Q be a linear $\mathbb{C}P^{n-m} \subset \mathbb{C}P^n$. For a point $p \in P$ and $q \in Q$ we define an angle $\sigma(p,q)$ between the tangent planes T_pP and T_qQ as follows: First we choose some elements g and h in SU(n+1) which move p and q respectively to the same point $r \in \mathbb{C}P^n$. Now the tangent planes g_*T_pP and h_*T_qQ are in the same tangent space $T_r\mathbb{C}P^n$ and we can define an angle between them as follows: take an orthonormal basis $u_1 \dots u_{2m}$ for g_*T_pP and an orthonormal basis $v_1 \dots v_{2n-2m}$ for h_*T_qQ and define

$$\sigma(g_*T_pP, h_*T_qQ) = |u_1 \wedge \ldots \wedge v_{2n-2m}|.$$

The later quantity $\sigma(g_*T_pP, h_*T_qQ)$ depends on the choices g and h we made. To mend this we'll need to average this out by the stabilizer group K of the point r. Thus we define:

$$\sigma(p,q) = \int_K \sigma(g_* T_p P, k_* h_* T_q Q) dk.$$

Since SU(n+1) acts transitively on the Grassmanian of isotropic planes and the complex planes in $\mathbb{C}P^n$ we conclude that this angle is a constant depending just on m and n:

$$\sigma(p,q) = C_{m,n}.$$

There is a following general formula due to R. Howard [How]:

$$\int_{SU(n+1)} \#(P \bigcap gQ) dg = \int_{P \times Q} \sigma(p,q) dp dq = C_{m,n} vol(P) vol(Q).$$

Here $\#(P \cap gQ)$ is the number of intersection points of P with gQ, which is finite for a generic $g \in SU(n+1)$. To use the formula we need to have some control over the intersection pattern of P and gQ. We have the following lemma:

LEMMA 1. Let P be the totally geodesic $\mathbb{R}P^{2m} \subset \mathbb{C}P^n$, let $Q = \mathbb{C}P^{n-m} \subset \mathbb{C}P^n$. Let $g \in SU(n+1)$ s.t. P and gQ intersect transversally. Then $\#(P \cap gQ) = 1$. Also let f_1, \ldots, f_k be real homogeneous polynomials in n+1 variables with 2m+k=n and let P' be their real locus. If P' is transversal to gQ then $\#(P' \cap gQ) \leq \Pi deg(f_i)$.

Proof. For the first claim we have gQ is given by an (n-m+1)-plane $H \subset \mathbb{C}^{n+1}$ and hence it is a zero locus of m linear equations on \mathbb{C}^{n+1} . Hence $(P \cap gQ)$ is cut out by 2m linear equations in $\mathbb{R}P^{2m}$.

For the second claim we note that as before $gQ \cap \mathbb{R}P^n$ is the zero locus of 2m linear polymonials h_1, \ldots, h_{2m} on $\mathbb{R}P^n$. Moreover P' is a zero locus of f_1, \ldots, f_{n-2m} on $\mathbb{R}P^n$. For generic $g \in SU(n+1)$ we'll have that gQ and P' intersect transversally in $\mathbb{R}P^n$. By Bezout's theorem (see [GH], p. 670) the common zero locus of h_1, \ldots, h_{2m} and f_1, \ldots, f_{n-2m} is $\mathbb{C}P^n$ is $\Pi deg(f_i)$ points. Now $P' \cap gQ$ is a part of this locus, hence $\#(P' \cap gQ) \leq \Pi deg(f_i)$.

3. Proof of the volume minimization. Now we can prove the result stated in the Introduction:

THEOREM 1. Consider the totally geodesic $\mathbb{R}P^{2m}$ in $\mathbb{C}P^n$. Then it minimizes volume among the isotropic submanifolds in the same $\mathbb{Z}/2$ homology class in $\mathbb{C}P^n$ (but not among all submanifolds in this $\mathbb{Z}/2$ homology class). Also consider the totally geodesic $\mathbb{R}P^{2m-1}$ in $\mathbb{C}P^n$. Then it minimizes volume in its Hamiltonian deformation class.

Proof. Let P be an isotropic submanifold homologous to $\mathbb{R}P^{2m}$ mod 2 and let $Q = \mathbb{C}P^{n-m}$. By Lemma 1 the intersection number mod 2 of P and gQ is 1. Hence the formula in the previous section tells that

$$C_{m,n}vol(P)vol(Q) = \int_{SU(n+1)} \#(P \bigcap gQ)dg \ge vol(SU(n+1))$$

and

$$C_{m,n}vol(\mathbb{R}P^{2m})vol(Q) = \int_{SU(n+1)} \#(\mathbb{R}P^{2m} \bigcap gQ)dg = vol(SU(n+1))$$

and this proves the first part. We also note that that $\mathbb{C}P^1$ is homologous to $\mathbb{R}P^2$ mod 2 in $\mathbb{C}P^n$ but

$$vol(\mathbb{C}P^1) < vol(\mathbb{R}P^2).$$

The second assertion will follow from the first one. Consider \mathbb{C}^{n+1} and a unit sphere $S^{2n+1}\subset\mathbb{C}^{n+1}$. We have a natural circle action on S^{2n+1} (multiplication by unit complex numbers). Let the vector field u be the generator of this action. We have a 1-form α on S^{2n+1} ,

$$\alpha(v) = u \cdot v.$$

Also $d\alpha = 2\omega$ where ω is the Kähler form of \mathbb{C}^{n+1} . The kernel of α is the horizontal distribution. We have a Hopf map $\rho: S^{2n+1} \mapsto \mathbb{C}P^n$. We have $\mathbb{R}P^{2m-1} \subset \mathbb{C}P^n$ and $S^{2m-1} \subset S^{2n+1}$ which is a horizontal double cover of $\mathbb{R}P^{2m-1}$.

Let f be a (time-dependent) Hamiltonian function on $\mathbb{C}P^n$. Then we can lift it to a Hamiltonian function on $\mathbb{C}^{n+1}-(0)$ and its Hamiltonian vector field H_f is horizontal on S^{2n+1} . Consider now the vector field

$$w = -2f \cdot u + H_f.$$

The vector field w is S^1 -invariant. We also have:

PROPOSITION 1. The Lie derivative $L_w \alpha = 0$.

Proof. We have

$$L_w \alpha = d(i_w \alpha) + i_w d\alpha = -2df + 2df.$$

Let now Φ_t be the time t flow of w on S^{2n+1} and let Ξ_t be the Hamiltonian flow of f on $\mathbb{C}P^n$. Then $\Phi_t(S^{2m-1})$ is horizontal and isotropic and it is a double cover of $\Xi_t(\mathbb{R}P^{2m-1})$. Hence

$$vol(\Phi_t(S^{2m-1})) = 2vol(\Xi_t(\mathbb{R}P^{2m-1})).$$

Let $S_t = \Phi_t(S^{2m-1})$. We build a suspension ΣS_t of S_t in $S^{2n+3} \subset \mathbb{C}^{n+2}$,

$$\Sigma S_t = ((\sin \theta \cdot x, \cos \theta) \in \mathbb{C}^{n+2} = \mathbb{C}^{n+1} \oplus \mathbb{C} | 0 \le \theta \le \pi, \ x \in S_t).$$

One immediately verifies that ΣS_t is horizontal and it is a double cover of an isotropic submanifold L_t (with a conical singularity) of $\mathbb{C}P^{n+1}$ with $L_0 = \mathbb{R}P^{2m}$. Also one readily checks that

$$vol(\Sigma S_t) = vol(S_t) \cdot \int_{\theta=0}^{\pi} \sin^{2m-1} \theta \ d\theta.$$

Hence

$$2vol(L_t) = vol(\Sigma S_t) = 2vol(\Xi_t(\mathbb{R}P^{2m-1})) \cdot \int_{\theta=0}^{\pi} \sin^{2m-1}\theta \ d\theta.$$

Now the first part of our theorem implies that $vol(L_t) \ge vol(L_0)$. Hence we conclude that $vol(\Xi_t(\mathbb{R}P^{2m-1})) \ge vol(\mathbb{R}P^{2m-1})$. \square

REMARK. One notes from the proof that for $\mathbb{R}P^{2m-1}$ it would be sufficient to use exact deformations by isotropic immersions of $\mathbb{R}P^{2m-1}$. A family L_t of isotropic immersions of $\mathbb{R}P^{2m-1}$ is called exact if the 1-form $i_v\omega$ is exact when restricted to each element of the family. Here v is the deformation vector field and ω is the symplectic form. Thus embeddedness is not important for the conclusion of the theorem. The theorem has the following corollary:

COROLLARY 1. Let f_1, \ldots, f_k be real homogeneous polynomials of odd degree in n+1 variables with 2m+k=n. Let N be the zero locus of f_i in $\mathbb{C}P^n$ and L be their real locus. Then $vol(L) \leq \Pi deg(f_i)vol(\mathbb{R}P^{2m})$ and if L' is a Lagrangian submanifold of N homologous mod 2 to L in N then $vol(L') \geq vol(\mathbb{R}P^{2m})$.

Proof. We note that N is a complex 2m-fold and L is its Lagrangian submanifold. Since the degrees of f_i are odd, we have by adjunction formula that L and $\mathbb{R}P^{2m}$ represent the same homology class in $H_{2m}(\mathbb{R}P^n, \mathbb{Z}/2)$. Let Q be a linear $\mathbb{C}P^{n-m}$ in $\mathbb{C}P^n$ and $g \in SU(n+1)$. The intersection munber mod 2 of gQ with L' is 1. We have that

$$C_{m,n}vol(\mathbb{R}P^{2m})vol(Q) = \int_{SU(n+1)} 1dg$$

$$C_{m,n}vol(L')vol(Q) = \int_{SU(n+1)} \#(L' \bigcap gQ)dg.$$

Also using Lemma 1:

$$C_{m,n}vol(L)vol(Q) = \int_{SU(n+1)} \#(L\bigcap gQ)dg \le \Pi deg(f_i)vol(SU(n+1))$$

and our claims follow. \square

REFERENCES

- [Giv] A. GIVENTAL, The Nonlinear Maslov index, London Mathematical Society Lecture Note Series, 15 (1990), pp. 35–43.
- [Gold1] Edward Goldstein, Strict volume-minimizing properties for Lagrangian submanifolds in complex manifolds with positive canonical bundle, math.DG/0301191.
- [Gold2] EDWARD GOLDSTEIN, Some estimates related to Oh's conjecture for the Clifford tori in $\mathbb{C}P^n$, math.DG/0311460.
- [GH] P. Griffiths and J. Harris, Principles of Algebraic geometry, Wiley and Sons, 1978.
- [HaL] R. HARVEY AND H. B. LAWSON, Calibrated Geometries, Acta Math., 148 (1982), pp. 47– 157.
- [How] HOWARD, RALPH, The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc., 106 (1993), no. 509, vi+69 pp.
- [IOS] HIROSHI IRIYEH, HAJIME ONO, TAKASHI SAKAI, Integral Geometry and Hamiltonian volume minimizing property of a totally geodesic Lagrangian torus in $S^2 \times S^2$, Proc. Japan Acad. Ser. A Math. Sci., 79:10 (2003), pp. 167–170.
- [Lee] Y.-I. LEE, Lagrangian minimal surfaces in Kähler-Einstein surfaces of negative scalar curvature, Comm. Anal. Geom., 2:4 (1994), pp. 579–592.
- [Oh] Y.-G. Oh, Mean curvature vector and symplectic topology of Lagrangian submanifolds in Einstein-Kähler manifolds, Math. Z., 216 (1994), pp. 471–482.
- [Qiu] QIU, WEIYANG, Interior regularity of solutions to the isotropically constrained Plateau problem, Comm. Anal. Geom., 11:5 (2003), pp. 945–986.
- [ScW] Schoen, R. and Wolfson, J., Minimizing area among Lagrangian surfaces: the mapping problem, J. Differential Geom., 58:1 (2001), pp. 1–86.
- [Vit] C. VITERBO, Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc., 13:2 (2000), pp. 411–431.