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VOLUME MINIMIZATION AND ESTIMATES FOR CERTAIN

ISOTROPIC SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACES∗

EDWARD GOLDSTEIN†

Abstract. In this note we show the following result using the integral-geometric formula of
R. Howard: Consider the totally geodesic RP 2m in CP n. Then it minimizes volume among the
isotropic submanifolds in the same Z/2 homology class in CP n (but not among all submanifolds in
this Z/2 homology class). Also the totally geodesic RP 2m−1 minimizes volume in its Hamiltonian
deformation class in CP n. As a corollary we’ll give estimates for volumes of Lagrangian submanifolds
in complete intersections in CP n.
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1. Introduction. On a Kähler n-fold M there is a class of isotropic submani-
folds. Those are submanifolds of M on which the Kähler form ω of M vanishes. The
maximal dimension of such a submanifold is n (the middle dimension) in which case
it is called Lagrangian.
In this papers we’ll exhibit global volume-minimizing properties among isotropic
competitors for certain submanifolds of the complex projective space. In gen-
eral global volume-minimizing properties of minimal/Hamiltonian stationary La-
grangian/isotropic submanifolds in Kähler (particularly Kähler-Einstein) manifolds
are still poorly understood. In dimesion 2 there is a result of Schoen-Wolfson [ScW]
(extended to isotropic case by Qiu in [Qiu]) which shows existence of Lagrangian cy-
cles minimizing area among Lagrangians in a given homology class. Still it is not clear
whether a given minimal Lagrangian has any global volume-minimizing properties.
The only instance where we have a clear cut answer to global volume-minimizing prob-
lem is Special Lagrangian submanifolds which are homologically volume-mimizing in
Calabi-Yau manifolds [HaL]. In Kähler-Einstein manifolds of negative scalar cur-
vature, besides geodesics on Riemann surfaces of negative curvature, we have some
examples [Lee] of minimal Lagrangian submanifolds which are homotopically volume-
minimizing. The author has a program for studying homotopy volume-minimizing
properties for Lagrangians in Kähler-Einstein manifolds of negative scalar curvature
[Gold1], but so far there are no satisfactory results.
In positive curvature case there is a result of Givental-Kleiner-Oh which states that
the canonical totally geodesic RPn in CPn minimizes volume in its Hamiltonian de-
formation class, [Giv]. The proof uses integral geometry and Floer homology to study
intersections for Hamiltonian deformations of RPn. Those arguments can be gener-
alized to products of Lagrangians in a product of symmetric Kähler manifolds, [IOS].
There is a related conjecture due to Oh that the Clifford torus minimizes volume
in its Hamiltonian deformation class in CPn, [Oh]. Some progress towards this was
obtained in [Gold2]. Also general lower bounds for volumes of Lagrangians in a given
Hamiltonian deformation class in Cn were obtained in [Vit].
In this note we extend and improve the result of Givental-Kleiner-Oh to isotropic
totally geodesic RP k sitting canonically in CPn. Our main result is the following
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theorem:

Theorem 1. Consider the totally geodesic RP 2m in CPn. Then it minimizes
volume among the isotropic submanifolds in the same Z/2 homology class in CPn

(but not among all submanifolds in this Z/2 homology class). Also consider the totally
geodesic RP 2m−1 in CPn. Then it minimizes volume in its Hamiltonian deformation
class.

A corollary of this is:

Corollary 1. Let f1, . . . , fk be real homogeneous polynomials of odd degree in
n + 1 variables with 2m + k = n. Let N be the zero locus of fi in CPn and L be their
real locus. Then vol(L) ≤ Πdeg(fi)vol(RP 2m) and if L′ is a Lagrangian submanifold
of N homologous mod 2 to L in N then vol(L′) ≥ vol(RP 2m).

Acknowledgement. The author would like to thank Aleks, Olga and Nelly
Neimark for their hospitality during his stay in Princeton, NJ.

2. A formula from integral geometry. In this section we establish a formula
from integral geometry for volumes of isotropic submanifolds of CPn following the
exposition in R. Howard [How].
In our case the group SU(n + 1) acts on CPn with a stabilizer K ≃ U(n). Thus
we view CPn = SU(n + 1)/K and the Fubini-Study metric is induced from the
bi-invariant metric on SU(n + 1). Let P 2m be an isotropic submanifold of CPn of
dimension 2m and let Q be a linear CPn−m ⊂ CPn. For a point p ∈ P and q ∈ Q
we define an angle σ(p, q) between the tangent planes TpP and TqQ as follows: First
we choose some elements g and h in SU(n + 1) which move p and q respectively to
the same point r ∈ CPn. Now the tangent planes g∗TpP and h∗TqQ are in the same
tangent space TrCPn and we can define an angle between them as follows: take an
orthonormal basis u1 . . . u2m for g∗TpP and an orthonormal basis v1 . . . v2n−2m for
h∗TqQ and define

σ(g∗TpP, h∗TqQ) = |u1 ∧ . . . ∧ v2n−2m|.

The later quantity σ(g∗TpP, h∗TqQ) depends on the choices g and h we made. To
mend this we’ll need to average this out by the stabilizer group K of the point r.
Thus we define:

σ(p, q) =

∫

K

σ(g∗TpP, k∗h∗TqQ)dk.

Since SU(n + 1) acts transitively on the Grassmanian of isotropic planes and the
complex planes in CPn we conclude that this angle is a constant depending just on
m and n:

σ(p, q) = Cm,n.

There is a following general formula due to R. Howard [How]:
∫

SU(n+1)

#(P
⋂

gQ)dg =

∫

P×Q

σ(p, q)dpdq = Cm,nvol(P )vol(Q).

Here #(P
⋂

gQ) is the number of intersection points of P with gQ, which is finite for
a generic g ∈ SU(n + 1). To use the formula we need to have some control over the
intersection pattern of P and gQ. We have the following lemma:
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Lemma 1. Let P be the totally geodesic RP 2m ⊂ CPn, let Q = CPn−m ⊂ CPn.
Let g ∈ SU(n + 1) s.t. P and gQ intersect transversally. Then #(P

⋂

gQ) = 1. Also
let f1, . . . , fk be real homogeneous polynomials in n+1 variables with 2m+k = n and
let P ′ be their real locus. If P ′ is transversal to gQ then #(P ′

⋂

gQ) ≤ Πdeg(fi).

Proof. For the first claim we have gQ is given by an (n−m+1)-plane H ⊂ Cn+1

and hence it is a zero locus of m linear equations on C
n+1. Hence (P

⋂

gQ) is cut out
by 2m linear equations in RP 2m.
For the second claim we note that as before gQ

⋂

RPn is the zero locus of 2m linear
polymonials h1, . . . , h2m on RPn. Moreover P ′ is a zero locus of f1, . . . , fn−2m on
RPn. For generic g ∈ SU(n + 1) we’ll have that gQ and P ′ intersect transversally in
RPn. By Bezout’s theorem (see [GH], p. 670) the common zero locus of h1, . . . , h2m

and f1, . . . , fn−2m is CPn is Πdeg(fi) points. Now P ′
⋂

gQ is a part of this locus,
hence #(P ′

⋂

gQ) ≤ Πdeg(fi).

3. Proof of the volume minimization. Now we can prove the result stated
in the Introduction:

Theorem 1. Consider the totally geodesic RP 2m in CPn. Then it minimizes
volume among the isotropic submanifolds in the same Z/2 homology class in CPn

(but not among all submanifolds in this Z/2 homology class). Also consider the totally
geodesic RP 2m−1 in CPn. Then it minimizes volume in its Hamiltonian deformation
class.

Proof. Let P be an isotropic submanifold homologous to RP 2m mod 2 and let
Q = CPn−m. By Lemma 1 the intersection number mod 2 of P and gQ is 1. Hence
the formula in the previous section tells that

Cm,nvol(P )vol(Q) =

∫

SU(n+1)

#(P
⋂

gQ)dg ≥ vol(SU(n + 1))

and

Cm,nvol(RP 2m)vol(Q) =

∫

SU(n+1)

#(RP 2m
⋂

gQ)dg = vol(SU(n + 1))

and this proves the first part. We also note that that CP 1 is homologous to RP 2 mod
2 in CPn but

vol(CP 1) < vol(RP 2).

The second assertion will follow from the first one. Consider C
n+1 and a unit sphere

S2n+1 ⊂ Cn+1. We have a natural circle action on S2n+1 (multiplication by unit
complex numbers). Let the vector field u be the generator of this action. We have a
1-form α on S2n+1,

α(v) = u · v.

Also dα = 2ω where ω is the Kähler form of Cn+1. The kernel of α is the horizontal
distribution. We have a Hopf map ρ : S2n+1 7→ CPn. We have RP 2m−1 ⊂ CPn and
S2m−1 ⊂ S2n+1 which is a horizontal double cover of RP 2m−1.
Let f be a (time-dependent) Hamiltonian function on CPn. Then we can lift it to a
Hamiltonian function on Cn+1 − (0) and its Hamiltonian vector field Hf is horizontal
on S2n+1. Consider now the vector field

w = −2f · u + Hf .
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The vector field w is S1-invariant. We also have:

Proposition 1. The Lie derivative Lwα = 0.

Proof. We have

Lwα = d(iwα) + iwdα = −2df + 2df.

Let now Φt be the time t flow of w on S2n+1 and let Ξt be the Hamiltonian flow of
f on CPn. Then Φt(S

2m−1) is horizontal and isotropic and it is a double cover of
Ξt(RP 2m−1). Hence

vol(Φt(S
2m−1)) = 2vol(Ξt(RP 2m−1)).

Let St = Φt(S
2m−1). We build a suspension ΣSt of St in S2n+3 ⊂ Cn+2,

ΣSt =
(

(sin θ · x, cos θ) ∈ C
n+2 = C

n+1 ⊕ C|0 ≤ θ ≤ π , x ∈ St

)

.

One immediately verifies that ΣSt is horizontal and it is a double cover of an isotropic
submanifold Lt (with a conical singularity) of CPn+1 with L0 = RP 2m. Also one
readily checks that

vol(ΣSt) = vol(St) ·

∫ π

θ=0

sin2m−1 θ dθ.

Hence

2vol(Lt) = vol(ΣSt) = 2vol(Ξt(RP 2m−1)) ·

∫ π

θ=0

sin2m−1 θ dθ.

Now the first part of our theorem implies that vol(Lt) ≥ vol(L0). Hence we conclude
that vol(Ξt(RP 2m−1)) ≥ vol(RP 2m−1).

Remark. One notes from the proof that for RP 2m−1 it would be suffient to
use exact deformations by isotropic immersions of RP 2m−1. A family Lt of isotropic
immersions of RP 2m−1 is called exact if the 1-form ivω is exact when restricted to each
element of the family. Here v is the deformation vector field and ω is the symplectic
form. Thus embeddedness is not important for the conclusion of the theorem.
The theorem has the following corollary:

Corollary 1. Let f1, . . . , fk be real homogeneous polynomials of odd degree in
n + 1 variables with 2m + k = n. Let N be the zero locus of fi in CPn and L be their
real locus. Then vol(L) ≤ Πdeg(fi)vol(RP 2m) and if L′ is a Lagrangian submanifold
of N homologous mod 2 to L in N then vol(L′) ≥ vol(RP 2m).

Proof. We note that N is a complex 2m-fold and L is its Lagrangian submanifold.
Since the degrees of fi are odd, we have by adjunction formula that L and RP 2m

represent the same homology class in H2m(RPn, Z/2). Let Q be a linear CPn−m in
CPn and g ∈ SU(n+1). The intersection munber mod 2 of gQ with L′ is 1. We have
that

Cm,nvol(RP 2m)vol(Q) =

∫

SU(n+1)

1dg

Cm,nvol(L′)vol(Q) =

∫

SU(n+1)

#(L′
⋂

gQ)dg.
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Also using Lemma 1:

Cm,nvol(L)vol(Q) =

∫

SU(n+1)

#(L
⋂

gQ)dg ≤ Πdeg(fi)vol(SU(n + 1))

and our claims follow.
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