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INFINITESIMAL DEFORMATIONS AND STABILITY OF

SINGULAR LEGENDRE SUBMANIFOLDS∗

GO-O ISHIKAWA†

Abstract. We give the characterization of Arnol’d-Mather type for stable singular Legendre
immersions in connection with the classification problem. The most important building block of the
theory is providing a module structure on the space of infinitesimal integral deformations by means
of the notion of natural liftings of differential systems and of contact Hamiltonian vector fields.
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1. Introduction. First let us make clear the fundamental problems for the clas-
sification of singular Legendre submanifolds and thus make clear the significance of
the present paper.

When we study singularities in contact geometry, we consider the local classifi-
cation problem of parametrized singular Legendre submanifolds f : Nn → W 2n+1 in
two cases:

(C) The space W 2n+1 is endowed with a contact structure only (“contact singu-
larity theory”).

(L) The space W 2n+1 is endowed with a contact structure and a Legendre fibration
(“Legendre singularity theory”).

In case (C), it is natural to require that a diffeomorphism of W 2n+1 preserves the
contact structure, a contactomorphism, and, in case (L), it is natural to require that
it is also respects the Legendre fibration, a Legendre diffeomorphism.

As for the case (C), we note that non-singular Legendre submanifolds are locally
transformed by contactomorphisms to each other (see for instance [4]). However, the
classification of singular Legendre submanifolds by contactomorpshims turns out to
be very fruitful. In particular in the case of curves (n = 1) we have much progress
of the classification theory recently ([3][39][40][41][20]). In this paper we give the
exact classification, in the case of any dimension, of stable singularities of corank one
(Theorem 3.1).

As for the case (L), the framework of Legendre singularity theory for Legendre
immersions is established [5]: The singularity of a Legendre immersion via a Legendre
fibration is embodied in a family of hypersurfaces, namely, the generating family of
the Legendre immersion, and the stability of such singularity is expressed by mean
of a notion, K-versality, for its generating family. However, since a singular Legendre
immersion has no generating family in general, the direct characterization should be
worthwhile for the understanding of the stability of singular Legendre immersions,
which we are going to provide in this paper (Theorem 4.1).

Take a contact manifold W 2n+1 with the contact structure D and a Legendre
fibration π : W 2n+1 → Zn+1. Let f, f ′ : (Nn, x0) → W 2n+1 be germs of singular
Legendre submanifolds. Then we consider the following conditions:

(d): f and f ′ are diffeomorphic;
(c): f and f ′ are contactomorphic with respect to D;
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(l): f and f ′ are Legendre equivalent with respect to D and π.
Clearly we have the implications (l) ⇒ (c) ⇒ (d).
In the case n = 1, it is proved by M. Zhitomirskii([40][41]) that (d) implies (c) in

the real analytic category (resp. in C∞ category except for an infinite codimensional
set of germs). See also [20]. The general criterion on the classification (c) is given
in [39], for general subset-germs, not necessarily Legendre, in a contact manifolds.
Moreover we even conjecture that, for arbitrary n, (d) implies (c) except for an infinite
codimensional set of germs. Actually in this paper we show that, at least for contact
stable germs, (d) is equivalent to (c) (Theorem 3.1, Corollary 3.2).

On the other hand, we see that (c) does not implies (l), even for Legendre stable

germs. For example two germs x = t, y = 0, p = 0 and x = t2, y = t3, p =
3

2
t are

contactomorphic but not Legendre equivalent. (See also the discussion below.) Also
we have such examples of singular Legendre manifolds for instance, the A2,1 singularity
and the A3,1 singularity in the sense of [16] for map-germs (R3, 0) → (R7, 0) → (R4, 0)
(Example 4.2). They are Legendre stable projections of open Whitney umbrellas of
type 1 (§2).

In this paper we discuss the stable Legendre projections of open Whitney um-
brellas in detail (Theorems 4.1 and 4.3).

The significance of Legendre singularity theory, as well as contact singularity
theory, has increased recently by the trend of differential geometry treating (wave)
fronts as generalised objects of hypersurfaces. Moreover the point of view in the
micro-local analysis provides the motivation for the study of Legendre submanifolds
as the description of singularities of solutions to partial differential equations.

The most simple singularity of front is given by

x = t2, y = t3,

near (x, y) = (0, 0), the (2, 3)-cusp on the (x, y)-plane. The front lifts to the Legendre
curve

x = t2, y = t3, p =
3

2
t,

which is an immersion. Then the stability of the front is well described by the lifted
non-singular Legendre submanifold via the Legendre equivalences induced by diffeo-
morphisms on the (x, y)-plane.

Consider then the similarly simple plane curve

x = t2, y = t5,

the (2, 5)-cusp near (x, y) = (0, 0). Then the natural lifting has the form:

x = t2, y = t5, p =
5

2
t3,

which is an integral curve to the contact distribution dy − pdx = 0 and not an
immersion at t = 0. Therefore, restricted ourselves to Legendre immersion without
singularities we can not treat this very simple curve in the framework of Legendre
singularity theory. Thus we are going to study, in this paper, singular Legendre
immersions, in particular, the nature of their deformations in canonical way.

For example, consider the “stable”deformation of the (2, 5)-cusp

x = t2, y = t5 + λt3
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Fig. 1. An integral deformation of (2, 5)-cusp.

inducing smooth deformation of tangent lines. See figure 1.
Then we understand, via our general theory, the stable deformation forms the

stable projection (front) of the open Whitney umbrella of type 1, introduced in this
paper, which is contactomorphic to

x = t2, y = t5 + λt3, p =
5

2
t3 +

3

2
λt, µ = t3,

in the (x, y, λ, p, µ)-space with the contact structure dy − pdx − µdλ = 0.

We have given in [18] the characterizations for symplectic stability of Lagrange
varieties and Lagrange stability in symplectic geometry. Therefore the present paper
can be regarded as a contact or Legendre counterpart to [18]: We observe surely the
parallelism between Lagrange and Legendre singularity theories, as well as symplectic
and contact geometries. In fact we use several results in Lagrange singularities proved
in [18] to deduce several results in Legendre singularities. Nevertheless we need to
break through several difficulties for obtaining the characterizations (Theorem 4.1).

In particular, we realize that the direct characterization needs the deep under-
standing of the space of Legendre submanifolds. Since the space of submanifolds can
be treated as the space of immersions, we consider, in a contact manifold, the space
of integral mappings, parametrizations of integral submainfolds of the contact dis-
tribution. The space of integral mappings turns out to be our central object. Its
tangent space at an integral mapping is naturally regarded as the space of infinitesi-
mal deformations of the integral mapping among integral mappings. The fact, then,
we observe in this paper is that the tangent space to the space of integral mappings
has the structure of not merely a vector space, but the very natural module structure.
It reminds us the “modularity”in the sense of Mather [29]. However, in this paper
we introduce the module structure for functions not on the source manifold but for
functions on the target manifold.

We understand the modularity of tangent spaces to the space of integral mappings
in a contact manifold without difficulty as follows: An infinitesimal deformations on a
contact manifold, namely, a contact vector field is locally given by a contact Hamilton
vector field XK with a Hamiltonian function K on the contact manifold, if we fix a
local contact form α. Then we see, for functions H, K,

XHK = H · XK + K · XH − (HK) · X1.

Thus, we can give the module structure ∗ of functions on the space of contact Hamilton
vector fields by identifying it with the space of functions: The formula reads as

H ∗ XK := H · XK + K(XH − H · X1).
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Note that the interior product iXK
α is equal to K. Let f be an integral mapping.

The vector field XK ◦ f along f is a kind of integral infinitesimal deformations of f .
Then we set

H ∗ (XK ◦ f) := f∗H · (XK ◦ f) + f∗K(XH − H · X1) ◦ f.

Note that iXK◦fα is equal to f∗K. We proceed even further. We define the multi-
plication ∗ by a function H of any infinitesimal integral deformation v of f by the
formula:

H ∗ v := f∗H · v + (ivα)(XH − H · X1) ◦ f.

Moreover we observe that the multiplication is intrinsic: The definition of multipli-
cations looks like depending on the choice of a local contact form α, but in fact it is
independent of it and is determined only by the contact structure.

Note that the module structure is effectively used in [20] for the classifying of
singular Legendre curves in the contact three space.

In §2, we introduce the class of singular Legendre submanifolds, open Whitney
umbrellas, in contact manifolds by explicit forms. In §3, we give the characterization
of open Whitney umbrellas as contact stable integral map-germs of corank at most
one (Theorem 3.1). Also we characterize contact versal deformations (Theorem 3.3).
In §4, we formulate the characterizations of Legendre stability and Legendre versality;
Theorems 4.1 and 4.3. To prove Theorems 3.1 and 4.1, we need to clarify the infini-
tesimal condition on Legendre stability. For this, we introduce the notion of natural
liftings ([34][35]) of differential forms and differential systems in §5. After reviewing
the notion of contact Hamilton vector fields in §6, we formulate exactly infinitesimal
conditions in §7. In §8, we study the relation of integral mappings and isotropic map-
pings, and, in §9, we study on the integral jet spaces. In §10, we give results on finite
determinacy of integral map-germs. We give, using all results given in the previous
sections, the proofs of Theorems 3.1 and 4.1 in §11. In §12, we mention on the proofs
of contact and Legendre versality theorems (Theorems 3.3 and 4.3).

In this paper, all manifolds and mappings we treat are assumed to be of class C∞

(in case K = R) or complex analytic (in case K = C).

This paper is based on my talk at the workshop in the University of Warwick
held on June 1999. I would like to thank the organisers Professor David Mond and
Professor Andrew du Plessis. Also I would like to thank Professor Jim Damon for
valuable comment on the method described in the last section given to me at Newton
Institute, Cambridge, 2000. I would like to thank Professor Hajime Sato for helpful
comment, in particular, for his indicating me the notion of the natural liftings in [34].
Also I would like to dedicate the present paper to Professor Syuzo Izumi for his 65th
birthday and Professor Hajime Sato for his 60th birthday. Furthermore I would like
to thank the referee for helpful suggestions to improve the paper.

2. Integral mappings. Now we are going to describe in detail the objects to
which we apply our theory, before formulating the main theorems.

Let (W, D) be a real or complex contact manifold of dimension 2n + 1 ([1][2][5]).
Here D ⊂ TW stands for the contact structure on W , namely, a completely non-
integrable distribution of codimension one. A typical example is W = K2n+1, K = R



SINGULAR LEGENDRE SUBMANIFOLDS 137

or C, with coordinates (p, q, r), and

D = {dr −

n∑

i=1

pidqi = 0} ⊂ TK2n+1.

By Darboux’s theorem, any contact manifold is locally contactomorphic to this stan-
dard model.

A mapping f : N → W from an n-dimensional manifold N is called an integral
mapping if, for any x ∈ N , f∗(TxN) ⊂ Df(x), where f∗ : TxN → Tf(x)W is the
differential mapping (the linearization) of f at x. If D is given by a contact form α,
then f is an integral mapping if and only if f∗α ≡ 0. Thus the notion of integral
mappings generalizes that of (immersed) integral manifolds in the contact manifold
W .

Two map-germs f : (N, x0) → (W, D) and f ′ : (N ′, x′
0) → (W ′, D′) to con-

tact manifolds (W, D) and (W ′, D′) respectively, are called contactomorphic (resp.
diffeomorphic) if there exist a diffeomorphism σ : (N, x0) → (N ′, x′

0) and a contacto-
morphism (resp. a diffeomorphism) τ : (W, f(x0)) → (W ′, f ′(x′

0)), τ∗D = D′, such
that f ′ ◦ σ = τ ◦ f . In this case we call also the pair (σ, τ) a contactomorphism (resp.
a diffeomorphism) of f and f ′.

Let f : (Nn, x0) → W 2n+1 be an integral map-germ. Suppose that f is of
corank ≤ 1, namely that the kernel of the differential map f∗ : Tx0

N → Tf(x0)W
is zero or one dimensional. Then there exists a contactomorphism (σ, τ) from f to
f ′ = τ ◦ f ◦ σ : (Kn, 0) → (K2n+1, 0) such that

(q1, . . . , qn−1, qn) ◦ f ′ = (x1, . . . , xn−1, u(x1, . . . , xn−1, xn),

for some function u, where (x1, xn−1, xn) is the standard coordinate of Kn. Then,
setting v := pn ◦ f ′, we easily see that the components p1, . . . , pn−1 and r of f ′ are
uniquely determined by the condition

d(r ◦ f) =

n∑

i=1

(pi ◦ f)d(qi ◦ f).

Actually we have:

Proposition 2.1. (Pre-normal form of integral map-germ of corank at most
one.) Let f : (Nn, x0) → W 2n+1 be an integral map-germ of corank ≤ 1. Then there
exist functions-germs u, v : (Kn, 0) → (K, 0) such that f is contactomorphic to the
integral map-germ f ′ : (Kn, 0) → (K2n+1, 0) defined by

(q1, . . . , qn−1, qn, pn) ◦ f ′ := (x1, . . . , xn−1, u, v),

pi ◦ f ′ :=

∫ xn

0

(
∂v

∂xi

∂u

∂xn
−

∂v

∂xn

∂u

∂xi

)
dxn, (1 ≤ i ≤ n − 1),

and

r ◦ f ′ :=

∫ xn

0

(
v

∂u

∂xn

)
dxn.



138 G. ISHIKAWA

In particular, our main objects of the study are introduced as follows: For an

integer k with 0 ≤ k ≤
n

2
, we define a map-germ f = fn,k : (Kn, 0) → (K2n+1, 0) by

q1 ◦ f = x1, . . . , qn−1 ◦ f = xn−1 and

u = qn ◦ f =
xk+1

n

(k + 1)!
+ x1

xk−1
n

(k − 1)!
+ · · · + xk−1xn,

v = pn ◦ f = xk
xk

n

k!
+ · · · + x2k−1xn,

and the property f∗α = 0. The components p1, . . . , pn−1 and r of f are defined as in
Proposition 2.1 so that

d(r ◦ f) =

n∑

i=1

(pi ◦ f)d(qi ◦ f).

Then we call a map-germ f : (N, x0) → W an open Whitney umbrella (or an unfurled

Whitney umbrella) of type k (0 ≤ k ≤
n

2
), if it is contactomorphic to the normal form

fn,k.
An open Whitney umbrella is an integral map-germ of corank at most one. It

is an immersion, namely, Legendre immersion, exactly when k = 0: A map-germ
f : (Nn, x0) → (W 2n+1, D) is a Legendre immersion if and only if f is an open
Whitney umbrella of type 0. If k > 0, then the singular locus of an open Whitney
umbrella of type k is non-singular and of codimension 2 in N .

If k 6= k′, then an open Whitney umbrella of type k and that of type k′ are not
diffeomorphic, therefore they are not contactomorphic.

Open Whitney umbrellas are intrinsically characterized via the notion of “contact
stability” in §3.

3. Contact stability and versality. In this section, we treat the case (C), the
contact singulatity theory. First we define the notion of contact stability of map-
germs: Roughly speaking, an integral map-germ f : (X, x0) → W is contact stable if,
by any sufficiently small integral perturbations, the contact equivalence class of fx0

is not removed but remains nearby x0.
More exactly, an integral map-germ f : (N, x0) → W is contact stable if, for any

integral representative f : U → W of f , there exists a neighborhood Ω in C∞
I (N, W )

such that, for any f ′ ∈ Ω, the original germ f is contact equivalent to f ′
x′

0

for some

x′
0 ∈ U (cf. [5] page 325).

An integral map-germ f : (N, x0) → W is called homotopically contact stable if
any one-parameter integral deformation F = (ft) of f is trivialized by contactomor-
phisms:

τt ◦ ft ◦ σ−1
t = f,

(σt, τt) being contactomorphism of ft and f . Here σt may move base points of germs.
(See the definition of contactomorphism in §1).

To characterize the Legendre stability by means of transversality, we introduce
the notion of integral jet spaces. Denote by Jr

I (N, W ) the set of r-jets of integral
map-germs f : (N, x0) → (W, w0) of corank at most one:

Jr
I (N, W ) = {jrf(x0) | f : (N, x0) → (W, w0) integral, corankx0

f ≤ 1}.
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Then Jr
I (N, W ) is a submanifold of the ordinary jet space Jr(N, W ) (§9). Moreover,

for jrf(x0) ∈ Jr
I (N, W ), the contactomorphism class of jrf(x0), namely, the set of

r-jets of map-germs which are contactomorphic to f : (N, x0) → (W, w0) form a
submanifold of Jr

I (N, W ).
If f : N → W is an integral mapping of corank at most one, then the image of the

r-jet extension jrf : N → Jr(N, W ) is contained in Jr
I (N, W ). Then we regard jrf

as a mapping to Jr
I (N, W ). Based on a Legendre version of transversality theorem

(§9), contact stability is characterized by the transversality.

In the case K = C, we understand the definition of stability by the transversality.

For a manifold-germ (N, x0), we denote by EN,x0
the K-algebra consisting of C∞

function-germs (N, x0) → K, and by mN,x0
the unique maximal ideal of EN,x0

. If the
base point x0 is clear in the context, we abbreviate EN,x0

and mN,x0
to EN and mN

respectively.
For a map-germ f : (N, x0) → (W, w0), we denote by f∗ : EW → EN the homo-

morphism defined by the pull-back by f . Moreover we set

Rf := {h ∈ EW | dh ∈ ENd(f∗EW )},

for the exterior differential d ([18]).
Then we have:

Theorem 3.1. (Classification of contact stable germs. ) Let f : (N, x0) → W 2n+1

be an integral map-germs of corank at most one. Then the following conditions are
equivalent:

(cs) f is contact stable.
(hcs) f is homotopically contact stable.
(ics) f is infinitesimally contact stable.
(fics) f is infinitesimally contact stable on the level of formal series.
(owu) f is an open Whitney umbrella.
(ca) Rf = f∗EW and f is diffeomorphic (i.e. A-equivalent) to an analytic map-

germ f ′ : (Kn, 0) → (K2n+1, 0) (not necessarily integral) such that the codimension
of the singular locus of the complexification f ′

C
of f ′ is greater than or equal to 2.

(ct) The jet extension jrf : (N, x0) → Jr
I (N, W ) is transversal to the contacto-

morphism class of jrf(x0), for an integer r ≥
n

2
+ 1.

We must explain the notion of infinitesimal contact stablity (ics): Of course, it is
the infinitesimal counterpart of contact stability.

Now recall the notion of infinitesimal stability due to Mather [28] for a general
C∞ map-germ f : (N, x0) → (W, w0). A map-germ f is called infinitesimally stable
if Vf = tf(VN ) + wf(VW ), where VN (resp. VW , Vf ) is the module consisting of all
germs of vector fields over (N, x0) (resp. over (W, w0), along f), and tf : VN → Vf

(resp. wf : VW → Vf ) is defined by tf(ξ)(x) = f∗(ξ(x)), (ξ ∈ VN , x ∈ (N, x0)) (resp.
wf(η)(x) = η(f(x)), (η ∈ VW , x ∈ (N, x0))).

Similarly we call an integral map-germ f : (N, x0) → (W, w0) infinitesimally
contact stable if

V If = tf(VN ) + wf(V HW ).

where V HW (⊂ VW ) (resp. V If (⊂ Vf )) is the module of all germs of Hamiltonian
vector fields over (W, w0) (resp. all germs of infinitesimal integral deformations of f
over (N, x0)). See §7 for details.
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Also we can consider the notion of infinitesimal contact stability on the level of
formal series: f is called infinitesimally contact stable on the level of formal series or
formally infinitesimally contact stable if any formal integral deformation along f is
written as the sum of the push-forward of a formal vector field by f and the pull-back
of a formal Hamilton vector filed over (W, w0) by f .

Let f, f ′ : (Nn, x0) → W 2n+1 be contact stable integral map-germs of corank ≤ 1.
Then f and f ′ are open Whitney umbrellas by Theorem 3.1. Therefore f (resp. f ′) is
an open Whitney umbrella of type k (resp. of type k′), for some k (resp. k′). Suppose
f and f ′ are diffeomorphic. Then we easily see that k = k′. Therefore f and f ′

are contactomorphic to the same normal form fn,k, hence, they are contactomorphic.
Thus we have:

Corollary 3.2. Contact stable integral map-germs of corank at most one are
contactomorphic if and only if they are diffeomorphic.

The notions in Theorem 3.1 are discussed in detail along the following sections,
in particular in §7 and in §9. The proof of Theorem 3.1 will be given in §11.

As in the ordinary singularity theory, we can show also contact versality theorem,
which gives an alternative proof of the equivalence of (hcs) and (ics).

An integral deformation F = (fλ) : (N × Kr, (x0, 0)) → W of an integral map-
germ f : (N, x0) → W is called contact versal if any other integral deformation G =
(gµ) : (N×Ks, (x0, 0)) → W of f is induced from F up to contactomorphisms, namely
if there exist a map-germ ϕ : (Ks, 0) → (Kr, 0) and a family of contactomorphisms
(σµ, τµ), (µ ∈ (Ks, 0)) such that gµ = τµ ◦ fϕ(µ) ◦ σ−1

µ for any (µ ∈ (Ks, 0)), where
gµ(x) = G(x, µ).

F is called infinitesimally contact versal if

V If =

〈
∂F

∂λ1

∣∣∣∣
λ=0

, . . . ,
∂F

∂λr

∣∣∣∣
λ=0

〉

R

+ tf(VN ) + wf(V HW ).

Theorem 3.3. (Contact versality theorem.) An integral deformation F : (N ×
Kr, (x0, 0)) → W of an integral map-germ f : (N, x0) → W of corank at most one,
is contact versal if and only if F is infinitesimally contact versal. Any contact versal
deformations of f with the same number of parameters are contactomorphic to each
other. An integral map-germ f : (N, x0) → W of corank at most one has a contact
versal deformation if and only if tf(VN )+ wf(V HW ) is of finite codimension over K

in V If .

We give an example of contact versal deformations:

Example 3.4. Let f : (R2, 0) → (R5, 0) be defined by

p1 = v3 + u2v, q1 = v2, p2 =
4

3
uv3, q2 = u, r =

2

5
v5 +

2

3
u2v3.

Then f is not contact stable and of contact codimension 1. The germ f has the
one-parameter contact versal deformation fλ : (R2, 0) → (R5, 0) defined by

p1 = v3 + u2v − λv, q1 = v2, p2 =
4

3
uv3, q2 = u, r =

2

5
v5 +

2

3
(u2 − λ)v3.

This deformation is also Legendre versal (§4). The deformation describes the
“creation-annihilation” of two folded umbrellas.
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4. Legendre stability and versality. Now we turn to the case (L), Legendre
singularity theory.

A fibration π : W 2n+1 → Zn+1 is called a Legendre fibration if the fibers of π are
Legendre submanifolds of W . Note that any Legendre fibrations are locally isomorphic
(See for instance [4]). Then we concern with the relative position of the image of an
integral mapping with respect to a Legendre fibration: We consider an integral map-
germ f : (N, x0) → (W, w0) together with a germ of Legendre fibration π : (W, w0) →
(Z, z0), where w0 = f(x0), z0 = π(w0) = (π ◦ f)(x0). Then a contactomorphism-germ
τ : (W, w0) → (W, w0) is called a Legendre diffeomorphism-germ if τ maps π-fibers to
π-fibers, or more exactly, if there exists a diffeomorphism-germ τ̄ : (Z, z0) → (Z, z0)
such that τ̄ ◦ π = π ◦ τ .

A pair (f, π) is Legendre equivalent to another pair (f ′, π) if there exists a contact
equivalence (σ, τ) of f and f ′ such that τ is a Legendre diffeomorphism. In this case,
we call (σ, τ) a Legendre equivalence of (f, π) and (f ′, π).

An integral map-germ f : (N, x0) → (W, w0) is called homotopically Legendre
stable if any integral deformation (ft) of f is trivialized under Legendre equivalence:

τt ◦ ft ◦ σ−1
t = f,

(σt, τt) being Legendre equivalences of ft and f . Here σt may move base points of
germs.

Moreover we can define, over the R, the notion of Legendre stability of map-
germs similarly to the contact stability: An integral map-germ f : (N, x0) → W is
Legendre stable with respect to an Legendre fibration π : W → Z if, by any sufficiently
small integral perturbations, the Legendre equivalence class of (f, π) is not removed.
To formulate accurately, denote by C∞

I (N, W ) the space of C∞ integral mappings
from N to W , endowed with the Whitney C∞ topology. Then an integral map-germ
f : (N, x0) → W is Legendre stable if, for any integral representative f : U → W of
f , there exists a neighborhood Ω in C∞

I (U, W ) of f such that, for any f ′ ∈ Ω, the
original pair (fx0

, π) of germs is Legendre equivalent to (f ′
x′

0

, π) for some x′
0 ∈ U (cf.

[5]).
We can define the notion of infinitesimal Legendre stablity as the infinitesimal

counterpart of Legendre stability: We call an integral map-germ f : (N, x0) → W
infinitesimally Legendre stable if V If = tf(VN ) + wf(V LW ), where V LW (⊂ VW ) is
the module of all germs of infinitesimal Legendre transformations over (W, w0) (resp.
infinitesimal integral deformations of f over (N, x0)). See §7 for details.

Moreover, for algebraic characterizations of Legendre stability, we set

r0 = inf{r ∈ N | f∗EW ∩ mr+1
N ⊂ f∗mn+2

W }.

If f : (N, x0) → W is an open Whitney umbrella, then f is, in particular, finite,
namely, EN is a finite EW -module via f∗ : EW → EN . Therefore r0 is a finite positive
integer, determined by n and k, the type of the open Whitney umbrella. Actually r0

depends only on the right-left equivalent class (diffeomorphism class) of f .
The main purpose of the present paper is to show the following:

Theorem 4.1. (Arnol’d-Mather type characterization of Legendre stability.). For
an integral map-germ f : (Nn, x0) → (W 2n+1, w0) of corank at most one, the following
conditions are equivalent to each other:

(ls) f is Legendre stable.
(hls) f is homotopically Legendre stable.
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(ils) f is infinitesimally Legendre stable.
(fils) f is infinitesimally Legendre stable on the level of formal series.
(la) f is an open Whitney umbrella and f∗EW is generated by 1, p1 ◦ f, . . . , pn ◦ f

as EZ-module via (π ◦ f)∗.
(la′) f is an open Whitney umbrella and Q(f) := f∗EW /(π◦f)∗mZEW is generated

over K by 1, p1 ◦ f, . . . , pn ◦ f .
(la′′r ) (r ≥ r0). f is an open Whitney umbrella and Qr+1(f) := f∗EW /{(π ◦

f)∗mZf∗EW + f∗EW ∩ mr+2
N } is generated by 1, p1 ◦ f, . . . , pn ◦ f over K.

(ltr) (r ≥ r0). The jet extension jrf : (N, x0) → Jr
I (N, W ) is transversal to the

Lagrange equivalence class of jrf(x0).

We give examples of Legendre stable germs in connection with the classification
problem:

Example 4.2. Consider two integral map-germs (R3, 0) → (R7, 0) considered
with the Lagrange projections π : (R7, 0) → (R4, 0), π(p, q, r) = (q, r):

A2,1 : q1 = x1, q2 = x2, q3 = x2
3, r =

1

3
x1x

3
3

p1 =
1

3
x3

3, p2 = 0, p3 = x1x
2
3

A3,1 : q1 = x1, q2 = x2, q3 = x3
3 + x1x3,

r =
3

5
x5

3 +
3

4
x2x

4
3 +

1

3
x1x

3
3 +

1

2
x1x2x

2
3

p1 = −
2

3
x3

3 −
1

2
x2x

2
3, p2 =

3

4
x4

3 +
1

2
x1x

2
3, p3 = x2

3 + x2x3.

Then they are Legendre stable. They are contactomorphic to open Whitney umbrella
of type 1 and they are not Legendre equivalent to each other.

The equivalence of (hls) and (ils) is one of consequences of Legendre versality
theorem: We introduce the notion of Legendre versality of integral deformations of
integral map-germs.

A deformation F : (N ×Kr, (x0, 0)) → W of an integral map-germ f : (N, x0) →
W is called integral if each fλ = F |N×{λ}, (λ ∈ (Kr, 0)) is integral, for a representative
of F . We write F = (fλ) in short. An integral deformation F of f is called Legendre
versal if any other integral deformation G : (N×Ks, (x0, 0)) → W of f is induced from
F up to Legendre equivalence, namely if there exist a map-germ ϕ : (Ks, 0) → (Kr, 0)
and a Legendre deformation (σµ, τµ), (µ ∈ (Ks, 0)) such that gµ = τµ ◦ fϕ(µ) ◦ σ−1

µ for
any (µ ∈ (Ks, 0)), where gµ(x) = G(x, µ). F is called infinitesimally Legendre versal
if

V If =

〈
∂F

∂λ1

∣∣∣∣
λ=0

, . . . ,
∂F

∂λr

∣∣∣∣
λ=0

〉

K

+ tf(VN ) + wf(V LW ).

Then we also mention in this paper on a proof of the following:

Theorem 4.3. (Legendre versality theorem.) An integral deformation F : (N ×
Kr, (x0, 0)) → W of an integral map-germ f : (N, x0) → W of corank at most one,
is Legendre versal if and only if F is infinitesimally Legendre versal. Any Legendre
versal deformations of f with the same number of parameters are Legendre equivalent
to each other. An integral map-germ f : (N, x0) → W of corank at most one has a
Legendre versal deformation if and only if tf(VN )+wf(V LW ) is of finite codimension
over K in V If .
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Setting r = 0 we have again that f is homotopically Legendre stable if and only
if f is infinitesimally Legendre stable.

We give an example of Legendre versal deformations:

Example 4.4. Let f : (R2, 0) → (R5, 0) be defined by

p1 = v2, q1 = v3 + uv, p2 = −
2

3
v3, q2 = u, r =

3

5
v5 +

1

3
uv3.

Then f is contactomorphic to open Whitney umbrella of type 1 but f is not
Legendre stable and of Legendre codimension 1. The Legendre versal deformation
fλ : (R2, 0) → (R5, 0) of f is given by

p1 = v2, q1 = v3 + uv + λv2, p2 = −
2

3
v3, q2 = u, r =

3

5
v5 +

1

3
uv3 +

1

2
λv4.

The deformation describes the “collision-penetration” of one swallowtail with one
folded umbrella together with one A1A2-multi-singularity.

5. Lie derivative. Let N, W be manifolds, and f : N → W a mapping. A
mapping v : N → TW is called a vector field along f or an infinitesimal deformation
of f , if π ◦ v = f , for the projection π : TW → W . We denote by Vf the module of
all vector field along f . By the fiberwise addition and scalar multiplication on TW ,
Vf turns out to be a module over the function-algebra EN on N .

It is easy to see that there exists a one-parameter deformation F : U → W of f
defined on an open neighborhood U in N ×K of N ×{0} ∼= N such that F |N×{0} = f .
We write as F = (Ft) so that F0 = f . Then we define, for a differential p-form α on
W , a differential p-form Lvα on N by

Lvα =
d

dt

∣∣∣∣
t=0

F ∗
t α.

For this, see also [18] p.225. Then Lvα does not depend on the choice of F but
depends only on v. We call Lvα the Lie derivative of α by v. Moreover we define the
interior product ivα, that is a differential (p − 1)-form on N by

ivα(Z1, . . . , Zp−1)(x) = α(v(x), f∗Z1(x), . . . , f∗Zp−1(x)),

for vector fields Z1, . . . , Zp−1 over N .

Example 5.1. Let N = TW and f = π : TW → W . We regard the identity
map 1 : TW → TW as a vector field along π. Then, for a p-form α on W , we have
defined the p-form L1α and (p − 1)-form i1α on TW .

Lemma 5.2. We have the following fundamental formulae:

(1) iv(λα + µβ) = λ(ivα) + µ(ivβ),
(2) iλu+µvα = (f∗λ)(iuα) + (f∗µ)(ivα),
(3) Lvα = iv(dα) + d(ivα),
(4) Lv(α ∧ β) = (Lvα) ∧ f∗β + f∗α ∧ (Lvβ),
(5) iv(α ∧ β) = (ivα) ∧ f∗β + (−1)rf∗α ∧ (ivβ).

Here u, v are vector fields along a mapping f : N → W , λ, µ are functions on W , α, β
are differential forms on W , and α is an r-form.
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In particular, we refer (3) as the Cartan type formula: Lv = div + ivd.

Proof. (1) and (2) are straightforward from the definition. The proof of (3) is
given in [18] Lemma 3.3. (4), (5) are easily proved similarly to the ordinary case
W = N and f is the identity mapping.

The following formulae are proved from the definitions in the straightforward way.

Lemma 5.3. Let f : N → W be a mapping, v : N ′ → TN a vector field along
a mapping N ′ → N , w : W → TW ′ a vector field along a mapping W → W ′, α a
differential form on W and α′ a differential form on W ′. Then we have

(i) Lw◦fα′ = f∗(Lwα′), Lf∗vα = Lv(f
∗α),

(ii) iw◦fα′ = f∗(iY α′), if∗vα = iv(f
∗α).

Here w◦f is the pull-back of w by f , and f∗v is the push-forward of v by f : (w◦f)(x) =
w(f(x)), (x ∈ N), (f∗v)(x′) = f∗(v(x′)), (x′ ∈ N ′).

In particular we have

(i’) LY ◦fα = f∗(LY α), Lf∗Xα = LX(f∗α),
(ii’) iY ◦fα = f∗(iY α), if∗Xα = iX(f∗α),

for a vector field X over N , a vector field Y over W , and for a differential form α on
W . Here Y ◦ f is the pull-back of Y by f , and f∗X is the push-forward of X by f .

Then the fundamental concept of this paper is introduced as follows:

Proposition 5.4. Let W be a manifold and α a differential form on W .
(1) There exists a unique differential form α̃ on TW such that, for any vector

field X : W → TW over W , X∗α̃ = LXα holds.

(2) Moreover, α̃ of (1) satisfies v∗α̃ = Lvα, for any vector field v : N → TW
along a mapping f : N → W .

(3) dα̃ = d̃α and f̃∗α = (f∗)
∗(α̃), where f∗ : TN → TM is the bundle homomor-

phism defined by differential of f .

In fact, we have α̃ = L1α. We call α̃ the natural lifting of α. The notion of natural
liftings is first defined, even for general tensors, in [34][35] in a different manner: This
fact is pointed out to the author by H. Sato. Though our construction is limited
to differential forms, it seems more direct and useful for the infinitesimal study of
differential systems. We are going to apply, in this paper, the notion of natural liftings
for the infinitesimal study of stability of integral mappings in contact geometry.

Proof of Proposition 5.4: (1) We set α̃ = L1α, for the identity mapping 1 : TW →
TW . Then X∗α̃ = X∗L1α = L1◦Xα = LXα. Similarly we have (2). Let, for
another β, X∗β = X∗α̃, for any vector field over W . Then, for any z ∈ TW and
any v ∈ Tz(TW ) \ K, there exists a vector field X over W and u ∈ Tπ(z)W such
that X∗(u) = v. Here π : TW → W the canonical projection and K is the kernel of
π∗ : Tz(TW ) → Tπ(z)W . Then 〈β, v〉 = 〈X∗β, u〉 = 〈X∗α̃, u〉 = 〈α̃, v〉. Thus β and
α̃ coincide on Tz(TW ) \ K thus on Tz(TW ), the linear-hull of Tz(TW ) \ K, for any
z ∈ TW . Therefore β = α̃. (3) follows from the uniqueness of the natural lifting of
dα and f∗α: For example, X∗(f∗)

∗(α̃) = (f∗X)∗(α̃) = Lf∗Xα = LX(f∗α), for any
vector field X over N .
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Example 5.5. Let M a symplectic manifold, and ω the symplectic form on
M . Since ω is non-degenerate, ω induces an isomorphism TM ∼= T ∗M . On the other
hand, T ∗M is endowed with the canonical symplectic form dθM , which is independent
of the symplectic structure of M . Therefore dθM is regarded as a symplectic form on
TM . This coincides with the natural lifting ω̃.

Example 5.6. Let (p, q, r) be a Darboux coordinates of (W, D) at a point w0 ∈
W . Then the standard contact form α = dr − pdq gives the contact distribution
D ⊂ TW . Let (p, q, r; φ, ξ, s) be the induced local coordinates of the tangent bundle
TW ; (φ, ξ, s) being fiber coordinates. Then we have

α̃ = d(s − pξ) + ξdp − φdq.

Remark that α̃ is linear in the fiber coordinates (φ, ξ, s).

In general we have

Lemma 5.7. Let f : N → W be a mapping, and α a differential form on W .
Then, for v1, v2 ∈ Vf , we have iv1+v2

α = iv1
α+ iv2

α, and (v1 + v2)
∗α̃ = v∗1α̃+ v∗2α̃.

Proof. The first equality follows from the definition of interior product. The second
equality follows from Proposition 5.4 (2) and the Cartan’s formula Lv = div + ivd.

The notion of natural liftings is defined also for differential systems. Let W be
a manifold and Ω the sheaf of differential forms on W . A subsheaf I ⊂ Ω is called a
differential system on W if it is a d-closed ideal of the differential algebra Ω, namely,
if, for any section α of I and for any section β of Ω (defined on the same open subset
of W ), α ∧ β and dα are sections of I. Let S be a set of differential forms on open
subsets of W . Then the differential system 〈S〉 generated by S has the stalk 〈S〉x, for
each x ∈ W , consisting of the functional linear combination of elements αx ∧ βx and
dαx ∧ βx, for those α ∈ S and differential forms β defined over x.

For example, a contact structure D ⊂ TW on W may be defined also as the
differential system generated by local sections of D⊥ ⊂ T ∗W , local contact forms
compatible with D.

Let I be a differential system on W . Then the natural lifting Ĩ of I is defined as
the differential system on TW generated by the natural liftings α̃ of all sections α of
I. If f : N → W is a mapping, then f∗I denotes the differential system generated by
f∗α for all sections of I. Then we have by Proposition 5.4 (3):

Lemma 5.8. Let I be a differential system on W . Then f̃∗I = (f∗)
∗(Ĩ), where

f∗ : TN → TW is the differential mapping of f .

6. Contact Hamilton vector fields. Let (W, D) be a contact manifold, and α
a local contact form representing D. There does not necessarily exist α globally; α can
be taken over an open subset of W where the contact distribution D is co-oriented. A
vector field X over W is called a contact vector field if the Lie derivative LXα = µα
for a function µ, namely if X preserves the contact distribution D.

Deleting W if necessary, we assume a contact form α is taken over W . Let
H : W → K be a function. Then there exists a unique contact vector field X = XH

over W with the condition iXα = H . The contact vector field XH is called the contact
Hamilton vector field with Hamilton function H .
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If α = dr −
∑n

i=1 pidqi, then XH is explicitly given by

XH =

n∑

i=1

(
∂H

∂qi
+ pi

∂H

∂r

)
∂

∂pi
−

n∑

i=1

∂H

∂pi

∂

∂qi
+

(
H −

n∑

i=1

pi
∂H

∂pi

)
∂

∂r
.

Conversely, any contact vector field is locally a contact Hamilton vector field with
some Hamiltonian function.

Associated to a contact form α, we define the Reeb vector field R by iRα =
1, iRdα = 0. Note that, since α is a contact form, R is characterized uniquely. If

α = dr − pdq, then R =
∂

∂r
. Then we have:

Lemma 6.1. Let α be a contact form on W , and H : W → K a function. Then
we have

(1) LXH
α = R(H)α and iXH

dα = R(H)α − dH.
(2) Let η be a vector field on W . If iηdα = 0, then η = (iηα)R.
(3) X1 = R.

Proof. (1) The first equality holds for a system of coordinates (p, q, r) with α =
dr − pdq. Remark that XH and R are defined intrinsically from the contact form
α. The latter equality follows from LXH

α = iXH
dα + diXH

α = iXH
dα + dH . (2)

Set η′ = η − (iηα)R. Then iη′dα = 0 and iη′α = 0. Therefore η′ = 0, and we have
η = (iηα)R. (3) By (1), we have iX1

dα = 0. Since iX1
α = 1, we see X1 = R.

We have the following formula for the contact Hamilton vector field with the sum
(resp. product) of two contact Hamilton functions:

Lemma 6.2. For functions K, H on W , we have

XK+H = XK + XH ,

XKH = K · XH + H · XK − (KH) · R = K · XH + H · XK − (KH) · X1.

In particular, XaH = aXH , (a ∈ K).

Proof. The first one is clear. To show the second equality, we set η = K · XH +
H · XK − XKH . Then

iηdα = K(R(H)α − dH) + H(R(K)α − dK) − (R(KH)α − d(KH))
= (KR(H) + HR(K) − R(KH))α = 0.

Moreover, iηα = KH +HK−KH = KH . Therefore, by Lemma 6.1, η = (KH) ·R =
(KH) · X1.

We denote by V HW the vector space of contact Hamilton vector fields over W
and by EW the K-algebra of functions on W . Define a linear map Φ : EW → V HW

by Φ(H) = XH . Then Φ is an isomorphism of vector spaces. Therefore V HW is
endowed with EW -module structure induced from Φ, namely, K ∗ XH = XKH . Here,
we distinguish this new functional multiplication, using ∗, with the ordinary functional
multiplication in VW , the EW -module consisting of all vector fields over W .

In term of the local coordinates p, q, r of (W, w0) with α = dr −
∑n

i=1 pidqi, we
define the order of function-germs h = h(p, q, r) ∈ EW by setting

weight(pi) = weight(qj) = 1, (1 ≤ i, j ≤ n), and weight(r) = 2;
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namely, ord(h) ≥ r if the Taylor expansion of h has no monomials of weight < r. We

set m
(r)
W := {h ∈ EW | ord(h) ≥ r}.

If τ : (W, w0) → (W, w0) is a contactomorphism, then ord(h ◦ τ) = ord(h). Then
we can define, on the local ring EW , the filtration

EW ⊃ m
(1)
W ⊃ m

(2)
W ⊃ · · · ⊃ m

(r)
W ⊃ · · · .

Note that

m
(2r)
W ⊂ mr

W ⊆ m
(r)
W , (r = 0, 1, 2, . . . ).

In particular m2
W ⊂ m

(2)
W ⊂ mW .

In the EW -module V HW introduced above, we have

m2
W ∗ V HW ⊆ V HW ∩ mW VW = m

(2)
W ∗ V HW .

Let π : W → Z be a Legendre fibration. Then a contact vector field X over W is
called a Legendre vector field if, X is lowerable, namely, if there exists a vector field
Y over Z such that tπ(X) = wπ(Y ) as vector fields along π. Then easily we have:

Proposition 6.3. Let (p1, . . . , pn, q1, . . . , qn, r) be a Darboux coordinate, so that
α = dr−pdq. Then a contact Hamilton vector field XH with Hamilton H = H(p, q, r)
is a Legendre vector field if and only if H is an affine function, namely, H is of form

H(p, q, r) = a0(q, r) + a1(q, r)p1 + · · · + an(q, r)pn

We denote by V LW = V L(W,π), the totality of Legendre vector fields over W
with respect to π.

7. Infinitesimal deformations. Let f : (N, x0) → W be an integral map-germ.
The space of infinitesimal integral deformations of f is, at least formally, given by

V If = {v : (N, x0) → TW | v∗α̃ = 0, π ◦ v = f},

where π : TW → W is the natural projection, and α̃ is the natural lifting to TW of
a contact 1-form α locally defining D near w0 = f(x0) ∈ W .

Recall that V HW denotes the EW -module of contact Hamilton vector fields over
W . Define a linear mapping wf : V HW → V If by wf(H) = XH ◦ f, (H ∈ EW ).

For v ∈ V If , we call ivα ∈ EN the generating function of v. The linear mapping
e : V If → Rf is defined by taking generating function. Here

Rf := {h ∈ EN | dh ∈ ENd(f∗EW )}.

In local coordinates, we have e(v) = s ◦ v −
∑

(p ◦ f)(ξ ◦ v) and

0 = v∗α̃ = d(e(v)) +
∑

(ξ ◦ v)d(p ◦ f) −
∑

(φ ◦ v)d(q ◦ f).

Therefore e(v) ∈ Rf . Note that iv(λα) = (λ ◦ f)ivα.
We see the mapping e is surjective. In fact, for any h ∈ Rf , dh is a functional

linear combination of the exterior derivatives of components of f . Since f is integral,
r ◦ f is a functional linear combination of d(p ◦ f), d(q ◦ f), and so is dh. Therefore,
choosing ξ ◦ v, ϕ ◦ v and s ◦ v properly, we get v ∈ V If with e(v) = h.

Note that
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Lemma 7.1. We have iXH◦fα = f∗(iXH
α) = f∗H. Therefore the generating

function of XH ◦ f is equal to the pull-back f∗H of the Hamiltonian function H.

We need a result proved in page 222 of [18]:

Lemma 7.2. Let f : (N, x0) → W be of corank ≤ 1. If

Rf := {e ∈ EN | de ∈ ENd(f∗EW )}

is a finite EW -module if and only if f is a finite map-germ, namely, EN is a finite
EW -module via f∗ : EW → EN .

Now set V I ′f = Ker(e : V If → Rf ). Then we have the exact sequence of vector
spaces:

0 −→ V I ′f −→ V If
e

−→ Rf −→ 0.

Remark that Rf ⊂ EN is an EW -submodule via f∗ : EW → EN .
Now, in Vf , the EN -module consisting of vector fields along f , we have

V I ′f = {v ∈ Vf | ivα = 0, ivdα = 0},

and V I ′f ⊂ Vf is an EN -submodule, therefore, an EW -submodule via f∗.

To proceed algebraic calculation, we are going to provide also V If a module
structure.

As in the previous section, we denote by XH the contact Hamilton vector field
with Hamilton function H .

Proposition 7.3. V If is an EW -module by the multiplication

H ∗ v = f∗H · v + (ivα)(XH − H · R) ◦ f,

for H ∈ EW , v ∈ V If . The multiplication is independent on the choice of contact form
α, but it depends only on the contact structure (and on H, v). Moreover the sequence

0 −→ V I ′f −→ V If
e

−→ Rf −→ 0

is EW -exact.

Remark 7.4. For a constant function c, we have Xc = cR and c ∗ v = cv.

To verify Proposition 7.3, we need several lemmas:

Lemma 7.5. iH∗vα = f∗H · ivα.

Proof. Since i(HR−XH )◦fα = f∗(iHR−XH
α) = f∗(HiRα− iXH

α) = f∗(H −H) =
0, we see iH∗vα = if∗H·vα = f∗H · ivα.

Lemma 7.6. Set α′ = λα, for a non-vanishing function λ. Then ivα
′ = f∗λivα

for any vector field along a mapping f : N → W . If we denote by R′, X ′
H the Reeb

vector field and the contact Hamilton vector field of H with respect to α′, respectively,
and if f : N → W is integral, then

(X ′
H − HR′) ◦ f =

{
1

λ
(XH − HR)

}
◦ f.
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Therefore we have

(ivα′)(X ′
H − HR′) ◦ f = (ivα)(XH − HR) ◦ f.

Proof. That ivα
′ = f∗λivα follows by Lemma 5.2 (1).

Set u = (X ′
H − HR′) ◦ f and v =

{
1

λ
(XH − HR)

}
◦ f . Then, by Lemma 5.3,

iuα′ = iX′

H
◦fα′ − i(HR′)◦fα′ = f∗H − f∗H = 0. Similarly we have ivα = 0. So we

have ivα
′ = (f∗λ)(ivα).

We will show iudα′ = ivdα′ = f∗(−dH). Then, since α′ is a contact form, we
have u = v.

Now in fact, since f is integral, we have f∗α′ = f∗α = 0, and therefore we have,
by Lemma 6.1,

iudα′ = f∗(iX′

H
−HR′dα′)

= f∗(R′(H)α′ − dH − HiR′dα′)
= f∗(−dH).

ivdα′ = (f∗λ)(ivdα) + iv(dλ ∧ α)
= f∗(iXH−HRdα) + (ivdλ)f∗α − (ivα)f∗(dλ)
= f∗(R(H)α − dH)
= f∗(−dH).

Remark 7.7. The terms (ivα)XH ◦ f and (ivα)(H · R) ◦ f do depend on the
choice of α. Just the difference is intrinsically defined as seen in Lemma 7.6.

Proof of Proposition 7.3: We compare

(KH) ∗ v = f∗(KH) · v − (ivα)(KH · R − XKH) ◦ f

with

K ∗ (H ∗ v) = f∗K(f∗H · v − (ivα)(H · R − XH) ◦ f) − (iH∗vα)(K · R − XH) ◦ f.

By Lemma 7.5, the right hand side of the latter equals to

f∗(KH) · v − (ivα)(2KH · R − KXH − HXK) ◦ f,

which is equal to the right hand side of the former, by Lemma 6.2. By Lemma 7.5,
e is an EW -epimorphism. By Lemma 7.6, we see the multiplication depends only on
the contact structure. The remaining parts are clear.

The following is a consequence of Proposition 7.3, Lemma 7.1 and Proposition
6.3:

Lemma 7.8. If we set

V H ′
W,f = {XH ∈ V HW | H ◦ f = 0},

then we have an EW -exact sequence,

0 −→ V I ′f/wf(V H ′
W,f ) −→ V If/wf(V HW ) −→ Rf/EW −→ 0.
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If we set

V L′
W,f = {XH ∈ V LW | H ◦ f = 0},

then we have an EZ-exact sequence,

0 → V I ′f/wf(V H ′
W,f ) → V If/wf(V LW )

→ Rf/(EZ +
∑n

i=1 EZ(pi ◦ f)) → 0.

Let f : (N, x0) → (W, w0) be an integral mapping. We define an EW -
homomorphism tf : VN → V If by tf(ξ) := f∗(ξ), ξ ∈ VN .

Lemma 7.9. Let f : (N, x0) → (W, w0) be an integral map-germ. Then tf(VN ) ⊆
V I ′f .

Proof. Take f∗(ξ) ∈ tf(VN ). Then we have e(f∗(ξ)) = if∗(ξ)α = iξf
∗α = 0.

Under a condition, the converse inclusion holds:

Proposition 7.10. Let f : (N, x0) → (W, w0) be an integral map-germ. Suppose
that f is diffeomorphic to an analytic map-germ f ′ : (Kn, 0) → (K2n+1, 0) (not neces-
sarily integral) such that the codimension of the singular locus of the complexification
f ′
C

of f ′ is greater than or equal to 2. Then we have V I ′f ⊆ tf(VN ). Therefore we
have an isomorphism of EW -modules

V If/{tf(VN) + wf(V HW )} ∼= Rf/EW ,

and an isomorphism of EZ-modules

V If/{tf(VN ) + wf(V LW )} ∼= Rf/(EZ +

n∑

i=1

EZ(pi ◦ f)).

Proof. Let v ∈ V I ′f . Set

v = (p ◦ f, q ◦ f, r ◦ f ; φ ◦ v, ξ ◦ v, s ◦ v).

Then, since e(v) = s ◦ v −
∑

(p ◦ f)(ξ ◦ v) = 0, we have

n∑

i=1

(ξi ◦ v)d(pi ◦ f) −

n∑

i=1

(φi ◦ v)d(qi ◦ f) = 0.

This means, for any regular point x ∈ (Kn, 0), that v(x) ∈ Df(x) and v(x) belongs to
the skew orthogonal complement to f∗(TxK

n) with respect to the symplectic structure∑n
i=1 dpi ∧ dqi on D. Therefore we have v(x) ∈ f∗(TxK

n). Since f and f ′ are
diffeomorphic, any vector field in V I ′f is transformed to a vector field along f ′ which
is tangent to the image of f ′ off the singular locus of f ′.

Let v ∈ Vf ′

C
. This means that v : (Cn, 0) → TC2n+1 is a holomorphic vector field

along f ′
C

: (Cn, 0) → (C2n+1, 0). Suppose, for each regular point x ∈ (Cn, 0) of f ′
C

that v(x) ∈ f ′
C∗(TxC

n). Then we can find a vector field w over Cn\Sing(f ′
C

) satisfying
v = (f ′

C
)∗(w) on Cn \ Sing(f ′

C
), where Sing(f ′

C
) is the locus of singular points of f ′

C
.

Since Sing(f ′
C

) is of codimension ≥ 2 in Cn, w extends to a holomorphic vector field
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on (Cn, 0) still called w, by Hartogs theorem. Then we have v = f ′
C∗(w). This proves

that V I ′f ⊆ tf(VN ) in the case K = C.
In the case K = R, we set T ⊂ Vf ′ as the set of vector fields along f ′ such that,

for each regular point x ∈ (Rn, 0) of f ′, v(x) ∈ f ′
∗(TxR

n).
Take v ∈ T . Suppose v is real analytic. Then considering the complexification of

v, we see that there exists a real analytic w ∈ Vn such that v = f ′
∗(w) over (Rn, 0).

This means that T is generated formally by tf ′(Vn) in the sense of [25], and, by
Whitney’s spectral theorem, we have that T is contained in the closure of tf ′(Vn) for
a representative of f ′. Since f ′ is analytic, we see tf ′(Vn) itself is closed, and we have
T ⊆ tf ′(Vn). See also [32]. This shows that V If ⊆ tf(VN ).

The remaining parts are clear.

We call f infinitesimally contact stable if

V If = tf(VN ) + wf(V HW ).

Then we have:

Corollary 7.11. Let f : (N, x0) → (W, w0) be an integral mapping. Then the
condition (ca) of Theorem 3.1 implies that f is infinitesimally contact stable, namely
the condition (ics).

Proof. Since Rf = f∗EW , we see 0 = Rf/EW
∼= V If/{tf(VN) + wf(V HW )}.

Therefore we have V If = tf(VN ) + wf(V HW ).

Lemma 7.12. If an integral map-germ of corank at most one f : (N, x0) → W is
infinitesimally contact stable then f is a finite map-germ.

Proof. By taking generating functions of both sides of the equality V If = tf(VN )+
wf(V HW ), we have Rf = f∗EW . Therefore Rf is a finite EW -module. Therefore, by
Lemma 7.2, we see f is finite.

Let (ft) be an integral deformation of f . To show f is homotopically contact
(resp. Legendre) stable, we need to find a deformation (σt) of idN and an integral
deformation (τt) of idW (resp. an integral deformation τt of idW covering a deforma-
tion (τ̄t) of idZ via π : W → Z) satisfying τ−1

t ◦ ft ◦ σt = f . For this, it is sufficient
to solve dft/dt = ηt ◦ ft − Tft ◦ ξt(= wft(ηt) − tft(ξt)) : N × K → TW with ξt ∈ VN

and ηt ∈ V HW (resp. ηt ∈ V LW ), (cf. [28]).

For an unfolding F = (ft, t) : N × J → W × J , t ∈ J = (K, 0), we set

V IF/J = {v : N × J → TW | vt ∈ V Ift
, t ∈ J}.

If (ft) is an integral deformation of f , then we have (dft/dt)t∈J ∈ V IF/J . We define
an EW×J -module structure on V IF/J by

at ∗ vt = (f∗
t at) · vt + (ivt

α)(Xat
− at · R) ◦ ft,

for vt ∈ V IF/J , at ∈ EW×J . Compare with Proposition 7.3. Then we have

Corollary 7.13. If f is finite and of corank at most one, then the quotient
V IF/J is a finite EW×J -module.

Now assume f is integral and ft is an integral deformation of f . We define
tF/J : VN → V IF/J by v 7→ (tft(v))t∈J . We set

SF/J = V IF/J/((wF/J)(V HW ) + (tF/J)(VN )),
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which is an EW×J -module, and set

Sf = V If/(wf(V HW ) + tf(VN )),

which is an EW -module. Then we have:

Lemma 7.14. The quotient SF/J/mJSF/J is isomorphic to Sf as an EW -modules.

Proof. Consider the morphism Φ : SF/J → Sf defined by Φ([vt]) = [vt|t=0].
We will show that the kernel of Φ is equal to mJSF/J . Let vt ∈ V IF/J . Assume
vt|t=0 = wf(η)+tf(ξ), for some ξ ∈ VN , η ∈ V IW . Set wt = vt−wft(η)−tft(ξ). Then
wt|t=0 = 0. Therefore wt = tw′

t, for some w′
t ∈ Vft

. We see Π♯(w
′
t) ∈ V Igt

. Here gt =

Π◦ft is the family of isotropic map-germs induced from ft. In fact Π♯(wt)
♭ = tΠ♯(w

′
t)

♭

and so 0 = (Π♯(wt)
♭)∗dθT∗Q = t(Π♯(w

′
t)

♭
)∗dθT∗Q. Thus (Π♯(w

′
t)

♭
)∗dθM = 0. This

means w′
t ∈ V Ift

. Since x-derivative of t is equal to zero, we have wt = twt = t ∗ w′
t

and [vt] = [wt] = t[w′
t] ∈ mJSF/J .

8. Relation to Isotropic Mappings. Let Q be a manifold of dimension n.
Then T ∗Q × K ∼= J1(Q,K) ⊂ PT ∗(Q × K) has the canonical contact structure,
whereas T ∗Q has the canonical symplectic structure ω = dθQ, θQ being Liouville
form on Q, θQ =

∑n
i=1 pidqi, for a system of local symplectic coordinates. A contact

form on T ∗Q × K is given by dr − θQ, for the coordinate r on K.
Let g : N → T ∗Q be a mapping from a manifold N of dimension n. Then g is

called isotropic if g∗ω = 0. The singularities of isotropic mappings of corank at most
one is studied in [18] in detail. In particular, we have a series of singularities, “open
Whitney umbrellas”, which are symplectic counterparts of objects we have introduced
in this paper.

Two isotropic map-germs g : (N, x0) → T ∗Q and g′ : (N, x′
0) → T ∗Q are called

symplectomorphic (or symplectically equivalent) if there exist a symplectomorphism

τ : (T ∗Q, g(x0)) → (T ∗Q, g′(x′
0))

and a diffeomorphism σ : (N, x0) → (N, x′
0) satisfying τ ◦ f = f ′ ◦ σ. Then we call

also the pair (σ, τ) a symplectomorphism between g and g′.
Let f : (N, x0) → T ∗Q×K be a map-germ. Set g : (N, x0) → T ∗Q to be g = Π◦f ,

where Π : T ∗Q × K → T ∗Q is the natural projection along the flow of Reeb vector

field
∂

∂r
.

Then we have by [18]:

Lemma 8.1.

(1) f is an integral map-germ if and only if g is an isotropic map-germ.
(2) If g = Π ◦ f and g′ = Π ◦ f ′ are symplectomorphic, then f and f ′ are

contactomorphic.
(3) Rf = Rg.
(4) f is an open Whitney umbrella of type k (as an integral map-germ) if and only

if g is an open Whitney umbrella of type k (as an isotropic map-germ). In particular,
f is a Legendre immersion if and only if g is a Lagrange immersion.

Remark 8.2. The converse of (2) of Lemma 8.1 does not hold in general. For
example, consider integral map-germs fλ : (K, 0) → (K3, 0), λ > 0 defined by g(t) =

(t3, t7+λt8,
3

10
t10+

3

11
λt11). Then gλ = Π◦fλ : (K, 0) → (K2, 0), gλ(t) = (t3, t7+λt8)
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is not symplectomorphic to gλ′ if λ′ 6= λ, while all fλ are contactomorphic to each
other ([21][20]).

Set W = T ∗Q × K. The projection Π : W → T ∗Q induces the projection
Π∗ : TW → T (T ∗Q); by using local coordinates, it is given by

Π∗(p, q, r; φ, ξ, s) = (p, q; φ, ξ).

Then Π∗ induces K-linear mapping Π♯ : Vf → Vg by Π♯(v) = Π∗ ◦ v, (v ∈ Vf ).
Now we observe the following:

Lemma 8.3. Π♯ restricts to a K-linear epimorphism Π♯ : V If → V Ig, to an EN -
isomorphism Π♯ : V I ′f → V I ′g and ET∗Q-epimorphism Π♯ : V If → V Ig/wg(V HT∗Q)
over the ring morphism Π∗ : ET∗Q → EW . Furthermore we have the following com-
mutative diagram which consists of exact sequences:

0 0 0
↓ ↓ ↓

0 → wf(V H ′
W,g) → wf(V H ′

W ) → f∗EW → 0
↓ ↓ ↓

0 → V I ′
f → V If

ee
→ Rf → 0??y ??yΠ♯

??y
0 → V I ′

g/wg(V H ′
T∗Q,g) → V Ig/wg(V HT∗Q)

e
→ Rg/g∗ET∗Q → 0

↓ ↓ ↓

0 0 0

The kernel of Π♯ is generated by R ◦ f =
∂

∂r
◦ f over R.

Proof. We show that Ker(Π♯) =

〈
∂

∂r
◦ f

〉

R

. Let v = (p ◦ f, q ◦ f, r ◦ f ; φ, ξ, s) ∈

V If . Recall that d(s− (p ◦ f)ξ) + ξd(p ◦ f)− φd(q ◦ f) = 0. Suppose that Π∗ ◦ v = 0.
Then ξ = 0, φ = 0. Then we have ds = 0. Thus s is constant. The remaining parts
are clear.

We have also

Lemma 8.4. For any η ∈ V HT∗Q (resp. η ∈ V LT∗Q), there exists an η̃ ∈ V HW

(resp. η̃ ∈ V LW ), such that Π♯wf(η̃) = wg(η). Here wf(η̃) = η̃ ◦ f and wg(η) =
η ◦ g. Here V LT∗Q means the set of Lagrange vector fields of the Lagrange fibration
T ∗Q → Q ([18]).

If η ∈ mT∗Q ∗ V HT∗Q (resp. η ∈ mQ ∗ V LT∗Q), then we can take η̃ from m2
W ∗

V HW (resp. from m2
Z ∗ V LW ), where Z = Q × R.

Proof. If η has a symplectic Hamiltonian function H on T ∗Q, H(0) = 0, then we
may set η̃ = XΠ∗H , the contact Hamiltonian vector field for the pull-back Π∗H of H
by Π.

Lemma 8.5. Let f : (N, x0) → W = T ∗Q × K be an integral mapping. If
g = Π ◦ f : (N, x0) → T ∗Q is infinitesimally symplectically (resp. Lagrange) stable,
then f is infinitesimally contact (resp. Legendre) stable.

Proof. Suppose g is infinitesimally symplectic (resp. Lagrange) stable. Then, for
any v ∈ V If , there exist ξ ∈ VN and η ∈ V HT∗Q (resp. η ∈ V LT∗Q) satisfying
Π♯v = tg(ξ) + wg(η). Then we see, using Lemma 8.4

Π♯(v − tf(ξ) − wf(η̃)) = 0.
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Thefore, by Lemma 8.3, there exists s0 ∈ R such that

v − tf(ξ) − wf(η̃) = s0
∂

∂r
◦ f.

Thus we have v = tf(ξ) + wf(η̃ + s0
∂

∂r
).

Proposition 8.6. If f is an open Whitney umbrella, then we have Rf = f∗EW .
Therefore f satisfies the condition (ca) of Theorem 3.1.

Proof. Rf = Rg = g∗EZ ⊆ f∗EW ⊆ Rf .

Corollary 8.7. If f is an open Whitney umbrella, then f is infinitesimally
contact stable. Moreover we have the isomorphism

V If/(tf(VN ) + wf(V LW )) ∼= Rf/(EZ +

n∑

i=1

EZ(pi ◦ f))

of EZ-modules via π∗ : EZ → EW .

9. Integral Jets. We consider the integral jet space Jr
I (n, 2n + 1) consisting of

jrf(0) ∈ Jr(n, 2n + 1) for integral map-germs f : (Kn, 0) → (K2n+1, 0) of corank at
most one. Then we see Jr

I (n, 2n + 1) is a submanifold of Jr(n, 2n + 1).

Remark 9.1. The projection Πr : Jr(n, 2n + 1) → Jr(n, 2n) defined by
Φr(jrf(0)) := jr(Π◦f)(0) induces a diffeomorphism of Jr

I (n, 2n+1) and the isotropic
jet space Jr

I (n, 2n) ⊂ Jr(n, 2n) ([17]). In fact, for any jrg(0) ∈ Jr
I (n, 2n), we set

jrf(0) = jr(g, e)(0), where e is the generating function of g, de = g∗θQ, e(0) = 0.
Then jrf(0) ∈ Jr

I (n, 2n + 1) and Πr(jrf(0)) = jrg(0).

Let f : (N, x0) → (W, w0) be an integral map-germ of corank at most one. Then
we set

V Is
f = {v ∈ V If | jsv(x0) = 0} = V If ∩ ms+1

N Vf , (s = 0, 1, 2, . . . ).

Let z = jrf(x0) ∈ Jr
I (n, 2n + 1). Define πr : V I0

f → TzJ
r(n, 2n + 1) as follows:

For each v ∈ V I0
f , take an integral deformation (ft) of f with v =

dft

dt

∣∣∣∣
t=0

, and

set πr(v) =
d(jrft(x0))

dt

∣∣∣∣
t=0

. Then the image of the linear map πr coincides with

TzJ
r
I (n, 2n + 1).
Let z ∈ Jr

I (n, 2n + 1) and z = jrf(x0) for a f : (N, x0) → (W, w0). Then under
the identification TzJ

r(n, 2n + 1) ∼= mNVf/mr+1
N Vf we have

TzJ
r
I (n, 2n + 1) ∼= V I0

f/V Ir
f .

If we denote by Crz (resp, Lrz) the orbit of z under the contactomorphisms (resp.
Legendre diffeomorphisms), we have

TzC
rz ∼= {(tf(mNVN ) + wf(m

(2)
W ∗ V HW )) + V Ir

f}/V Ir
f ,

TzL
rz ∼= {(tf(mNVN ) + wf(m

(2)
Z ∗ V LW )) + V Ir

f}/V Ir
f .
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Set z = jrf(x0). For (w, v) ∈ Tx0
N ⊕V If , take a curve xt in N with the velocity

vector w at t = 0 and take an integral deformation ft of f with v =
dft

dt

∣∣∣∣
t=0

(cf. [18],

Lemma 3.4), and define a linear map

Πr : T0N ⊕ V If → TzJ
r(N, W ),

by

Πr(w, v) =
jrdft(xt)

dt
|t=0.

Then Πr(T0N ⊕V If ) = TzJ
r
I (N, W ) and KerΠr = {0}⊕V Ir

f . Moreover we have, for
the Legendre equivalence class,

[z] = {jrf ′(x) | x ∈ N, f ′ is Legendre equivalent to f}

in Jr
I (N, W ),

Tz[z] = Πr(Tx0
N ⊕ (tf(mNVN ) + wf(V LW ))).

For the jet extension jrf : (N, x0) → Jr
I (N, W ), we have

(jrf)∗(
∂

∂xi
) = Πr(

∂

∂xi
, f∗(

∂

∂xi
)).

Lemma 9.2. The transversality condition (tr) is equivalent to the condition

V If = tf(VN ) + wf(V LW ) + V Ir
f .

Proof. The condition (ltr) that jrf is transverse to [z] = [jrf(x0)] at x0 is equiv-
alent to the condition

(jrf)∗(Tx0
N) + Tz[z] = TzJ

r
I (N, W ),

and to the condition that

(Πr)
−1((jrf)∗(Tx0

N)) + Tx0
N ⊕ (tf(mNVN ) + wf(V LW )) + {0} ⊕ V Ir

f

coincides with Tx0
N ⊕ V If . This condition is equivalent to that

V If = 〈f∗(
∂

∂x1
), . . . , f∗(

∂

∂xn
)〉K + tf(mNVN ) + wf(V LW ) + V Ir

f ,

namely that

V If = tf(VN ) + wf(V LW ) + V Ir
f .

Similarly we have the following:

Lemma 9.3. The condition that jrf is transverse to the orbit for contactomor-
phisms through jrf(x0) at x0 is equivalent to the condition

V If = tf(VN ) + wf(V HW ) + V Ir
f .
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Moreover the transversality condition on jrf implies that f is an open Whitney
umbrella:

Proposition 9.4. Let f : (N, x0) → (W, w0) be an integral map-germ of
corank ≤ 1, and k a non-negative integer. If the k + 1 extension jk+1f : (N, x0) →
Jk+1

I (N, W ) is transverse to the contactomorphism-orbit through jk+1f(x0), then f
is an open Whitney umbrella of type ≤ k.

Proof. Since f is an integral map-germ of corank ≤ 1, f is contactomorphic to
f ′ : (Kn, 0) → (K2n+1, 0) with

ϕ := (q1, . . . , qn−1, qn, pn) ◦ f ′ = (x1, . . . , xn−1, u(x), v(x)).

Since f ′ is contactomorphic to f , we see that also

jk+1f ′ : (Kn, 0) → Jk+1
I (Kn,K2n+1)

is transverse to the contactomorphism-orbit through jk+1f ′(0), therefore to K-orbit
through jk+1f ′(0). Then we see jk+1ϕ : (Kn, 0) → Jk+1(Kn,Kn+1) is transverse
to K-orbit through jk+1ϕ(0). Then f ′ is an open Whitney umbrella of type ≤ k.
Therefore f is an open Whitney umbrella of type ≤ k.

For an n-dimensional manifold N and a contact manifold W of dimension 2n+1,
we set

C∞
I (N, W )1 := {f : N → W | f is integral of corank ≤ 1}.

We endow C∞
I (N, W )1 with the relative topology of the Whitney C∞ topology of

C∞(N, W ). Then we have the following Legendre transversality theorem:

Proposition 9.5. Let r be a non-negative integer and U a locally finite family
of submanifolds of Jr(N, W ). Then

TU := {f ∈ C∞
I (N, W )1 | jrf is transverse to all of U}

is dense in C∞
I (N, W )1.

10. Finite determinacy.

Lemma 10.1. Let f, f ′ : (N, x0) → W be integral map-germs. If f is an open
Whitney umbrella of type k and jk+1f ′(x0) = jk+1f(x0), then f ′ is an open Whitney
umbrella of type k.

Proof. By definition there exist a contactomorphism (σ, τ) such that τ ◦ f ◦σ−1 =
fn,k, the normal form. Set f ′′ = τ ◦ f ′ ◦ σ−1. Then jk+1f ′′(x0) = jk+1fn,k(x0). Set
ϕ = (q1, . . . , qn−1, qn, pn)◦f ′′ : (N, x0) → Kn+1 and ϕn,k = (q1, . . . , qn−1, qn, pn)◦fn,k.
Then jk+1ϕ(x0) = jk+1ϕn,k(x0). Now jkϕ : (N, x0) → Jk(N,Kn+1) is transverse at
x0 to Thom-Boardman strata as well as jkϕn,k is. In [15], we have shown that
g′′ = (q, p) ◦ f ′′ : (N, x0) → K2n is symplectomorphic to gn,k = (q, p) ◦ fn,k. Then
f ′′ and fn,k are contactomorphic. Since f and f ′′ are contactomorphic, we see f and
fn,k are contactomorphic, therefore f is an open Whitney umbrella of type k.

An integral map-germ f : (N, x0) → (W, w0) is called r-determined by contac-
tomorphisms if, for any integral map-germ f ′ : (N, x0) → (W, w0) with jrf ′(x0) =
jrf(x0), f and f ′ are contactomorphic.
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Let π : (W, w0) → (Z, z0) be a fixed Legendre fibration. An integral map-germ
f : (N, x0) → (W, w0) is called Legendre r-determined if, for any integral map-germ
f ′ : (N, x0) → (W, y0) with jrf ′(x0) = jrf(x0), then (f ′, π) and (f, π) are Legendre
equivalent.

Then we have:

Lemma 10.2. An open Whitney umbrella of type k is (k + 1)-determined by
contactomorphisms.

Proof. Suppose f is an open Whitney umbrella of type k. Let f ′ : (N, x0) → W be
an integral map-germ with jk+1f ′(x0) = jk+1f(x0). Then f ′ is also an open Whitney
umbrella of type k. Therefore both f and f ′ are contactomorphic to the normal form
fn,k. Thus f and f ′ are contactomorphic.

Lemma 10.3. Let f : (N, x0) → (W, y0) be an open Whitney umbrella. Suppose
that f is infinitesimally Legendre stable, namely that

V If = tf(VN ) + wf(V LW ).

Take a positive integer r satisfying

f∗EW ∩ mr+1
N ⊆ f∗mn+2

W .

Then we have
(1) Rf = f∗EW is generated as EZ-module by 1, p1 ◦ f, . . . , pn ◦ f .
(2) mn+1

W Rf ⊆ mZRf .

(3) V Ir
f ⊆ tf(mNVN ) + wf(V LW ∩ m

(2)
W ∗ V HW ).

(4) f is Legendre r-determined.

Proof. (1) : Taking generating functions both sides of V If = tf(VN )+wf(V LW ),
we have

Rf = 〈1, p1 ◦ f, . . . , pn ◦ f〉EZ
.

Moreover, since f is an open Whitney umbrella, we have Rf = f∗EW (Lemma 8.6).
(2) : Set Qf := Rf/mZRf . Then Qf is generated by 1, p1 ◦ f, . . . , pn ◦ f over K.

Therefore dimK Qf ≤ n + 1. Considering the sequence

Qf ⊇ mW Qf ⊇ · · · ⊇ mn+1
W Qf ,

and using Nakayama’s lemma, we have mn+1
W Qf = 0. Therefore we have mn+1

W Rf ⊆
mZRf .

(3) : Let v ∈ V Ir
f . Then the generating function e(v) = ivα of v belongs to

f∗EW ∩ mr+1
N . Now

f∗EW ∩ mr+1
N ⊆ f∗(mn+2

W ) ⊆ mZf∗mW .

Therefore there exist functions a1, . . . , as ∈ mZ and b1, . . . , bs ∈ mW such that

e(v) = (a1b1 + · · · + asbs) ◦ f.

For each bj ◦ f , there exist cj0, cj1, . . . , cjn ∈ EZ satisfying

bj ◦ f = cj0 · 1 + cj1(p1 ◦ f) + · · · + cjn(pn ◦ f).
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Note that, since bj(x0) = 0, we see cj0(x0) = 0, therefore cj0mZ . Set

h =

s∑

j=1

aj(cj0 + cj1p1 + · · · + cjnpn).

Then h is an affine function with respect to p1, . . . , pn and h ∈ m2
W . So the Hamilton

vector field Xh belongs to V LW ∩ m2
W ∗ V HW ⊆ V LW ∩ m

(2)
W ∗ V HW . Then the

generating function of u := v − Xh ◦ f is equal to zero. Then the vector field u is
tangent to f along the regular locus of f . Since f is an open Whitney umbrella, f
is analytic and the singular locus of the complexification of f is at least 2. Therefore
there exists a vector field ξ ∈ VN satisfying u = tf(ξ) (Proposition 7.10). So we have
v = tf(ξ) + wf(Xh). Remark that, since f is an open Whitney umbrella, the kernel
of the differential mapping f∗ : Tx0

N → Tw0
W is not tangent to the Boardman strata

containing x0. The vector ξ(x0) belongs to the kernel. On the other hand ξ(x0)
must be tangent to the Boardman stratum. Therefore we have ξ(x0) = 0 namely
ξ ∈ mNVN . Thus we have

v ∈ tf(mNVN ) + wf(V LW ∩ m
(2)
W ∗ V HW ).

(4) : Let f ′ : (N, x0) → W be an integral map-germ with jrf ′(x0) = jrf(x0).
Note that r ≥ n + 1. Therefore f ′ is also an open Whitney umbrella of the same type
as f . By the argument of Proposition 3.5 in [19], we can connect f and f ′ by a family
of integral map-germs ft satisfying

V Ir
ft

⊆ tft(mNVN ) + wft(V LZ ∩ m
(2)
W ∗ V HW ).

Thus by the homotopy method we see f and f ′ are Legendre equivalent.

11. Stability. First we show the following:

Lemma 11.1. Let f : (Nn, x0) → W 2n+1 be an integral map-germ of corank at
most one. If f is contact stable then f is an open Whitney umbrella.

Proof. Because all notions involved are local and invariant under the contacto-
morphisms, we may assume, by the Darboux theorem, f : (Kn, 0) → (K2n+1, 0),
f∗α = 0, α = dr − pdq and f is of corank ≤ 1. Take a representative f : U → K2n+1

of the germ f . We may assume the representative is also integral and of corank ≤ 1.
Set g = (p ◦ f, q ◦ f) : U → T ∗Kn. Then g is isotropic and of corank ≤ 1. Here g

is called isotropic if g∗ω = 0, for the symplectic form ω = d(pdq) on T ∗Kn. In fact,
since g∗(pdq) = d(r ◦ f) we have g∗ω = d(g∗(pdq)) = 0. Furthermore, if there is a
plane in TxK

n, for some x ∈ U , included in the kernel of g∗ : TxK
n → Tg(x)T ∗Kn,

then d(pi ◦ f), d(qi ◦ f), (1 ≤ i ≤ n) vanish on the plane, and then also d(r ◦ f) =
d(p ◦ fd(q ◦ f)) vanishes on the plane. This means that the plane is included in
the kernel of f∗ : TxK

n → Tf(x)K
2n+1. Therefore if f is of corank ≤ 1, then g is

necessarily of corank ≤ 1.
Now, by [15] Theorem 2, g is approximated by an isotropic mapping g̃ : U →

T ∗Kn of corank≤ 1 such that, at any point x ∈ U , the germ of g̃ at x is an (symplectic)
open Whitney umbrella. Then there exist a symplectomorphism κ : (T ∗Kn, g̃(x)) →
(T ∗Kn, 0) and a diffeomorphism σ : (Kn, x) → (Kn, 0) such that κ◦g̃◦σ−1 : (Kn, 0) →
(T ∗Kn, 0) coincides with (p ◦ fn,k, q ◦ fn,k) in §2.

Let e : (Kn, x) → K be a generating function of g̃x, g̃∗x(pdq) = de. Remark that
two generating functions e, e′ differ by just the addition of a constant function. Then
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(g̃, e) : (Kn, x) → K2n+1 is an integral map-germ and it is contact equivalent to fn,k

by the contactomorphism (σ, τ), τ(p, q, r) = (κ(p, q), r + c) for some constant c.
Since g is of corank ≤ 1, if the perturbation g̃ of g is sufficiently small, then we can

take e on U , deleting U smaller if necessary. Then (g̃, e) is an integral perturbation
of f on U , which we can take near f arbitrarily. Since the original germ f is contact
stable, it is contact equivalent to some (g̃, e) : (Kn, x) → K2n+1. Thus f is an open
Whitney umbrella in the sense of §2.

Proof of Theorem 3.1.
(cs) ⇒ (owu) is already proved in Lemma 11.1.
(owu) ⇒ (ics): Note that the infinitesimal contact stability is invariant under

contactomorphisms. Let fn,k be the normal form of an open Whitney umbrella.
Then the corresponding isotropic map-germ Π ◦ fn,k is an open Whitney umbrella
as an isotropic map-germs. Then it is proved in [18] that Π ◦ fn,k is symplectically
stable. Then by Lemma 8.5, we see fn,k is infinitesimally contact stable.

(owu) ⇒ (ca) : It follows from Lemma 8.6.
(ca) ⇒ (ics) : It follows from Corollary 7.11.
(ics) ⇒ (hcs) : The condition (ics) is equivalent to that Sf = 0, which is equivalent

to that SF/J = mJSF/J = mW×JSF/J , by Lemma 7.14. By Corollary 7.13, SF/J is
a finite EW×J -module. So by Nakayama’s lemma, we see SF/J = 0. Therefore any
integral deformation of f is trivialised with respect to contactomorphisms. Thus we
have (hcs).

(hcs) ⇒ (ics) : Let v ∈ V If . Then there exists an integral deformation (ft) of
f with (dft/dt)|t=0 = v. Since f is homotopically contact stable, ft is trivialised by
contactomorphisms: ft = τ−1

t ◦ f ◦ σt. Differentiating both sides by t and setting
t = 0, we have v = (dft/dt)|t=0 = tf(ξ) + wf(η), for some ξ ∈ VN , η ∈ V HW . Thus
we have (ics).

(ics) ⇒ (ct): This follows from Lemma 9.3.
(ct) ⇒ (owu) : It is proved in Proposition 9.4.
Thus we see conditions (owu), (ca), (ics), (hcs) and (ct) are equivalent to each

other.
(ct) ⇒ (cs) : If jrf is transversal to the contactomorphism class of jrf(x0) for

r ≥
n

2
+ 1, then, for any slight perturbation f ′ of f , there exists a point x′

0 near x0

such that jrf ′ intersects to the contactomorphism class of jrf(x0) at x′
0. Since f is

an open Whitney umbrella, f is r-determined by contactomorphisms. Therefore we
see f ′ : (N, x′

0) → W is contactomorphic to f : (N, x0) → W . Therefore f is contact
stable.

(cs) ⇒ (ct) : Take a representative f : U → W of f . Then f is approximated by
an integral mapping f ′ : U → W such that jrf ′ : U → Jr

I (N, W ) is transverse to the
contactomorphism-orbit [jrf(x0)]. Since f is contact stable, there exists x′

0 ∈ U such
that f ′ : (N, x′

0) → W and f : (N, x0) → W are contactomorphism. Then jrf ′ is
transverse to [jrf(x0)] = [jrf ′(x′

0)] at x′
0, and therefore jrf is transverse to [jrf(x0)]

at x0.
Thus (ct) is equivalent to (cs).
The implication (ics) ⇒ (fics) is obvious.
(fics) ⇒ (ct) : If f is infinitesimally contact stable on the level of formal series,

then, for any r,

V If = tf(VN ) + wf(V HW ) + V Ir
f .
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Therefore, by Lemma 9.3, we have (ct).
Thus all conditions are equivalent to each other.

Based on Theorem 3.1, now we prove the main result Theorem 4.1.

Proof of Theorem 4.1.
First we show the equivalence of (hls) and (ils).
(hls) ⇒ (ils): Let v ∈ V If . Then there exists an integral deformation (ft) of f

with (dft/dt)|t=0 = v. Since f is homotopically Legendre stable, ft is trivialised under
Legendre equivalence: ft = τ−1

t ◦ f ◦ σt. Differentiating both sides by t and setting
t = 0, we have v = (dft/dt)|t=0 = tf(ξ) + wf(η), for some ξ ∈ VN , η ∈ V LW . Thus
we have (ils).

(ils) ⇒ (hls): Since f is infinitesimally Legendre stable, f is infinitesimally con-
tact stable. So f is an open Whitney umbrella and thus f is finite. Therefore Rf

is a finite EN -module. Then V If/wf(V LW ) is a finite EZ-module. Let ft be an
integral deformation of f . Set F = (ft, t). Then V IF/J/(wF/J)(V LW ) is also a
finite EZ×J -module. Thus, by Nakayama’s lemma, we have V IF/J/((wF/J)(V LW )+
(tF/J)(VN )) = 0, similarly to the proof of Theorem 3.1. Therefore f is homotopically
Legendre stable.

Second we show (hls) (⇔ (ils)) ⇒ (ltr) ⇒ (la′′r ) ⇒ (la′) ⇒ (la) ⇒ (ils). (Therefore
these conditions are equivalent to each other).

(hls) ⇒ (ltr): It is clear since the condition (ltr) is equivalent to that

V If = tf(VN ) + wf(V LW ) + V Ir
f ,

by Lemma 9.2.
(ltr) ⇒ (la′′r ): Taking generating functions of both sides of the equality

V If = tf(VN ) + wf(V LW ) + V Ir
f ,

we have

Rf = (π ◦ f)∗EZ +

n∑

i=1

(π ◦ f)∗EZ(pi ◦ f) + Rf ∩ mr+2
N .

Remarking Rf = f∗EW , we have (a′′r ).
(a′′r ) ⇒ (a′): Since Rf ∩ mr+2

N ⊂ mn+3
W Rf , we see the condition (a′′r ) implies

that Rf/(mZRf + mn+3
W Rf ) is generated by 1, p1 ◦ f, . . . , pn ◦ f over K. Then we

have mn+1
W Rf ⊂ mZRf + mn+3

W Rf , therefore, by Nakayama’s lemma, mn+1
W Rf ⊂

mZRf . Then mZRf + mn+3
W Rf = mZRf , so we have that Rf/mZRf is generated by

1, p1 ◦ f, . . . , pn ◦ f over K, namely, the condition (a′).
(la′) ⇒ (la): By the assumption, and by the Malgrange’s preparation theorem of

differentiable algebras ([25]), we see Rf is generated by 1 and p1 ◦ f, . . . , pn ◦ f over
EZ .

(la) ⇒ (ils): Since f is an open Whitney umbrella, we have Rf = f∗EW , and
we have an EZ-isomorphism V If/(tf(VN ) + wf(V LW )) ∼= Rf/f∗(EZ +

∑n
i=1 EZ · pi).

Thus we see (la) implies (ils).
Lastly we show (ls) ⇒ (ltr)(⇔ (ils)) ⇒ (ls).
(ls) ⇒ (ltr): Take a representative f : U → W of f . Then f is approximated

by an integral mapping f ′ : U → W such that jrf ′ : U → Jr
I (N, W ) is transverse

to the Legendre orbit [jrf(x0)]. Since f is Legendre stable, there exists x′
0 ∈ U such
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that f ′ : (N, x′
0) → W and f : (N, x0) → W are Legendre equivalent. Then jrf ′ is

transverse to [jrf(x0)] = [jrf ′(x′
0)] at x′

0, and therefore jrf is transverse to [jrf(x0)]
at x0.

(ltr) & (ils) ⇒ (ls): If jrf is transverse to [jrf(x0)] at x0, then there exists a
neighborhood Ω ⊆ C∞

I (N, W )1 of an integral representative f : U → W such that,
for any f ′ ∈ Ω, jrf ′ is transverse to [jrf(x0)] at a point x′

0 ∈ U . Since jrf ′(x′
0) ∈

[jrf(x0)], there exists an integral map-germ f ′′ : (X, x0) → W which is Legendre
equivalent to f ′

x′

0

with respect to π and jrf ′′(x0) = jrf(x0). On the other hand, since

f is infinitesimally Legendre stable, f is Legendre r-determined (Lemma 10.3(4)).
Therefore (f ′′, π) and (f, π) are Legendre equivalent. Thus (f ′

x′

0

, π) and (f, π) are

Legendre equivalent, and f is Legendre stable.
Moreover (ils) ⇒ (fils) ⇒ (ltr), by Lemma 9.2.
Thus we have proved Theorem 4.1.

12. Versality. The basic singularity theory originated by H. Whitney, R. Thom,
J. Mather, J. Martinet, C.T.C. Wall and other people, are, in particular, unified into
the theory of geometric subgroups of A or K due to J. Damon [7][8][9]. Naturally
we try to apply the theory of differentiable mappings to our situation. The Damon’s
theory guarantees the unfolding theorem (the versality theorem) and the determinacy
theorem for a subgroup G of A or K acting on a linear subspace F of map-germs
E(n, p) = {f : (Kn, 0) → (Kp, 0), C∞}, provided that G and F together with their
“unfolding spaces” Gun, Fun satisfy several required conditions.

However our space

F = {f : (Kn, 0) → (K2n+1, 0) | f is integral of corank at most one.}

is not linear. Therefore, we can not apply directly the ordinary theory to our case.
There are two possibilities to overcome this difficulty.
One is the reduction to the linear situations case by case. For example, the

method of generating families, due to Hörmander and Arnold, is successful for the
study of singularities of Lagrange and Legendre immersions. Moreover the linear
theory successfully is applied to certain non-linear spaces such as spaces of solutions
to non-linear partial differential equations, e.g. Hamilton-Jacobi equations, non-linear
diffusions, and so on [11]. Note that in [11] also results on the finite determinacy are
given.

Another is the modifying of the original theory itself. It is useful to find a system
of axioms which guarantees the versality theorem in non-linear cases, since then it is
sufficient to just check the system of axioms. Then we observe, under an additional
axiom, that the same proof of the versality theorem in the original theory works well
for the generalisation (Theorem 9.3 of [8]). Thus we give a direct generalisation of
Damon’s theory to the non-linear situations. The generalisation is well-applied at least
for Lagrange and Legendre singular immersions (isotropic and integral mappings) of
corank ≤ 1.

We recall the theory on versal unfoldings: Groups of diffeomorphisms and spaces
of mappings involve in the theory. Moreover we treat groups of unfoldings of diffeo-
morphisms and spaces of unfoldings of mappings.

Let K = R or C, C∞ or holomorphic. Take a group of diffeomorphisms G ⊂ K̃
where

K̃ := {h : Kn × Kp → Kn × Kp | fiber-preserving diffeomorphism
germs w.r.t. the fibration Kn × Kp → Kn}
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and a space of mappings F ⊂ E := {f : Kn → Kp | map-germs}. Let f ∈ E and
h ∈ K̃. Then, h(graph(f)) = graph(h(f)) for the unique h(f) ∈ E . We assume, for
f ∈ F and h ∈ G, h(f) ∈ F .

Furthermore we assume there are given a group of unfoldings of diffeomorphisms
Gun(r) ⊆ K̃un(r) which acts on a space of unfoldings of mappings Fun(r) ⊆ Eun(r), r =
0, 1, 2, . . . , with Gun(0) = G,Fun(0) = F . Here K̃un(r) is the space of r-parameter
unfoldings of elements in K̃, and Eun(r) is the space of r-parameter unfoldings of
elements in E .

First we assume Fun(r) ⊂ Eun(r) is a linear subspace, relatively to the ordi-
nary vector-space structure on Eun(r), r = 0, 1, 2, . . . . Then, according to J. Damon,
(G,Gun;F ,Fun) is called a geometric subgroups and subspaces if it satisfies the axioms:
(1) Naturality, (2) Tangent space structure, (3) Exponential map, (4) Filtration.
Then Damon has shown that axioms (1), (2), and (3) implies G-versality theorem in
F , and axioms (1), (2), (3), and (4) implies G-determinacy theorem in F . See [8]. See
also [9].

Remark that (A,Aun; E , Eun), (K,Kun; E , Eun) and (K̃, K̃un; E , Eun) are geometric.
Also equivariant diffeomorphisms and mappings provide examples of geometric sub-
groups and subspaces. Damon and all predecessors formulated the theory explicitly
for linear spaces (of non-linear mappings). However naturally the theory works also
for non-linear mapping spaces (non-linear spaces of non-linear mappings) in E where

geometric subgroups of K̃ act.
Consider non-linear F ⊂ E with non-linear Fun ⊂ Eun with the action of a

Gun ⊂ K̃.
Consider the restriction Fun(r + s) → Fun(r) to the first r-parameters (resp.

Fun(r + s) → Fun(s) to the last s-parameters) and the restriction Fun(r) → F (resp.
Fun(s) → F) to the origin of the parameter space:

Fun(r + s)
rest.

−−−−→ Fun(r)

yrest.

yrest.

Fun(s) −−−−→
rest.

F

Now we pose:
(3’) Extension axiom: The natural mapping

Fun(r + s) → Fun(r) ×F Fun(s)

to the fiber product is surjective, for any non-negative integers r, s.
The axiom (3’) states that a deformation of a f ∈ F over Kr × {0} ∪ {0} × Ks

extends to a deformation over Kr+s near 0.
By the same argument as in [8], we can show that, if (G,F) satisfies axioms (1),

(2), (3) and (3’) implies that G-versality theorem in F holds, namely we have the
infinitesimal characterization, the existence and uniqueness of G-versal unfoldings in
F .

Here we show how to modify the conditions (1), (2) and (3) in [8] pp. 40–42.
For the naturality, we need no change: (1) For any Σ ∈ Gun(r), F ∈ Fun(r) and

for any map-germ ϕ : (Ks, 0) → (Kr, 0), ϕ ∈ E(s, r), we have ϕ∗Σ ∈ Gun(s) and
ϕ∗F ∈ Fun(s).
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For the tangent space structure, since we can not suppose TFun = Fun in the
non-linear case, we have to modify the condition slightly: First we define the extended
tangent spaces T1Gun,e(r) and TFFun,e(r) from Gun(r+1),Fun(r+1) in the same way
as [8], p.40. Then, (2) There exists an adequately ordered system of differentiable-
analytic (DA) algebras {Rα} in En+p such that T1Gun,e (resp. TFFun,e) is a finitely
generated {Rα,λ}-module containing T1Gun (resp. TFFun) as a finitely generated
submodules, λ indicating the parameter and that, for the extended orbit mapping
αF : Gun,e → Fun,e, the differential mapping (αF )∗ : T1Gun,e → TFFun,e is an {Rα,λ}-
module homomorphism. The finiteness condition is required only when f = F |Kn×0

satisfies dimK(TfF/TGeḟ) < ∞. Moreover there exist isomorphisms

T1Gun,e/mλT1Gun,e
∼= T1Ge, TFFun,e/mλTFFun,e

∼= TfFe,

as {Rα}-modules, and that {mα}T1Ge ⊂ T1G, and {mα}TfFe ⊂ TfF . About the
generalities on DA-algebras see [8][9].

For the exponential property (3) we need no change.

Example 12.1. Let I be a differential system (namely, an ideal of differential
forms that is d-closed) on Kp. Set F := {f : (Kn, 0) → (Kp, 0) | f∗I = 0}, the set
of integral map-germs, and G := {(σ, τ) ∈ A | τ∗I = I}, the group of A-equivalences
preserving I. Then F ⊂ E is G-invariant. Moreover we set Fun(r) as the space of
r-parameter unfoldings

F = (fλ, λ) : (Kn × Kr, (0, 0)) → (Kp × Kr, (0, 0))

satisfying f∗
λI = 0(λ ∈ (Kr, 0)), and set

Gun(r) := {(σλ, τλ, λ) ∈ Aun(r) | τ∗
λI = I, (λ ∈ (Kr, 0))}.

Then Fun(r) ⊂ Eun(r) is Gun(r)-invariant. Remark that F and Fun are in general
non-linear.

In particular we apply the above general theory to the singularity theory of inte-
gral mappings.

Set

F = {f : (Kn, 0) → (K2n+1, 0) | f is integral of corank at most one.}

and G = {(σ, τ)} the group of contactomorphisms acting on F . We set Fun(r) as the
space of r-parameter integral unfoldings of integral germs in F , and Gun(r) as the
group of r-parameter unfoldings of contactomorphisms in G. Then we have TfFe =

V If , TfF = V I0
f and T1Ge = Vn ⊕ V H2n, T1G = mnVn ⊕ (m

(2)
2n ∗ V H2n).

Then TfFe is an E2n+1-module. If f is finite, then TfFe is a finite E2n+1-module.
We consider the system of algebras: E2n+1 → E2n+1 with the identity connection

homomorphism. Note that T1Ge = Vn ⊕ V H2n is an {E2n+1, E2n+1}-module by

H ∗ ξ := (f∗H) · ξ, H ∗ XK := XHK ,

where XH is the contact Hamilton vector field with Hamilton function H (§6). More-
over TfFe is an {E2n+1, E2n+1}-module by

{H, K} ∗ v := H ∗ v,

using the multiplication given in Proposition 7.3. (Here {H, K} does not mean the
Poisson product, but just comes from the notion on algebra-systems used in [8] §6).
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Also for unfolding spaces, module structures are defined as in Corollary 7.13.

For the Legendre versality, we set G the group of Legendre equivalences {(σ, τ)}
for the Legendre fibration π : W = (K2n+1, 0) → Z = (Kn+1, 0). We read as

V If = TfFe and tf(VN ) + wf(V LW ) = TGe · f.

The system of algebra we consider is

En+1 → E2n+1 → E2n+1

with the connection homomorphisms π∗ and the identity respectively.
In both case we can check the axioms (1), (2) and (3).

Now, based on the above general scheme due to Damon after the modification,
we give alternative proof of Theorem 4.3

Proof of Theorems 3.3 and 4.3. The axioms (1), (2), (3) are easily checked.
We need to show the extension axiom (3’) is satisfied. for the category of integral
unfoldings of an integral map-germs of corank at most one, in order to apply the
Mather-Damon’s machine to our situation. Note that the geometric group does not
involve into the axiom (3’).

Let f : (N, x0) → (W, w0) be an integral map-germ of corank ≤ 1. Let
F : (N × Kr, (x0, 0)) → (W, w0) and F ′ : (N × Ks, (x0, 0)) → (W, w0) be integral
deformations of f . We may set (q, pn) ◦ f = (x1, . . . , xn−1, u, v), for a function-germs
u = u(x′, t), v = v(x′, t), x′ = (x1, . . . , xn−1), t = xn, after a contactomorphism. Set

(q, pn) ◦ F = ((q ◦ F )(x′, t, λ), (pn ◦ F )(x′, t, λ)),

(q, pn) ◦ F ′ = ((q ◦ F ′)(x′, t, µ), (pn ◦ F ′)(x′, t, µ)).

Then there exist a coordinate change on the q-space depending on λ, µ such that we
have

(q, pn) ◦ F = (x′, U(x′, t, λ), V (x′, t, λ)),

(q, pn) ◦ F ′ = (x′, U ′(x′, t, µ), V ′(x′, t, µ)),

with U(x′, t, 0) = u, V (x′, t, 0) = v, U ′(x′, t, 0) = u, V ′(x′, t, 0) = v. Then we can
extend (q, pn) ◦ F and (q, pn) ◦ F ′ to H : (N ×Kr ×Ks, (x0, 0, 0)) → (W, w0) of form

H(x′, t, λ, µ) = (x′, Ũ(x′, t, λ, µ), Ṽ (x′, t, λ, µ))

by setting

Ũ(x′, t, λ, µ) := U(x′, t, λ) + U ′(x′, t, µ) − u(x′, t),

Ṽ (x′, t, λ, µ) := V (x′, t, λ) + V ′(x′, t, µ) − v(x′, t).
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Then we define F ′′ : (N × Kr × Ks, (x0, 0, 0)) → (W, w0) by (q, pn) ◦ F ′′ = H ,
(r ◦ F ′′)(x0) = r ◦ f(x0), and by

d(r ◦ F ′′) =
n−1∑

i=1

(pi ◦ F ′′)dxi + ŨdṼ .

Here d means the exterior differential by x1, . . . , xn−1, xn = t. The last condition
means that

∂r ◦ F ′′

∂xi
= pi ◦ F ′′ + Ũ

∂Ṽ

∂xi
,

∂r ◦ F ′′

∂t
= Ũ

∂Ṽ

∂t
.

We determine r ◦ F ′′ by the latter condition and (r ◦ F ′′)(x0) = r ◦ f(x0). Then
pi ◦ F ′′, (1 ≤ i ≤ n − 1) are determined by the former condition. Thus we have the
extension F ′′ of both F and F ′.

Therefore the extension axiom (3’) is satisfied. Then by the general framework
we have the proof of contact and Legendre versality theorems.
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