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ON THE VALIDITY OR FAILURE OF GAP RIGIDITY FOR

CERTAIN PAIRS OF BOUNDED SYMMETRIC DOMAINS∗

PHILIPPE EYSSIDIEUX† AND NGAIMING MOK‡

In memory of Professor Armand Borel

Let Ω be a bounded symmetric domain equipped with a canonical Kähler metric.
We are interested to characterize holomorphic geodesic cycles (i.e., compact complex
geodesic submanifolds) S ⊂ X on Hermitian locally symmetric manifolds X uni-
formized by Ω, i.e., X = Ω/Γ, where Γ ⊂ Aut(Ω) is any torsion-free discrete group
of automorphisms, in terms of differential-geometric or algebro-geometric conditions.
In Eyssidieux-Mok [EysMok1995] we studied almost geodesic complex submanifolds
and formulated the gap phenomenon. Up to equivalence under Aut(Ω) there are only
a finite number of totally geodesic complex submanifolds D ⊂ Ω which are them-
selves biholomorpic to bounded symmetric domains. Let ǫ > 0. We say that S ⊂ X
is ǫ-geodesic if and only if the norm of the second fundamental form of S ⊂ X is
uniformly bounded by ǫ. Fixing Ω but letting Γ ⊂ Ω be arbitrary we showed that
when ǫ is sufficiently small, an ǫ-geodesic compact complex submanifold S ⊂ X must
locally resemble one and only one embedding of the models (Ω, D; i), i : D →֒ Ω.
We say that gap rigidity holds for the pair (Ω, D; i) if for ǫ sufficiently small, any
ǫ-geodesic compact complex submanifold S ⊂ X modeled on (Ω, D; ı) is necessarily
totally geodesic for any X uniformized by Ω. When i : D →֒ Ω is understood, we will
sometimes just write (Ω, D).

There is a strong form of the gap phenomenon, where one can characterize certain
holomorphic geodesic cycles in algebro-geometric terms, in terms of the genericity of
their tangent spaces. Write Ω = G/K, where G = Aut(Ω) and K ⊂ G is the isotropy
subgroup at a reference point o ∈ Ω. We will say that gap rigidity holds for (Ω, D)
in the Zariski topology if there exists a K-invariant Zariski-open subset Oo in the
Grassmannian Gr(dim(D), To(Ω)) of dim(D)-planes in To(Ω) such that [To(D)] ∈ Oo,
and such that, for any complex manifold X uniformized by Ω, any compact complex
submanifold S ⊂ X of dimension equal to dim(D) must be totally geodesic, whenever
every tangent plane [Tx(S)] of S lifts to an element of Oo. Obviously if gap rigidity
holds for (Ω, D) in the Zariski topology, it holds for (Ω, D) in the differential-geometric
sense as explained. To make a distinction we will sometimes refer to the latter as gap
rigidity in the complex topology.

The simplest example of gap rigidity in the Zariski topology is the case of a prod-
uct domain (Dk, D; δ), where δ always refers to the diagonal embedding, given by
δ(z) = (z, · · · , z), as given in [EysMok1995]. The observation there resulted from
the uniqueness of Kähler-Einstein metrics on a compact complex manifold with am-
ple canonical line bundle. Eyssidieux [Eys1997][Eys1999] considered, in the context
of variations of Hodge structures, the question of characterizing certain holomorphic
geodesic cycles by Chern number inequalities, establishing as a by-product gap rigidity
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in the Zariski topology for many pairs of (Ω, D) by means of Gauss-Manin complexes.
His methods apply to the case of period domains arising from Hodge theory. In Mok
[Mok2002] using intersection theory on the projectivized tangent bundle we deter-
mined the set of all pairs (Ω, D) with Ω irreducible and dim(D) = 1 for which gap
rigidity holds in the Zariski topology. They are precisely those Ω of rank r > 1 such
that the highest characteristic subvariety (cf. [Mok2002],§1) So ⊂ P(To(Ω)) is a hy-
persurface in P(To(S)). At the same time, exploiting the existence and uniqueness
of Kähler-Einstein metrics on projective manifolds with ample canonical line bun-
dle, G-structures, and Hermitian metric rigidity, we proved that for Ω = DIV

n the
n-dimensional bounded symmetric domain of type IV (dual to the hyperquadric) and
of dimension ≥ 3, gap rigidity holds in the Zariski topology for (DIV

n , DIV
k , i), where

k ≥ 2 and i : DIV
k →֒ DIV

n is the standard embedding.
The purpose of the article is two-fold. First of all, we will show that in general

gap rigidity already fails in the complex topology. More precisely, we show that
gap rigidity fails for (∆2, ∆ × {0}) by constructing a sequence of ramified coverings
fi : Si → Ti between hyperbolic compact Riemann surfaces such that, with respect to
norms defined by the Poincaré metrics, sup||dfi|| → 0 as i → ∞. Since any bounded
symmetric domain of rank ≥ 2 contains a totally geodesic bidisk, this implies that
gap rigidity fails in general on any bounded symmetric domain of rank ≥ 2. Our
counterexamples make it all the more interesting to find sufficient conditions for pairs
(Ω, D) for which gap rigidity holds. This will be addressed in the second part of the
article, where for Ω irreducible, we generalize the results for holomorphic curves in
[Mok2002] to give a sufficient condition for gap rigidity to hold for (Ω, D) in the Zariski
topology. In notations of the preceding paragraphs, we show that it is sufficient to take
Oo ⊂ To(Ω) to be such that the excluded subvariety Zo = Gr(dim(D), To(Ω))−Oo is a
hypersurface. In the terminology of geometric invariant theory we say that [To(D)] ∈
Gr(dim(D), To(Ω)) is a semistable point. For the case of bounded symmetric domains,
this criterion applies to the case of 1-hyperrigid domains D ⊂ Ω of [Eys1997][Eys1999]
and to the examples of [Mok2002] for holomorphic curves and from quadric structures,
giving a unifying conceptual explanation and a more general framework for the validity
of the phenomenon. In the case where D is irreducible, we will show that the class
of GIT-semistable embeddings of irreducible bounded symmetric domains coincides
with the class of (H2)-embeddings, see [Sat1980]. In [Sat1965], I. Satake classified
(H2)-embeddings into classical domains and the full classification has been obtained
by S. Ihara [Iha1967] as a step towards his classification of all embeddings of bounded
symmetric domains. Since the abstract classification of GIT-semistable embeddings
does not give an explicit invariant hypersurface in each case, we will also give a detailed
exposition of some examples.

1. Failure of gap rigidity on the bidisk.

1.1. Statement of main result and basic reductions. For a product domain
Dk denote by δ : D → Dk the diagonal embedding given by δ(z) = (z, · · · , z). By
Eyssidieux-Mok [EysMok1995], for any bounded symmetric domain D, gap rigidity in
the Zariski topology holds for (Dk, D; δ). It turns out that the analogue is in general
not valid when δ is replaced by another holomorphic totally geodesic embedding.

The main result of this section is to give a counterexample to the gap phenomenon
as formulated in Eyssidieux-Mok [EysMok1995] in this context.

Theorem 1. Gap rigidity fails on the bidisk for (∆2, ∆ × {0})).
Since any bounded symmetric domain Ω of rank ≥ 2 contains a totally geodesic
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bidisk, Theorem 1 implies that gap rigidity fails in general whenever Ω is of rank ≥ 2.
We are going to prove Theorem 1 by constructing compact holomorphic curves on
products of compact Riemann surfaces of genus ≥ 2 which are graphs of holomorphic
maps. The requirement that they become ǫ-geodesic and modeled on (∆2, ∆ × {0}))
then translates to a uniform bound on the differential of the holomorphic map in
terms of Poincaré metrics, as follows.

Theorem 2. There exist sequences of compact Riemann surfaces Si and Ti of
genus ≥ 2, together with a sequence of branched double covers fi : Si → Ti, such
that, writing ds2

C for the Poincaré metric of Gaussian curvature −2 on a compact

Riemann surface C of genus ≥ 2, and putting µi := sup
{

f∗

i
ds2

Ti
(x)

ds2
Si

(x)
: x ∈ Si

}
, we

have limi→∞ µi = 0.

We now prove that Theorem 2 implies Theorem 1.

Proof. Let Gi ⊂ Si×Ti be the graph of fi. Let Fi : ∆ → ∆ be an arbitrary lifting
of fi : Si → Ti to the universal covering such that Fi(0) = 0. Let G̃i ⊂ ∆2 be the
graph of Fi, which is a lifting of Gi ⊂ Si×Ti to the universal cover ∆2 of Si×Ti. Since
F ∗

i ds2
∆ ≤ µi · ds2

∆ and µi → 0 as i → ∞, the holomorphic maps Fi : ∆ → ∆ converge

to a constant map F∞, F∞(z) = 0 for any z ∈ ∆. For i ≥ 1, let pi ∈ G̃i be an arbitrary
point. Equip ∆2 with the product metric ds2

∆2 given by the Poincaré metric ds2
∆ in

each factor, and denote by B(p; r) the geodesic ball centred at p and of radius r > 0 on

(∆2; ds2
∆). Consider the sequence of complex submanifolds G̃i ∩ B(pi; 1) ⊂ B(pi; 1).

Let ϕi ∈ Auto(∆
2) for which ϕi(pi) = 0. Then, ϕi(G̃i) ⊂ ∆2 is again the graph

of a holomorphic mapping F ′
i : ∆ → ∆ which is a lifting of fi : Si → Ti satisfying

F ′
i (0) = 0. The convergence argument applies therefore equally to the sequence F ′

i

to show that ϕi(G̃i) ⊂ B(0; 1) converge as complex-analytic subvarieties to B1 ×{0},
where B1 ⊂ ∆ is the geodesic ball centred at 0 of radius 1. It follows that Gi is
ǫi-pinched with ǫi converging to 0, and Gi ⊂ Si × Ti is modelled on (∆2; ∆ × {0})
for i sufficiently large, in the sense of Eyssidieux-Mok [EysMok1995]. In other words,
gap rigidity fails for (∆2; ∆ × {0}).

Let us give the idea of the proof of Theorem 2. Let f : S → T be a generically
s-to-1 holomorphic map between compact Riemann surfaces of genus g(S), g(T ) ≥ 2,
and let r be the degree of the ramification divisor. By the Riemann-Hurwitz formula
we have 2(g(S)−1) = 2s(g(T )−1)+r. Denote by || · || norms induced by the Poincaré
metrics ds2

S resp. ds2
T on S resp. T of constant curvature −2. Then,

∫
S
‖df‖2 =

s ·Area(T, ds2
T ). It follows from the Gauss-Bonnet Theorem that the average of ‖df‖2

over S is s · Area(T,ds2
T

)

Area(S,ds2
S
)

= s · g(T )−1
g(S)−1 , which is 2s(g(T )−1)

2s(g(T )−1)+r by the Riemann-Hurwitz

formula. If we fix T and s > 1 then this average would get arbitrarily small by
choosing r arbitrarily large. It is however not clear at all how sup||df || can be bounded
in terms of the ramification divisor. We will fix some compact Riemann surface T
and take double covers, and our approach is to choose the branching locus to be more
or less evenly spaced on T . One can most properly talk about an “evenly spaced”
set of points on an elliptic curve by exploiting the group structure. For instance, for
integers n > 1 the set of n-torsion points can be considered such a set. We will take
a ramified double cover h : T → E to get T of genus ≥ 2 and obtain fi : Si → T by
taking double covers over T such that the branching locus of h ◦ fi : Si → E is evenly
spaced in a precise way, allowing us to work on the elliptic curve E by descent. In
order to get an estimate on sup||dfi|| we will exploit the group structure on E and the
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uniqueness properties of singular Hermitian metrics of negative Gaussian curvature
on E with prescribed (fractional) orders of poles at a finite number of points.

1.2. Proof of Theorem 2. We have the following standard Lemma.

Lemma 1. Let C be a compact Riemann surface, n be a positive integer, and
q1, · · · , q2n be distinct points on C. Then, there exists a compact Riemann surface
K, and a branched double covering map f : K → C which is branched precisely
over q1, · · · , q2n. In other words, f−1(qk) = {pk} and f is precisely ramified (with
ramification order 1 a fortiori) at the 2n distinct points p1, · · · , p2n.

Proof. Let [D] be the divisor line bundle of degree 2n defined by the set
{q1, . . . , q2n} of simple points, and let L be a holomorphic line bundle such that
L2 ∼= [D]. L exists because any point in Pic0(C) is 2-divisible. Let now s be
the canonical section of the divisor line bundle [D] and t be the 2-valent section
of π : L → C over C whose graph is defined by K = {v ∈ L : v2 = s(π(v))}. Then
K ⊂ L is nonsingular, and, putting f = π|K , we have a double cover f : K → C
branched precisely over the 2n distinct points q1, · · · , q2n.

We will now give a proof of Theorem 2 by constructing an example where all the
target Riemann surfaces Ti are identical.

Let L ⊂ C be any lattice and denote by E = C/L the quotient elliptic curve. Let
e ∈ E be a nonzero torsion point of order 2. By Lemma 1 there is a compact Riemann
surface T and a double cover h : T → E branched precisely over 0 and e. Write q1 =
h−1(0) and q2 = h−1(e). Let m = 2i − 1 be an odd positive integer and consider the
holomorphic map Φm : E → E defined by Φm(x) = mx. Let Di := Φ−1

m ({0, e}) ⊂ E.
Note that D1 = {0, e} and Card(Di) = 2m2. Since (m − 1)e = i(2e) = 0 on E, so
that m · e = e, we have also 0, e ∈ Di for each positive integer i. Let i ≥ 2, i.e.,
m ≥ 3. Again by Lemma 1 there is a compact Riemann surface Si and a double
cover fi : Si → T branched precisely over the reduced divisor ∆i := h−1(Di − D1),
noting that Card(∆i) = 4(m2 − 1). We claim that fi : Si → T gives a sequence

of holomorphic maps such that, writing µi = sup
{

f∗

i
ds2

T
(x)

ds2
Si

(x)
: x ∈ Si

}
, we have

limi→∞ µi = 0.
We proceed to compare the Hermitian metrics ds2

Si
and f∗

i ds2
T by descending to

the elliptic curve E. Since h : T → E is a double cover, the holomorphic mapping on
T − h−1({0, e}) switching the two points of fibers of h extends to an automorphism σ
of T fixing the ramification points. σ fixes the Poincaré metric ds2

T on T of Gaussian
curvature −2. Hence, ds2

T descends to a Hermitian metric θ of Gaussian curvature −2
on E −{0, e}. Extending across the branching points 0 and e, θ can be interpreted as
a Hermitian metric on E with simple poles at 0 and e. More precisely, in terms of a

local holomorphic coordinate z at 0 or at e, we can write θ = a(z)
|z| |dz|2, where a(z) is

a continuous positive function which is smooth except possibly at z = 0. We may say
that θ is a Hermitian metric on the Q-line bundle TE ⊗ [D1]

− 1
2 . Similarly for i > 1,

by means of the double cover fi : Si → T , the Poincaré metrics ds2
Si

of Gaussian

curvature −2 descends to a Hermitian metric ηi on the Q-line bundle TT ⊗ [∆i]
− 1

2 .
We observe that ηi is invariant under the holomorphic involution σ on T . In fact
f∗

i (σ∗ηi) gives a smooth Hermitian metric on Si of constant Gaussian curvature −2,
so that f∗

i (σ∗ηi) = ds2
Si

by the uniqueness of Poincaré metrics of Gaussian curvature
−2, i.e., by the Ahlfors-Schwarz Lemma. It follows that σ∗ηi = ηi, as observed. As
a consequence θi, i > 1, descends to a Hermitian metric θi on E − Di. Across points
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of Di − D1, θi extends to a Hermitian metric with a simple pole since h : T → E is
unramified over ∆i = h−1(Di − D1). On the other hand, θi extends across points
of D1 = {0, e} as a Hermitian metric with a simple pole because ηi is smooth and
positive at the two points h−1(0) = q1 and h−1(e) = q2, and h is ramified at q1

resp. q2 to the order 1. More precisely, θi is a Hermitian metric on the Q-line bundle
TE × [Di]

− 1
2 for i > 1. We will also write θ1 for θ, so that the last statement is true

for i ≥ 1.

For i > 1 and for any x ∈ Si,
f∗

i
ds2

T
(x)

ds2
Si

(x)
is the same as θ1(y)

θi(y) , where y = h ◦ fi(x),

provided that y /∈ Di. For such points y ∈ E the inequality f∗
i ds2

T (x) ≤ ds2
Si

(x)
translates into the inequality θ1(y) ≤ θi(y). Since the endomorphism Φm : E → E is

unramified, Φ∗
m(θ1) gives a smooth Hermitian metric on the Q-line bundle TE⊗[Di]

− 1
2 .

As in the last paragraph, by pulling-back to the double cover Ri over E branched
precisely over Dm, Card(Dm) = 2m2, from the uniqueness of the Poincaré metric
of Gauss curvature −2 on Ri it follows that θi = Φ∗

mθ1. We have therefore µi =

sup
{

θ1(y)
Φ∗

m
θ1(y) : y /∈ Di

}
, where m = 2i− 1. It remains to show that µi → 0 as i → ∞.

Fix a Euclidean metric ω on E such that θ1 > ω. Then Φ∗
mθ1 > m2 · ω. Fix

a coordinate unit disk U1 at 0 (resp. U2 at e), with coordinte z, so that z(0) = 0

(resp. z(e) = 0), and such that θ1 = a(z)
|z| |dz|2 with a(z) a continuous positive function

bounded between two positive constants. There is a positive constant K such that

θ1(y) ≤ Kω for y ∈ E − U1 − U2. Hence θ1(y)
Φ∗

m
θ1(y) < K

m2 for y ∈ E − U1 − U2. At

0 ∈ E we may choose U1 such that Φm(z) = m · z as a germ at 0. For |z| < 1
m ,

Φ∗
mθ1(z) = a(mz)

|m·z| m2|dz|2 = m·a(mz)
|z| |dz|2, so that θ1(z)

Φ∗

m
θ1(z) < a(z)

m·a(mz) < C1

m for

some constant C1. On the other hand, for |z| > 1
m we have θ1(z) < C2m · ω for

some positive constant C2, while Φ∗
mθ1(z) > m2 · ω, so that θ1(z)

Φ∗

m
θ1(z) < C2

m . We have

therefore θ1(z)
Φ∗

m
θ1(z) < C

m for C = max(C1, C2), for z ∈ U1 and similarly for z ∈ U2.

Combining with the estimate on E−U1−U2, we have for m = 2i−1 sufficiently large

the estimate θ1(y)
Φ∗

m
θ1(y) < C

m for all y ∈ E −Di. It follows that µi < C
m → 0 as i → ∞.

The proof of Theorems 1 and 2 is complete.

Remarks. We note that the unit disk plays a very special role in the proof of
Theorem 1. The analogue of Theorem 1 does not apply when ∆ is replaced by an
irreducible bounded symmetric domain D of rank ≥ 2 (cf. (3.3), Proposition 4). The
case where D is of rank 1 but of dimension ≥ 2 remains open.

2. Gap rigidity in the Zariski topology by intersection theory.

2.1. Basic facts and notations on geodesic embeddings of bounded sym-

metric domains.

2.1.1. Lie theoretic data attached to a symmetric domain. There is a
1-1 correspondence between bounded symmetric domain (Ω, o) and semisimple Lie
algebras of Hermitian type. These are Lie theoretic data (g, H0), (g, θ) a semisimple
Lie algebra with a Cartan involution and H0 an element of the center of the associated
maximal compact subalgebra such that ad(H0)

2 = θ (see [Sat1980]).

If Ω is irreducible, the correspondence can be described as follows: Ω = G/K
and o = eK where G is the Lie group underlying the real points of a connected
almost simple real algebraic group, also denoted by G, such that GC = G ⊗R C is
connected and simply connected, K is a maximal compact subgroup such that the
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center of K is isomorphic to U(1). The adjoint group of G is the identity component
of Aut(Ω). Let g be the Lie algebra of G, l be the Lie algebra of K, θ the Cartan
involution of the symetric pair (G, K) , g = l⊕p the Cartan decomposition. We choose
H0 ∈ z satisfying ad(H0)

2 = θ, such that, when restricted to p, ad(H0) corresponds
to the almost complex structure operator of Ω under the canonical isomorphism can :
T R

o Ω → p. In particular pC = p+ ⊕ p−, where p± is the ±
√
−1-eigenspace of ad(H0)

and p+ corresponds to T 1,0Ω. Let ( . , . )K be the Killing form on g. A G-invariant
Riemannian metric gΩ

o can be constructed such that gΩ
o |ToΩ = can∗( . , . )K|p, gΩ

o is
Kähler-Einstein.

A general bounded symetric domain (Ω, o) splits as a product of irreducible ones
Ω = Ω1 × . . . × Ωa and we define g = g1 × . . . × ga, H0 = (H0)1 × . . . × (H0)a,
G0 = (G0)1 × . . . × (G0)a, K = K1 × . . . × Ka.

The converse correspondence constructing from the data (g, H0) as above a
bounded symmetric domain in a complex vector space is a celebrated theorem of
Harish-Chandra’s, the classical cases being in E. Cartan’s thesis.

The action of K ⊂ G induced by the adjoint action of G on g leaves invariant the
decomposition gC = p+ ⊕ p− ⊕ lC and gives rise to the isotropy representation of K
on T 1,0

o Ω = p+.

2.1.2. Isotropy action on the Grassmannian of p-planes in p+. Consider
Gr(p, ToΩ) the Grassmannian parametrizing complex p-planes in p+ = T 1,0

o Ω.
We endow Λpp+ with the Hermitian metric functorially attached to the Hermitian

metric on p+ defined by the formula (α, β)p+ = (α, β)K. This defines a Fubini-Study
metric on P(Λpp+), which is Kähler. Consider the Kähler metric ds2

p on Gr(p, ToΩ)
induced by this Fubini-Study metric under the Plücker embedding Gr(p, ToΩ) →
P(Λpp+). Call this the Fubini-Study metric on Gr(p, ToΩ). The K-invariant Kähler
metrics on Gr(p, ToΩ) take the form const.ds2

p, if Ω is irreducible.
Let A ∈ Gr(p, ToΩ) be a p-plane in p+. Let B = (e1, . . . , ep) be a unitary

basis of A. Let S(B,A) =
√
−1

∑p
i=1[ei, ei], where [−,−] is the Lie bracket in gC.

This expression is obviously independant of B and defines a real-analytic mapping
Σ : Gr(p, ToΩ) → l.

2.1.3. Embeddings of symmetric domains. Consider two Lie algebras of
Hermitian type (g, H0) and (g′, H ′

0). A (H1)-homomorphism ρ : (g, H0) → (g′, H ′
0)

is a Lie algebra morphism ρ : g′ → g such that ad(H0)ρ = ρ ad(H ′
0). An

(H2)-homomorphism is a Lie algebra morphism satisfying ρ(H ′
0) = H0. (H2)-

homomorphisms are (H1), see [Sat1980], pp. 83-88. These notions have been in-
troduced by Satake [Sat1965].

Totally geodesic embeddings of pointed symmetric domains are in 1-1 correspon-
dence with injective (H1)-homomorphisms. Indeed, such a ρ yields a morphism of the
underlying symmetric Lie algebras that is complex linear for the complex structures
on p′ (resp. p) induced by ad(H0) and can be exponentiated to a homomorphism
ρ : G′ → G satisfying ρ(K ′) = K, so that the map G′/K ′ → G/K is holomorphic.
Those corresponding to (H2)-homomorphisms will be called (H2).

Lemma 2. Let Ω be irreducible. Then there exists a real number cΩ such that
Σ(p+) =

√
−1cΩH0.

Proof. The lemma follows directly from the independence of Σ with the respect
to the choice of a basis. Indeed, we may use a change of basis which lies in K to see
that Σ is a fixed point of the adjoint action of K. Hence the lemma.
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Let Ω′ be an irreducible subdomain of Ω and let ρ : g′ → g be the corresponding
(H1)-embedding. Let dΩ′,Ω > 0 be the real number defined by gΩ

o |Ω′ = dΩ′,Ω.gΩ′

o .
In order to state our results on gap rigidity in the Zariski topology, we need

to introduce a variant of the (H1) and (H2) conditions. Consider an embedding of
bounded symmetric domains j : Ω′ → Ω and let ρ : g′ → g be the corresponding
(H1)-embedding. Let Ω′ = Ω′

1 × . . .× Ω′
a be the irreducible decomposition of Ω′. We

will say j, resp. ρ, is (H3) iff the following holds:

ρ(

a∑

i=1

cΩ′

i
dΩ′

i
,ΩH ′

0i) ∈ RH0.

Lemma 3. (H3)-embeddings are (H2). An (H2)-embedding Ω′ → Ω is (H3) iff
the Einstein constants of the metrics gΩ

o |Ω′

i
are the same, where Ω′ = Ω′

1 × . . . × Ω′
a

and Ω′
i is irreducible.

Proof. Let H ′
1 = A.

∑a
i=1 cΩ′

i
dΩ′

i
,ΩH ′

0i, A a constant such that ρ(H ′
1) = H0. For

every z ∈ g′, we have [H0−ρ(H ′
0), ρ(z)] = 0 since ρ is (H1), hence [ρ(H ′

1−H ′
0), ρ(z)] =

0 and [H ′
1−H ′

0, z] = 0. Since g′ is semisimple this implies that H ′
1 = H ′

0. A fortiori, ρ
is (H2). It also follows that for every 1 ≤ i ≤ a, A.cΩ′

i
dΩ′

i
,Ω = 1. A standard curvature

formula implies that cΩ′

i
dΩ′

i
,Ω is minus the Einstein constant of gΩ

o |Ω′

i
.

In particular, for an embedding of irreducible bounded symmetric domains Ω′ ⊂
Ω, the (H2) and (H3) conditions are equivalent.

2.2. Statement of main results. The purpose of this section is to give a gen-
eral criterion under which gap rigidity holds for a pair (Ω, D) in the Zariski topology
with Ω irreducible (and of rank ≥ 2).

Let us first state a GIT interpretation of the (H3)-condition. We say that A ∈
Gr(p, ToΩ) is GIT-semistable if there is a K-invariant complex closed hypersurface
Zo ⊂ Gr(p, ToΩ) such that A /∈ Zo.

Proposition 1. The embeddings of symmetric domains (Ω′, o) → (Ω, o) such
that ToΩ

′ is GIT-semistable in Gr(dimΩ′, ToΩ) with respect to the isotropy action of
K are precisely the (H3)-embeddings.

As a step towards his classification of embeddings of symmetric domains, Ihara
[Iha1967] obtained the full classification theory of (H2)-embeddings.

It turns out that, thanks to Proposition 1, images of (H3)-embeddings of bounded
symmetric domains play an important role in the question of gap rigidity in the Zariski
topology. A compact totally-geodesic complex submanifold S of a quotient X of a
bounded symmetric domain by a discrete group of biholomorphic automorphisms
will be referred to as a holomorphic geodesic cycle. If S ⊂ X arises from an (H3)-
embedding, S will be referred to as an (H3)-holomorphic geodesic cycle. We prove:

Theorem 3. Let Ω = G/K be an n-dimensional irreducible bounded symmetric
domain. Let Γ be a torsion-free discrete group of biholomorphic automorphisms of
Ω, and write X := Ω/Γ. Assume there exists D ⊂ Ω an (H3)-embedding, o ∈ D,
dim(D) := p.

Fix a projective K-invariant hypersurface Zo ⊂ Gr(p, ToΩ) such that [To(D)] /∈
Zo. Denote by π : G(X) → X the Grassmann bundle of p-dimensional tangent
planes and write Z = ZX ⊂ G(X) for the locally homogeneous subbundle of projective
hypersurfaces corresponding to Zo.
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Let S ⊂ X be a compact complex p-dimensional submanifold such that for any
x ∈ S, [Tx(S)] /∈ Zx. Then, S ⊂ X is an (H3)-holomorphic geodesic cycle.

Remark. We do not exclude the possibility that S is uniformized by some (H3)
complex totally-geodesic submanifold D′ ⊂ Ω which is not equivalent to D under
Aut(Ω). This may in fact happen, but there are up to equivalence under Aut(Ω) only
a finite number of possibilities.

2.3. Proof of Proposition 1.

2.3.1. Moment map of the isotropy action on the Grassmannian of

planes in p+. Let ωp be the Kähler form associated to ds2
p. View it as a symplectic

form. K acts on the symplectic manifold (Gr(p, ToΩ), ωp) preserving the symplectic
form. Since the Grassmannian is simply connected, there exists a moment map µp

for this symplectic action [Sou1970] (see [MumFogKir1994], Chap. 8).

It might be useful to recall the definition of this central concept of symplectic
geometry. Let (S, ω) be symplectic manifold acted upon by a connected Lie group M
whose Lie algebra is denoted by m, a map µ : S → m∗ is called a moment map if it is
smooth, M -equivariant with respect to the given action of M on X and the coadjoint
action and

∀x ∈ M, ξ ∈ TxS, l ∈ m, << dµ(x), ξ >, l >=< ω(x), ξ ∧ lx >

where < −,− > denotes the canonical pairing between a vector space E and its dual
E∗ and lx = d

dtexp(tl)x|t=0.

When it exists, a moment map is unique up to the addition of a coadjoint fixed
point in m∗. When M = R, a moment map is a global hamiltonian function for the
flow of d

dt .

If V is a complex vector space with a non degenerate sesquilinear pairing h, we
also denote by h the corresponding conjugate linear isomorphism V → V ∗. In the
next lemma, V = lC and hg,l(λ, µ) = (λ, µ)K.

Lemma 4. The map µp = hg,l ◦Σ is a moment map µp : Gr(p, ToΩ) → l∗ relative
to the symplectic action of K on (Gr(p, ToΩ), ωp).

2.3.2. Proof of Lemma 4.

Lemma 5. Let the Lie group L1 × L2 act symplectically on (S, ω) with moment
map µ = (µ1, µ2) : S → l∗1 × l∗2. Let z be a coadjoint fixed point of L2 which is
furthermore a regular value of µ2 and assume L1 acts freely on µ−1

2 (z). The symplectic
quotient [MarWei1974] S//L2 = µ−1

2 (z)/L2 is acted upon symplectically by L1. Let
π : µ−1

2 (z) → S//L2 be the canonical quotient map.

The symplectic action of L1 on S//L2 admits a moment map µ defined by the
relation µ ◦ π = µ1|µ−1

2 (z).

Proof. L1-equivariance is clear. Recall (see [MumFogKir1994], p. 146) that
µ−1

2 (z) is a coisotropic submanifold of S whose isotropic foliation ker(ω|µ−1
2 (z)) is

precisely the foliation by L2-orbits and that the symplectic form on S//L2 is the form
induced by ω on local transversal sections of π. The required differential identity
follows then directly from the definitions.
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An easy example is the moment map µn associated with the action of U(n) on

Cn with coordinates (zi) equipped with
√
−1
2π

∑
i dzi ∧ dz̄i. Identifying u(n) and its

dual by means of the scalar product (x, y)u(n) = −tr(xy). We have:

µn((z1, . . . , zn)) = −
√
−1

2π
(ziz̄j)1≤i,j≤n.

Since the moment map for the action of K on a product X ×Y of two symplectic
K-manifolds is the sum of the moment maps for X and Y , it follows that the moment
map for the action of U(n) × U(p) on complex matrices Z = (zi

l )1≤i≤n,1≤l≤p with n
rows and p columns equipped with the Hermitian scalar product Z 7→ 1

π Tr(ZtZ̄) is

µ(Z) = −
√
−1
2π (ZtZ̄,−tZ̄Z) = −

√
−1
2π ((

∑p
l=1 zi

l z̄
j
p),−(

∑n
i=1 zi

l z̄
i
m)).

If p ≤ n the Grassmannian of p-planes in Cn equipped with its Fubini-Study
2-form is the symplectic quotient Mn,p by U(p) corresponding to the regular value√

−1
2π Idp.

This gives the expression µ([Z]) = −
√
−1
2π ZtZ̄ for any matrix Z representing a

unitary basis of [Z] in this Grassmannian.
Let us restate this fact in slightly more invariant terms. Let (V, h) be a Hermitian

vector space. Use the canonical complex linear identifications u(V, h)C = End(V ) ≃
V ⊗ V ∗, u∗(V, h)C ≃ V ∗ ⊗ V and the conjugate linear isomorphism h : V → V ∗. Let
A be a p-plane in V with unitary basis (v1, . . . , vp). The value at A of the moment

map with respect to the Fubini-Study metric is µp(A) =
√
−1
2π

∑p
i=1 h(vi) ⊗ vi.

Obviously, if (S, ω) is symplectic manifold acted upon by a connected Lie group
M admitting a moment map and M ′ ⊂ M is a Lie subgroup the moment map for M ′

is the composition of the moment map for M with the canonical map m∗ → (m′)∗.
We now compute the map p+∗ ⊗ p+ ≃ u∗((−,−)p+)C → lC∗ induced by the

isotropy representation ρ : K → U((−,−)p+). Fix v ∈ p+, l ∈ l and (ei) a unitary
basis of this vector space. We have:

< hp+(v) ⊗ v, ρ(l) > = < hp+(v) ⊗ v,
∑

i

[l, ei] ⊗ hp+(ei) >

=
∑

i

< hp+(v), [l, ei] >< v, hp+(ei) >

= < hp+(v), [l, v] >= ([l, v], v)p+ = ([l, v], v̄)K

= (l, [v, v̄])K.

The last equality holds since the adjoint representation acts by isometries of the
Killing form. This concludes the proof of Lemma 4.

2.3.3. GIT analysis of embeddings of bounded symmetric domains.

Semistability of (H3)-embeddings. Lemma 4, Lemma 2 above and Kempf-Ness
theory, a classical relation between moment maps and Geometric Invariant Theory
(Theorem 8.3 of [MumFogKir1994]), imply

Corollary 1. Let A ∈ Gr(p, ToΩ) such that Σ(A) = cH0. Then A is GIT
semistable with respect to the action of KC.

The K-action reduces to a K/U(1) on the Grassmannian because U(1) acts by
complex homotheties on p+. In particular the moment map composed with the pro-
jection to u(1)∗ is constant. So that the condition Σ(A) = cH0 means the vanishing
of the moment map for K/U(1) on Gr(p, ToΩ).
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Alternatively, the values of the moment map are in a fixed affine hyperplane
H of the form Hc = {ζ ∈ l∗, such that < ζ, H0 >= c}, where c is a constant.
Using Lemma 4, we see that for an aribitrary subspace B, Σ(B) = cH0 + Σ′(B) with
hg,l(H0, Σ

′(B)) = 0. For future use, we record the following observation

Lemma 6. Let A ∈ Gr(p, ToΩ) such that Σ(A) = cH0. ‖Σ‖2 = ‖Σ‖2
g,l achieves

its absolute minimum at A.

Corollary 1 gives one implication in Proposition 1. We now prove the converse
statement.

Embeddings of symmetric domains as critical points of the ‘Morse function’ at-
tached to the moment map. Lemma 7. Let (Ω′, o) → (Ω, o) be a geodesic embedding.
Then [ρ(p+)] is a critical point of ‖Σ‖2.

Proof. The tangent space at A ∈ Gr(p, ToΩ) is isometric to H = Hom(A,A⊥). If
v ∈ H and (ei) is a unitary basis of A, (ei + t.v(ei)) is unitary up to the second order
term in t, so that ∂v‖Σ(A)‖2 =

∑
ij([v(ei), ēi], [ej , ēj ])+(i ↔ j) = 2

∑
i(v(ei), [Σ, ei]).

Hence A is critical iff [Σ(A),A] ∈ A. When A = ρ(p′+) we have actually ∀α, β, γ ∈
A, [[α, β̄], γ] ∈ A.

Conclusion of the proof. Kempf-Ness theory can be made more precise than The-
orem 8.3 of [MumFogKir1994]. The statement we need is thm 8.10 p. 109 in [Kir1984]
through the following consequence:

Proposition 2. . Let K be a compact Lie group. Assume KC acts linearily
on a projective manifold X embedded in PN . Let µPU(N+1) : X → su(N + 1)∗ be the
moment map corresponding to the Fubini-Study metric and µ : X → l∗ be the moment
map obtained by composing µPU(N+1) and the canonical surjection su(N + 1)∗ → l∗.

The set of semistable points of X is the minimal Morse stratum, that is the set
of points attracted by µ−1(0) under the steepest descent flow of ‖µ‖2.

In particular, every critical point of ‖µ‖2 whose critical value is not 0 is unstable
in the GIT sense.

Since the moment map we use has the required form, applying Lemma 7, we
deduce Proposition 1.

2.4. Proof of Theorem 3. Denote also by π : G(Ω) → Ω the Grassmann
bundle of p-planes in T (Ω), and by ZΩ ⊂ G(Ω) the homogeneous bundle of projective
hypersurfaces corresponding to Zo ⊂ Gr(p, To(Ω)) = Go(Ω). Let Ω ⊂ M be the Borel
embedding of Ω into its compact dual M = Gc/K, and N ⊃ D be the compact dual of
D. N is a complex submanifold of M . The complexification KC of K acts naturally as
a group of automorphisms on M . Since Zo ⊂ Go(Ω) is complex-analytic, it is invariant
under KC and the image of Zo ⊂ Go(Ω) under the action of Aut(M) = GC defines a
holomorphic subbundle ZM ⊂ G(M) of the Grassmann bundle of p-planes in M . ZΩ

is the restriction of ZM to Ω, and it descends to Z = ZX ⊂ G(X) under the action
of Γ. The hypersurface ZM ⊂ G(M) defines a K-invariant divisor line bundle. G(M)
embeds canonically into P(ΛpTM ), where at each base point x ∈ M the embedding
Go(M) ⊂ P(ΛpTo(M)) is congruent to the Plücker embedding. The tautological
line bundle L on P(ΛpTM ) restricts to the tautological line bundle on G(M), to be
denoted also by L. Since the Picard group of both M and the typical fiber Go of
π : G(M) → M are both infinite cyclic, the Picard group of the total space G(M)
is isomorphic to Z2, and is generated as a group by π∗O(1) and by L, where O(1)
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denotes the positive generator of Pic(M). Thus there exist positive integers m, ℓ such
that Z ⊂ G(M) is the zero-set of a GC-invariant1 section s ∈ Γ(M, L−m

M ⊗ π∗O(ℓ)).
With this set-up the proof of [Mok2002],Theorem 1, where an argument in (1.2)

using duality between Hermitian symmetric manifolds of compact and noncompact
type was used, generalizes to complete the proof of Theorem 1. The starting point is
the Poincaré-Lelong equation on the Hermitian symmetric manifold of compact type
M . Letting gc be a canonical Kähler-Einstein metric on M , ĝc the induced Hermitian
metric on the tautological line bundle, hc be a Gc-invariant Hermitian metric on O(1),
we have, by the Poincaré-Lelong equation

√
−1

2π
∂∂ log ‖s‖2

c = mc1(L, ĝc) − ℓc1(π
∗O(1), π∗hc) + [ZM ].

(There was a sign mistake on the curvature term in the Poincaré-Lelong equation
in [[Mok2002],(1.2) and the proof of Theorem 1] but they do not affect the rest of

the argument.) Let now N̂ ⊂ G(M) be the canonical lifting of the totally-geodesic
submanifold N ⊂ M to the Grassmann bundle G(M). Let ωc be the Kähler form of

(M, gc). Then, from N̂ ∩ ZM = ∅ and Stokes’ Theorem we have

∫ bN (
mc1(L, ĝc) − ℓc1(π

∗O(1), π∗hc)
)
∧ (π∗ωc)

p−1 = 0,

Denote by σ : N → G(M) the canonical lifting map whose image is precisely

N̂ . We note that σ∗(L, ĝc) is nothing other than (KN , det(gc|N )). In fact there is
a correspondence between the vector bundle ΛpTN over N and the tautological line
bundle L over P(ΛpTN ), which sends a vector η ∈ ΛpTx(N) to the vector, also denoted
by η, as an element over the point [η]. In this tautological identification the length
of vectors is preserved, so that σ∗(L, ĝc) is nothing other than (K−1

Sc
, det(g|Sc

)), as
asserted. ωc is a positive multiple of c1(O(1), hc) and we may take the two to be the
same in what follows. Then,

0 =

∫ bN (
mc1(L, ĝc) − ℓc1(O(1), π∗hc)

)
∧ (π∗ωc)

p−1

=

∫

N

(
mc1(K

−1
N , det(gc|N )) − ℓc1(O(1), hc)

)
∧ ωp−1

c

=

∫

N

mRic(g|N) − ℓc1(O(1), hc)
)
∧ ωp−1

c

=

∫

N

( m

p
K(gc|N ) − ℓ

)
ωp

c ,

where K(gc|N) stands for the scalar curvature, which is a constant, which forces
K(gc|N ) = pℓ

m . Denote by g the Kähler-Einstein metric on Ω dual to gc, etc., and
(E, h) the negative line bundle on Ω dual to (O(1), hc). By our choice of hc we have
c1(E, h) = −ω. For the same section s ∈ Γ(G(M), L ⊗ π∗E), restricted to Ω, denote
by ‖s‖ the norm measured in terms of g and h. Then, we have the Poincaré Lelong
equation on Ω

√
−1

2π
∂∂ log ‖s‖2 = mc1(L, ĝ) − ℓc1(π

∗E, π∗h) + [ZΩ].

1Note that GC is unimodular.
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Since s is GC invariant, every ingredient of this Poincaré-Lelong equation descends
to G(Ω)/Γ and gives rise to a relation between cohomology classes on this manifold:

[ZΩ/Γ] = −mc1(L)Ω/Γ + ℓc1(π
∗EΩ/Γ).

Suppose now we have a compact totally-geodesic complex submanifold So ⊂ X :=
Ω/Γ uniformized by D ⊂ Ω. Then, Ŝo ∩ ZX = φ and we have

0 =

∫bSo

(
mc1(L, ĝ) − ℓc1(E, π∗h)

)
∧ (π∗ω)p−1

=

∫

So

(
mc1(K

−1
So

, det(g|So
)) − ℓc1(E, h)

)
∧ ωp−1

=

∫

So

mRic(g|So
) − ℓc1(E, h)

)
∧ ωp−1

=

∫

So

( m

p
K(g|So

) + ℓ
)
ωp.

Since K(g|So
) = −K(gc|N ) the integrand vanishes identically on So, which has to

be the case a priori. But we are going to characterize p-dimensional compact complex
submanifolds S ⊂ X whose tangent spaces do not belong to ZX . For the proof we
do not assume the existence of So. Integrating the restriction of the Poincaré-Lelong
equation to S and assuming that Ŝ ∩ ZX = φ we conclude that

∫

S

( m

p
K(g|S) + ℓ

)
ωp = 0

Once we have the intepretation of the integral over Ŝ as an integral over
S, Theorem 3 follows from [Eys1997], Proposition 9.2.5. The rest of the argu-
ment is actually a standard generalization of the proof of the Arakelov inequality,
which we include for the sake of completeness. Indeed, the scalar curvature of D
is K(g|D) = −C‖Σ(ToD)‖2 by standard curvature formulas (see e.g. [Eys1997]
p. 205-206), C being a positive constant, and the scalar curvature of S at x is
K(g|S)x = −C‖Σ(TxS)‖2−‖σx‖2 where σ is the second fundamental form of the em-
bedding S ⊂ Ω/Γ. By Lemma 6 we have, at any point x, m

p K(g|S)x+ℓ ≤ − m
p ‖σx‖2.

Since the integral of the l.h.s. is 0, we deduce that σx = 0, i.e. S is totally geodesic.
This concludes the proof of Theorem 3.

Remarks. (a) It was convenient to make use of the compact dual and duality
to check that for s ∈ Γ(P(TΩ), L−m ⊗ π∗(E)), the ratio of m to ℓ is the right one.
The same thing can be obtained by working on Ω alone, provided that we assume
the fact that D admits a torsion-free cocompact lattice, a result dating back to Borel
([Bor1963], Corollary to Theorem A).
(b) Modifying the above proof with a brute force curvature computation of the ap-
propriate line bundle would also allow us to prove Theorem 3 for reducible domains
Ω. We did not feel compelled to give the full argument for such a slight generalization
which we nevertheless have to mention.

2.5. Explicit examples. In this section, we give some examples of pairs (Ω, D)
of bounded symmetric domains, Ω irreducible, Ω = G/K, dim(D) = p, such that



GAP RIGIDITY FOR EMBEDDINGS OF SYMMETRIC DOMAINS 785

[To(D)] is a semistable point in the Grassmannian Gr(p, To(Ω)) of p-planes in To(Ω).
By Theorem 3, gap rigidity in the Zariski topology holds for such pairs (Ω, D). In
fact, we do more: we construct an explicit invariant hypersurface.

(1) Variation of Hodge Structures and Gauss-Manin complexes. Let Ω be a
bounded symmetric domain and D ⊂ Ω be a 1-hyperrigid domain in the sense of
Eyssidieux [Eys1999] from variation of Hodge structures. The methods and results
there apply more generally to period domains. [Eys1999] contains tables of lists of
1-hyperigid subdomains in the case of bounded symmetric domains, but not a full clas-
sification. By [Eys1997], Proposition 9.3.6, gap rigidity holds for (Ω, D) in the Zariski
topology, which was proven there by means of the Gauss-Manin complex. There an
excluded hypersurface Zo ⊂ Gr(p, To(Ω)) such that [To(D)] /∈ Zo can be identified in
terms of Lie algebras. Alternatively, for the Gauss-Manin complex (X, K∗

p) arising
from the variation of Hodge structures, we can find an explicit invariant hypersurface
Zo of p-dimensional vector subspaces in Gr(p, To(Ω): this is the locus over which the
Gauss-Manin complex fails to be an exact sequence at the point x ∈ X be described as
the zero set at x. In other words this the zero set of the determinant of the complex2.
The condition on scalar curvatures is verified in the calculation there.

(2) Holomorphic curves on certain irreducible bounded symmetric domains. The
set of all irreducible bounded symmetric domains Ω for which there is a K-invariant
hypersurface is listed in [Mok2002], Proposition 1. For dim(D) = 1, gap rigidity
holds for (Ω, D) in the Zariski topology if and only if Ω belongs to that list and D is
a totally-geodesic disk of maximal type, i.e., equivalent under Aut(Ω) to the diagonal
disk of a maximal polydisk (which is of dimension equal to the rank of Ω). To put
this in the framework of Theorem 3 we list here such domains Ω together with some
invariants.

They will be used again in (4). In the following we normalize the Kähler-Einstein
curvature so that the minimal disk is of constant Gaussian curvature −2. With this
normalization the Kähler-Einstein constant ρΩ agrees with −c1(M), where c1(M) is
the first Chern class of the compact dual M , identified in the standard way with a
positive integer.

(a) Ω of Type Im,n with m = n > 1; r = n, dim(Ω) = n2, ρΩ = −2n,

(b) Ω of Type IIn with n even; r = n
2 , dim(Ω) = n(n−1)

2 , ρΩ = −2(n − 1);

(c) Ω of Type IIIn, n ≥ 2; r = n, dim(Ω) = n(n+1)
2 , ρΩ = −(n + 1);

(d) Ω of Type IVn, n ≥ 3; r = 2, dim(Ω) = n, ρΩ = −n; and

(e) Ω of Type V I (the 27-dimensional exceptional domain pertaining to E7);
r = 3, dim(Ω) = 27, ρΩ = −18.

Note that the domains Ω are precisely those of tube type. In retrospect, this can
be conceptually explained by the fact that a domain is of tube type iff the diagonal
disk embedding is (H2), [Sat1980], p. 150, Remark 1.

(3) Holomorphic quadric structures. Let n ≥ 3 and Ω = DIV
n denote the

n-dimensional bounded symmetric domain of Type IV, which is dual to the n-
dimensional hyperquadric. In Mok [Mok2002] §4, Theorem 4, we proved that gap

2This is an invariant holomorphic section on Gr(p, Toω) of the homogeneous line bundle defined
by the determinant of the cohomology, see [GelKapZel1994] for a beautiful exposition of this classical
construction of Cayley.
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rigidity holds for (DIV
n , DIV

p , i) in the Zariski topology for 1 ≤ p < n and for

i : DIV
p →֒ DIV

n the standard embedding. For p = 1 this was included in (2).
For p > 1 we exploited the existence and uniqueness of Kähler-Einstein metrics on
projective manifolds with ample canonical line bundles and made use of holomorphic
quadric structures. In this case [To(D)] ∈ Gr(p, To(Ω)), D = DIV

p is a semistable
point under K-action in view of the canonical holomorphic quadric structure Q on Ω.
Here at each x ∈ Ω we have Qx : S2Tx → Ex where E is a homogeneous holomorphic
line bundle on Ω. The excluded subvariety Zo ⊂ Gr(p, To(Ω)) consists precisely of
those p-planes V such that Qo|V is nondegenerate. Zo is the zero locus of a holomor-
phic section of a positive power of the dual tautological line bundle on Gr(p, To(Ω))
corresponding to the discriminant of the (twisted) complex bilinear form Qx, which
is clearly a hypersurface.

(4) Maximal polydisks on certain irreducible bounded symmetric domains. Let Ω
be one of the irreducible bounded symmetric domains of characteristic codimension 1
as listed in [Mok2002], Proposition 1. Let r > 1 be its rank. Denote by ∆r a maximal
(totally-geodesic) polydisk in Ω. By (2), gap rigidity holds in the Zariski topology
for (Ω, δ(∆r)), where δ(∆r) stands for the diagonal disk. Actually, gap rigidity also
holds for (Ω, ∆r), giving new examples to which Theorem 3 applies. By [Mok2002],
Proposition 3, there exists a G-invariant holomorphic section s of L−r ⊗ π∗E over
P(TΩ), where L stands for the tautological line bundle over P(TΩ), π : P(TΩ) → Ω
denotes the canonical projection, and E is a homogeneous positive holomorphic line
bundle over Ω, such that the zero set of s is precisely the highest characteristic bundle
π : S → Ω. (Here there is a Zariski open KC orbit Oo in PTo(Ω) and So ⊂ P(To(Ω)) is
its complement.) Equivalently s corresponds to a G-invariant holomorphic section σ
of the homogeneous holomorphic vector bundle SrT ∗

Ω ⊗E on Ω. Writing T for TΩ, σ
induces a K-invariant linear map θ : T → Sr−1T ∗ ⊗E, and hence a K-invariant map
∧rθ : ΛrT → Λr(Sr−1T ∗) ⊗ Er. For a complex vector space V and positive intergers
n and m let µ : Λn(⊗mV ) → ⊗m(ΛnV ) be the linear map defined by

µ
(
(v11 ⊗ · · · ⊗ v1m) ∧ · · · ∧ (vn1 ⊗ · · · ⊗ vnm)

)

= (v11 ∧ · · · ∧ vn1) ⊗ · · · ⊗ (v1m ∧ · · · ∧ vnm).

If vij is independent of j then the image under µ lies in Sm(ΛnV ). By polarization
we conclude that by restriction µ : Λn(SmV ) → Sm(ΛnV ). Denoting also by µ
the corresponding bundle homomorphism applied to T we obtain a homomorphism
ν = (µ ⊗ idEr) ◦ ∧rθ, ν : ΛrT → Sr−1(ΛrT ∗) ⊗ Er, which therefore defines a K-
invariant element of ΛrT ∗ ⊗ Sr−1(ΛrT ∗) ⊗ Er, and hence by canonical projection
a K-invariant element τ ∈ Sr(ΛrT ∗) ⊗ Er. Denoting also by π : G(Ω) → Ω the
Grassmann bundle whose fiber over x ∈ Ω is the Grassmannian of r-planes in Tx(Ω)
we have obtained a G-invariant holomorphic section t ∈ Γ(G, L−r ⊗ π∗Er), where L
denotes the tautological line bundle over G.

It remains to show that t([To(∆
r)]) /∈ 0. Given this, the zero set of τ , which is

necessarily non-empty and of codimension 1 in Go = Gr(r, To(Ω)), defines the excluded
hypersurface Zo, showing that gap rigidity holds in the Zariski topology for (Ω, ∆r).
To this end for notational convenience consider the case where Ω is a Type I domain
DI

r,r with r > 1, so that the tangent space can be identified as the space of r-by-r
matrices. We note that the same argument works in general for any Ω of characteristic
codimension 1. Denote by eij the r-by-r matrix whose entries are 0 except for the
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(i, j)-th entry, which is equal to 1. Thus (eij) constitutes a basis for To(Ω), whose
dual basis will be denoted by (e∗ij). For the maximal polydisk ∆r we may take To(∆

r)
to consist precisely of the diagonal matrices. Identifying Eo with C the K-invariant
section σ corresponds to the determinant function. Thus θ : T → Sr−1T ∗⊗E satisfies
θ(eii) = e∗11 ◦ · · · ◦ ê∗ii ◦ · · · ◦ e∗rr+ terms vanishing on To(∆

r), where ◦ denotes the
symmetric product and ·̂ denotes exclusion. Hence,

∧r θ(e11 ∧ · · · ∧ err) = (e∗22 ⊗ e∗33 ⊗ · · · ⊗ e∗rr) ∧ (e∗11 ⊗ e∗33 ⊗ · · · ⊗ e∗rr)

∧ · · · ∧ (e∗11 ⊗ e∗22 ⊗ · · · ⊗ e∗r−1,r−1) + terms vanishing on To(∆
r)

It follows by a straightforward calculation that ν(e11 ∧ · · · ∧ err) is a positive
multiple of (e∗11 ∧ · · · ∧ e∗rr)

r−1 modulo terms vanishing on To(∆
r), implying that

t(e11 ∧ · · · ∧ err)
r) 6= 0 at [To(∆

r)]), as desired.
If r = kℓ for positive integers k, ℓ > 1, we can write the maximal polydisk as

∆r = (∆k)ℓ. Then, the same argument as in the above shows that gap rigidity holds

in the Zariski topology for the pair
(
Ω,

(
δ(∆k

)ℓ)
where δ(∆k) ∼= ∆ is the diagonal.

(5) Examples where the subdomains are higher-dimensional and irreducible. The
arguments of (4) give rise to examples of pairs (Ω, D) with Ω = DI

r,r, where D is

higher-dimensional and irreducible. These are the subdomains D = DII
r , consisting

of skew-symmetric matrices, and the subdomains D = DIII
r , consisting of symmetric

matrices3. We have dim(DII
r ) = r(r−1)

2 and dim(DIII
r ) = r(r+1)

2 . As in (4) in the
process the excluded hypersurface Zo ⊂ Gr(p, To(Ω)) can in principle be explicitly
determined. For the purpose of illustration we will establish the semistability of
[To(D)] in Gr(p, To(Ω) in the case of r = 3.

We start with D = DIII
3 , which is a 6-dimensional bounded symmetric domain of

rank 2, Let (eij) be a basis of To(Ω) and (e∗ij) be a dual basis, as in (4). Then, To(D)

is spanned by the basis
{
e12 + e21, e13 + e31, e23 + e32, e11, e22, e33

}
. We write xij for

eij mod To(D). For the determinant det on 3-by-3 matrices, we have

det = e∗11e
∗
22e

∗
33 + e∗12e

∗
23e

∗
31 + e∗13e

∗
21e

∗
32 − e∗13e

∗
22e

∗
31 − e∗11e

∗
23e

∗
32 − e∗12e

∗
21e

∗
33,

so that

θ(e12) = e∗23e
∗
31 − e∗21e

∗
33, θ(e21) = e∗13e

∗
32 − e∗12e

∗
33.

Denote by θ the composite κ ◦ θ, where κ is the projection map induced by the
quotient homomorphism T ∗

o (Ω) → T ∗
o (D). We have

θ(e12) = x23x31 − x21x33, θ(e21) = x13x32 − x12x33.

Noting that xij = xji we have

θ(e12) = x23x13 − x12x33 = θ(e21) ,

implying by analogous calculations

3In some cases, D ⊂ Ω occurred as a 1-hyperrigid subdomain, namely DII
r and DIII

r , r ∼= 0, 1[4],
see [Eys1999].
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θ(e12 + e21) = 2(x23x13 − x12x33);

θ(e13 + e31) = 2(x12x23 − x13x22);

θ(e23 + e32) = 2(x12x13 − x23x11)

On the other hand

θ(e11) = e∗22e
∗
33 − e∗23e

∗
32,

implying by analogous calculations

θ(e11) = x22x33 − x2
23, θ(e22) = x11x33 − x2

13, θ(e33) = x11x22 − x2
12.

Putting together the formulae for θ for the basis vectors
{
e12 + e21, e13 + e31,

e23 + e32, e11, e22, e33

}
, we obtain a formula for the section t ∈ Γ(Go, L

−3). Denoting
by µ the homomorphism induced by µ : Λ6(S2To) → S2(Λ6To) as in (4), and by the
quotient homomorphism T ∗

o → T ∗
o (D), we have

t
(
(e12 + e21) ∧ (e13 + e31) ∧ (e23 + e32) ∧ e11 ∧ e22 ∧ e33

)

= 8µ
(
(x23x13 − x12x33) ∧ (x12x23 − x13x22) ∧ (x12x13 − x23x11)

∧ (x22x33 − x2
23) ∧ (x11x33 − x2

13) ∧ (x11x22 − x2
12)

)
.

The only terms that count come from the combination of the first halves of each
of the 6 quadratic expressions inside brackets, since all other exterior products are
zero, as the variables (x23, x12, x13, x11, x22, x33) do not occur the right number of
times. We get finally

t
(
(e12 + e21) ∧ (e13 + e31) ∧ (e23 + e32) ∧ e11 ∧ e22 ∧ e33

)

= 32(x23 ∧ x12 ∧ x13 ∧ x22 ∧ x33 ∧ x11)
2 6= 0,

as desired. The zero set of t defines the cubic hypersurface Zo ⊂ Go on the Grass-
mannian Go which serves as the excluded subvariety in Theorem 3.

Next we consider D = DII
3 , which is a 3-dimensional bounded symmetric domain

of rank 1, i.e., biholomorphic to the 3-dimensional unit ball B3. A straightforward
adaptation of the preceding argument does not work. Use the same notations as in
the above, except that D stands for DII

3 and that xij is e∗ij modulo To(D), i.e., the
vector subspace of skew-symmetric matrices in the vector space of 3-by-3 matrices, so
that xij = −xji, in particular x33 = 0, and we have

θ(e12) = x23x31, θ(e21) = x13x32

θ(e21) = (−x31)(−x23) = x23x31 = θ(e12), hence

θ(e12 − e21) = 0.

It follows that we get the section t ≡ 0 in this case. To overcome the difficulty, we
work with symmetric matrices in place of skew-symmetric matrices by going to the
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cotangent bundle, as follows. The starting point of the construction of Z is the exis-
tence of the determinant. On the compact dual M , which is here the Grassmannian
Gr(r, V ) of 3-planes on V ∼= C6, and at a point x ∈ M , identifying Tx(M) with the set
of 3-by-3 matrices, we can define tentatively the ‘determinant’ of the tangent vector.
However, the matrix reprentation is unique only up to the complexification KC of the
isotropy subgroup K at o. The action of the centre of Kx on the ‘determinant’ shows
that there is a well-defined determinant on the projectivized tangent bundle of M , as
an Aut(M)-invariant section of a homogenenous holomorphic line bundle. Likewise
we can define a determinant for the cotangent bundle as a section on P(T ∗(M)), with
tautological line bundle Λ, of a homogeneous holomorphic line bundle which restricts
to Λ−r over P(T ∗

o (M)), corresponding to an element of SrTo(M). Now in general
there is a canonical correspondence between the Grassmann bundle G(M) over M
of p-dimensional tangent planes over M with the Grassmann bundle G′ of (m − p)-
dimensional vector subspaces of cotangent spaces over M , obtained by sending each
p-plane A ⊂ Tx(M) to its annihilator A⊥ ⊂ T ∗

x . Consider a reference point o ∈ Ω and
represent To(Ω) as the space of 3-by-3 matrices such that To(D) is identified with the
3-dimensional vector subspace of skew-symmetric matrices. Identifying also T ∗

o (Ω),
via the natural complex bilinear pairing between To(Ω) and T ∗

o (Ω), as the vector space
of 3-by-3 matrices. Then (To(D))⊥ is nothing other than the 6-dimensional vector
space of symmetric matrices. Working with the determinant on the cotangent bundle
in place of the tangent bundle we can perform the same proof as in the above to find a
cubic hypersurface in G′

o which avoids the point [T⊥
o (D)]. The canonical isomorphism

Go(D) ∼= G′
o(D) then gives a cubic hypersurface Zo ⊂ G′

o which avoids [To(D)].

Remarks. (a) Examples discuss in (2)−(5) are all obtained on irreducible bounded
symmetric domains Ω of characteristic codimension 1, i.e., those admitting a K-
invariant hypersurface. This does not need to be the case for (Ω, D) to exhibit gap
rigidity for some choice of D. Such examples occur in the context of Gauss-Manin
complexes. For certain values of p, n > 1, and for Ω = DI

n,pn it was shown in

Eyssidieux [Eys1999] that (DI
n,pn, Bp; i) is 1-hyperrigid, where i : Bp → DI

n,pn is
obtained by embedding Bp as the diagonal of a product P = Bp×· · ·×Bp (n factors)
of complex unit p-balls, and P is realized as a totally geodesic submanifold of Ω in a
standard way. This was precisely the hint towards the general theory.

(b) The method used in (4) and (5) can be applied to yield various examples where
(Ω, D) exhibits gap rigidity in the Zariski topology. They are typically of ‘diagonal’
type, for instance, if n = pℓ, then

(
DIII

n , δ
(
(DIII

p )ℓ
))

can be shown to exhibit gap
rigidity in the Zariski topology. The methods of (4) and (5) produce in each case
a locally homogeneous holomorphic section t in some Γ(P(TX), L−m ⊗ π∗E), and
the question is to know whether t([To(D)]) 6= 0. As is shown in (5), it can happen
that t ≡ 0, although in that particular example there is a way to circumvent the
difficulty. When however t 6≡ 0, then there is the advantage that t can in principle be
explicitly determined. Moreover, by [Mok2002], Proposition 3, whenever the higher
characteristic subvariety So ⊂ PTo(Ω) is a hypersurface, it is always of degree r =
rank(Ω). When t 6= 0, the construction in (4) and (5) yields a symmetric polynomial
of degree r. Thus, in the case of (3) on holomorphic quadric structures, the excluded
hypersurface Zo ⊂ Go is always the zero set of a nontrivial quadratic polynomial.

2.6. Classification of (H3)-embeddings into an irreducible domain. An
embedding into a reducible domain is (H2) if and only if its factors are also (H2)-
embeddings. This reduces the classification of (H2)-embeddings to the classification
of maximal (H2)-embeddings into an irreducible domain. We give two tables, ex-
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tracted from [Iha1967] and [Sat1980]. The first one gives all maximal (H2)-embeddings
into classical domains up to equivalence. The second table gives all maximal (H2)-
embeddings into an exceptional domains and, for every irreducible (H2)-subdomain,
a chain relating it to a maximal one.

(H3)-embeddings (Ω, D) into an irreducible domain Ω are (H2) embeddings with
an additional requirement on the Einstein constants of the factors of D if D is not
irreducible. It is straightforward to use the tables to give a complete list of all (H2)
embeddings into a given irreducible domain, and it is easy in each case to compute
the Einstein constant of the induced metric on every irreducible component and de-
cide whether they agree, giving a complete list of (H3)-embeddings into Ω. We will
be content with the remark that a way to check without calculation that a (H2)-
embedding of a reducible domain of the form D = Ωn

1 , where Ω1 is irreducible, is
(H3) when the automorphism group of Ω permutes the various subdomains of the form
o × . . . × o × Ω1 × o × . . .. This gives (H3)-embeddings of the form (DI

kp,kq , (D
I
p,q)

k),

(DA
nk, (DA

n )k) A = II, III , (DIII
20p , (B5)p), etc. In the following tables of maximal

(H2)-subdomains, in the case where D is irreducible, the (H3)-condition is satisfied
precisely for D of this form. (H3)-embeddings into a reducible domain are also in
principle straightforward to classify.

Maximal (H2)-subdomains
of a classical domain

Ω D maximal Additional conditions
DI

p,q DI
r,s × DI

p−r,q−s * r
s = p

q

(H3) iff p = 2r
DII

n * p = q = n
DIII

n * p = q = n

Bm m 6= 2r + 1 p =
(

m
r−1

)
, q =

(
m
r

)
, r ∈ N

DIV
2l l ≡ 0[2] p = q = 2l, l ≥ 3

DIV
2l−1 p = q = 2l−1, l ≥ 3

DII
n DI

r,r * n = 2r

DII
r × DII

n−r * n > r
(H3) iff n = 2r

Bm * n =
(m+1

m+1

2

)
, m ≡ 3[4]

DIV
2l * n = 2l, l ≥ 3, l ≡ 3[4]

DIV
2l−1 * n = 2l−1, l ≥ 3, l ≡ 0, 3[4]

DIII
n DI

r,r * n = 2r

DIII
r × DIII

n−r * n > r
(H3) iff n = 2r

Bm * n =
(m+1

m+1
2

)
, m ≡ 1[4]

DIV
2l * p = q = 2l, l ≥ 3, l ≡ 1[4]

DIV
2l−1 * p = q = 2l−1, l ≥ 3, l ≡ 1, 2[4]

DIV
2l DI

2,2 l ≥ 3

DIV
2l−1 * l ≥ 3

DIV
2l−1 DIV

2l−2 * l ≥ 3
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Maximal and irreducible (H2)-subdomains
of exceptional domains

Ω D (H3) Chains of (H2)-subdomains
DV DI

2,4 * B2 ⊂ B2 × B2 ⊂ DI
2,4

B5 × ∆
DV I B5 × B2

DI
2,6 * B3 ⊂ B3 × B3 ⊂ DI

2,6

DI
3,3 * ∆ ⊂ ∆3 ⊂ DIII

3 ⊂ DI
3,3

DII
6 * ∆ ⊂ ∆3 ⊂ DII

6

DIV
10 × ∆ ∆ ⊂ ∆3 ⊂ DIV

10 × ∆

3. Overview on gap rigidity.

3.1. Gap rigidity for DIII
2 . From [Mok2002],Theorem 4, (or Theorem 3 here)

and Theorem 1, we have a complete understanding of gap rigidity for the unique
3-dimensional bounded symmetric domain Ω of rank > 1. Ω can be described as a
Type III domain of rank 2, equivalently the 3-dimensional Siegel upper half-plane, or
as the 3-dimensional bounded symmetric domain of Type IV, i.e., the noncompact
dual of the 3-dimensional hyperquadric.

Proposition 3. The question on the validity of gap rigidity on the 3-dimensional
irreducible bounded symmetric domain Ω of rank > 1 is completely settled, as follows.
Denote by ∆2 ⊂ Ω a maximal totally-geodesic bidisk as given by the Polydisk Theorem.
There are, up to isometry, precisely 3 different types of positive-dimensional totally-
geodesic proper complex submanifolds D of Ω, namely:

(1) D = ∆2 ⊂ Ω;
(2) D = δ(∆) ⊂ ∆2 ⊂ Ω;
(3) D = ∆ × {0} ⊂ ∆2 ⊂ Ω.
Gap rigidity holds in the Zariski sense for (Ω, D) for D in (1) or (2); but fails (in

the complex topology) for D in (3).

3.2. Rank one domains. Theorem 3 and the examples in (2.5) show that gap
rigidity in the Zariski topology for a pair (Ω, D) can hold due to algebraic conditions
satisfied by tangent planes to bounded symmetric domains. Theorem 1 shows that
gap rigidity can fail in the complex topology due to product structures, although the
construction of counterexamples arising from holomorphic maps between compact
Riemann surfaces of higher genus does not generalize easily (cf. (3.3)). There is a
situation which belongs to neither of these situations and for which gap rigidity in
the Zariski topology does not make sense. This is especially the case for bounded
symmetric domains of rank 1.

Question 1. Let k < n be positive integers and embed the complex unit k-ball
Bk into the complex unit n-ball Bn in the standard way as a totally geodesic complex
submanifold. Does gap rigidity hold for (Bn, Bk) in the complex topology?

There is up to this point no evidence as to whether one should expect a positive
or negative answer to Question 1. Since the information of first order is trivial in this
problem, perhaps one should try and find a way to deal with higher order informa-
tion, which we cannot do for the time being. The case of k = 1 is perhaps the most
difficult. A negative answer for k = 1, n = 2 constructed on quotients of the two-ball
by torsion-free lattices would give first examples of exceptional divisors other than
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totally-geodesic cycles on some projective manifolds uniformized by the 2-ball. The
case of k > 1 can be formulated perhaps as a problem in two steps. The first step is
to understand whether a sufficiently pinched k-dimensional submanifold S with k > 1
is necessarily uniformized by Bk. This is equivalently the question of asking whether
S admits a holomorphic projective structure, in view of [KobOch1981]. In the case of
k = 2 it was conjectured in Siu-Yang [SiuYan1981] that a compact Kähler-Einstein
surface with strictly negative sectional curvature is uniformized by the complex unit
2-ball B2. In the same article, they proved a type of pinching theorem which says
that a compact Kähler-Einstein surface of nonpositive holomorphic bisectional curva-
ture must be biholomorphic to the 2-ball, provided that the curvature at every point
satisfies some very specific pinching condition. It is possible to deform an ǫ-pinched
compact complex submanifold S ⊂ X := Bn/Γ to get a Kähler-Einstein surface with
estimates on the deviation from constant holomorphic sectional curvature. Unfortu-
nately the pinching condition in [SiuYan1981] is not implied by such estimates. The
second step of the problem is to prove that a holomorphic immersion of S = Bk/Γo

into X = Bn/Γ is necessarily a totally geodesic immersion, at least when the image
is sufficiently pinched. In the case where 2k > n this was settled in the positive in
Cao-Mok [CaoMok1990] without assuming any pinching condition. In particular, in
the case where k = 2, n = 3 Question 1 is reduced to the first step.

3.3. Embeddings into products. In relation to the counterexamples showing
that gap rigidity does not hold for (∆2, ∆×o), one can ask the question as to whether
this type of construction can generalize. Obviously one can get holomorphic mappings
between products of compact Riemann surfaces of genus > 2 to show that gap rigidity
fails for (Ω, ∆k; i) with rank(Ω) = r > 1, Ω not necessarily irreducible, k < r and
i : ∆ → Ω arising from the inclusion ∆k = ∆k × {0} ⊂ ∆r, and an embedding of
∆r as a maximal polydisk in Ω. On the other hand, for Ω an irreducible bounded
symmetric domain of rank > 1, we have

Proposition 4. Let Ω be an irreducible bounded symmetric domain of rank > 1.
Let k < n be positive integers. Then, gap rigidity holds for the pair (Ωn, δ(Ωk)×{0})
in the Zariski topology when we consider only ambient complex manifolds X of the
form Ωn/Γ with Γ ⊂ Auto(Ω

n).

Proof. Write Ω = G/K in the usual notations. Here we can define, in the
notations analogous to the statement of Theorem 3, Zo ⊂ Go to consist of tangent p-
planes V, p = dim(Ω), such that the canonical projection of V onto, say the first factor
Ω is an isomorphism. With this convention, given any S ⊂ X/Γ, where Γ ⊂ Auto(Ω

n),
the canonical projection ρ : Ωn → Ω onto the first factor induces on S an integrable
KC-structure. It follows that the universal covering space of S is biholomorphic to
Ω (cf. [MokYeu1992]). Thus, we have S = Ω/Γo as an abstract complex manifold,
together with a holomorphic embedding f : S → X . By Hermitian metric rigidity of
Mok [Mok1987] it follows that f : S → X is a totally geodesic isometric embedding up
to a nonzero normalizing constant. Identifying S with its image under f we conclude
that S ⊂ X is a holomorphic geodesic cycle.

Proposition 4 gives an example where gap rigidity can hold in the Zariski topology,
with a reducible ambient domain Ωn, even though the analogous condition on scalar
curvatures as in Theorem 3 is not satisfied. Here of course we are dealing with
reducible ambient domains, otherwise even the notion of gap rigidity in the Zariski
topology as stated cannot be formulated, but one may still raise the question, in the
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case of a pair (Ω, D) with Ω an irreducible bounded symmetric domain, whether gap
rigidity in the complex topology can hold for certain bounded symmetric domains D
which are say irreducible and of rank ≥ 2. The problem can be reduced to a question
of holomorphic G-structures and is not within the scope of methods in the current
article.

Finally, it is intriguing even in the reducible case, whether one can construct
counterexamples to gap rigidity for pairs

(
Bn × Bn, δ(Bn × Bn)

)
with n > 1. We

may formulate the problem as follows

Question 2. Let n > 1. Consider the set Xn of all compact complex
manifolds uniformized by the complex unit ball Bn. Let Map(Xn) denote the set
of all nonconstant holomorphic mappings f : X → X ′ with X, X ′ ∈ Xn, and
Mapfin(Xn) ⊂ Map(Xn) the subset of all generically finite holomorphic maps. For
each f ∈ Map(Xn), f : X → X ′, denote by µ(f) ∈ (0, 1] the real number defined by
µ(f) = sup

{
‖df(x)‖ : x ∈ X

}
. Does there exist a universal constant cn > 0 depend-

ing only on n such that µ(f) > cn for any f ∈ Mapfin(Xn) or more generally for
f ∈ Map(Xn)?

We note that µ(f) ≤ 1 because of the Ahlfors-Schwarz Lemma. A negative answer
to Question 2 for a given n > 1 will imply the failure of gap rigidity in the complex
topology for (Bn×Bn, Bn×{0}). On the other hand, a positive answer to an extended
form of the question, where in place of f ∈ Map(Xn) we consider compact complex
manifolds X ∈ Xn, any representation Φ : π1(X) → Aut(Bn) and any Φ-equivariant
holomorphic map F : Bn → Bn, will lead to the confirmation of the gap rigidity in
the complex topology for the pair (Bn × Bn, Bn × {0}).
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