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ON THE DIRICHLET PROBLEMS FOR SYMMETRIC FUNCTION
EQUATIONS OF THE EIGENVALUES
OF THE COMPLEX HESSIAN *

SONG-YING LI
To Yum-Tong Siu, on his siztieth birthday

1. Introduction. Let D be a bounded domain in C", and let u € C?(D) be a
real valued-function. Then the complex Hessian of u

82u(z)}
aziazj nxn

(L.1) Hlul(2) = |

is an n x n hermitian matrix at each point z € D. Let AM(H(u)) = (A1(2), -+, An(2))
be all eigenvalues of H[u|(z) as a vector in IR". Then the kth elementary symmetric
function o) is defined as follows:

(1.2) dBN) = > A,

In particular,
(1.3) det H(u) = o™ (A (H(u)), Au=tr(H(u)) = oM\ (H(u))).

It was proved in [8] that ¢*)(X\)Y/* is a concave strictly increasing function on the
symmetric convex cone:

(1.4) Ie={AeR":cW () >0, 1<j<k},

and

(1.5) I,={ eR": )\ >0, 1<j<n}, Flz{)\:Z)\j>0}.
j=1

Also Ty, is symmetric in A = (\q, -+, \,), which means that if A = (A1, -+, \,) € Ty,
then \ = (MNiys ooy N, ) € T where (41,42, +,1y,) is any permutation of 1,2,--- n.
We say that u is plurisubharmonic in D if A\(H(u)(z)) € T, for all z € D; we say
that u is subharmonic in D if A(H(u)(z)) € T for all z € D. We will let ' be a
convex cone which is symmetric in A € I', with vertex 0 so that I';, C T C I'y. Let
M(n,T') be subset of all n x n hermitian matices H over C so that A\(H) € T where
A(H) is a vector in IR"™ being formed by all eigenvalues of H. We will consider more
general symmetric function than the kth symmetric function ¢*) on M(n,T"). Let D
be a bounded domain in C" with smooth boundary dD. We say that a real-valued
function w is I'-subharmonic if A\(H(u)(z)) € T for all z € D. we will consider the
Dirichlet problem for a functional equation:

(1.6) F(H(u)(2)) =v¢(2), z€D, u=¢ on ID.
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where F(H) can be written as
(L.7) F(H) = f(A(H)), H e M(n,T),

with f a symmetric function in A € T'. In order that the equation (1.6) is elliptic, we
assume that f(\) is a positive, strictly increasing, concave function on I'. In other
words, we assume that f is positive, concave and satisfies

of

(1.8) e

>0, 1<j5<n.

In order to prove an existence theorem, we may assume more on function f. Let
(1.9) o = min{y(z) : z € D}.
Let 1% be any positive number so that 1° < vy. Then we assume that

(1.10) lim sup f(\) <v° Ao €ar,
A— Ao

and for any compact subset K of I', we assume that
(1.11) Rlim FO, s A1, A0 + R) leim F(RA) = o0,

uniformly for \ € K.
It was proved in [8] that

(112) 7 = (o) "

is a symmetric, positive, strictly increasing concave function on I'y satisfying (1.10)
and (1.11).

Let D be a smoothly bounded domain in C™, we say that D is I'-pseudoconvex
if there is Cp > 0 so that A(—H (d) + CH(d?)) € T on D where d(z) is the distance
function from z to dD.

The existence of a unique classical solution for the Dirichlet problem of symmetric
function of the eigenvalues of real hessian matrix of a function v on a domain in IR"
was proved by Caffarelli, Nirenberg and Spruck in [8]. Many other problems related
to geometric problems were studied by B. Guan and P. Guan [16], P. Guan and X.
Ma in [18], P. Guan, C. S. Lin and X. Ma in [19], P. Guan and Y. Li in [17] and J.
Urbas in [34] with references therein and many others. The Dirichlet problem for the
complex Monge-Ampere equations on strictly pseudoconvex domain in C" has been
studied many authors, we refer to [1], [2], [9], [7], [15], [25],[22], [26] and references
therein. The existence of classical plurisubharmonic solution for complex Monge-
Ampere equations on strictly pseudoconvex domain was proved by Caffarelli, Kohn,
Nirenberg and Spruck in [7]. In [15], B. Guan proved the similar results hold on weakly
pseudoconvex domain provided the bounday data has plurisubharmonic subsolution.
Results on Horlder continuity were proved by the author in weakly pseudoconvex
domain of finity type in [26]. Based on the all above known results, we are proposed
to prove the following theorems which are natural generalizations of the known results
mentioned above.

THEOREM 1.1. Let T be a convex symmetric cone in R"™ withT',, CT' CT'y. Let D
be a smoothly bounded domain in C". Let f be a strictly increasing, concave function
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on T satisfying (1.10) and (1.11). If ¢ € C>°(8D) has an extension u € C*°(D) so
that

(1.13) FMH@W)) >9Y(z)+€, z€D  for some € >0,
then the Dirichlet problem
(1.14) fOMHW)=¢>0 1in D, u=¢ on dD

admits a (unique) solution u € C>(D) with \(H(u)) €T on D.

THEOREM 1.2. Let T be a convex symmetric cone in R"™ with T';, CT CT';. Let
D be a smoothly bounded I'—pseudoconvex domain in C". Let f be a strictly increasing,
concave function on T satisfying (1.10) and (1.11). Then the Dirichlet problem

(1.15) fOAHu))=v%>0 in D, u=¢ on 0D

admits a (unique) solution u € C>(D) with \(H(u)) €T on D.
In particular, for f = ¢(®), we have the following theorem.

THEOREM 1.3. For 1 < k < n, the Dirichlet problem

(1.16) cBNHW)=v>0 in D, u=¢ on D
admits a (unique) admissible solution u € C°°(D) provided that
(1.17) dD is connected, and o*Y(N(L)) >0 on D

where L is a Levi-form of 0D.
Moreover, when ¢ =constant, condition (1.17) is also necessary for existence of

a solution u € C*(D).

Applying the method of continuity, and by results proved by Caffarelli, Nirenberg
and Spruck in [6] and Krylov in [23], as well as by the iterration or LP theory given
by Kohn and Nirenberg [21], it suffices to prove C? a priori estimates for solutions in
Theorems 1.1-1.3. We will organized the rest of the paper as follows. In Section 2, we
provide some preliminary results. In Section 3, we proved results of the subsolution.
Finally, the main part of the paper, in Section 4, we provide C? a priori estimates.

2. Preliminary. From now on, we will always let I" be a symmetric convex cone
in R" with T, ¢ T' C Ty, and f(A(H)) = F(H) be an increasing, concave, non-
negative function on M(n,T). Let IV = {(A;,- -, A1) € R™ oA = (A\g,---, M) €
I'} be the projection of T' into R™ ', Tt is easy to see that

(2.1) F;z = Fn_l(]Rnil) = {()\1, .- '7)\n—1) : )\j > O}, Fll = ]Rnil.

For any n x n hermitian matrix H = [hz], we let H' = [k 3](n—1)x(n—1). Let
A(H') be a vector formed by all eigenvalues of H'. The following lemmas were proved
in [8].

LEMMA 2.1. (Maximum Principle). Let D be a bounded domain in C" with C*
boundary. Letu,v € C?(D)NC(D) so that H(u)(z) € M(n,T') for all z € D. Assume
that at every point z € D, A(H(v(z))) lies outside the set T'(z,u) = {A € T': f(A) >
FMHw)(2))}. If u<wv on 0D then u <wv in D.
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LEMMA 2.2. With the notation above, we have
(2.2) N(H) = (M(H), -+, An1(H)) = MH') +0(1),  An(H) = hnm(14+0(1/huz)),

as hpmz — +00.

LEMMA 2.3. Let I’ be a convex cone in R™ so thatT,, CT' CT';. Let TV =
{1, Anm1) s AETH IFA(H) €T then A(H') € I'" where H' = (h,5)(n—1)x(n—1)-

Proof. Since A(H) € T, there is € > 0 so that A\(H —e€l,,) € I'. Let E;j beannxn
matrix with entries 1 at (4,j) position, others are zero. Let H(t) = H + tFy,,. Then

N(Ht)=XMH')+o0(1)el’, ast— oo.

Let t — +00, we have A(H') € T, and so A(H' — el,,_;) € I'. Thus N'(H) €I’. 0O

The following proposition is proved by M. Marcus in [31] by using knowledge of
probability, we will provide a direct proof here.

PROPOSITION 2.4. Let A = [a;5] and B = [b;5] be hermitian matrices over C. Let
AL <o <Ay, be all eigenvalues of A and let uy > -+ > g, be all eigenvalues of B.

Then

(2.3) tr(AB) > > Aeftk.
k=1

Proof. Without loss of generality, we may assume A and B are positive definite,
otherwise, we will add them by cI,, with large positive ¢. The proposition is true
when n = 1. Assume that it is true for n, we will prove that it is ture for n + 1.
Without loss of generality, we may assume that A is a diagonal matrix, say, A =

Diag(/”‘h Ty M Mn+1)~ Since
(2.4) tr(AB) = tr((A — pnt1lns1)B) + ni1tr(B).

Let B" = [b,3l1<a,p<n, and let A} < Aj---, < A}, be the all eigenvalues of B'. Let
A1 < Ag < --- <A, < A4 be all eigenvalues of B. We claim that A\ < )\;. for all
1 <7 <n. Write

by
B B’ Y . '
=gy 3]s =]
bn—l
Hence
— !
(25)  gns1(N) =det(M,pq — B) = [[A = M)A —b— —— . X Z|bk
j=1 J k=1
we have
(2.6) gn+1(Xg) = H Ay =A%) Z|bk\2 )", A= 0.

J#L
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If 37  |bk]? = 0 then it is easy. We may assume that Y ;_, [bx[* > 0 or 4, > 0 for
all £. We will continue our discussion in the following two cases.

Case 1. If n+1is even then (—1) gn11(A}) > 0, then gny1(A) has zeros in (A}, N, ,]
forall j =1,---,n—1. Since gp41(\) — 400 as |A| — 400, this implies that g, 1(\)
has a zero Ay < A} and a zero A1 > A, So A; < )\; forallj=1,---,n

Case 2. If n + 1 is odd then (—1)g,4+1(A\)) < 0. Since g,+1(\) — —00 as A — —o0,
with similar argument above, we have g,11(\) has zeros A; with A} > A; for j =

1,2,---,n. So the proof of the claim is complete. Now since
tI‘((A - Mn+lln+1)B) = Z(Mk - /f”n-i—l Z M — ,U/n+1
k=1 k=1
Therefore

tr(AB) > > (ik — fin41) Ny, + pngrtr(B)

k=1
= Z/ik)‘;c + tnt1Ant1 + Hntt Z(Ak - )‘;c)
k=1 k=1
n+1
_Zﬂk/\JH-ZMk — k) +,Un+1z (Ae =A%)
h—1
n+1
= ZMMMFZ (1 — 1) (A — Ak)
n+1

> Z,Uk/\ka
k=1

and the proof of the proposition is complete by mathematics induction. 0O
Next we gives a simple version of continous case of the previous proposition.

PROPOSITION 2.5. Let f(t) be decreasing on [0,1] and g(t) is increasing on [0, 1].
Let ¢(z,y) > 0 be a measurable function on [0, 1] x [0,1] so that ¢(z,y) = ¢(y, ) and

1
/ oz, y)dy =1, ae z€l0,1].
0

Then

/ 1 / ' o(o,0) f(@)g(y)dody > / ' f(@)g(a)ds

Proof. For any z,y € [0, 1], since (f(z) — f(y))(g(z) — g(y)) < 0, we have

f(@)g(x) + f(y)g(y) — f(x)g(y) — f(y)g(z) < 0.

Therefore

f@)g(x) + f(W)g(y) < f(@)g9(y) + f(y)g(@),
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and
6@, y)(f(W)g(x) + F(2)g(y))dady
K
> [ [ oot + sl
=2 [ s
Since
/ / ¢z, y)f dxdy—/ / $(y, x) f(x)g(y)dady
we have
//My )g(@) + f(x)g(y))dady
//«m //My g(y))dzdy
:/o /0(¢(y»$)+¢($,y))f(x)g(y)dxdy
Therefore
/0 1 /0 G ) gy — /0 1 /0 1w F(2)a(y)dady
- | ' f)g(e)dr

and the proof of the lemma is complete. 0O

3. Existence of subsolutions. We first prove the following theorem on defining
function.

THEOREM 3.1. Let T be a convex cone in R™ withT,, CT C T'y. Let p € C=(D)
be a defining function for D so that A\(H(p)(z)) € ' for all z € dD. Then there is a
defining function p° € C>°(D) for D so that \(H(p°)) €T on D.

Proof. Since T is an open set, and A(H(p)(z)) € T for all z € 9D, and 9D is
compact. By continuity, there is a § > 0 so that A(H(p)(z)) € T for all {z € D :
p(z) > —3}. Now we choose a convex increasing function g(t) € C°°(—o0,0] so that
g(0) =0, g(t) = —1 when t < —§ and ¢'(¢) > 0 for t € (—4,0). Let

p(z) = g(p(2))
It is easy to see that p1 € C>® (E) and is a defining function for D. Since
H(p")(2) = g'(p)H(p) + g" (p)9p © Ip(2)

since g" > 0,Qp®5p is positive semi-definite, and g’ > 0, we have that A\(H (p!)(2)) €
T for all z € D and A(H(p') € T for p > —§. We let h € C§°(D) so that h(z) > 0 on
D and h(z) =1 when p(z) < —6/2. Let

P°(2) = ch(2)|z* + p'(2), >0
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It is obvious that p® is a defining function for D, and p° < 0 if ¢ > 0 is small enough.
Moreover,

H(p°) =g (p)H(p) + 9" (p)0p @ 0p(2) + ch(2) I, + cOh(2) @ 2z + 2@ Oh(2) +c|z|* H(h)

It is easy to see that A(H(p")(z)) € T when p(z) < —§/2 for any ¢ > 0 since h = 1
there. Now since A\(H(p')) € T for p(z) > —36/4, those A contained in a compact
subset of T', there is a positive distance from it to the boundary dI'. Therefore, there
is ¢ > 0 very small so that A(H(p%)) = A(H(p') + cH(h|z|?)) € T. Thus, the proof of
the theorem is complete. 0O

THEOREM 3.2. Let I' be a convex symmetric cone in R™. Let F be a concave
increasing function on M(n,T') satisfying (1.7) —(1.11). Let D be a smoothly bounded
domain in C" so that there is a defining function p € C>(D) for D with H(p) €
M(n,T) and F(H(p)) >0 on D. If ¢ € C>°(dD) and 1p € C=(D) is positive, then
there is u € C*(D) so that

(3.1) F(H(w) >v(z)+1, in D, and u=¢ on ID.

Proof. Let ¢ € C*(0D), we still use ¢ to denote its harmonic extension to D.
Let C; > 0 so that ¢g = ¢(z) + C1p(z) satisfying A(H (¢o)(z)) € T' by assumption
H(p) € M(n,T') and (1.11). Let

(3.2) u=¢o(z) + Cp(z).
Then
(3.3) H(u) = H(¢o(2)) + CH(p(2)).

Since F' is concave on M(n,T’) or f is concave on I', we have

FH(¢) , FRCH(p)

F(H(@))Z 9 2
_ F(2H(60)) | fROH(p))
2 2
. JCOAH )
- 2

By (1.11), for any compact subset K and a positive constant Cp, there is R =
R(K,Cy) > 0 so that

(3.4) f(RN) > Cy, forall e K

Now let K = {\(H(p(z))) : 2 € D} is a compact set in I. Let
(3.5) Co=2(¢1 +1), 1 =max{y(z):z¢€ D}
and 2C = R = R(Co, K). Then we have

(3.6) F(H(u)(z)) >4¢1+1 for z€ D,

and the proof is complete. 0

Finally, in this section, we shall prove the following proposition.
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PROPOSITION 3.3. Let D be a bounded domain in C™ with 8D is connected and
C°. If there is a defining function p for D so that AN(L,) € T'y_1 on 0D then there is
a defining function py for D so that \(H(po) € Ty on 0D. Here L, is the Levi-form
of p on 0D.

Proof. Without loss of generality, we may assume that |9p|?> = 1/2 on dD. Let
po(2) = p(2) + Cp(2)?,  z € D.
Then
L,(z) =Ly (2), z€0dD
and
A(H(po)(2)) = (N(2), An) = (A(L,(2)) +0(1),C + O(1)), as C — foo.
Since A(L,(z)) € T'y—1 on 0D there is a > 0 and C >> 1 so that
cDN(2)+0(1))>a, z€dD, andl<j<k-—1.

This imples that when C' > 1 is large enough we have /) (\(H(p)) > 0 on 8D for all
1< j <k, and so AM(H(p)) € I'x. Therefore, the proof is complete. O

4. A priori estimates up to the second derivatives. Let D be a bounded
domain in C" with smooth boundary. Let u be a real-valued function on D. We
consider the Dirichlet boundary value problem:

(4.1) F(H(u)) = f(MH(u))) =¢(2), z€D; u=¢ on 9D

with the assumptions: 1 € C°°(D) and (z) > 0 on D. Moreover, we assume that
¢ € C*(9D) has an extension v on D so that

(4.2) NH@)(2)) €T and F(H()(2) > (z) + ¢, z€D

for some € > 0. We say that u € C%(D) is an admissible solution of (4.1) if A(H (u)) €
T" on D. Then we shall prove the following lemma.

LeEMMA 4.1. Let ¢ € C*°(9D) have an extension u satisfying (4.2). Let (4.1)
have an admissible solution u € C*(D). Then

(4.3) [ullerpy < Ch-
where Cy is a constant depending only on ||| cop), [[ullcrm), [[¥]lcr ) and €.

Proof. We still use ¢ as its harmonic extension of ¢ from 0D to D. Then u—¢ = 0
on 9D and A(u—¢) = Au > 0 (since Au > 0). By maximum principle, we have that

(4.4) u(z) —¢(2) <0, z€D.
Moreover,
(4.5) D,(u—¢)(z) >0, z€0D

where v is the outer unit normal vector to 9D.
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Since f(A(H(w))) > f(MH (u)) and u = u on D (of course, u < u on 9D), by
the Maximum Principle or Lemma 2.1, we have u < w on D. Since u —u < 0 on D
and u — u = 0 on 9D, this implies that

(4.6) D,(u—wu)>0, ondD.
Therefore,
(4.7) lullo) < 10lom) + lulemy < Cllullem), [¢llo@p))-

where C'is a constant depending only on [¢[lc(ap) and ||ull(5) and dD. Moreover,
(48)  —l6llorom < Dud(z) < Dyu(z) < Dyu(=) < Jull gy, = € ID.

Since u = ¢ on 0D, we have

(49) Vu()] < I6llor oy + lullosmy, = € 0D,

In order to estimate |Vu| on D, we let

oF

ij_ OF
(4.10) F 8%(

H(u)), 1<4,j7<n.

Then L =F ’782-3 is an elliptic operator. Since F' is concave function on M(n,I") and
since (4.1) and (4.2), we have

(411) e < F(H(w) - F(H(u)) < F9(H(w)(ug — ug) = Lu—u), on D.
F(H(u)(z)) = () on D and the Chain Rules imply that
I(z) _ OF(H(u)(2)) 7 uyg

_ _ okt _ )
8ZZ' o 8zl =F (H(U)) 822 7Lazu
Similarly, we have with ¢; = and Y5 = az ,
ou o ou oY .
412)  Luj=y, Luz=vy5, Lee=22 [0V <<
( ) “ 1/) uj J 81']‘ 35Ej Byj 8yj ) "
Therefore, by (4.11) and (4.12)
ou ou oY oY o oY
4.13) L(a=—+b—+C =a—+b—+CL b—+Ce>0
(418) Llagib S Clumn) = o +b ol +CLlu—u) > ag b e

where C = %||V1/J||C(5) and a? + b* = 1. Thus, aa‘r’T“j + bg—;‘j + C(u — u) attains its

maximum over D at some point on D. Therefore, by taking @ = +1, b = 0 and
a =0, b==+1, we have

[Vu(2)| < 2nCllu — ullo(p) + [Vullo@py, = € D.
Therefore,

(4.14) luller )y < Clldllc@ny [1ulor @y ¥l or By €)-
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where  C([[¢llcop), lullcr By, 1¥lcrp).€) is a constant depending only on
Iéllcropy, lullormys [¥llcrm) and e Therefore, the proof of the lemma is
complete. 0O

LEMMA 4.2. With the assumption of Lemma 4.1, if u € C?(D) is an admissible
solution of (4.1), then

(4.15) ||“ch(5) < C(H““cl(ﬁ)a ||1/JH02(5)»€7 [ullczop))
where C is a constant depending only on ||ul| o1 ), [|¥[lc2(p), € and |lullc2@op) -

Proof. For any & € S?"~1 we consider

- ou " ou
(4.16) U(z) = Deeu(2) + Clu—wu), Dec =D, De=) bnyjp—+ ijﬁ_y'
j=1 =1 /
Let
(4.17) piaat _ _OF
auﬁ@uw

Then, by the concavity of F, we have F ij*kzaﬁakz < 0 for any hermitian matrix
A = laz]. Therefore,

De¢Deyp(2) = De DeF(H (u))

— D¢(FDeus)
= FR DeuygDeus + F7 Diugs
= FR Deuyg Deugs + F azi;zj Deeu
< LD¢eu.
If we let C' = {[|D*| o5, then
(4.18) L(D¢eu+ C(u—u)) > Degtp(z) + Ce > 0.

Therefore D¢eu+ C(u—u) attains its maximum over D at some point zy € dD. Thus

(4.19) Deeu(z) < C(||¢llc2opy, 19l o2y, € el o1 (1)) + 1D*ullcan) = Co

Since
Au(z) >0, ze€D,
we have
Co > Up,z; > —(2n—1)Cy,  Ca > uy,y, > —(2n —1)Ch.
Thus

(4.20) gy, |, [ty ] < 20— 1)Co, 1< j<n.
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Since
42D, Dyju= D3 4, u(z) — (D7, u+ D7 u) < (4n — 1)Cy,
and
and
+2Dy, Dyu= D3 ., u(z) = (Dyu+ Dj u) < (4n —1)Cs.
We have
(4.21) | Dy, Dy ju| + | Dy, Dy, ul + [ Dy, Dy ul < 6nCs.
Thus
(4.22) ullc2p) < 6n°Cy

and the proof of the lemma is complete. 0O

To complete the estimates for second derivatives of u, it suffices to estimate |V2u|
on 0D (or Cy). Since u = ¢ € C*°(ID), we have

(4.23) |D7u(2)| < C(léllc2op): [uller ), = € 0D

for any smooth unit tangent vector T to D at z € dD. What we need to estimate are
|D7D,u| on &D and |D?u| on dD. Which will be given by the following two lemmas.

LEMMA 4.3. Let p be a defining function for D with D,p =1 on 0D. With the
assumptions of Lemma 4.1, we have

(4.24) DrDyu(2)] < Clllosoy, 6] os €)= € OD.

Proof. Let zg € 0D be an arbitrary point. Without loss of generality, by shift and
rotation, we may assume that zg = 0, %(O) =0for1<j<n-—1and 68—;(0) =0
J J
for all 1 < j < n. Moreover, nearby zg = 0, we can write

(4.25) p(z) = =z +Re Y pi(0)ziz; + Y p(0)z%; + P(2) + R(2)
ij=1 ij=1
where P(z) is cubic polynomial in z and z, and |R(z)| < C|z|*.

Lettao =yaif 1l <a<nand to4n =24 if 1 <a<n—1. Let

aa(z):—ng 6'67/)’ 1<a<2n-—1.
Then
a,(0) =0, —i—i—aa 9



98

S-Y. LI

is a tangent vector to 0D near z = 0 € 0D. We write

Let

2n—1

an(z) = Z basts + batn + O(Jt]* +22), 2 € D near 0.

B=1

o B} D
T, = at + Z bagtﬁa bag = %(O)

Then T =T, + b, xna +O(|2]? )7n and

T.(u—1)=O(|t]*), ondD.

Since
Oity = —Y 5, if1<B8<n,
! %&-g,n, ifg>n
and
Dty = Vlss if1<f<n—1,
J %5]'3_”, if 8> n.
Therefore,

LTou = Toth(2) + Y bapF (Oitp0ua, + O5taus,)

B
=Tatp(2) +2 Y bapF (Ot pdsu, + O3t g0;us)

B<2n

+2 bagF7 (V=10itp05u,, — V—105t50;uy,)
B

Z) + V-1 Z baﬁFiE(f&-ﬁunE + 5j5uiﬁ)
B=1

n—1

+ Z ba 5+nFi3(5iﬂun3 + Jjﬁuiﬁ) +2v -1 Z bagFiE(aitﬁaj-uyn

B=1 B
n—1
= To(z) + 2V— Zb(,glm (FPu +2Zbaﬁ+nRe(Fﬁjum)
B=1 B=1
+2V=1Y  bagF (Bitpdu,, — Ostpdiuy,)
B8

Since b, are real number, we have

2\/_221) sIm (FPu;) + 2v/~1Re Zb 5 F (D5t 50y,

i=1 =1

- aj‘tﬂ diuy, )

%tgaiuy" )=0
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By rotation of first (n — 1) variables, we may assume that

FP =5,3F% ReF’ =Reujs =0, 1<f3,j<n-—L

Thus
n—1 _ n—1 B n—1
2 Z bo g+nRe (Fﬂjung) =2 Z ba g+nRe (Fﬁjun;) +2 Z bo pinRe (Fu,5)
B=1 3,8=1 B=1
n—1 _ n—1
=2 bagsnRe (F7u,5) +2) " ba gintinaRe (F7)
B=1 B=1
n—1 _
=23 bagsnF 7 Re (u,3)
B=1
=0.
Since

= = 1 -
—2Im Z bapt™ (0itgO7uy, —05t50suy, ) > —Ctr(F”)—ZF”@»(ut[i —uy,) O5(ue, —uy, ).
B

Therefore
(426)  £LTa(u—u) > —C(6x(F7) + 1) = FI0,(us, — u, ) 05(us, — uy.).

Since A(H(u) € I and f(A(H(u)) > 9 + ¢, there is e > 0 such that A\(H(u) —
2¢11,)) €T for all z € D, and f(AMH(u) — 2¢11,)) > ¢¥(2) + €o(e1) > 0 on D, where
eo(€1) < e is positive constant depending only on f e and sufficiently small ¢;. Now
we let

2n—1
VE(2) = £Ta(u—u) + Y (ury —uy,)* + Alw —u— e |2[?)
B=1
Then
L(Alw—u=261]2) = AIF(H(u — 261]21%) = F(H(w))] = Aeo(c1)
LVE(2)
> —Cl(tr(Fﬁ) +1)— Fﬁ@i(utﬁ —uy,) O5(ue, —uy,)
i 81/} ij 33@
+2F78i(ut5 —ytﬁ)ajf(utﬁ — Utﬁ) + Q(Utﬁ —th)(a—tﬁ + ij)

—|—A60 (61) + AéltI‘(Fﬁ)
> (Aeg — C1 — 20) + (Aer — Cy — 2C |l s ()t (F)

where A > (€1 + 2C)/eo(€1) and €g(e1) < €1 < € and C = (||ullcr(p) + [ullcr (5))-

For z € D near z = 0, we have u(z) — u(z) < 0. Furthermore, if z € 9D we have

VE(2) < C|z|* — Aer|z]? <0, when Ae; > C.
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If z € DN OB(0,0) for some small § > 0 then
VE(2) < C(6) — Ae1d? <0, when Ae; > C(8)/6%.

where C, C(d) is a constant depending only on [|u| o1 (5 +[ul| o155 Therefore, VE(z)
attains its maximum over D N B(0,0) at z = 0 (since V*(0) = 0). Thus

D, VE(0) > 0.
This implies that
[Duru(z0)| < A+ Clluller ) + lulles @y + 1¥llc2m))-

where A > C/eg(e1) + C/(€16?). So, the proof of the lemma is complete. O
LEMMA 4.4. Let D, f ¢ satisfy conditions of Theorem 1.1. Then

(4.27) 1D, u(z)| <C, z€aD.

where C'is a constant depending only on f, || c2(5, [¢llcaop), € and D.

Proof. Let zy € 0D be arbitrary point in dD. By shift and rotation, we may
assume that zp = 0 and p(z) has expression of (4.25)

To prove (4.27), by (4.25) and Lemma 4.3, it suffices to prove

0%u
(4.28) a?(0)‘ <cC.
Since
—1
0%u 0%u  O0%u
) YA N
; 92,07 O oz CUED

the proof of (4,28) can be reduced to prove

0%u

8—m%(0) <C.
In fact, we only need to prove

0%u
4.29 ——(0) < C.
( ) 02,0%Zn, -
Since

FY(H(u))0;(u—u) > F(H(u) - F(H(u)) >e>0, z€D

we have that u — v attains its maximum over D at some point in D, but u — u =0
on dD, this implies that D, (u — u) > 0 on dD. In particular, — =2 (u — u)(0) > 0.

ox,
Let IV = {(A\1, -, Adn—1) : A= (A1, -+, A\n) € T'} be the projection of T' in R
Since A(H (u)) € T, we have \(H(u)') € T’. Let
0

(4.30) b= —%(u —u)(0) <0.
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Then for 1 < a,8 <n —1, we have

0%u 0%u O(u — u)

(481 e (0) = g (0) = S 0)05(0) = y50) + b (0)

It clear that for ¢t > 1, A(H (tu+bp)’) € TV, A\(H (tu+bp)’") ¢ T’ when ¢ is very negative,
where H' = [h; ]1<m<n 1 when H = [hiﬂnxn. Let to be the first ¢ < 1 so that

(4.32)  A(toH(w)(0) + bH(p)(0)) € OT <= toA(H (w)(0) + %H(p)(())/) € ar.

Since I is a cone, if ¢y > 0 then (4.32) implies that (A(H (u)(0) + H( )(0)') e TV.
Without loss of generality, we may assume that ¢y > 1/2, 0therw1se
0%u 0%u 0%u

—(0) =(1 —to)m@) +to 8%7(0) +bp,5(0)

with tgp < 1/2. From later argument, one can see that this assumption will implies

that u,7(0) < C.

Since b = _B(gT—y)(O) < 0, we will show that there is n > 0 independent of u,7(20)

and zg € 9D so that
b
(4.34) b> t +n <= (1 —to) > ton/[b| = ton/(=b) > ton/(|lully + ||lull1)

where [lully = ||lullc1p). Without loss of generality, we may assume that [u ﬁ(O) +

(b/t0)p,7(0)] is an (n — 1) x (n — 1) diagonal matrix Dy_1(A, -+, A1) with A <
'S Xn—b

Since I" is a convex cone in R™ ™!, If IY = R™ ™! then it is easy to handle with.

We may assume that IV # R""!. Since A € 9I", there is a supporting plane for I".
In other words,

n—1

(4.35) A eR"™ Y (N — X)) >0}, ZM]_1
Jj=1
Since I is symmetric in )\; and A\; < - < \,_1, it was proved in [8] that one can

choose p; with 11 > po > -+ > pp—1 > 0 so that (4.35) holds and Z;l;ll ij\j =0.
Therefore, we have 1 > pig > -+ > pp—1 > 0 and

n—1 n—1 n—1
(4.36) DN eR™: D N >0h S =1, > pik; =0
j=1 J=1 j=1

This implies that I' C {A € R™ : 327, p1;A; > 0} with p, = 0. Since f(A(H (u)(2)) >
¥(2)+€>0o0n D and u € C?*(D), we have {\(H(u)(2)) : z € D} is a compact subset
of I'. Thus

(4.37) ZMkaE(Z) > Zuk)\k(z) > min { Zﬂk)\k(z) 1z € ﬁ} =a>0
k=1 k=1

k=1

where A (z) are eigenvalues of H(u)(z) with Aj(z) < -+ < Ay (2).



102 S.-Y. LI

Let t; = b/ty. Then

n—1 n—1
0= Z [k Nk = tl"(D(Mh oy pin—1)(u,5(0) + t1pa§(0))) = Z (W + t14%)
_ k=1

Thus
(339)

Z ko0 == Z ra(®) = =5 Z e 0) 2 Gy~ > ©

Let
(4.39) d(z) = —p(2) +7|2|>, 2€D
where 7 is a positive constant with 7 < a;/4; and let
(4.40) w(z) = u(2) +tip(z) + £(2)p(2) + Md(2)>.
Let
Ds = DN B(0,4)
Then, on 0D, we have
(4.41) u(z) —w(z) = —M7?|z|* <0
and, on D N9B(0,9), since t; < 0 and p(z) < 0, we have
u=(2) < Colllu —ulep, + 1oct) - Mrtat < -2 gt

when M > Co([lu — ullop) + ||€||C(5)5)/(5472). As a summary, we have that if
M = Co(llu — ullom) + ||€HC(5)5)/(54T2) with small § > 0 fixed, then

(4.42) u<w, on ODs.
Let (T1(z),- _1) be an orthonormal basis for holomorphic tangent space of

level hypersurface d(w) d(z) at z, we choose T; are C' and Tj(0, 2,) = e, where
ej =(0,---,0,1,0,---,0). Let p, =0, and T, = 8d/\5‘d| Then we define

n . 82
(4.43) A= z_: MTMT,W-W.
Thus,

n—1 a
(4.44)  Ad(2)? = 2dAd(2) + 2y pTiTi;0rd(2) 05d(2) = 2d(2)Ad(z) < —éd(z)

k=1
since

ai

Ad(z) = A0, 2,)d(2) + (A — A0, 2,,))d(2) < —a1 + 7+ Clp(2)| < ——.
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where [p(2)| < a1/(4C) with C = ||A(z)d(z) — A0, 2,)d(2) |0 + 1.
Now we claim that A\(H(w)(z)") ¢ I” for z € Ds. Since
H(w) = H(u+t1p)+(H(p) + 0l @ dp+ dp @ ¢ + M H(d*)

and A(0)(u + t1p)(0) = 0 we have

Au+tp)(2) = > (Ajz + A;z;) + Or(|2*) = Li(2) + O1(J2])

j=1
U(z)Ap(z) = £(2)Ap(0) + Oa(|2*),  (Ap)(0) € (—C, —ai]
and
7Yk TwiTej (lizg + 657:) = 7Y pr(lizi + £7) + Os(|2[?)
k=1 k=1
Therefore,

Aw = Au+ t1p) + £(2)Ap(2) + > i TwiTij (L:D;p + L30:p) + MAd®
1

k=

<Lz )+01(|Z|2) + (Ap)(0) £(2) + Ox(|2*)

Mald(z)

=L ( )+01(IZI ) + (Ap)(0) £(2) + Oa(|2[*) +7O5(|2[)

Ma
—‘rTZ/J,k Ekzk + KEE}C) - Tld(z)

+TZM]€T’C’LT]€J (f zj + f Zi )

= Z (A + Le((Ap)(0) = 7)) 2k + (Ax + L5((Ap)(0) — Tpik))Z

k=1
+0(2) — Ba(z)
= 0(1=P) ~ 22d(2)
Ma
< —Td(z)

by choosing £}, and M > 0 so that
2 Ma1 2
(4.45) b = —A/(Ap)(0) = Tpre),  and O(|zf") < ——|=]".

Let Ag(w) are all eigenvalues of H(w) at z with A\j(w) < -+ < A,(w). Then by
Proposition 2.4 with B = Diag(p1,- -, ttn—1,0)

E:A%Ak ) < tr(H(w)(2)B) = Aw(z) < 0.
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Thus \(H(w)') ¢ T

Let
(4.46) I={xer:f0)=min{u(:): 2 € D} > 0}
and let
(4.47) X = {A ER™: N e RN : A < [[w]ge ) + 1}.

Then for any A € OI' by Assumption (1.10), we have f(\) < ¢° < min{t(2) : z € D}.
Since f is continuous on compact set X, there is 7 > 0 such that if A € X and
(n,--+,nm) + A €T then

(4.48) f((m,-++,m) + A) <o =min{y(z) : z € D}.
Let
(4.49) v(2) = w(z) + (|2 = Cioxn)

where Cy > 0 be chosen so that |z|> — Cioxn > 0 on 9Ds. Then u(z) < v(z) on dDs.
Since A(H(v)) = (A(H(w) + nI,) ¢ T by (4.48), (4.46), (4.47) and A\(H(w)') ¢ I".
By Maximum Principle, i.e., Lemma 2.1, we have u(z) — v(z) < 0 on Ds. Since
u(0) —v(0) = 0, we have

w20 = T > L s Ll
= 0wz gy
Therefore
T (0) = 520 - 20,50
— (1= )5 )+ il 0+ 50
Thus

L
where \(Ep) € T for some fixed M;. Therefore, since A\(H (u)(0)) € I' and

_ U5 o(1)
$(0) = F(H)(©) = toF (Bo/to) + (0 =) F ([ 585 (0 0) - an0/(1 1))

> (1~ fo)F(([oﬂ(iB)* (2 (0) fof\(jl))/(l - to>])

Notices that (1 —t0) > 54 /([lull1 + [lu[|1) > 0 and Lemma 2.2 and Condition (1.11),
we have

(4.50) U (0) < C.
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where C is depending only on [ulls g, [¥lcs 5. |éllcs(op) and T. Thus, the
proof of Lemma 4.4 is complete. 0

We now are ready to prove Theorems 1.1 —1.3.

Proof of Theorem 1.1. Under the assumption of Theorem 1.1, we have that the all
assumptions of Lemmas 4.1-4.4 hold. Combining the results of Lemmas 4.1-4.4, we
have a priori estimate on the admissible solution u of (1.14) satisfying the estimate:

(4.51) lull 2@y < Ce, £ l18llcsopy, ¢l o2 ) < 00

The results in [6] and [23] and arguments in [8] and [7] implies that the Dirichlet
problem (1.14) has a unique solution v € C*°(D) with A(H(u)) € T' on D. Thus, the
proof of Theorem 1.1 is complete. 0O

Proof of Theorem 1.2. The assumptions of Theorem 1.2 imply that the all as-
sumptions of Theorems 3.1 and 3.2 hold. For any ¢ € C’i(D)7 Theorem 3.2 implies
that there is u € C*°(D) so that A(H(u)) €T for all z € D and

(4.52) FO(H(u)(2)) > 9(2) +1, 2€D.
Theorem 1.1 gives the result of Theorem 1.2. 0O

Proof of Theorem 1.3. The proof of the sufficient condition of Theorem 1.3 is a
consequence of Proposition 3.3 and Theorem 1.2. The proof of the necessary condition
can be followed directly from an argument in [8], we omit the detail here. 0O
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