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ON THE DIRICHLET PROBLEMS FOR SYMMETRIC FUNCTION
EQUATIONS OF THE EIGENVALUES
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SONG-YING LI†

To Yum-Tong Siu, on his sixtieth birthday

1. Introduction. Let D be a bounded domain in Cn, and let u ∈ C2(D) be a
real valued-function. Then the complex Hessian of u

(1.1) H[u](z) =
[∂2u(z)
∂zi∂zj

]
n×n

is an n× n hermitian matrix at each point z ∈ D. Let λ(H(u)) = (λ1(z), · · · , λn(z))
be all eigenvalues of H[u](z) as a vector in IRn. Then the kth elementary symmetric
function σ(k) is defined as follows:

(1.2) σ(k)(λ) =
∑

i1<···<ik
λi1 · · ·λik

In particular,

(1.3) detH(u) = σ(n)(λ(H(u)), ∆u = tr(H(u)) = σ(1)(λ(H(u))).

It was proved in [8] that σ(k)(λ)1/k is a concave strictly increasing function on the
symmetric convex cone:

(1.4) Γk = {λ ∈ IRn : σ(j)(λ) > 0, 1 ≤ j ≤ k},
and

(1.5) Γn = {λ ∈ IRn : λj > 0, 1 ≤ j ≤ n}, Γ1 =
{
λ :

n∑
j=1

λj > 0
}
.

Also Γk is symmetric in λ = (λ1, · · · , λn), which means that if λ = (λ1, · · · , λn) ∈ Γk,
then λ̃ = (λi1 , · · · , λin) ∈ Γk where (i1, i2, · · · , in) is any permutation of 1, 2, · · · , n.
We say that u is plurisubharmonic in D if λ(H(u)(z)) ∈ Γn, for all z ∈ D; we say
that u is subharmonic in D if λ(H(u)(z)) ∈ Γ1 for all z ∈ D. We will let Γ be a
convex cone which is symmetric in λ ∈ Γ, with vertex 0 so that Γn ⊆ Γ ⊆ Γ1. Let
M(n,Γ) be subset of all n × n hermitian matices H over C so that λ(H) ∈ Γ where
λ(H) is a vector in IRn being formed by all eigenvalues of H. We will consider more
general symmetric function than the kth symmetric function σ(k) on M(n,Γ). Let D
be a bounded domain in Cn with smooth boundary ∂D. We say that a real-valued
function u is Γ-subharmonic if λ(H(u)(z)) ∈ Γ for all z ∈ D. we will consider the
Dirichlet problem for a functional equation:

(1.6) F (H(u)(z)) = ψ(z), z ∈ D, u = φ on ∂D.
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where F (H) can be written as

(1.7) F (H) = f(λ(H)), H ∈ M(n,Γ),

with f a symmetric function in λ ∈ Γ. In order that the equation (1.6) is elliptic, we
assume that f(λ) is a positive, strictly increasing, concave function on Γ. In other
words, we assume that f is positive, concave and satisfies

(1.8)
∂f

∂λj
> 0, 1 ≤ j ≤ n.

In order to prove an existence theorem, we may assume more on function f . Let

(1.9) ψ0 = min{ψ(z) : z ∈ D}.
Let ψ0 be any positive number so that ψ0 < ψ0. Then we assume that

(1.10) lim sup
λ→λ0

f(λ) ≤ ψ0, λ0 ∈ ∂Γ,

and for any compact subset K of Γ, we assume that

(1.11) lim
R→∞

f(λ1, · · · , λn−1, λn +R) = lim
R→∞

f(Rλ) = ∞,

uniformly for λ ∈ K.
It was proved in [8] that

(1.12) fk(λ) =
(
σ(k)(λ)

)1/k

is a symmetric, positive, strictly increasing concave function on Γk satisfying (1.10)
and (1.11).

Let D be a smoothly bounded domain in Cn, we say that D is Γ–pseudoconvex
if there is CD ≥ 0 so that λ(−H(d) +CH(d2)) ∈ Γ on ∂D where d(z) is the distance
function from z to ∂D.

The existence of a unique classical solution for the Dirichlet problem of symmetric
function of the eigenvalues of real hessian matrix of a function u on a domain in IRn

was proved by Caffarelli, Nirenberg and Spruck in [8]. Many other problems related
to geometric problems were studied by B. Guan and P. Guan [16], P. Guan and X.
Ma in [18], P. Guan, C. S. Lin and X. Ma in [19], P. Guan and Y. Li in [17] and J.
Urbas in [34] with references therein and many others. The Dirichlet problem for the
complex Monge-Ampere equations on strictly pseudoconvex domain in Cn has been
studied many authors, we refer to [1], [2], [9], [7], [15], [25],[22], [26] and references
therein. The existence of classical plurisubharmonic solution for complex Monge-
Ampère equations on strictly pseudoconvex domain was proved by Caffarelli, Kohn,
Nirenberg and Spruck in [7]. In [15], B. Guan proved the similar results hold on weakly
pseudoconvex domain provided the bounday data has plurisubharmonic subsolution.
Results on Hörlder continuity were proved by the author in weakly pseudoconvex
domain of finity type in [26]. Based on the all above known results, we are proposed
to prove the following theorems which are natural generalizations of the known results
mentioned above.

Theorem 1.1. Let Γ be a convex symmetric cone in IRn with Γn ⊆ Γ ⊆ Γ1. Let D
be a smoothly bounded domain in Cn. Let f be a strictly increasing, concave function
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on Γ satisfying (1.10) and (1.11). If φ ∈ C∞(∂D) has an extension u ∈ C∞(D) so
that

(1.13) f(λ(H(u))) ≥ ψ(z) + ε, z ∈ D for some ε > 0,

then the Dirichlet problem

(1.14) f(λ(H(u))) = ψ > 0 in D, u = φ on ∂D

admits a (unique) solution u ∈ C∞(D) with λ(H(u)) ∈ Γ on D.

Theorem 1.2. Let Γ be a convex symmetric cone in IRn with Γn ⊆ Γ ⊆ Γ1. Let
D be a smoothly bounded Γ–pseudoconvex domain in Cn. Let f be a strictly increasing,
concave function on Γ satisfying (1.10) and (1.11). Then the Dirichlet problem

(1.15) f(λ(H(u))) = ψ > 0 in D, u = φ on ∂D

admits a (unique) solution u ∈ C∞(D) with λ(H(u)) ∈ Γ on D.

In particular, for f = σ(k), we have the following theorem.

Theorem 1.3. For 1 < k ≤ n, the Dirichlet problem

(1.16) σ(k)(λ(H(u))) = ψ > 0 in D, u = φ on ∂D

admits a (unique) admissible solution u ∈ C∞(D) provided that

(1.17) ∂D is connected, and σ(k−1)(λ(L)) > 0 on ∂D

where L is a Levi-form of ∂D.
Moreover, when φ =constant, condition (1.17) is also necessary for existence of

a solution u ∈ C2(D).

Applying the method of continuity, and by results proved by Caffarelli, Nirenberg
and Spruck in [6] and Krylov in [23], as well as by the iterration or Lp theory given
by Kohn and Nirenberg [21], it suffices to prove C2 a priori estimates for solutions in
Theorems 1.1–1.3. We will organized the rest of the paper as follows. In Section 2, we
provide some preliminary results. In Section 3, we proved results of the subsolution.
Finally, the main part of the paper, in Section 4, we provide C2 a priori estimates.

2. Preliminary. From now on, we will always let Γ be a symmetric convex cone
in IRn with Γn ⊂ Γ ⊂ Γ1, and f(λ(H)) = F (H) be an increasing, concave, non-
negative function on M(n,Γ). Let Γ′ = {(λ1, · · · , λn−1) ∈ IRn−1 : λ = (λ1, · · · , λn) ∈
Γ} be the projection of Γ into IRn−1. It is easy to see that

(2.1) Γ′
n = Γn−1(IRn−1) = {(λ1, · · · , λn−1) : λj > 0}, Γ′

1 = IRn−1.

For any n × n hermitian matrix H = [hij ], we let H ′ = [hαβ ](n−1)×(n−1). Let
λ(H ′) be a vector formed by all eigenvalues of H ′. The following lemmas were proved
in [8].

Lemma 2.1. (Maximum Principle). Let D be a bounded domain in Cn with C1

boundary. Let u, v ∈ C2(D)∩C(D) so that H(u)(z) ∈ M(n,Γ) for all z ∈ D. Assume
that at every point z ∈ D, λ(H(v(z))) lies outside the set Γ(z, u) = {λ ∈ Γ : f(λ) >
f(λ(H(u)(z))}. If u ≤ v on ∂D then u ≤ v in D.
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Lemma 2.2. With the notation above, we have

(2.2) λ′(H) = (λ1(H), · · · , λn−1(H)) = λ(H ′)+o(1), λn(H) = hnn(1+O(1/hnn)),

as hnn → +∞.

Lemma 2.3. Let Γ be a convex cone in IRn so that Γn ⊆ Γ ⊆ Γ1. Let Γ′ =
{(λ1, · · · , λn−1) : λ ∈ Γ}. If λ(H) ∈ Γ then λ(H ′) ∈ Γ′ where H ′ = (hαβ)(n−1)×(n−1).

Proof. Since λ(H) ∈ Γ, there is ε > 0 so that λ(H− εIn) ∈ Γ. Let Eij be an n×n
matrix with entries 1 at (i, j) position, others are zero. Let H(t) = H + tEnn. Then

λ′(H(t)) = λ(H ′) + o(1) ∈ Γ′, as t→ ∞.

Let t→ +∞, we have λ(H ′) ∈ Γ′, and so λ(H ′ − εIn−1) ∈ Γ′. Thus λ′(H) ∈ Γ′.

The following proposition is proved by M. Marcus in [31] by using knowledge of
probability, we will provide a direct proof here.

Proposition 2.4. Let A = [aij ] and B = [bij ] be hermitian matrices over C. Let
λ1 ≤ · · · ≤ λn be all eigenvalues of A and let µ1 ≥ · · · ≥ µn be all eigenvalues of B.
Then

(2.3) tr(AB) ≥
n∑
k=1

λkµk.

Proof. Without loss of generality, we may assume A and B are positive definite,
otherwise, we will add them by cIn with large positive c. The proposition is true
when n = 1. Assume that it is true for n, we will prove that it is ture for n + 1.
Without loss of generality, we may assume that A is a diagonal matrix, say, A =
Diag(µ1, · · · , µn, µn+1). Since

(2.4) tr(AB) = tr((A− µn+1In+1)B) + µn+1tr(B).

Let B′ = [bαβ ]1≤α,β≤n, and let λ′1 ≤ λ′2 · · · ,≤ λ′n be the all eigenvalues of B′. Let
λ1 ≤ λ2 ≤ · · · ≤ λn ≤ λn+1 be all eigenvalues of B. We claim that λj ≤ λ′j for all
1 ≤ j ≤ n. Write

B =
[
B′ b′

(b′)T b

]
, b′ =

⎡
⎢⎢⎢⎣

b1
·
·
·

bn−1

⎤
⎥⎥⎥⎦ .

Hence

(2.5) gn+1(λ) = det(λIn+1 −B) =
n∏
j=1

(λ− λ′j)(λ− b− 1
λ− λ′j

n∑
k=1

|bk|2)

we have

(2.6) gn+1(λ′�) = −
n∏
j �=�

(λ′� − λ′j)
n∑
k=1

|bk|2 = (−1)n+1−�A�, A� ≥ 0.
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If
∑n
k=1 |bk|2 = 0 then it is easy. We may assume that

∑n
k=1 |bk|2 > 0 or A� > 0 for

all �. We will continue our discussion in the following two cases.
Case 1. If n+1 is even then (−1)�gn+1(λ′�) ≥ 0, then gn+1(λ) has zeros in (λ′j , λ

′
j+1]

for all j = 1, · · · , n− 1. Since gn+1(λ) → +∞ as |λ| → +∞, this implies that gn+1(λ)
has a zero λ1 ≤ λ′1 and a zero λn+1 > λ′n. So λj ≤ λ′j for all j = 1, · · · , n.
Case 2. If n+ 1 is odd then (−1)�gn+1(λ′�) ≤ 0. Since gn+1(λ) → −∞ as λ → −∞,
with similar argument above, we have gn+1(λ) has zeros λj with λ′j ≥ λj for j =
1, 2, · · · , n. So the proof of the claim is complete. Now since

tr((A− µn+1In+1)B) =
n∑
k=1

(µk − µn+1)bkk ≥
n∑
k=1

(µk − µn+1)λ′k

Therefore

tr(AB) ≥
n∑
k=1

(µk − µn+1)λ′k + µn+1tr(B)

=
n∑
k=1

µkλ
′
k + µn+1λn+1 + µn+1

n∑
k=1

(λk − λ′k)

=
n+1∑
k=1

µkλk +
n∑
k=1

µk(λ′k − λk) + µn+1

n∑
k=1

(λk − λ′k)

=
n+1∑
k=1

µkλk +
n∑
k=1

(µk − µn+1)(λ′k − λk)

≥
n+1∑
k=1

µkλk,

and the proof of the proposition is complete by mathematics induction.

Next we gives a simple version of continous case of the previous proposition.

Proposition 2.5. Let f(t) be decreasing on [0, 1] and g(t) is increasing on [0, 1].
Let φ(x, y) ≥ 0 be a measurable function on [0, 1]× [0, 1] so that φ(x, y) = φ(y, x) and

∫ 1

0

φ(x, y)dy = 1, a.e. x ∈ [0, 1].

Then
∫ 1

0

∫ 1

0

φ(x, y)f(x)g(y)dxdy ≥
∫ 1

0

f(x)g(x)dx

Proof. For any x, y ∈ [0, 1], since (f(x) − f(y))(g(x) − g(y)) ≤ 0, we have

f(x)g(x) + f(y)g(y) − f(x)g(y) − f(y)g(x) ≤ 0.

Therefore

f(x)g(x) + f(y)g(y) ≤ f(x)g(y) + f(y)g(x),
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and ∫ 1

0

∫ 1

0

φ(x, y)(f(y)g(x) + f(x)g(y))dxdy

≥
∫ 1

0

∫ 1

0

φ(x, y)[f(x)g(x) + f(y)g(y)]dy

= 2
∫ 1

0

f(x)g(x)dx

Since ∫ 1

0

∫ 1

0

φ(x, y)f(y)g(x)dxdy =
∫ 1

0

∫ 1

0

φ(y, x)f(x)g(y)dxdy

we have ∫ 1

0

∫ 1

0

φ(x, y)(f(y)g(x) + f(x)g(y))dxdy

=
∫ 1

0

∫ 1

0

φ(y, x)f(x)g(y) +
∫ 1

0

∫ 1

0

φ(x, y)f(x)g(y))dxdy

=
∫ 1

0

∫ 1

0

(φ(y, x) + φ(x, y))f(x)g(y)dxdy

Therefore∫ 1

0

∫ 1

0

φ(x, y)f(x)g(y)dxdy =
∫ 1

0

∫ 1

0

φ(y, x) + φ(x, y)
2

f(x)g(y)dxdy

≥
∫ 1

0

f(x)g(x)dx,

and the proof of the lemma is complete.

3. Existence of subsolutions. We first prove the following theorem on defining
function.

Theorem 3.1. Let Γ be a convex cone in IRn with Γn ⊂ Γ ⊂ Γ1. Let ρ ∈ C∞(D)
be a defining function for D so that λ(H(ρ)(z)) ∈ Γ for all z ∈ ∂D. Then there is a
defining function ρ0 ∈ C∞(D) for D so that λ(H(ρ0)) ∈ Γ on D.

Proof. Since Γ is an open set, and λ(H(ρ)(z)) ∈ Γ for all z ∈ ∂D, and ∂D is
compact. By continuity, there is a δ > 0 so that λ(H(ρ)(z)) ∈ Γ for all {z ∈ D :
ρ(z) ≥ −δ}. Now we choose a convex increasing function g(t) ∈ C∞(−∞, 0] so that
g(0) = 0, g(t) = −1 when t ≤ −δ and g′(t) > 0 for t ∈ (−δ, 0). Let

ρ1(z) = g(ρ(z))

It is easy to see that ρ1 ∈ C∞(D) and is a defining function for D. Since

H(ρ1)(z) = g′(ρ)H(ρ) + g′′(ρ)∂ρ⊗ ∂ρ(z)

since g′′ ≥ 0, ∂ρ⊗∂ρ is positive semi-definite, and g′ ≥ 0, we have that λ(H(ρ1)(z)) ∈
Γ for all z ∈ D and λ(H(ρ1) ∈ Γ for ρ > −δ. We let h ∈ C∞

0 (D) so that h(z) ≥ 0 on
D and h(z) = 1 when ρ(z) < −δ/2. Let

ρ0(z) = ch(z)|z|2 + ρ1(z), c > 0
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It is obvious that ρ0 is a defining function for D, and ρ0 < 0 if c > 0 is small enough.
Moreover,

H(ρ0) = g′(ρ)H(ρ)+ g′′(ρ)∂ρ⊗∂ρ(z)+ ch(z)In+ c∂h(z)⊗ z+ cz⊗∂h(z)+ c|z|2H(h)

It is easy to see that λ(H(ρ0)(z)) ∈ Γ when ρ(z) < −δ/2 for any c > 0 since h ≡ 1
there. Now since λ(H(ρ1)) ∈ Γ for ρ(z) ≥ −3δ/4, those λ contained in a compact
subset of Γ, there is a positive distance from it to the boundary ∂Γ. Therefore, there
is c > 0 very small so that λ(H(ρ0)) = λ(H(ρ1) + cH(h|z|2)) ∈ Γ. Thus, the proof of
the theorem is complete.

Theorem 3.2. Let Γ be a convex symmetric cone in IRn. Let F be a concave
increasing function on M(n,Γ) satisfying (1.7) –(1.11). Let D be a smoothly bounded
domain in Cn so that there is a defining function ρ ∈ C∞(D) for D with H(ρ) ∈
M(n,Γ) and F (H(ρ)) > 0 on D. If φ ∈ C∞(∂D) and ψ ∈ C∞(D) is positive, then
there is u ∈ C∞(D) so that

(3.1) F (H(u)) ≥ ψ(z) + 1, in D, and u = φ on ∂D.

Proof. Let φ ∈ C∞(∂D), we still use φ to denote its harmonic extension to D.
Let C1 > 0 so that φ0 = φ(z) + C1ρ(z) satisfying λ(H(φ0)(z)) ∈ Γ by assumption
H(ρ) ∈ M(n,Γ) and (1.11). Let

(3.2) u = φ0(z) + Cρ(z).

Then

(3.3) H(u) = H(φ0(z)) + CH(ρ(z)).

Since F is concave on M(n,Γ) or f is concave on Γ, we have

F (H(u)) ≥ F (2H(φ0))
2

+
F (2CH(ρ))

2

=
F (2H(φ0))

2
+
f(2Cλ(H(ρ)))

2

≥ f(2Cλ(H(ρ)))
2

.

By (1.11), for any compact subset K and a positive constant C0, there is R =
R(K,C0) > 0 so that

(3.4) f(Rλ) ≥ C0, for all λ ∈ K

Now let K = {λ(H(ρ(z))) : z ∈ D} is a compact set in Γ. Let

(3.5) C0 = 2(ψ1 + 1), ψ1 = max{ψ(z) : z ∈ D}
and 2C = R = R(C0,K). Then we have

(3.6) F (H(u)(z)) ≥ ψ1 + 1 for z ∈ D,

and the proof is complete.

Finally, in this section, we shall prove the following proposition.
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Proposition 3.3. Let D be a bounded domain in Cn with ∂D is connected and
C∞. If there is a defining function ρ for D so that λ(Lρ) ∈ Γk−1 on ∂D then there is
a defining function ρ0 for D so that λ(H(ρ0) ∈ Γk on ∂D. Here Lρ is the Levi-form
of ρ on ∂D.

Proof. Without loss of generality, we may assume that |∂ρ|2 = 1/2 on ∂D. Let

ρ0(z) = ρ(z) + Cρ(z)2, z ∈ D.

Then

Lρ(z) = Lρ0(z), z ∈ ∂D

and

λ(H(ρ0)(z)) = (λ′(z), λn) = (λ(Lρ(z)) + o(1), C +O(1)), as C → +∞.

Since λ(Lρ(z)) ∈ Γk−1 on ∂D there is a > 0 and C >> 1 so that

σ(j)(λ′(z) + o(1)) ≥ a, z ∈ ∂D, and 1 ≤ j ≤ k − 1.

This imples that when C > 1 is large enough we have σ(j)(λ(H(ρ)) > 0 on ∂D for all
1 ≤ j ≤ k, and so λ(H(ρ)) ∈ Γk. Therefore, the proof is complete.

4. A priori estimates up to the second derivatives. Let D be a bounded
domain in Cn with smooth boundary. Let u be a real-valued function on D. We
consider the Dirichlet boundary value problem:

(4.1) F (H(u)) = f(λ(H(u))) = ψ(z), z ∈ D; u = φ on ∂D

with the assumptions: ψ ∈ C∞(D) and ψ(z) > 0 on D. Moreover, we assume that
φ ∈ C∞(∂D) has an extension u on D so that

(4.2) λ(H(u)(z)) ∈ Γ and F (H(u)(z)) ≥ ψ(z) + ε, z ∈ D

for some ε > 0. We say that u ∈ C2(D) is an admissible solution of (4.1) if λ(H(u)) ∈
Γ on D. Then we shall prove the following lemma.

Lemma 4.1. Let φ ∈ C∞(∂D) have an extension u satisfying (4.2). Let (4.1)
have an admissible solution u ∈ C1(D). Then

(4.3) ‖u‖C1(D) ≤ C1.

where C1 is a constant depending only on ‖φ‖C(∂D), ‖u‖C1(D), ‖ψ‖C1(D) and ε.

Proof. We still use φ as its harmonic extension of φ from ∂D to D. Then u−φ = 0
on ∂D and ∆(u−φ) = ∆u > 0 (since ∆u > 0). By maximum principle, we have that

(4.4) u(z) − φ(z) ≤ 0, z ∈ D.

Moreover,

(4.5) Dν(u− φ)(z) ≥ 0, z ∈ ∂D

where ν is the outer unit normal vector to ∂D.
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Since f(λ(H(u))) ≥ f(λ(H(u)) and u = u on ∂D (of course, u ≤ u on ∂D), by
the Maximum Principle or Lemma 2.1, we have u ≤ u on D. Since u − u ≤ 0 on D
and u− u = 0 on ∂D, this implies that

(4.6) Dν(u− u) ≥ 0, on ∂D.

Therefore,

(4.7) ‖u‖C(D) ≤ ‖φ‖C(D) + ‖u‖C(D) ≤ C(‖u‖C(D), ‖φ‖C(∂D)).

where C is a constant depending only on ‖φ‖C(∂D) and ‖u‖C(D) and ∂D. Moreover,

(4.8) −‖φ‖C1(∂D) ≤ Dνφ(z) ≤ Dνu(z) ≤ Dνu(z) ≤ ‖u‖C1(D), z ∈ ∂D.

Since u = φ on ∂D, we have

(4.9) |∇u(z)| ≤ ‖φ‖C1(∂D) + ‖u‖C1(D), z ∈ ∂D.

In order to estimate |∇u| on D, we let

(4.10) F ij =
∂F

∂uij
(H(u)), 1 ≤ i, j ≤ n.

Then L = F ij∂ij is an elliptic operator. Since F is concave function on M(n,Γ) and
since (4.1) and (4.2), we have

(4.11) ε ≤ F (H(u)) − F (H(u)) ≤ F ij(H(u))(uij − uij) = L(u− u), on D.

F (H(u)(z)) = ψ(z) on D and the Chain Rules imply that

∂ψ(z)
∂zi

=
∂F (H(u)(z))

∂zi
= F k�(H(u))

∂uk�
∂zi

= L∂iu

Similarly, we have with ψi = ∂ψ
∂zi

and ψj = ∂ψ
∂zj

,

(4.12) Lui = ψi, Luj = ψj , L
∂u

∂xj
=

∂ψ

∂xj
, L

∂u

∂yj
=
∂ψ

∂yj
, 1 ≤ i, j ≤ n.

Therefore, by (4.11) and (4.12)

(4.13) L(a
∂u

∂xj
+b

∂u

∂yj
+C(u−u)) = a

∂ψ

∂xj
+b

∂ψ

∂yj
+CL(u−u) ≥ a

∂ψ

∂xj
+b

∂ψ

∂yj
+Cε ≥ 0

where C = 2
ε ‖∇ψ‖C(D) and a2 + b2 = 1. Thus, a ∂u

∂xj
+ b ∂u∂yj

+ C(u − u) attains its

maximum over D at some point on ∂D. Therefore, by taking a = ±1, b = 0 and
a = 0, b = ±1, we have

|∇u(z)| ≤ 2nC‖u− u‖C(D) + ‖∇u‖C(∂D), z ∈ D.

Therefore,

(4.14) ‖u‖C1(D) ≤ C(‖φ‖C(∂D), ‖u‖C1(D), ‖ψ‖C1(D), ε).
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where C(‖φ‖C(∂D), ‖u‖C1(D), ‖ψ‖C1(D), ε) is a constant depending only on
‖φ‖C1(∂D), ‖u‖C1(D), ‖ψ‖C1(D) and ε. Therefore, the proof of the lemma is
complete.

Lemma 4.2. With the assumption of Lemma 4.1, if u ∈ C2(D) is an admissible
solution of (4.1), then

(4.15) ‖u‖C2(D) ≤ C(‖u‖C1(D), ‖ψ‖C2(D), ε, ‖u‖C2(∂D))

where C is a constant depending only on ‖u‖C1(D), ‖ψ‖C2(D), ε and ‖u‖C2(∂D).

Proof. For any ξ ∈ S2n−1, we consider

(4.16) U(z) = Dξξu(z) + C(u− u), Dξξ = D2
ξ , Dξ =

n∑
j=1

ξn+j
∂u

∂xj
+

n∑
j=1

ξj
∂u

∂yj
.

Let

(4.17) F ij,k� =
∂2F

∂uij∂uk�
.

Then, by the concavity of F , we have F ij,k�aijak� ≤ 0 for any hermitian matrix
A = [aij ]. Therefore,

DξDξψ(z) = DξDξF (H(u))

= Dξ

(
F ijDξuij

)

= F ijk�Dξuk�Dξuij + F ijD2
ξuij

= F ijk�Dξuk�Dξuij + F ij
∂2

∂zi∂zj
Dξξu

≤ LDξξu.

If we let C = 1
ε ‖D2ψ‖C(D) then

(4.18) L(Dξξu+ C(u− u)) ≥ Dξξψ(z) + Cε ≥ 0.

Therefore Dξξu+C(u−u) attains its maximum over D at some point z0 ∈ ∂D. Thus

(4.19) Dξξu(z) ≤ C(‖φ‖C2(∂D), ‖ψ‖C2(D), ε, ‖u‖C1(D)) + ‖D2u‖C(∂D) = C2

Since

∆u(z) > 0, z ∈ D,

we have

C2 ≥ uxjxj
≥ −(2n− 1)C2, C2 ≥ uyjyj

≥ −(2n− 1)C2.

Thus

(4.20) |uxjxj
|, |uyj ,yj

| ≤ (2n− 1)C2, 1 ≤ j ≤ n.
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Since

±2Dxi
Dxj

u = D2
xi±xj

u(z) − (D2
xi
u+D2

xj
u) ≤ (4n− 1)C2,

and

±2Dxi
Dyj

u = D2
xi±yj

u(z) − (D2
xi
u+D2

yj
u) ≤ (4n− 1)C2

and

±2Dyi
Dyj

u = D2
yi±yj

u(z) − (D2
yi
u+D2

yj
u) ≤ (4n− 1)C2.

We have

(4.21) |Dxi
Dxj

u| + |Dyi
Dyj

u| + |Dxi
Dyj

u| ≤ 6nC2.

Thus

(4.22) ‖u‖C2(D) ≤ 6n2C2

and the proof of the lemma is complete.

To complete the estimates for second derivatives of u, it suffices to estimate |∇2u|
on ∂D (or C2). Since u = φ ∈ C∞(∂D), we have

(4.23) |D2
Tu(z)| ≤ C(‖φ‖C2(∂D), ‖u‖C1(D)), z ∈ ∂D

for any smooth unit tangent vector T to ∂D at z ∈ ∂D. What we need to estimate are
|DTDνu| on ∂D and |D2

νu| on ∂D. Which will be given by the following two lemmas.

Lemma 4.3. Let ρ be a defining function for D with Dνρ = 1 on ∂D. With the
assumptions of Lemma 4.1, we have

(4.24) |DTDνu(z)| ≤ C(‖φ‖C3(∂D), ‖ψ‖C2(D), ε), z ∈ ∂D.

Proof. Let z0 ∈ ∂D be an arbitrary point. Without loss of generality, by shift and
rotation, we may assume that z0 = 0, ∂ρ

∂xj
(0) = 0 for 1 ≤ j ≤ n − 1 and ∂ρ

∂yj
(0) = 0

for all 1 ≤ j ≤ n. Moreover, nearby z0 = 0, we can write

(4.25) ρ(z) = −xn + Re
n∑

i,j=1

ρij(0)zizj +
n∑

i,j=1

ρij(0)zizj + P (z) +R(z)

where P (z) is cubic polynomial in z and z, and |R(z)| ≤ C|z|4.
Let tα = yα if 1 ≤ α ≤ n and tα+n = xα if 1 ≤ α ≤ n− 1. Let

aα(z) = − ∂ρ

∂tα
/
∂ρ

∂xn
, 1 ≤ α ≤ 2n− 1.

Then

aα(0) = 0, T =
∂

∂tα
+ aα

∂

∂xn
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is a tangent vector to ∂D near z = 0 ∈ ∂D. We write

aα(z) =
2n−1∑
β=1

bαβtβ + bαxn +O(|t|2 + x2
n), z ∈ D near 0.

Let

Tα =
∂

∂tα
+

2n−1∑
β=1

bαβtβ
∂

∂xn
, bαβ =

∂aα
∂tβ

(0).

Then T = Tα + bαxn
∂
∂xn

+O(|z|2) ∂
∂xn

and

Tα(u− u) = O(|t|2), on ∂D.

Since

∂itβ =
{
−

√−1
2 δi β if 1 ≤ β ≤ n,

1
2δi β−n, if β > n

and

∂jtβ =
{ √−1

2 δjβ if 1 ≤ β ≤ n− 1,
1
2δj β−n, if β > n.

Therefore,

LTαu = Tαψ(z) +
∑
β

bαβF
ij(∂itβ∂juxn

+ ∂jtβ∂iuxn
)

= Tαψ(z) + 2
∑
β<2n

bαβF
ij(∂itβ∂jun + ∂jtβ∂iun)

+2
∑
β

bαβF
ij(

√−1∂itβ∂juyn
−√−1∂jtβ∂iuyn

)

= Tαψ(z) +
√−1

n∑
β=1

bαβF
ij(−δiβunj + δjβuin)

+
n−1∑
β=1

bαβ+nF
ij(δiβunj + δjβuin) + 2

√−1
∑
β

bαβF
ij(∂itβ∂juyn

− ∂jtβ∂iuyn
)

= Tαψ(z) + 2
√−1

n∑
β=1

bαβIm (F iβuin) + 2
n−1∑
β=1

bαβ+nRe (F βjunj)

+2
√−1

∑
β

bαβF
ij(∂itβ∂juyn

− ∂jtβ∂iuyn
)

Since bαβ are real number, we have

2
√−1

n∑
i=1

n∑
β=1

bαβIm (F iβuin) + 2
√−1Re

∑
β

bαβF
ij(∂itβ∂juyn

− ∂jtβ∂iuyn
) = 0
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By rotation of first (n− 1) variables, we may assume that

F βj = δjβF
ββ , ReF βn = Reujn = 0, 1 ≤ β, j ≤ n− 1.

Thus

2
n−1∑
β=1

bαβ+nRe (F βjunj) = 2
n−1∑
j,β=1

bαβ+nRe (F βjunj) + 2
n−1∑
β=1

bαβ+nRe (F βnunn)

= 2
n−1∑
β=1

bαβ+nRe (F ββunβ) + 2
n−1∑
β=1

bαβ+nunnRe (F βn)

= 2
n−1∑
β=1

bαβ+nF
ββRe (unβ)

= 0.

Since

−2Im
∑
β

bαβF
ij(∂itβ∂juyn

−∂jtβ∂iuyn
) ≥ −Ctr(F ij)−1

4
F ij∂i(utβ−utβ ) ∂j(utβ−utβ ).

Therefore

(4.26) ±LTα(u− u) ≥ −C(tr(F ij) + 1) − F ij∂i(utβ − utβ ) ∂j(utβ − utβ ).

Since λ(H(u) ∈ Γ and f(λ(H(u)) ≥ ψ + ε, there is ε1 > 0 such that λ(H(u) −
2ε1In)) ∈ Γ for all z ∈ D, and f(λ(H(u) − 2ε1In)) ≥ ψ(z) + ε0(ε1) > 0 on D, where
ε0(ε1) ≤ ε is positive constant depending only on f ε and sufficiently small ε1. Now
we let

V ±(z) = ±Tα(u− u) +
2n−1∑
β=1

(utβ − utβ )2 +A(u− u− ε1|z|2)

Then

L
(
A(u− u− 2ε1|z|2)

)
≥ A[F (H(u− 2ε1|z|2)) − F (H(u))] = Aε0(ε1)

LV ±(z)

≥ −C1(tr(F ij) + 1) − F ij∂i(utβ − utβ ) ∂j(utβ − utβ )

+2F ij∂i(utβ − utβ )∂j(utβ − utβ ) + 2(utβ − utβ )(
∂ψ

∂tβ
+ F ij

∂3u

∂zi∂zj∂tβ
)

+Aε0(ε1) +Aε1tr(F ij)

≥ (Aε0 − C1 − 2C) + (Aε1 − C1 − 2C‖u‖C3(D))tr(F
ij)

where A ≥ (C1 + 2C)/ε0(ε1) and ε0(ε1) ≤ ε1 ≤ ε and C = (‖u‖C1(D) + ‖u‖C1(D)).
For z ∈ D near z = 0, we have u(z) − u(z) ≤ 0. Furthermore, if z ∈ ∂D we have

V ±(z) ≤ C|z|2 −Aε1|z|2 ≤ 0, when Aε1 ≥ C.
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If z ∈ D ∩ ∂B(0, δ) for some small δ > 0 then

V ±(z) ≤ C(δ) −Aε1δ
2 ≤ 0, when Aε1 ≥ C(δ)/δ2.

where C,C(δ) is a constant depending only on ‖u‖C1(D)+‖u‖C1(D). Therefore, V ±(z)
attains its maximum over D ∩B(0, δ) at z = 0 (since V ±(0) = 0). Thus

DνV
±(0) ≥ 0.

This implies that

|DνTu(z0)| ≤ A+ C(‖u‖C1(D) + ‖u‖C3(D) + ‖ψ‖C2(D)).

where A ≥ C/ε0(ε1) + C/(ε1δ2). So, the proof of the lemma is complete.

Lemma 4.4. Let D, f φ satisfy conditions of Theorem 1.1. Then

(4.27) |Dννu(z)| ≤ C, z ∈ ∂D.

where C is a constant depending only on f , ‖ψ‖C2(D), ‖φ‖C4(∂D), ε and D.

Proof. Let z0 ∈ ∂D be arbitrary point in ∂D. By shift and rotation, we may
assume that z0 = 0 and ρ(z) has expression of (4.25)

To prove (4.27), by (4.25) and Lemma 4.3, it suffices to prove

(4.28)
∣∣∣ ∂2u

∂x2
n

(0)
∣∣∣ ≤ C.

Since

4
n−1∑
j=1

∂2u

∂zj∂zj
+
∂2u

∂y2
n

+
∂2u

∂x2
n

= ∆u ≥ 0,

the proof of (4,28) can be reduced to prove

∂2u

∂x2
n

(0) ≤ C.

In fact, we only need to prove

(4.29)
∂2u

∂zn∂zn
(0) ≤ C.

Since

F ij(H(u))∂ij(u− u) ≥ F (H(u)) − F (H(u)) ≥ ε > 0, z ∈ D

we have that u− u attains its maximum over D at some point in ∂D, but u− u = 0
on ∂D, this implies that Dν(u− u) > 0 on ∂D. In particular, − ∂

∂xn
(u− u)(0) > 0.

Let Γ′ = {(λ1, · · · , λn−1) : λ = (λ1, · · · , λn) ∈ Γ} be the projection of Γ in IRn−1.
Since λ(H(u)) ∈ Γ, we have λ(H(u)′) ∈ Γ′. Let

(4.30) b = − ∂

∂xn
(u− u)(0) < 0.
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Then for 1 ≤ α, β ≤ n− 1, we have

(4.31)
∂2u

∂zα∂zβ
(0) =

∂2u

∂zα∂zβ
(0) − ∂(u− u)

∂xn
(0))ραβ(0) = uαβ(0) + bραβ(0).

It clear that for t ≥ 1, λ(H(tu+bρ)′) ∈ Γ′, λ(H(tu+bρ)′) �∈ Γ′ when t is very negative,
where H ′ = [hij ]1≤i,j≤n−1 when H = [hij ]n×n. Let t0 be the first t < 1 so that

(4.32) λ(t0H(u)(0)′ + bH(ρ)(0)′) ∈ ∂Γ′ ⇐⇒ t0λ(H(u)(0)′ +
b

t0
H(ρ)(0)′) ∈ ∂Γ′.

Since Γ′ is a cone, if t0 > 0 then (4.32) implies that (λ(H(u)(0)′ + b
t0
H(ρ)(0)′) ∈ Γ′.

Without loss of generality, we may assume that t0 > 1/2, otherwise,

(4.33)
∂2u

∂zα∂zβ
(0) = (1 − t0)

∂2u

∂zα∂zβ
(0) + t0

∂2u

∂zα∂zβ
(0) + bραβ(0)

with t0 ≤ 1/2. From later argument, one can see that this assumption will implies
that unn(0) ≤ C.

Since b = −∂(u−u)
∂xn

(0) < 0, we will show that there is η > 0 independent of unn(z0)
and z0 ∈ ∂D so that

(4.34) b ≥ b

t0
+ η ⇐⇒ (1 − t0) ≥ t0η/|b| = t0η/(−b) ≥ t0η/(‖u‖1 + ‖u‖1)

where ‖u‖1 = ‖u‖C1(D). Without loss of generality, we may assume that [uαβ(0) +
(b/t0)ραβ(0)] is an (n − 1) × (n − 1) diagonal matrix Dn−1(λ̃1, · · · , λ̃n−1) with λ̃1 ≤
· · · ≤ λ̃n−1.

Since Γ′ is a convex cone in IRn−1. If Γ′ = IRn−1 then it is easy to handle with.
We may assume that Γ′ �= IRn−1. Since λ̃ ∈ ∂Γ′, there is a supporting plane for Γ′.
In other words,

(4.35) Γ′ ⊂ {λ ∈ IRn−1 :
n−1∑
j=1

µj(λ′j − λ̃j) > 0},
n−1∑
j=1

µj = 1.

Since Γ′ is symmetric in λ′j and λ̃1 ≤ · · · ≤ λ̃n−1, it was proved in [8] that one can
choose µj with µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ 0 so that (4.35) holds and

∑n−1
j=1 µj λ̃j = 0.

Therefore, we have µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ 0 and

(4.36) Γ′ ⊂ {λ′ ∈ IRn−1 :
n−1∑
j=1

µjλ
′
j > 0},

n−1∑
j=1

µj = 1,
n−1∑
j=1

µj λ̃j = 0.

This implies that Γ ⊂ {λ ∈ IRn :
∑n
j=1 µjλj > 0} with µn = 0. Since f(λ(H(u)(z)) ≥

ψ(z)+ ε > 0 on D and u ∈ C2(D), we have {λ(H(u)(z)) : z ∈ D} is a compact subset
of Γ. Thus

(4.37)
n∑
k=1

µkukk(z) ≥
n∑
k=1

µkλk(z) ≥ min
{ n∑
k=1

µkλk(z) : z ∈ D
}

= a > 0

where λk(z) are eigenvalues of H(u)(z) with λ1(z) ≤ · · · ≤ λn(z).
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Let t1 = b/t0. Then

0 =
n−1∑
k=1

µkλ̃k = tr
(
D(µ1, · · · , µn−1)(uαβ(0) + t1ραβ(0))

)
=
n−1∑
k=1

µk(ukk + t1ρkk)

Thus
(3.38)
n−1∑
k=1

µkρkk(0) = − 1
t1

n−1∑
k=1

µkukk(0) =
t0
−b

n−1∑
k=1

µkukk(0) ≥ a

2(‖u‖1 + ‖u‖1)
= a1 > 0.

Let

(4.39) d(z) = −ρ(z) + τ |z|2, z ∈ D

where τ is a positive constant with τ < a1/4; and let

(4.40) w(z) = u(z) + t1ρ(z) + �(z)ρ(z) +Md(z)2.

Let

Dδ = D ∩B(0, δ)

Then, on ∂D, we have

(4.41) u(z) − w(z) = −Mτ2|z|4 ≤ 0

and, on D ∩ ∂B(0, δ), since t1 < 0 and ρ(z) ≤ 0, we have

u− w(z) ≤ C0(‖u− u|C(D) + ‖�‖∞δ) −Mτ2δ4 ≤ −Mτ2

2
δ4

when M ≥ C0(‖u − u‖C(D) + ‖�‖C(D)δ)/(δ
4τ2). As a summary, we have that if

M ≥ C0(‖u− u‖C(D) + ‖�‖C(D)δ)/(δ
4τ2) with small δ > 0 fixed, then

(4.42) u ≤ w, on ∂Dδ.

Let (T1(z), · · · , Tn−1) be an orthonormal basis for holomorphic tangent space of
level hypersurface d(w) = d(z) at z, we choose Tj are C1 and Tj(0, zn) = ej , where
ej = (0, · · · , 0, 1, 0, · · · , 0). Let µn = 0, and Tn = ∂d/|∂d|. Then we define

(4.43) Λ =
n∑
k=1

µkT kiTkj
∂2

∂zi∂zj
.

Thus,

(4.44) Λd(z)2 = 2dΛd(z) + 2
n−1∑
k=1

µkT kiTkj∂id(z) ∂jd(z) = 2d(z)Λd(z) ≤ −a1

2
d(z)

since

Λd(z) = Λ(0, zn)d(z) + (Λ − Λ(0, zn))d(z) ≤ −a1 + τ + C|ρ(z)| ≤ −a1

4
.
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where |ρ(z)| ≤ a1/(4C) with C = ‖Λ(z)d(z) − Λ(0, zn)d(z)‖∞ + 1.

Now we claim that λ(H(w)(z)′) �∈ Γ′ for z ∈ Dδ. Since

H(w) = H(u+ t1ρ) + �H(ρ) + ∂�⊗ ∂ρ+ ∂ρ⊗ ∂�+MH(d2)

and Λ(0)(u+ t1ρ)(0) = 0 we have

Λ(u+ t1ρ)(z) =
n∑
j=1

(Ajzj +Ajzj) +O1(|z|2) = L1(z) +O1(|z|2)

�(z)Λρ(z) = �(z)Λρ(0) +O2(|z|2), (Λρ)(0) ∈ (−C,−a1]

and

τ

n∑
k=1

µkT kiTkj(�izj + �jzi) = τ

n∑
k=1

µk(�izi + �izi) +O3(|z|2)

Therefore,

Λw = Λ(u+ t1ρ) + �(z)Λρ(z) +
n∑
k=1

µkT kiTkj(�i∂jρ+ �j∂iρ) +MΛd2

≤ L1(z) +O1(|z|2) + (Λρ)(0) �(z) +O2(|z|2)

+τ
n∑
k=1

µkT kiTkj(�izj + �jzi) −
Ma1

2
d(z)

= L1(z) +O1(|z|2) + (Λρ)(0) �(z) +O2(|z|2) + τO3(|z|2)

+τ
n∑
k=1

µk(�kzk + �kzk) −
Ma1

2
d(z)

=
n∑
k=1

(Ak + �k((Λρ)(0) − τµk))zk + (Ak + �k((Λρ)(0) − τµk))zk

+O(|z|2) − Ma1

2
d(z)

= O(|z|2) − Ma

2
d(z)

≤ −Ma

4
d(z)

by choosing �k and M > 0 so that

(4.45) �k = −Ak/((Λρ)(0) − τµk), and O(|z|2) ≤ Ma1

4
|z|2.

Let λk(w) are all eigenvalues of H(w) at z with λ1(w) ≤ · · · ≤ λn(w). Then by
Proposition 2.4 with B = Diag(µ1, · · · , µn−1, 0)

n−1∑
k=1

µkλk(w) ≤ tr(H(w)(z)B) = Λw(z) < 0.
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Thus λ(H(w)′) �∈ Γ′.
Let

(4.46) Γ̃ =
{
λ ∈ Γ : f(λ) ≥ min{ψ(z) : z ∈ D} > 0

}

and let

(4.47) X =
{
λ ∈ IRn : λ′ ∈ IRn−1 \ Γ′ : |λ| ≤ ‖w‖C2(D) + 1

}
.

Then for any λ ∈ ∂Γ by Assumption (1.10), we have f(λ) ≤ ψ0 < min{ψ(z) : z ∈ D}.
Since f is continuous on compact set X, there is η > 0 such that if λ ∈ X and
(η, · · · , η) + λ ∈ Γ then

(4.48) f((η, · · · , η) + λ) < ψ0 = min{ψ(z) : z ∈ D}.
Let

(4.49) v(z) = w(z) + η(|z|2 − 1
C0
xn)

where C0 > 0 be chosen so that |z|2 − 1
C0
xn ≥ 0 on ∂Dδ. Then u(z) ≤ v(z) on ∂Dδ.

Since λ(H(v)) = (λ(H(w) + ηIn) �∈ Γ̃ by (4.48), (4.46), (4.47) and λ(H(w)′) �∈ Γ′.
By Maximum Principle, i.e., Lemma 2.1, we have u(z) − v(z) ≤ 0 on Dδ. Since
u(0) − v(0) = 0, we have

− ∂

∂xn
(u− v)(0) ≥ 0 ⇐⇒ −∂(u− u)

∂xn
(0) ≥ η

C0
+ t1 ⇐⇒ b ≥ η

C0
+

b

t0
⇐⇒

⇐⇒ (1 − t0) ≥ ηt0
C0|b|

Therefore

∂2u

∂zα∂zβ
(0) =

∂2u

∂zα∂zβ
(0) − ∂(u− u)

∂xn
(0)ραβ(0)

= (1 − t0)
∂2u

∂zα∂zβ
(0) + t0[

∂2u

∂zα∂zβ
(0) + t1ραβ(0)]

Thus

H(u)(0) = E0 +
[ (1 − t0)uαβ(0) O(1)

O(1)∗ unn(0) −M1

]

where λ(E0) ∈ Γ for some fixed M1. Therefore, since λ(H(u)(0)) ∈ Γ and

ψ(0) = F (H(u)(0)) ≥ t0F (E0/t0) + (1 − t0)F
(
(
[
uαβ O(1)
O(1)∗ (unn(0) −M10/(1 − t0)

])

≥ (1 − t0)F
(
(
[
uαβ O(1)
O(1)∗ (unn(0) −M1)/(1 − t0)

])

Notices that (1− t0) ≥ η
2C0

/(‖u‖1 + ‖u‖1) > 0 and Lemma 2.2 and Condition (1.11),
we have

(4.50) unn(0) ≤ C.
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where C is depending only on ‖u‖C3(D), ‖ψ‖C2(D), ε, ‖φ‖C4(∂D) and Γ. Thus, the
proof of Lemma 4.4 is complete.

We now are ready to prove Theorems 1.1 –1.3.

Proof of Theorem 1.1. Under the assumption of Theorem 1.1, we have that the all
assumptions of Lemmas 4.1–4.4 hold. Combining the results of Lemmas 4.1–4.4, we
have a priori estimate on the admissible solution u of (1.14) satisfying the estimate:

(4.51) ‖u‖C2(D) ≤ C(ε, f, ‖φ‖C4(∂D), ‖ψ‖C2(D)) <∞.

The results in [6] and [23] and arguments in [8] and [7] implies that the Dirichlet
problem (1.14) has a unique solution u ∈ C∞(D) with λ(H(u)) ∈ Γ on D. Thus, the
proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. The assumptions of Theorem 1.2 imply that the all as-
sumptions of Theorems 3.1 and 3.2 hold. For any φ ∈ C∞(D), Theorem 3.2 implies
that there is u ∈ C∞(D) so that λ(H(u)) ∈ Γ for all z ∈ D and

(4.52) f(λ(H(u)(z)) ≥ ψ(z) + 1, z ∈ D.

Theorem 1.1 gives the result of Theorem 1.2.

Proof of Theorem 1.3. The proof of the sufficient condition of Theorem 1.3 is a
consequence of Proposition 3.3 and Theorem 1.2. The proof of the necessary condition
can be followed directly from an argument in [8], we omit the detail here.
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Monge-Ampére type, Comm. Pure Appl. Math., 39 (1986), pp. 539–563.
[30] H-S. Luk and Stephen Yau, Counterexample to boundary regularity of a strongly pseudoconvex

CR submanifold: an addendum to the paper of Harvey-Lawson, Ann. of Math., (2) 148:3
(1998), pp. 1153–1154.

[31] M. Marcus, An eigenvalue inequality for product of normal matrices, Amer. Math. Monthly,
63 (1956), pp. 173–174.

[32] Y.-T. Siu, Pseudoconvexity and the problem of Levi, Bull. Amer. Math. Soc., 84 (1978), pp.
481–512.

[33] Y.-T. Siu, The Levi Problem, Several Complex Variables, Proc. Sympos. Pure Math., XXXX
(1975), AMS Providence, R. I., 1977, pp.45–48.

[34] J. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their prin-
ciple curvature, Math. Z., 205 (1990), pp. 355–372.

[35] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-
Ampère equation, Comm. in Pure and Appl. Math., 31 (1978), pp. 339–411.


