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Université de Ouagadougou, Unité de Formation et de Recherche

en Sciences Exactes et Appliquées
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Abstract

The aim of this work is to study the existence of periodic solutions in the α-norm
for some partial differential equations with infinite delay. A linear part of equations
is assumed to generate an analytic semigroup. The delayed part is assumed to be
continuous with respect to the fractional norm of the linear part and σ-periodic with
respect to the first argument. Using Massera’s approach we prove the existence of
periodic solutions in the linear case. In the nonlinear case, a fixed point theorem for
multivalued mapping is used to prove the existence of periodic solutions. We use also
Horn’s fixed point theorem to get the existence of periodic solutions when solutions are
ultimate bounded. For illustration an example is provided for some reaction-diffusion
equation involving infinite delay.
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1 Introduction

In this work, we study the existence of periodic solutions in the α-norm for the following
partial functional differential equations

du(t)
dt
= −Au(t)+ f (t,ut) for t ∈ R, (1.1)

where f : R×Bα→ X is a continuous function, σ-periodic in its first argument and
A : D(A) ⊆ X→ X is a closed linear operator. Bα is the space of functions mapping (−∞,0]
into X which will be defined later.
We denote by ut for t ∈ R as usual, the historic function defined on (−∞;0] by

ut(θ) = u(t+ θ) for θ ≤ 0,

where u is a function from R into X.

For this purpose, we consider the following Cauchy problem
du(t)

dt
= −Au(t)+ f (t,ut) for t ≥ 0,

u0(θ) = φ(θ) for θ ≤ 0,

(1.2)

where −A generates an analytic semigroup {T (t)}t≥0 on the Banach space X. The initial
function φ belongs to a Banach space B of functions mapping (−∞,0] to X and satisfying
some axioms to be introduced later. For 0 < α < 1, Aα denotes the fractional power of A.
The function f : R+ ×B→ X is continuous and σ-periodic in t i.e f (σ+ t,φ) = f (t,φ) for
t ∈ R and φ ∈B.

In [21], the authors studied equation (1.2) for A generating an analytic semigroup on X and
f a continuous function in the finite delayed case.
The theory and applications of partial functional differential equations were studied in
[2, 22] and where extensively treated by Wu [23]. In [9], the authors studied the existence of
periodic solutions for partial differential equations with infinite delay of the following form:


du(t)

dt
= Au(t)+ f (t,ut) for t ≥ 0,

u(s) = φ(s) for s ≤ 0,

(1.3)

where A is an unbounded nondensely defined linear operator on a Banach space X and sat-
isfies Hille-Yosida’s condition. The function f is continuous, σ-periodic with respect to the
first argument and lipschitz function with respect to the second argument.

In [1, 6], the authors studied the stability of solutions in the α-norm for some partial differ-
ential equations with finite and infinite delays. The theory of semigroups of linear operators
[7, 19] is an important working tools to study partial functional differential equations with
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delays.
In this work, we deal with the existence of periodic solutions of equation (1.1) following the
works done in [16, 17, 18, 24], in the case where A is densely defined linear operator, −A
generates an analytic semigroup and f is not necessarily a lipschitz function. The problem
of finding periodic solutions is an important subject in the qualitative study of functional
differential equations. The Massera’s approach [18] on periodic partial functional differen-
tial equations is used in [9] to explain the relationship between the boundedness of solutions
and periodic solutions.
In many of those studies, the most important feature is to show that the Poincaré’s mapping

Pσ(φ) = uσ(.,φ)

where σ is the period of the system and u the unique mild solution determined by φ is con-
densing. Then, a fixed point theorem can be used to derive periodic solutions.

In [4, 5, 8, 9, 13, 15, 16, 17, 18], the authors proved the existence of periodic solutions in
the linear case or in the case of lipschitz function f by using the boundedness and ultimate
boundedness of solutions of some partial functional differential equations and Hale’s fixed
point theorem [10]. In many of those works, the authors showed that the Poincaré’s mapping
is condensing. Note also that the Sadovskii’s fixed point theorem is used in [20] to prove
the existence of σ-periodic solutions.
In [13], the author used the phase space B that is a space of linear and continuous functions
from (−∞,0] to X endowed with the norm denoted by ||.||B constructed for the first time
by Hale and Kato (see [11]). They showed the existence of periodic solutions of the partial
functional differential equations of the form:


du(t)

dt
= Au(t)+F(t,ut) for t ≥ 0,

u0 = φ ∈B,

(1.4)

where the function F : R×B→ X is continuous and X a Banach space.

The organization of this work is as follows: in section 2, we recall some preliminary results
on the fractional powers of linear operators generating analytic semigroups and the exis-
tence and uniqueness of solutions of partial functional differential equations. We develop
in section 3, the existence of periodic solutions of equation in the nonhomogeneous linear
case. In section 4, we prove the relationship between the existence of periodic solutions
and the boundedness and ultimate boundedness of solutions of equation (1.1). We study
in section 5, the existence of periodic solutions in the nonlinear case using the multival-
ued theory for equation (1.1). Finally, we apply our theoretical results to some examples
reaction-diffusion system involving infinite delay.
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2 Analytic semigroup, fractional power of its generator and par-
tial functional differential equations

Troughout this work we assume the following:

(H1) (−A) is the infinitesimal generator of an analytic semigroup of linear operators {T (t)}t≥0
on a Banach space

(
X, |.|

)
.

Without loss of generality, we suppose that 0 ∈ ρ(A); otherwise instead of A, we take A−δI
where δ is chosen such that 0 ∈ ρ(A−δI) where ρ(A) is the resolvent set of A.

It is well known that |T (t)x| ≤ Meωt|x| for all t ≥ 0, x ∈ X where M ≥ 1 and ω ∈ R.
For all 0 < α < 1, we define (see [19]) the operator A−α by

A−αx =
1
Γ(α)

∫ +∞

0
tα−1T (t)xdt for all x ∈ X,

where Γ(α) denotes the well-known gamma function. The operator A−α is bijective and the
operator Aα is defined by

Aα = (A−α)−1.

We denote by D(Aα), the domain of the operator Aα. Then, D(Aα) endowed with the norm
|x|α = |Aαx| for all x ∈ D(Aα) is a Banach space (more details can be found in [19]). In the
sequel, we denote (D(Aα), |.|α) by Xα. Moreover, we recall the following known results.

Theorem 2.1. ([19], p.69-75) Let 0 < α < 1 and assume that (H1) holds. Then,
(i) T (t) : X→ D(Aα) for each t > 0 and α ≥ 0;
(ii) For all x ∈ D(Aα), one has T (t)Aαx = AαT (t)x;
(iii) For each t > 0, the linear operator AαT (t) is bounded and |AαT (t)x| ≤ Mαt−αeωt|x|,
where Mα is a positive real constant;
(iv) For 0 < α ≤ 1 and x ∈ D(Aα), one has |T (t)x− x| ≤ Nαtα|Aαx|, for t > 0, where Nα is a
positive real constant;
(v) For 0 < α < β < 1, Xβ ↪→ Xα.

From now on, we use an axiomatic definition of the phase space B which was firstly in-
troduced by Hale and Kato in [11]. We assume that B is the normed space of functions
mapping (−∞,0] into X and satisfying the following axioms:

(A) there exist a positive constant N, a locally bounded function M(.) on [0,+∞) and a
continuous function K(.) on [0,+∞), such that if u : (−∞,a]→ X is continuous on [ξ,a]
with uξ ∈B for some ξ < a where 0 < a, then for all t ∈ [ξ,a],

(i) ut ∈B,
(ii) t→ ut is continuous on [ξ,a],
(iii) N|u(t)| ≤ |ut|B ≤ K(t− ξ) sup

ξ≤s≤t
|u(s)|+M(t− ξ)|uξ |B .

(B) B is a Banach space.
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Lemma 2.2. [6] Let C00 be the space of continuous functions mapping (−∞,0] into X with
compact supports and Ca

00 be the subspace of functions with supports included in [−a,0]
endowed with the uniform norm topology. Then Ca

00 ↪→B.

Let
Bα =

{
φ ∈B : φ(θ) ∈ D(Aα) for θ ≤ 0 and Aαφ ∈B

}
and provide Bα with the following norm

|φ|Bα
= |Aαφ|B for φ ∈Bα.

We assume also that

(H2) A−αφ ∈B for all φ ∈B, where the function A−αφ is defined by

(A−αφ)(θ) = A−α(φ(θ)) for θ ≤ 0.

Lemma 2.3. [6] Assume that (H1) and (H2) hold. Then Bα is a Banach space.

Let us now give the notions of solutions which will be studied in our work.

Definition 2.4. A continuous function u : R→ Xα satisfying for all τ,t ∈ R with τ ≤ t

u(t) = T (t−τ)u(τ)+
∫ t

τ
T (t− s) f (s,us)ds

is called a mild solution of equation (1.1) on R.

Definition 2.5. A function u : (−∞,+∞)→ Xα satisfying
u(t) = T (t)φ(0)+

∫ t

0
T (t− s) f (s,us)ds for t ≥ 0,

u0 = φ,

is called a mild solution of equation (1.2) corresponding to the initial data φ ∈Bα.

We make the following additional assumption on f :

(H3) | f (t,φ)− f (t,ψ)| ≤ k|φ−ψ|Bα
for every φ, ψ ∈Bα, t≥ 0, where k is a positive constant.

Theorem 2.6. [6] Assume that conditions (H1), (H2) and (H3) hold. Then, for each φ ∈Bα,
there exists a unique mild solution of equation (1.2) defined for all t ≥ 0.

Let u(.,φ) be the unique mild solution of equation (1.2) associated to φ ∈Bα. We define the
operator U(t) on Bα for each t ≥ 0 by

U(t)(φ) = ut(.,φ).

We have the following important results.



48 K. Ezzinbi, B. A. Kyelem and S. Ouaro

Theorem 2.7. [6] Suppose that (H1), (H2) and (H3) hold and let φ and ψ be in Bα. Then,
there exists a positive function l ∈ l∞loc(R+,R+) such that

|U(t)φ−U(t)ψ|Bα
≤ l(a)|φ−ψ|Bα

for all t ∈ [0,a] and for all a > 0.

Assume now that
(H4) The semigroup (T (t))t≥0 is compact for t > 0.

Theorem 2.8. [6] Assume that (H1), (H2), (H3) and (H4) hold. Then, the solution u(.,φ) of
equation (1.2) is decomposed as follows

ut(.,φ) =U (t)φ+W (t)φ for t ≥ 0,

where W (t) is a compact operator on Bα, for each t > 0 and U (t) is the semigroup solution
of the following equation 

du(t)
dt
= −Au(t) for t ≥ 0,

u0 = φ ∈Bα.

(2.1)

Let K :D(K)Y→ Y be a closed linear oprerator with dense domain D(K) in a Banach space
Y . We denote by σ(K) the spectrum of K.

Definition 2.9. The essential spectrum σress(K) of K is the set of all λ ∈C such that at least
one of the following holds:
(i) the range Im(λI−K) is not closed;
(ii) the generalized eigenspace Mλ(K) = ∪n≥0ker(λI − K) of λ is an infinite dimensional
space;
(iii) λ is a limit of σ(K), that is λ ∈ σ(K)−{λ}.

The essential radius denoted by ress(K) is given by

ress(K) = sup {|λ| : λ ∈ σess(K)} .

Definition 2.10. The spectral bound of the linear operateur A denoted by s(A) is defined as
follows

s(A) = sup {Reλ : λ ∈ σ(A)} .

Definition 2.11. The type of the semigroup {T (t)}t≥0 is defined by

ω0(T ) = inf
{
ω ∈ R : sup

t≥0

{
e−ωt|T (t)|

}
<∞

}
In the sequel, we recall the χ measure of noncompactness, which will be used in the next to
study the existence of periodic solutions via a fixed point theorem for condensing operators.
The χ measure of noncompactness for a bounded set H of a Banach space Y with the norm
|.|Y is defined by

χ(H) = inf {ε > 0 : H hasafinitecoverofdiameter < ε} .

Some fondamental properties on χ measure of noncompactness are given below.
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Lemma 2.12. [14] Let A1 and A2 be bounded sets of a Banach space Y. Then
(i) χ(A1) ≤ dia(A1), where dia(A1) = sup

x,y∈A1

|x− y|Y .

(ii) χ(A1) = 0 if and only if A1 is relatively compact in Y.
(iii) χ(A1

⋃
A2) = max {χ(A1),χ(A2)}.

(iv) χ(λA1) = |λ|χ(A1), λ ∈ R where λA1 = {λx : x ∈ A1}.
(v) χ(A1+A2) ≤ χ(A1)+χ(A2) where A1+A2 = {x+ y : x ∈ A1, y ∈ A2}.
(vi) χ(A1) ≤ χ(A2) if A1 ⊆ A2.

Definition 2.13. The essential norm of a bounded linear operator K on Y is defined by

|K|ess = inf {M ≥ 0 : χ(K(B)) ≤ Mχ(B) for any bounded set B in Y} .

Let V = {V(t)}t≥0 be a c0-semigroup on a Banach space Y .

Definition 2.14. The essential growth ωess(V) of {V(t)}t≥0 is defined by

ωess(V) = inf
{
ω ∈ R : sup

t≥0
e−ωt|V(t)|ess <∞

}
.

Theorem 2.15. [6] The essential growth bound of {V(t}t≥0 is computed by the following
formulas

ωess(V) = lim
t→+∞

1
t

log |V(t)|ess = inf
t>0

1
t

log |V(t)|ess. (2.2)

Moreover
ress(V(t)) = exp(tωess(V)) for t ≥ 0. (2.3)

3 Existence of periodic solutions in the α-norm for nonhomoge-
neous linear equations

In this section, we study the following nonhomogeneous linear equation

du(t)
dt
= −Au(t)+L(t,ut)+ f (t) for t ∈ R, (3.1)

where L : R×Bα→ X is a continuous function, linear with respect to the second argument,
σ-periodic in t, f : R→ X is continuous and σ-periodic.

We consider the following Cauchy problem associated to (3.1):
du(t)

dt
= −Au(t)+L(t,ut)+ f (t) for t ≥ 0,

u0 = φ ∈Bα.

(3.2)

Recall that for equation (3.2), the existence of a mild solution is true, since
F(t,φ) = L(t,φ)+ f (t) is continuous and lipschitzian with respect to φ.
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For φ ∈B, t ≥ 0 and θ ≤ 0, we define the following.

[S (t)φ](θ) =


φ(0) if t+ θ ≥ 0

φ(t+ θ) if t+ θ < 0.
(3.3)

Then {S (t)}t≥0 is a strongly continuous semigroup on B. We set

S 0(t) = S (t)/B0, where B0 = {φ ∈B : φ(0) = 0} .

Definition 3.1. [6] We say that B is a uniform fading memory space if the following con-
ditions hold:
(i) if an uniformly bounded sequence (φn)n in C00 converges to a function φ compactly on
(−∞,0], then φ is in B and |φn−φ|B → 0 as n→ +∞,
(ii) |S 0(t)|B → 0 as t→ +∞.

Lemma 3.2. [6] If B is an uniform fading memory space, then K and M can be chosen
such that K is bounded on R+ and M(t)→ 0 as t→ +∞.

If y is a bounded solution of equation (3.2) on R+ in the sens that

sup
t∈R+
|y(t)|α <∞,

then, using (iii) in Axiom (A) we obtain that there exists a positive constant N1 such that

sup
t∈R+
|yt|Bα

< N1. (3.4)

Theorem 3.3. [6] Assume that (H1), (H2), (H3) and (H4) hold. Then, the solution u(.,φ) of
equation (3.2) is decomposed as follows

ut(.,φ) =U1(t)φ+U2(t)φ for t ≥ 0,

where U2(t) is a compact operator on Bα, for each t > 0 and U1(t) is the semigroup solution
of the following equation 

du(t)
dt
= −Au(t) for t ≥ 0,

u0 = φ ∈Bα.

Moreover, for all ε > 0, there exists Cε > 0 such that

χ(U1(t)) ≤CεM(t− ε) for t > ε.

Theorem 3.4. [6] Assume that (H1), (H2), (H3) and (H4) hold. If B is a uniform fading
memory space, then ωess(U1) < 0.

For the existence of a periodic solution, we use the following important theorem due to
Hale and Chow which is valid for an affine map.
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Theorem 3.5. [10] Let Y be a Banach space, Φ : Y → Y a bounded linear and continuous
operator, y0 ∈ Y given. Let Θ : Y → Y be defined by

Θx = Φx+ y0.

Suppose that Im(I−Φ) is closed and there exists x0 ∈ Y such that {Θnx0 : n ∈ N} is bounded
in Y, then Θ has at least one fixed point in Y.

We have now, the following existence result.

Theorem 3.6. Assume that (H1), (H2), (H3) and (H4) hold and B is a uniform fading
memory space. Moreover, suppose that f : R→ X is continuous and σ-periodic and that
equation (3.2) has a bounded mild solution v on R+ in the sense that sup

t≥0
|v(t)|α < +∞, for

some φ ∈Bα. Then, equation (3.1) has a σ-periodic solution defined on R.

Proof. Consider the Poincaré’s map Pσ : Bα→Bα which is defined by

Pσ(φ) = uσ(.,φ, f ),

where u(.,φ, f ) is the unique mild solution with respect to the initial data φ ∈Bα for equation
(3.2). Then we can write Pσ(φ) = uσ(.,φ,0)+uσ(.,0, f ) where u(.,0, f ) is the mild solution
of equation (3.2) when φ = 0 and u(.,φ,0) is the mild solution of equation (3.2) when f = 0.
Then, Pσ is an affine map.
Recall that uσ(.,φ,0) is decomposed as follows

uσ(.,φ,0) =U1(σ)φ+U2(σ)φ,

where U2(σ) is a compact operator on Bα and {U1(t)}t≥0 is the semigroup solution of equa-
tion (2.1).
Using Theorem 3.4, we obtain that ωess(U1(σ)) < 0 which gives that ress(U1(σ)) < 1. Then,
1 < σess(U1(σ)) which gives that Im(I−uσ(.,φ,0)) is closed in Bα. Note also that Proposi-
tion 2.7 gives the continuity of uσ(.,φ,0) on Bα.

Moreover by virtue of the boundedness of v and the relation (3.4), one can see that

{
Pn
σφ : n ∈ N

}
= {vnσ : n ∈ N}

is bounded in Bα.
We obtain that all conditions of Theorem 3.5 are satisfied. Therefore, Pσ has a fixed point
ψ in Bα and we conclude that equation (3.2) has a σ-periodic solution. Finally, equation
(3.1) has a σ-periodic solution on R. In fact, Let v(.) = v(.,ψ) be a bounded mild solution
of equation (3.2) such that vσ(.,ψ) = ψ. Let us define a function w such that w(.) = v(.+σ).
Then, for all t ≥ 0, we obtain
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w(t) = T (t+σ)ψ(0)+
∫ t+σ

0
T (t+σ− s)[L(s,vs)+ f (s)]ds

= T (t)
[
T (σ)ψ(0)+

∫ σ

0
T (σ− s)[L(s,vs)+ f (s)]ds

]
+

∫ t+σ

σ
T (t+σ− s)[L(s,vs)+ f (s)]ds

= T (t)
[
T (σ)ψ(0)+

∫ σ

0
T (σ− s)[L(s,vs)+ f (s)]ds

]
+

∫ t

0
T (t− s)[L(s+σ,vs+σ)+ f (s+σ)]ds

= T (t)v(σ)+
∫ t

0
T (t− s)[L(s,ws)+ f (s)]ds

= T (t)w(0)+
∫ t

0
T (t− s)[L(s,ws)+ f (s)]ds.

Since w0 = vσ = ψ, for the uniqueness of the mild solution v(.,ψ) associated to the initial
data φ, we have w(t) = v(t) for all t ≥ 0. Thus v(t+σ) = v(t) for all t ≥ 0. �

4 Boundedness, ultimate boundedness and existence of periodic
solutions in the α-norm in the nonlinear case

Now, we will study the existence of σ-periodic solutions of equation (1.1).
Throughout this section, the mild solutions of equation (1.2) are denoted by u(.,φ) and will
be called also solutions of equation (1.2).
We study the existence of periodic solutions of equation (1.2) by using boundedness and
ultimate boundedness of solutions. To do it, we make the following additional assumption.

(H5) The locally bounded function M in axiom (A) is strictly decreasing and satisfies
M(0)=1.
According to (H5), there exists a positive real η ∈ (0,1) such that

M(s) ≤ η, for all s ∈ (0,σ].

Since K is locally bounded then, there exists K1 (the bound of the function K in the defini-
tion of uniform fading memory space) such that

K(s) ≤ K1 for all s ∈ [0,σ].

Let M0 = sup
s∈[0,σ]

|T (s)|.

As η ∈ (0,1) and since M(t) ≤ 1 for all t ≥ 0, we can find an integer N0 such that

ηN0−1[K1M0
1
N
+1] < 1 (4.1)

and
0 < ω0 =

σ

N0
. (4.2)



Periodic solutions in the α-norm 53

Using the same technic as in [15], we define the following sets and we obtain important
results for the existence of σ-periodic solutions.
For D ⊂Bα and u(φ) the unique mild solution of equation (1.2) with respect to φ, we define
the sets

Wl(D) = {ul(.,φ) : φ ∈ D} and W[h,r](D) =
{
u[h,r](φ) : φ ∈ D

}
,

where u[h,r] means the restriction of u on the interval [h,r] and h, r the positive constants
with 0 < h < r.

Proposition 4.1. Let D ⊂Bα be a bounded subset. Then

χ(W[h,r](D)) = 0, (4.3)

for any 0 < h < r ≤ σ.

Proof. Let 0 < h < r ≤ σ, φ ∈ D and t ∈ [h,r] with t > ε > 0. Then

u(t,φ) = T (t)φ(0)+
∫ t

0
T (t− s) f (s,us(.,φ))ds

= T (ε)T (t− ε)φ(0)+T (ε)
∫ t−ε

0
T (t− ε − s) f (s,us(.,φ))ds+

∫ t

t−ε
T (t− s) f (s,us(.,φ))ds

= T (ε)
[
T (t− ε)φ(0)+

∫ t−ε

0
T (t− ε − s) f (s,us(.,φ))ds

]
+

∫ t

t−ε
T (t− s) f (s,us(.,φ))ds

= T (ε)u(t− ε,φ)+
∫ t

t−ε
T (t− s) f (s,us(.,φ))ds.

The set {u(t− ε,φ) : φ ∈ D} is bounded in Xα for some fixed t ∈ [h,r]. Using the compactness
of T (ε), it follows that

{T (ε)u(t− ε,φ) : φ ∈ D} iscompact in Xα.

Also, f (s,us(.,φ)) is bounded for s ∈ [0,σ] since f is σ-periodic with respect to the first
argument and u is locally bounded. Indeed, for s ∈ [0,σ] we have

| f (s,us(.,φ))| = | f (s,us(,φ))− f (s,0)+ f (s,0)|

≤ | f (s,us(.,φ))− f (s,0)|+ | f (s,0)|

≤ k|us(.,φ)|Bα
+ | f (s,0)|

= N2

< ∞.

Moreover, for 0 < β < α < 1 and each φ ∈ D, we have

|Aβ
∫ t

t−ε
T (t− s) f (s,us(.,φ))ds| ≤ MβN2

∫ ε

0
eωss−βds.

Thus,{
Aβ

∫ t

t−ε
T (t− s) f (s,us(.,φ))ds

}
is bounded in X. Using the compactness of
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A−β : X→ Xα,

we conclude that
{∫ t

t−ε
T (t− s) f (s,us(.,φ))ds : φ ∈ D

}
is compact in Xα.

Consequently, {u(t,φ) : φ ∈ D} is compact in Xα for every fixed t ∈ [h,r].
Now, let φ ∈ D be fixed and 0 < h ≤ t0 ≤ r. Take ε > 0 be small enough. Then

u(t0+ ε,φ)−u(t0,φ) = T (t0+ ε)φ(0)+
∫ t0+ε

0
T (t0+ ε − s) f (s,us(.,φ))ds

−
(
T (t0)φ(0)+

∫ t0

0
T (t0− s) f (s,us(.,φ))ds

)
= T (t0+ ε)φ(0)+

∫ t0

0
T (t0+ ε − s) f (s,us(.,φ))ds

+

∫ t0+ε

t0
T (t0+ ε − s) f (s,us(.,φ))ds−T (t0)φ(0)−

∫ t0

0
T (t0− s) f (s,us(.,φ))ds

= (T (ε)− I)u(t0,φ)+
∫ t0+ε

t0
T (t0+ ε − s) f (s,us(.,φ))ds.

Since {u(t,φ) : φ ∈ D} is compact in Xα, by Banach-Steinhaus’s theorem, we obtain that

lim
ε→0
|(T (ε)− I)u(t0,φ)|α = 0 uniformly with respect to φ ∈ D.

Moreover,

|Aα
∫ t0+ε

t0
T (t0+ ε − s) f (s,us(.,φ))ds| ≤ MαN2

∫ ε

0
eωss−αds.

Letting ε goes to 0, we obtain

lim
ε→0
|u(t0+ ε,φ)−u(t0,φ)|α = 0 uniformly with respect to φ ∈ D.

Using the same argument, we get for ε > 0 with t0− ε > 0,

lim
ε→0
|u(t0− ε,φ)−u(t0,φ)|α = 0 uniformly with respect to φ ∈ D.

Thus, the family
{
u[h,r](φ) : φ ∈ D

}
is equicontinuous in C([h,r], Xα).

Using Ascoli-Arzelà’s theorem, we conclude that
{
u[h,r](φ) : φ ∈ D

}
is compact in C([h,r], Xα).

Then, we get
χ(

{
u[h,r](φ) : φ ∈ D

}
) = 0. �

Now, we give the definitions of a condensing operator.

Definition 4.2. A continuous mapping P : Y → Y is said to be χ-contraction if P maps
bounded sets into bounded sets and there exists a constant k ∈ (0,1) such that

χ(P(B)) ≤ kχ(B),

for every bounded subset B in Y such that χ(B) > 0.
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Definition 4.3. A continuous mapping P : Y → Y is said to be χ-condensing map of Y if P
maps bounded sets into bounded sets and

χ(P(B)) < χ(B),

for every bounded subset B in Y such that χ(B) > 0.

Definition 4.4. The solutions u of equation (1.2) are said to be bounded if for each B1 > 0,
there exists a constant B1 > 0, such that |φ|Bα

≤ B1 implies that |u(t,φ)|α ≤ B1, for t ≥ 0.

Definition 4.5. The solutions u of equation (1.2) are said to be ultimate bounded if there is
a bound B > 0 such that for each B2 > 0, there exists a constant k > 0 such that |φ|Bα

≤ B2
and t ≥ k imply that |u(t,φ)|α ≤ B.

The relationship between the local boundedness, the boundedness and ultimate bounded-
ness is given below.

Theorem 4.6. The local boundedness and ultimate boundedness of solutions of equation
(1.2) imply the boundedness of solutions.

Proof. Let B > 0 be given by the ultimate boundedness, then for any B1 > 0, there exists
a constant k > 0 such that |φ|Bα

≤ B1 and t ≥ 0 imply that |u(t,φ)|α ≤ B. The local bound-
edness of solutions gives that there exists a constant B2 > B such that |φ|Bα

≤ B1 implies
that |u(t,φ)|α < B2, for t ∈ [0,k]. It follows that for any positive constant B1, there exists a
constant B2 > B such that |φ|Bα

≤ B1 implies that |u(t,φ)|α < B2 for all t ≥ 0. �

Proposition 4.7. Under the assumptions (H1), (H2), (H3), (H4) and (H5), the Poincaré’s
map

Pσφ = uσ(.,φ),

is χ-condensing on Bα.

For the proof of Proposition 4.7, we need the following lemmas.

Lemma 4.8. For each bounded set D in Bα such that χ(D) > 0, we have

χ(Wt(D)) ≤ K(t− ξ)χ(W[ξ,t](D))+M(t− ξ)χ(Wξ(D)), ξ < t and t− ξ ≥ ω0. (4.4)

Proof. Since the space Bα satisfies the Axiom (A), then Lemma 4.8 follows as in [13, 15].

Lemma 4.9. For each bounded set D in Bα such that χ(D) > 0, we have

χ(W[0,ω0](D)) ≤ M0
1
N
χ(D).

Proof. According to [15], since Bα satisfies Axiom (A), then Lemma 4.9 follows.

Proof of Proposition 4.7. By Proposition 2.7, Pσ is a continuous function from the Banach
space Bα into itself.
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Then, using Lemma 4.8 and relation (4.3) one can write

χ(Pσ(D)) = χ(Wσ(D))

≤ K(σ− (σ−ω0))χ(W[σ−ω0,σ](D))+M(σ− (σ−ω0))χ(Wσ−ω0(D))

= K(ω0)χ(W[σ−ω0,σ](D))+M(ω0)χ(Wσ−ω0(D))

= M(ω0)χ(Wσ−ω0(D))

≤ ηχ(Wσ−ω0(D))

≤ η[K(ω0)χ(W[σ−2ω0,σ−ω0](D))+M(ω0)χ(Wσ−2ω0(D))]

= ηM(ω0)χ(Wσ−2ω0(D))

≤ η2χ(Wσ−2ω0(D))

.

.

.

≤ ηN0−1χ(Wω0(D))

≤ ηN0−1[K(ω0)χ(W[0,ω0](D))+M(ω0)χ(D)].

From (4.1) and according to Lemma 4.9, we obtain that

χ(Pσ(D)) ≤ ηN0−1[K(ω0)χ(W[0,ω0](D))+M(ω0)(D)]

≤ ηN0−1[K1M0
1
N
χ(D)+χ(D)]

≤ ηN0−1[K1M0
1
N
+1]χ(D)

< χ(D).

This implies that Pσ is χ-condensing on Bα. �
The following result is usefull for the boundedness of solutions of equation (1.2).

Theorem 4.10. Assume that there exists a constant C > 0 such that for any bounded set D
in Bα we have

lim
t→+∞

sup
φ∈D
|u(t,φ)|α <C.

Then, the solutions of equation (1.2) are ultimate bounded.

Proof. Let us choose D0 =C+1 > 0. Then, for each D1 > 0, we define the bounded subset
DD1 of Bα by

DD1 = {φ ∈Bα : |φ| ≤ D1}.

Since lim
t→+∞

sup
φ∈DD1

|u(t,φ)|α < C, then for all φ ∈ DD1 there exists k > 0 such that t ≥ k imply

|u(t,φ)|α < C + 1 = D0 for all φ ∈ D. Thus, the solutions of (1.2) are ultimate bounded.
�

Theorem 4.11. Assume that (H1), (H2), (H3), (H4) and (H5) hold. Moreover suppose
that the function f is continuous, σ-periodic with respect to the first argument and that the
solutions of equation (1.2) are ultimate bounded. Then, equation (1.1) has a σ-periodic
solution on R.
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For the proof, we use the following Hale-Lunel’s fixed point theorem which is an extension
of the well known Horn’s fixed point theorem for condensing maps [12].

Theorem 4.12. Suppose that S 0 ⊆ S 1 ⊆ S 2 are convex bounded subsets of a Banach space
Y, such that S 0, S 2 are closed and S 1 is open in S 2. Let P be a condensing map on Y
such that P j(S 1) ⊆ S 2 for j ≥ 0 and there exists a number N(S 1) such that Pk(S 1) ⊆ S 0, for
k ≥ N(S 1). Then P has a fixed point.

Proof of Theorem 4.11. Using the ultimate boundedness and locally boundedness, we ob-
tain that the solutions of equation (1.2) are bounded and ultimate bounded. Let B be the
bound in the definition of ultimate boundedness. By the boundedness of solutions, there
exists a constant B1 > (K1 + 1)B > 0 such that for |φ|Bα

≤ (K1 + 1)B and t ≥ 0, one has
|u(t,φ)|α ≤ B1 where K1 comes from the definition of the uniform fading memory space.
Moreover, there exists a constant B2 > B1 such that for |φ|Bα

≤ B1 and t ≥ 0, one has
|u(t,φ)|α ≤ B2. As the space is a uniform fading memory space, then there exists M1 such
that M(.) ≤ M1. Now let B̃2 > max {B1,K1B2+M1B1} and let

S 2 =
{
φ ∈Bα : |φ|Bα

≤ B̃2
}
,

S 1 =
{
φ ∈Bα : |φ|Bα

< B1
}
,

S 0 =
{
φ ∈Bα : |φ|Bα

≤ (K1+1)B
}
.

Therefore, S 0 ⊆ S 1 ⊆ S 2 are convex bounded subsets of the Banach space Bα, S 0 and S 2
are closed and S 1 = S 1

⋂
S 2 is an open of S 2.

It is known that the existence of fixed point of Poincaré’s map gives rise to the existence of
σ-periodic solution. In fact, let v be such that vσ(.,ψ) = ψ. Define y(t) = v(t+σ). Then, for
t ≥ 0, we obtain

y(t) = T (t+σ)ψ(0)+
∫ t+σ

0
T (t+σ− s) f (s,vs)ds

= T (t)
[
T (σ)ψ(0)+

∫ σ

0
T (σ− s) f (s,vs)ds

]
+

∫ t+σ

σ
T (t+σ− s) f (s,vs)ds

= T (t)
[
T (σ)ψ(0)+

∫ σ

0
T (σ− s) f (s,vs)ds

]
+

∫ t

0
T (t− s) f (s+σ,vs+σ)ds

= T (t)v(σ)+
∫ t

0
T (t− s) f (s,ys)ds

= T (t)y(0)+
∫ t

0
T (t− s) f (s,ys)ds.

This implies that y(t) = v(t +σ) is also a mild solution of equation (1.2) with respect to
ψ. Then the uniqueness of mild solution associated to ψ implies that y = v. Hence, v is
σ-periodic. Note also that P j

σψ = v jσ(.,ψ) for all j ≥ 0.
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Next, for φ ∈ S 1 and j ≥ 1,

|P j
σφ|Bα

= |u jσ(.,φ)|Bα

≤ K( jσ) sup
0≤s≤ jσ

|u(s)|α+M( jσ)|u0|Bα

≤ K( jσ) sup
0≤s≤ jσ

|u(s)|α+M( jσ)|φ|Bα

≤ K1B2+M1B1

≤ B̃2,

which implies Pk
σ(S 1) ⊆ S 2, for all k ≥ 0.

Next, we prove that there is a number N(S 1) such that Pk
σ(S 1) ⊆ S 0 for k ≥ N(S 1). To

this end, we note that using ultimate boundedness of solutions of equation (1.2), there is
a positive number m = m(B1) such that for |φ|Bα

≤ B1 and t ≥ mσ, we have |u(t,φ)|α ≤ B.
Now, let k ≥ m, one can write

|Pk
σφ|Bα

= |ukσ(.,φ)|Bα

≤ K(kσ−mσ) sup
mσ≤s≤kσ

|u(s)|α+M(kσ−mσ)|umσ|Bα

≤ K1B+M(kσ−mσ)
[
K(mσ) sup

0≤s≤mσ
|u(s)|α+M(mσ)|φ|Bα

]
≤ K1B+M(kσ−mσ)[K1B2+M1B1]

≤ K1B+M(kσ−mσ)B̃2.

Thus, as M(t)→ 0 when t→ 0 for the uniform fading memory space, we can find an integer
N(S 1) such that kσ−mσ > 0 and M(kσ−mσ)B̃2 < B for k ≥ N(S 1). Therefore, for k ≥
N(S 1), we have

|P j
σφ|Bα

≤ K1B+M(kσ−mσ)B2

≤ K1B+B

= (K1+1)B,

which implies that Pk
σ(S 1) ⊆ S 0 for all k ≥ N(S 1).

Using Proposition 4.7, we deduce that Pσ is a χ-condensing map on Bα. Consequently, the
Hale-Lunel’s fixed point theorem implies that the Poincaré’s map Pσ has at least one fixed
point on Bα which leads to the existence of a σ-periodic solution of equation (1.2) on R+.
Thus, equation (1.1) has a σ-periodic solution on R. �

5 Nonlinear partial functional differential equation and peri-
odic solutions using multivalued fixed point theory

We study in this part, the existence of periodic solutions of the following partial functional
differential equation

d
dt

u(t) = −Au(t)+L(t,ut)+G(t,ut) for t ∈ R, (5.1)
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where L is continuous, linear with respect to its second variable, σ-periodic in its first vari-
able and G : R×Bα→ X is continuous.

Definition 5.1. We say that u : R→ Xα is a mild solution of equation (5.1) if for any t, τ ∈ R
such that t ≥ τ, one has

u(t) = T (t−τ)u(τ)+
∫ t

τ
T (t− s)[L(s,us)+G(s,us)]ds.

We assume in addition that

(H6) G is σ-periodic in its first variable and takes every bounded set into a bounded set.

Let Bσ be the space of all continuous σ-periodic functions with values in Xα endowed with
the uniform norm topology which is for u ∈ Bσ : |u|σ = sup

s∈[0,σ]
|u(s)|α.

Definition 5.2. [3] Let g : M→ 2M be a multivalued map, where M is a subset of a Banach
space Y and 2M is the power set of M.
(i) For D ⊂ M, the inverse image g−1(D) is the set of all x ∈ M such that g(x)∩D , ∅.
(ii) The map g is called upper semi-continuous if g−1(D) is closed for all closed set D in M.

We have the following result.

Theorem 5.3. [3] Let g : M→ 2M be a multivalued map, where M is a nonempty convex
set in the Banach space Y such that
(i) the set g(x) is nonempty, closed and convex for all x ∈ M,
(ii) the set g(M) is relatively compact,
(iii) the map g : M→ 2M is upper semi-continuous.
Then, g has a fixed point in the sense that there exists x ∈ M such that x ∈ g(x).

We can now announce the main result of this section.

Theorem 5.4. Suppose the hypothesis (H1), (H2), (H4) and (H6) hold. If there exists a
positive constant ρ such that for every y ∈ S ρ = {v ∈ Bσ : |v|σ ≤ ρ}, the equation

d
dt

u(t) = −Au(t)+L(t,ut)+G(t,yt) for t ∈ R (5.2)

has a σ-periodic solution in S ρ. Then the equation (5.1) has at least one σ-periodic solu-
tion.

The following lemma is needed to prove Theorem 5.4.

Lemma 5.5. The linear mapping L : R×Bα→ X satisfies sup
s≥0
|L(s, .)| <∞.

Proof. Let us define the linear operator Ts : Bα→ X by

Ts(φ) = L(s,φ).
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Since L is continuous and σ-periodic on R, for every φ ∈Bα,
sup
s≥0
|Ts(φ)| = sup

s≥0
|L(s,φ)| = sup

s∈[0,σ]
|L(s,φ)| < ∞. Then, using the Banach-Steinhaus’s Theo-

rem, we conclude that

sup
s∈[0,σ]

|L(s, .)| <∞. �

Proof of Theorem 5.4. Let us define the multivalued map g : S ρ→ 2S ρ for y ∈ S ρ by

g(y) =
{

u ∈ S ρ : u(t) = T (t)u(0)+
∫ t

0
T (t− s)[L(s,us)+G(s,ys)]ds for t ∈ [0,σ]

}
.

Let us show that the mapping g satisfies the conditions (i)-(iii) of Theorem 5.3.
(i) For each y ∈ S ρ, g(y) is nonempty. Let u1, u2 in g(y) and λ ∈ [0,1]. We have
λu1 + (1− λ)u2 ∈ g(y), which implies that g(y) is convex. Moreover for every y ∈ S ρ, let
(un)n≥0 be a sequence in g(y) such that un→ u as n→ +∞. Then, we can write

un(t) = T (t)un(0)+
∫ t

0
T (t− s)[L(s,un

s)+G(s,ys)]ds for t ∈ [0,σ].

We have un→ u in Bσ. Then,

sup
s∈[0,σ]

|un(s)−u(s)|α→ 0 as n→ +∞.

Since

un(t) = T (t)un(0)+
∫ t

0
T (t− s)[L(s,un

s)+G(s,ys)]ds for t ∈ [0,σ],

then
L(s,un

s)→ L(s,us).

We know that
|L(s,un

s)| ≤ |L(s, .)| |un
s |Bα

.

Using Lemma 5.5, we deduce that

sup
s∈[0,σ]

|L(s, .)| <∞. (5.3)

It follows that for all t ∈ [0,σ],∫ t

0
|AαT (t− s)[L(s,un

s)+G(s,ys)]|ds ≤ Mα

∫ t

0
eω(t−s)(t− s)−α[|L(s,un

s)|+ |G(s,ys)|]ds

< ∞.

Therefore,

u(t) = T (t)u(0)+
∫ t

0
T (t− s)[L(s,us)+G(s,ys)]ds, for all t ∈ [0,σ].

Consequently, u ∈ g(y) and g(y) is closed.
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(ii) Note that g(S ρ) =
⋃
y∈S ρ

g(y).

Let u ∈ g(S ρ). Then there exists y ∈ S ρ such that

u(t) = T (t)u(0)+
∫ t

0
T (t− s)[L(s,us)+G(s,ys)]ds, for all t ≥ 0.

Let us prove the relative compactness in Xα of
{
u(t) : u ∈ g(S ρ)

}
. We take t ∈ [0,σ] and

ε > 0 such that t− ε > 0. Then,

u(t) = T (ε)[T (t− ε)u(0)+
∫ t−ε

0
T (t− ε − s)[L(s,us)+G(s,ys)]ds]

+

∫ t

t−ε
T (t− s)[L(s,us)+G(s,ys)]ds

= T (ε)u(t− ε)+
∫ t

t−ε
T (t− s)[L(s,us)+G(s,ys)]ds.

The boundedness of u ∈ S ρ and the compactness of the semigroup (T (t))t≥0 for every t > 0
give the relative compactness in X of the family {T (ε)Aαu(t− ε) : t > ε} since {Aαu(t− ε) : t > ε}
is bounded in X.

Moreover, let 0 < α < β < 1. Using (5.3) and (H6), we get that for all y ∈ S ρ,

sup
s∈R
|L(s,us)+G(s,ys)| = N3 <∞. (5.4)

Next, we have

|Aβ
∫ t

t−ε
T (t− s)[L(s,us)+G(s,ys)]ds| ≤

∫ t

t−ε
|AβT (t− s)| |L(s,us)+G(s,ys)|ds

≤ MβN3

∫ ε

0
eωss−βds.

It follows that
{

Aβ
∫ t

t−ε
T (t− s)[L(s,us)+G(s,ys)]ds, u ∈ g(S ρ)

}
for every t ∈ [ε,σ], is to-

tally bounded in X. The pre-compactness of{∫ t

t−ε
T (t− s)[L(s,us)+G(s,ys)]ds, u ∈ g(S ρ)

}
for every t ∈ [ε,σ] in Xα follows from the compactness of the map

A−β : X→ Xα.

Therefore, {
u(t) : u ∈ g(S ρ)

}
for all t ∈ [0,σ] is relatively compact in Xα.



62 K. Ezzinbi, B. A. Kyelem and S. Ouaro

Now, let us show the equicontinuity of
{
u : u ∈ g(S ρ)

}
.

Let 0 ≤ t2 < t1 ≤ σ and u ∈ g(S ρ). Then,

u(t1)−u(t2) = T (t1)u(0)+
∫ t1

0
T (t1− s)[L(s,us)+G(s,ys)]ds−T (t2)u(0)

−

∫ t2

0
T (t2− s)[L(s,us)+G(s,ys)]ds

= T (t1− t2)[T (t2)u(0)+
∫ t2

0
T (t2− s)[L(s,us)+G(s,ys)]ds]

+

∫ t1

t2
T (t1− s)[L(s,us)+G(s,ys)]ds

− T (t2)u(0)−
∫ t2

0
T (t2− s)[L(s,us)+G(s,ys)]ds

= (T (t1− t2)− I)u(t2)+
∫ t1

t2
T (t1− s)[L(s,us)+G(s,ys)]ds.

Then

|u(t1)−u(t2)|α ≤ |(T (t1− t2)− I)u(t2)|α+
∫ t1

t2
|AαT (t1− s)| |L(s,us)+G(s,ys)|ds.

It is well known that lim
h→0

(T (h)− I)ζ = 0, uniformly in ζ ∈ K for any compact set K.

It follows that
lim

t2→t1
t2<t1

|(T (t1− t2)− I)u(t2)|α = 0.

Moreover by (5.4), we have

|Aα
∫ t1

t2
T (t1− s)[L(s,us)+G(s,ys)]ds| ≤

∫ t1

t2
|AαT (t1− s)| |L(s,us)+G(s,ys)|ds

≤ N3Mα

∫ t1−t2

0
eωss−αds.

Finally,
lim

t2→t1
t2<t1

|(u(t1)−u(t2))|α = 0 forall u ∈ g(S ρ).

Arguing as above, one can also show that

lim
t2→t1
t2>t1

|(u(t1)−u(t2))|α = 0 forall u ∈ g(S ρ).

Thus,
{
u : u ∈ g(S ρ)

}
is an equicontinuous family. Note also that,

{
u(t) : u ∈ g(S ρ)

}
for each

t ∈ [0,σ] is relatively compact in Xα.
Therefore, g(S ρ) is a family of uniformly bounded and equicontinuous σ-periodic func-
tions.
Using Ascoli-Arzela’s theorem, we deduce that g(S ρ) is relatively compact in Bσ.
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(iii) Let us show that the mapping g is upper semi-continuous. For that, let (yn)n≥0 and
(zn)n≥0 be sequences respectively in S ρ and g(S ρ) such that

yn→ y, zn→ zas n→ +∞ and zn ∈ g(yn), for all n ≥ 0.

Then,

zn(t) = T (t)zn(0)+
∫ t

0
T (t− s)[L(s,zn

s)+G(s,yn
s)]ds for t ≥ 0.

We have by virtue of (H6) that

sup
s∈[0,σ]

|G(s,yn
s)| <∞. (5.5)

Using the relations (5.3) and (5.5), we deduce that

|

∫ t

0
T (t− s)[L(s,zn

s)+G(s,yn
s)]|αds ≤

∫ t

0
|AαT (t− s)| |[L(s,zn

s)+G(s,yn
s)]|ds

≤ Mα

∫ t

0
eω(t−s)(t− s)−α[|L(s,zn

s)|+ |G(s,yn
s)|]ds

< ∞.

It follows that

z(t) = T (t)z(0)+
∫ t

0
T (t− s)[L(s,zs)+G(s,ys)]ds for t ≥ 0.

Thus, z ∈ g(y) and g is closed. From the relative compactness of g(S ρ), we deduce that g
is upper semi-continuous. Using Theorem 5.3, we obtain the existence of u ∈ S ρ such that
u ∈ g(S ρ). Therefore, u is a σ-periodic solution of the equation (5.1) on R+. �

6 Application

To apply the theoritical results of this work, we consider the following reaction-diffusion
system with infinite delay



∂

∂t
v(t, x) =

∂2

∂x2 v(t, x)+a(t)
∫ 0

−∞

g(θ)h(
∂

∂x
v(t+ θ))dθ for t ≥ 0 and x ∈ [0,π]

v(t,0) = v(t,π) = 0 for t ≥ 0

v(θ, x) = ψ(θ, x) for θ ∈ (−∞,0] and x ∈ [0,π],

(6.1)

where h :R→R is Lipschitz continuous, a :R→R is continuous, σ-periodic and g :R−→R
is continuous. The initial data ψ will be precised in the next.
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In order to write the system (6.1) in an abstract form, we introduce the space X = L2([0,π];R).
Let A be the operator defined on X by

D(A) = H2((0,π);R)∩H1
0((0,π);R),

Ay = −y′′ for y ∈ D(A).

Then, −A generates an analytic semigroup (T (t))t≥0 on X. Moreover, T (t) is compact on X
for every t > 0. The spectrum σ(−A) is equal to the point spectrum Pσ(−A) and is given by
σ(−A) =

{
−n2 : n ≥ 1

}
and the associated eigenfunctions (φn)n≥1 are given by

φn =

√
2
π sin(nx) for x ∈ [0,π]; the associated analytic semigroup is explicitly given by

T (t)y =
∞∑

n=1

e−n2t (y,φn)φn for t ≥ 0 and y ∈ X,

where (., .) is an inner product on X.
We have the following Lemma (see [21]).

Lemma 6.1. [21] If α = 1
2 , then

Ay =
+∞∑
n=1

n2(y,φn)φn for y ∈ D(A),

A
1
2 y =

+∞∑
n=1

n(y,φn)φn for y ∈ X

A
1
2 T (t)y =

+∞∑
n=1

ne−n2t(y,φn)φn for y ∈ X,

A−
1
2 y =

+∞∑
n=1

(1
n

)
(y,φn)φn for y ∈ X

and

A−
1
2 T (t)y =

+∞∑
n=1

(1
n

)
e−n2t(y,φn)φn for y ∈ X.

There exists M ≥ 1 (see [21]) such that for t ≥ 0, |T (t)| ≤ Meωt for some −1 < ω < 0.

Note also that (see [21]) there exists M 1
2
≥ 0 such that

|A
1
2 T (t)| ≤ M 1

2
t−

1
2 eωt for each t > 0.

Therefore, hypothesis (H1) and (H4) are satisfied.
According to [6], we have the following.
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Lemma 6.2. [6] If m ∈ D(A
1
2 ), then m is absolutely continuous, ∂

∂x m ∈ X . Moreover, there
exist positive constants K0 and K1 such that

K0|A
1
2 m|X ≤ |

∂

∂x
m|X ≤ K1|A

1
2 m|X .

Let γ > 0. We consider the following phase space

B =Cγ =

{
φ ∈C((−∞,0]; X) : lim

θ→−∞
eγθ|φ(θ)| exists in X

}
provided with the following norm

|φ|Cγ = sup
θ≤0

eγθ|φ(θ)| for φ ∈Cγ.

According to [6], B satisfies axioms (A), (B) and is a uniform fading memory space. More-
over, it is well known that K(t) = 1 for every t ∈ R+ and M(t) = e−γt for t ∈ R+. (H5) is then
satisfied. Therefore, the norm in B 1

2
is given (see [6]) by

|φ|B 1
2
= sup

θ≤0
eγθ|A

1
2φ(θ)|.

Next, we assume the following.

(H7) e−2γ.g ∈ L2(R−).

Let f be defined on R+×B 1
2

by

f (t,φ)(x) = a(t)
∫ 0

−∞

g(θ)h(
∂

∂x
φ(θ)(x))dθ for x ∈ [0,π] and t ≥ 0.

Proposition 6.3. For each φ ∈B 1
2

and t ∈ [0,+∞), f (t,φ) ∈ L2([0,π];R) and f is continuous
on R+×B 1

2
.

Proof. Let (t,φ) ∈ R+ ×B 1
2

and taking |a|∞ = sup
s≥0
|a(s)|. Since h : R→ R is lipschitzian,

there exists a positive constant K such that

|h(x)| ≤ K|x|+ |h(0)| for all x ∈ R.

Then, for all x ∈ [0,π]

| f (t,φ)(x)| ≤ |a(t)|K
∫ 0

−∞

|g(θ)| |
∂

∂x
φ(θ)(x)|dθ+ |a(t)|

∫ 0

−∞

|g(θ)h(0)|dθ

≤ |a|∞K
∫ 0

−∞

|g(θ)||
∂

∂x
φ(θ)(x)|dθ+ |a|∞|h(0)|

∫ 0

−∞

|g(θ)|dθ.

Using Hölder’s inequality, we get∫ 0

−∞

|g(θ)|dθ =
∫ 0

−∞

e−2γθ|g(θ)|e2γθdθ

≤

(∫ 0

−∞

|g(θ)e−2γθ|2dθ
) 1

2
(∫ 0

−∞

e4γθdθ
) 1

2

< ∞.
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We put

|a|∞

∫ 0

−∞

|g(θ)| |h(0)|dθ =C1

to obtain ∫ π

0

∣∣∣∣|a|∞∫ 0

−∞

|g(θ)| |h(0)|dθ
∣∣∣∣2dx = (C1)2π.

Also, let us set

B(x) =
∫ 0

−∞

|g(θ)||
∂

∂x
φ(θ)(x)|dθ for x ∈ [0,π].

Using again Hölder’s inequality, one can write

B(x) =
∫ 0

−∞

e−2γθ|g(θ)||
∂

∂x
φ(θ)(x)|e2γθdθ

≤

(∫ 0

−∞

|e−2γθg(θ)|2dθ
) 1

2
(∫ 0

−∞

|
∂

∂x
φ(θ)(x)e2γθ|2dθ

) 1
2

.

Then ∫ π

0
|B(x)|2dx ≤

∫ π

0

((∫ 0

−∞

|e−2γθg(θ)|2dθ
)(∫ 0

−∞

|
∂

∂x
φ(θ)(x)e2γθ|2dθ

))
dx

=

∫ π

0

(
|e−2γ.g|2L2(R−)

∫ 0

−∞

|
∂

∂x
φ(θ)(x)e2γθ|2dθ

)
dx

≤ |e−2γ.g|2L2(R−)

(∫ 0

−∞

e2γθ
(
e2γθ

∫ π

0
|
∂

∂x
φ(θ)(x)|2dx

)
dθ

)
= |e−2γ.g|2L2(R−)

(∫ 0

−∞

e2γθ
(
e2γθ|

∂

∂x
φ(θ)|2L2([0,π],R)

)
dθ

)
≤ |e−2γ.g|2L2(R−)

(∫ 0

−∞

e2γθ
(
sup
θ≤0

e2γθ|
∂

∂x
φ(θ)|2L2([0,π],R)

)
dθ

)
≤ |e−2γ.g|2L2(R−)

(∫ 0

−∞

e2γθ
(
sup
θ≤0

e2γθK2
1 |A

1
2φ(θ)|2L2([0,π],R)

)
dθ

)
≤ K2

1 |e
−2γ.g|2L2(R−)

(∫ 0

−∞

e2γθ|A
1
2φ|2Cγ

dθ
)

< ∞.

We conclude that f (t,φ) ∈ L2([0,π],R) for all (t,φ) ∈ R+×B 1
2
.

Let us show that f is continuous. For this purpose, let (tn,φn)n∈N be a sequence in R+×B 1
2

and (t,φ) ∈ R+×B 1
2

such that (tn,φn)→ (t,φ) in R+×B 1
2

as n→ +∞. Then
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(
f (tn,φn)− f (t,φ)

)
(x) = a(tn)

∫ 0

−∞

g(θ)h(
∂

∂x
φn(θ)(x))dθ−a(t)

∫ 0

−∞

g(θ)h(
∂

∂x
φ(θ)(x))dθ

= a(tn)
∫ 0

−∞

g(θ)
[
h(
∂

∂x
φn(θ)(x))−h(

∂

∂x
φ(θ)(x))

]
dθ

+ (a(tn)−a(t))
∫ 0

−∞

g(θ)h(
∂

∂x
φ(θ)(x))dθ

and we obtain that

|( f (tn,φn)− f (t,φ))(x)| ≤ |a(tn)|
∫ 0

−∞

|g(θ)| |h(
∂

∂x
φn(θ)(x))−h(

∂

∂x
φ(θ)(x))|dθ

+ |a(tn)−a(t)|
∫ 0

−∞

|g(θ)h(
∂

∂x
φ(θ)(x))|dθ.

Let us set for all x ∈ [0,π]

Jn(x) = |a(tn)|
∫ 0

−∞

|g(θ)|
∣∣∣∣h(

∂

∂x
φn(θ)(x))−h(

∂

∂x
φ(θ)(x))

∣∣∣∣dθ
and

In(x) = |a(tn)−a(t)|
∫ 0

−∞

|g(θ)h(
∂

∂x
φ(θ)(x))|dθ.

Then

|Jn(x)| ≤ |a|∞K
∫ 0

−∞

e−2γθ|g(θ)||
∂

∂x
φn(θ)(x)−

∂

∂x
φ(θ)(x)|e2γθdθ

≤ |a|∞K
(∫ 0

−∞

∣∣∣∣e−2γθg(θ)
∣∣∣∣2dθ

) 1
2
(∫ 0

−∞

∣∣∣∣( ∂
∂x
φn(θ)(x)−

∂

∂x
φ(θ)(x)

)
e2γθ

∣∣∣∣2dθ
) 1

2

,

which leads to∫ π

0
|Jn(x)|2dx ≤ |a|2∞K2|e−2γ.g|2L2(R−)

∫ 0

−∞

(
e2γθe2γθ

∫ π

0

∣∣∣∣ ∂
∂x
φn(θ)(x)−

∂

∂x
φ(θ)(x)

∣∣∣∣2dx
)
dθ

≤ |a|2∞K2|e−2γ.g|2L2(R−)

∫ 0

−∞

e2γθ
(
sup
θ≤0

e2γθ
∫ π

0

∣∣∣∣ ∂
∂x
φn(θ)(x)−

∂

∂x
φ(θ)(x)

∣∣∣∣2dx
)
dθ

≤ |a|2∞K2|e−2γ.g|2L2(R−)

∫ 0

−∞

e2γθK2
1 (sup

θ≤0
e2γθ

∣∣∣∣A 1
2 (φn(θ)−φ(θ))

∣∣∣∣2
L2([0,π],R)

)dθ

≤ |a|2∞K2
∣∣∣∣e−2γ.g

∣∣∣∣2
L2(R−)

K2
1

∣∣∣∣A 1
2 (φn−φ)

∣∣∣∣2
Cγ

∫ 0

−∞

e2γθdθ.

Since φn→ φ in B 1
2
, then

∫ π

0
|Jn(x)|2dx→ 0 as n→ +∞.
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Moreover, since a : R→ R is continuous and
∫ π

0

∣∣∣∣∫ 0

−∞

|g(θ)h(
∂

∂x
φ(θ)(x))|dθ

∣∣∣∣2dx <∞, then

In(x) = |a(tn)−a(t)|
∫ 0

−∞

|g(θ)h(
∂

∂x
φ(θ)(x))|dθ→ 0 in L2([0,π],R) as n→ 0.

Hence, f (tn,φn)→ f (t,φ) in L2([0,π],R) as n→ +∞ and the proof is complete. �
Let


u(t)(x) = v(t, x) for t ≥ 0 and x ∈ [0,π],

u0(θ)(x) = ψ(θ, x) for θ ∈ (−∞,0] and x ∈ [0,π].

We need the following result to prove that (H3) is satisfied.

Proposition 6.4. Assume that (H7) holds. Then, f is lipschitzian with respect to the second
argument and σ-periodic with respect to the first argument.

Proof. Let φ and ψ in B 1
2
. Then, for x ∈ [0,π], one has

( f (t,φ)− f (t,ψ))(x) = a(t)
∫ 0

−∞

g(θ)
[
h(
∂

∂x
φ(θ)(x))−h(

∂

∂x
ψ(θ)(x))

]
dθ for x ∈ [0,π] and t ≥ 0.

As a is σ-periodic and continuous, then f is σ-periodic with respect to the first argument.
Using now the Hölder inequality, we get that

| ( f (t,φ)− f (t,ψ)) (x)| ≤ |a|∞

∫ 0

−∞

|g(θ)|
∣∣∣∣h(

∂

∂x
φ(θ)(x))−h(

∂

∂x
ψ(θ)(x))

∣∣∣∣dθ
≤ K|a|∞

∫ 0

−∞

|g(θ)|
∣∣∣∣ ∂
∂x
φ(θ)(x)−

∂

∂x
ψ(θ)(x)

∣∣∣∣dθ
= K|a|∞

∫ 0

−∞

e−2γθ|g(θ)|e2γθ
∣∣∣∣ ∂
∂x
φ(θ)(x)−

∂

∂x
ψ(θ)(x)

∣∣∣∣dθ
≤ K|a|∞

(∫ 0

−∞

|e−2γθg(θ)|2dθ
) 1

2
(∫ 0

−∞

e4γθ
∣∣∣∣ ∂
∂x
φ(θ)(x)−

∂

∂x
ψ(θ)(x)

∣∣∣∣2dθ
) 1

2

.

Therefore,

|( f (t,φ)(x)− f (t,ψ)(x)|2 ≤ (K|a|∞)2
(∫ 0

−∞

|e−2γθg(θ)|2dθ
)(∫ 0

−∞

e4γθ
∣∣∣∣ ∂
∂x
φ(θ)(x)−

∂

∂x
ψ(θ)(x)

∣∣∣∣2dθ
)
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∫ π

0
| f (t,φ)(x)− f (t,ψ)(x)|2dx ≤ (K|a|∞)2

(∫ 0

−∞

|e−2γθg(θ)|2dθ
)

×

∫ 0

−∞

e4γθ
(∫ π

0

∣∣∣∣∣h(
∂

∂x
φ(θ)(x))−h(

∂

∂x
ψ(θ)(x))

∣∣∣∣∣2 dx
)
dθ

≤ (K|a|∞)2
(∫ 0

−∞

|e−2γθg(θ)|2dθ
)

×

∫ 0

−∞

e2γθ
(
sup
θ≤0

e2γθ
∫ π

0

∣∣∣∣∣( ∂∂x
φ(θ)(x))−

∂

∂x
ψ(θ)(x)

∣∣∣∣∣2 dx
)
dθ

≤ (K|a|∞)2
(∫ 0

−∞

|e−2γθg(θ)|2dθ
)

×

∫ 0

−∞

e2γθ

sup
θ≤0

eγθ
√∫ π

0

∣∣∣∣∣( ∂∂x
φ(θ)(x))−

∂

∂x
ψ(θ)(x)

∣∣∣∣∣2 dx


2

dθ

≤ (K|a|∞)2
(∫ 0

−∞

|e−2γθg(θ)|2dθ
)

×

∫ 0

−∞

e2γθ
(
sup
θ≤0

eγθK1|A
1
2 (φ(θ)−ψ(θ))|L2([0,π],R)

)2

dθ

≤ (K1K|a|∞)2
(∫ 0

−∞

|e−2γθg(θ)|2dθ
)∫ 0

−∞

e2γθ
∣∣∣∣A 1

2 (φ−ψ)
∣∣∣∣2
Cγ

dθ

≤
(K1K|a|∞)2

2γ

∣∣∣∣e−2γ.g
∣∣∣∣2
L2(R−)

∣∣∣∣φ−ψ∣∣∣∣2
B 1

2

.

Finally, we obtain that

| f (t,φ)− f (t,ψ)|L2([0,π],R) ≤ K2 |φ−ψ|B 1
2

, for φ,ψ ∈B 1
2

and t ∈ R,

where

K2 =
K1K|a|∞√

2γ

(∫ 0

−∞

|e−2γθg(θ)|2dθ
) 1

2

.

Therefore, f is lipschitzian with respect to its second variable. �

Let ϕ be defined by ϕ(θ)(x) = ψ(θ, x) for all θ ∈ (−∞,0] and x ∈ [0,π]. We make the follow-
ing additional assumption:

(H8) ϕ(θ) ∈ D(A
1
2 ) for all θ ≤ 0, with

sup
θ≤0

eγθ

√∫ π

0

(
∂

∂x
ψ(θ, x)

)2

dx <∞

and

lim
θ→θ0

∫ π

0

(
∂

∂x
ψ(θ, x)−

∂

∂x
ψ(θ0, x)

)2

dx = 0 for all θ0 ≤ 0.
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Remark that (H8) implies ϕ ∈B 1
2
. Then, equation (6.1) can be written as follows

d
dt

u(t) = −Au(t)+ f (t,ut) for t ≥ 0,

u0 = ϕ.

(6.2)

Moreover, for each function ψ ∈B 1
2
, one has A−

1
2ψ ∈B 1

2
. In fact, let ψ ∈B 1

2
then, ψ ∈ Cγ

and
|ψ|Cγ = sup

θ≤0
eγθ|ψ(θ)|

Since A−
1
2 is a bounded operator,

|A−
1
2ψ|Cγ = sup

θ≤0
eγθ|A−

1
2ψ(θ)|Cγ

≤ |A−
1
2 |sup
θ≤0

eγθ|ψ(θ)|Cγ .

Therefore (H2) is satisfied.

Now, we have the following result of existence of periodic solutions.

Theorem 6.5. Assume that (H7) and (H8) hold and there exists a positive constant N4 such
that

| f (t,φ)| ≤ N4 for t ∈ [0,+∞) and φ ∈B 1
2
.

Then, equation (6.2) has at least one σ-periodic solution on R+.

Proof. We know that (H1), (H2), (H3), (H4) and (H5) hold. It remains to show that the
solutions of equation (6.2) are ultimate bounded. In fact, we have

|u(t,φ)| 1
2
≤ |A

1
2 T (t)φ(0)|+

∫ t

0
|A

1
2 T (t− s) f (s,us(φ))|ds

≤ Meωt|A
1
2φ(0)|+

∫ t

0
M 1

2
eω(t−s)(t− s)−

1
2 | f (s,us(φ))|ds

≤ Meωt|A
1
2φ(0)|+N4M 1

2

∫ t

0
eω(t−s)(t− s)−

1
2 ds

= Meωt|φ(0)| 1
2
+N4M 1

2

∫ t

0
eωss−

1
2 ds

≤ Meωt|φ(0)| 1
2
+N4M 1

2

∫ +∞

0
eωss−

1
2 ds

= Meωt|φ(0)| 1
2
+N4M 1

2
Γ(

1
2

)
( 1
−ω

) 1
2 .

Since −1 < ω < 0, it follows that there exists a positive constant C > 0 such that

lim
t→+∞

sup
φ∈B
|u(t,φ)| 1

2
<C for any bounded subset B ⊂B 1

2
,



Periodic solutions in the α-norm 71

which implies that the solutions of equation (6.2) are ultimate bounded.
Using now Theorem 4.11, we conclude that equation (6.2) has at least one σ-periodic solu-
tion. �
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