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Abstract

In this paper, we introduce a concept of almost automorphy for random sequences.
Using the Banach contraction principle, we establish the existence and uniqueness of
an almost automorphic solution to some Volterra stochastic difference equation in a
Banach space. Our main results extend some known ones in the sense of mean almost
automorphy. As an application, almost automorphic solution to a concrete stochastic
difference equation is analyzed to illustrate our abstract results.
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1 Introduction

The paper deals with the existence and uniqueness of almost automorphic solution of some
nonlinear stochastic Volterra difference equations of convolution type

X(ω,n+1)=
n∑

j=−∞

a(n− j)T X(ω, j)+ f (n,X(ω,n))ξ(ω,n+1), ω ∈ Ω, n ∈ Z (1.1)

on a Banach spaceB, whereT is a bounded linear operator onB, a :N→ C is summable,f
is an appropriate function to be specified later. Eachξ(n) is a real-valued random variable.

The concept of almost automorphy is an important generalization of the classical almost
periodicity. It was introduced by Bochner [4], for more details about this topics we refer the
reader to [12, 13]. In recent years, the existence of almost periodic and almost automorphic
solutions on different kinds of differential equations has been considerably investigated in
lots of publications [2, 5, 9] because of its significance and applications in physics, mechan-
ics, and mathematical biology. Difference equations have received less studies about them.
During the last few years, Volterra difference equations have emerged vigorously in several
applied fields. Volterra systems mainly arise to model many real phenomena and describe
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processes whose current state is determined by their entire pre-history. They also play a key
role in the study of competitive species in the population dynamics.

For a study of almost periodic or almost automorphic sequences we refer the reader to
Araya et al [1], Bezandry and Diagana [2], Bezandryet al. [3], Corduneanu [5], Cuevas
et al. [6], Diagana [7], Diaganaet al. [8], Han and Hong [10], Hong and Nunez [11] and
references therein.

Motivated by the work of Arayaet al [1] and Cuevaset al. [6], the main purpose of this
paper is to introduce the notion of almost automorphy for random sequences and apply the
concept to investigate the existence of almost automorphic solutions to Eq.(1.1).

The rest of this paper is organized as follows. In Section 2, we introduce the notion of
almost automorphic random sequences and study some of their basic properties. In Section
3, we prove the existence and uniqueness of almost automorhic solutions to some linear
and nonlinear stochastic difference equations, respectively. We illustrate our main result by
providing an example in Section 4.

2 Preliminaries

In this section we establish a basic theory for almost automorphic random sequences. To
facilitate our task, we first introduce the notations needed in the sequel.

Let (B,‖∙‖) be a Banach space and let (Ω,F ,P) be a complete probability space. Through-
out the rest of the paper,Z+ denotes the set of all nonnegative integers. DefineL1(Ω;B) to
be the space of allB-valued random variablesV such that

E‖V‖ :=
(∫

Ω

‖V(ω)‖dP(ω)
)
<∞. (2.1)

It is then routine to check thatL1(Ω;B) is a Banach space when it is equipped with its
natural norm‖ ∙ ‖1 defined by,‖V‖1 := E‖V‖ for eachV ∈ L1(Ω,B).

Let X = {Xn}n∈Z be a sequence ofB-valued random variables satisfyingE‖Xn‖ <∞ for
eachn ∈ Z. Thus, interchangeably we can, and do, speak of such a sequence as a function,
which goes fromZ into L1(Ω;B).

This setting requires the following preliminary definitions.

Definition 2.1. An L1(Ω;B)-valued random sequenceX = {X(n)}n∈Z is said to be Bohr
almost periodic in mean if for eachε > 0 there existsN0(ε) > 0 such that among anyN0

consecutive integers there exists at least an integerp for which

E‖X(n+ p)−X(n)‖ < ε, ∀n ∈ Z.

An integerp with the above-mentioned property is called anε-almost period forX. The
collection of allB-valued random sequencesX = {X(n)}n∈Z which are Bohr almost periodic
in mean is then denoted byAP(Z;L1(Ω;B)).

Similarly, one defines the Bochner almost periodicity in mean as follows:

Definition 2.2. An L1(Ω;B)-valued random sequenceX= {X(n)}n∈Z is called mean Bochner
almost periodic if for every sequence{mk}k∈Z ⊂ Z there exists a subsequence

{
m′k

}

k∈Z
such

that
{
X(n+m′k))

}

k∈Z
converges (in the mean) uniformly inn ∈ Z.
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Following along the same arguments as in the proof of [Diaganaet al. [8], Theorem
2.4, p. 241], one can show that those two notions of almost periodicity coincide.

Theorem 2.3. An L1(Ω;B)-valued random sequence X= {X(n)}n∈Z is Bochner almost pe-
riodic in mean if and only if it is Bohr almost periodic in mean.

The above characterization as well as the definition of automorphic functions in the
continuous case will motivate the following definition.

Definition 2.4. An L1(Ω;B)-valued random sequenceX = {X(n)}n∈Z is said to be almost
automorphic in mean if for every sequence

{
k′n

}
⊂ Z there exists a subsequence{kn} such

that

lim
n→∞

X(k+kn) =: X̄(k) in L1(Ω;B) (2.2)

is well defined for eachk ∈ Z and

lim
n→∞

X̄(k−kn) = X(k) in L1(Ω;B) (2.3)

for eachk ∈ Z

The collection of allB-valued random sequencesX = {X(n)}n∈Z which are almost auto-
morphic in mean is then denoted byAA(Z;L1(Ω;B)).

Remark2.5. Note that if the convergence in Definition 2.4 is uniform onZ, then we obtain
almost automorphy in mean.

Example 2.6. Consider the random mappingX : Z→ L1(Ω,R) defined by

X(k) =
γ

2+cos(k)+cos(
√

2k)
,

whereγ is a random variable withE|γ| <∞.
It can be shown thatX is almost automorphic in mean.

Almost automorphic random sequences have the following fundamental properties.

Theorem 2.7. Let X, Y be almost automorphic random sequences. Then the following
assertions hold:

(i) X+Y is almost automorphic in mean;

(ii) cX is almost automorphic in mean for every scalar c;

(iii) For each fixed l∈ Z, Xl : Z→ L1(Ω;B) defined by Xl(k) := X(k+ l) is almost automor-
phic in mean;

(iv) The mappingX̂ : Z→ L1(Ω;B) defined byX̂(k) = X(−k) is almost automorphic in
mean;

(v) X is bounded in L1(Ω;B). That is,sup
k∈Z

E‖X(k)‖ <∞.
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(vi) sup
k∈Z

E‖X̄(k)‖ ≤ sup
k∈Z

E‖X(k)‖ whereX̄ is defined in (2.2) and (2.3).

The proof of all statements of Theorem 2.7 follows the same lines as in the determinsitic
continuous case [12] and therefore is omitted.

As a consequence of the above theorem, the spaceAA(Z;L1(Ω;B)) of almost automor-
phic random sequences equipped with the norm

‖X‖∞ = sup
k∈Z

E‖X(k)‖ ,

becomes a Banach space.

Theorem 2.8. If A is a bounded linear operator on L1(Ω;B) and X: Z→ L1(Ω;B) is almost
automorphic random sequence, then AX(k), k ∈ Z is also almost automorphic in mean.

Proof. Let (k′n) be a sequence inZ. By assumption, we can then choose a subsequence (kn)
of (k′n) such that

lim
n→∞
‖X(k+kn)− X̄(k)‖ = 0 and lim

n→∞
‖X̄(k−kn)−X(k)‖ = 0,

for eachk ∈ Z.
We then have

E‖AX(k+kn)−AX̄(k)‖ ≤ ‖A‖E‖X(k+kn)− X̄(k)‖ .

Hence, lim
n→∞

E‖AX(k+kn)−AX̄(k)‖ = 0 for eachk ∈ Z.

In a similar way, we can also prove

lim
n→∞

E‖AX̄(k−kn)−AX(k)‖ = 0

for eachk ∈ Z, and thereforeAX is almost automorphic in mean. �

Theorem 2.9.Letα : Z→C be an almost automorphic deterministic sequence and X: Z→
L1(Ω;B) be an almost automorphic random sequence. ThenαX : Z→ L1(Ω;B) defined by
(αX)(k) = α(k)X(k), k ∈ Z is almost automorphic in mean.

Proof. Let (k′n) be a sequence inZ. By assumption, we can then choose a subsequence (kn)
of (k′n) such that

1) lim
n→∞
|α(k+kn)− ᾱ(k)| = 0 and lim

n→∞
|ᾱ(k−kn)−α(k)| = 0

and
2) lim

n→∞
‖X(k+kn)− X̄(k)‖ = 0 and lim

n→∞
‖X̄(k−kn)−X(k)‖ = 0,

for eachk ∈ Z.
Also, sinceα andX̄ are bounded, there existM1 > 0 andM2 > 0 such that supn∈Z |α(n)| ≤M1

and supn∈ZE‖X̄(n)‖ ≤ M2.
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We then have

E‖α(k+kn)X(k+kn)− ᾱ(k)X̄(k)‖

≤ E‖α(k+kn)[X(k+kn)− X̄(k)]‖+E‖[α(k+kn)− ᾱ(k)]X̄(k)‖

≤ |α(k+kn)|E‖X(k+kn)− X̄(k)‖+ |α(k+kn)− ᾱ(k)|E‖X̄(k)‖

≤ M1E‖X(k+kn)− X̄(k)‖+M2|α(k+kn)− ᾱ(k)| .

Hence, lim
n→∞

E‖α(k+kn)X(k+kn)− ᾱ(k)X̄(k)‖ = 0 for eachk ∈ Z.

In a similar way, we can also prove

lim
n→∞

E‖ᾱ(k−kn)X̄(k−kn)−α(k)X(k)‖ = 0

for eachk ∈ Z, and thereforeαX is almost automorphic in mean. �

More generally, we have

Theorem 2.10.Let X,Y : Z→ L1(Ω;B) be almost automorphic random sequences. Assume
that X and Y are independent. Then XY: Z→ L1(Ω;B) defined by(XY)(k)= X(k)Y(k), k∈ Z
is almost automorphic in mean.

Proof. Let (k′n) be a sequence inZ. By assumption, we can then choose a subsequence (kn)
of (k′n) such that

1) lim
n→∞

E‖X(k+kn)− X̄(k)| = 0 and lim
n→∞
|X̄(k−kn)−X(k)| = 0

and
2) lim

n→∞
‖Y(k+kn)− Ȳ(k)‖ = 0 and lim

n→∞
‖Ȳ(k−kn)−Y(k)‖ = 0,

for eachk ∈ Z.
Also, sinceX andȲ are bounded, there existM1 > 0 andM2 > 0 such that supn∈Z |α(n)| ≤M1

and supn∈ZE‖X̄(n)‖ ≤ M2.
Using that fact thatX andY are independent, we then have

E‖X(k+kn)Y(k+kn)− X̄(k)Ȳ(k)‖

≤ E‖X(k+kn)[Y(k+kn)− Ȳ(k)]‖+E‖[X(k+kn)− X̄(k)]Ȳ(k)‖

≤ E‖X(k+kn)‖E‖Y(k+kn)− Ȳ(k)‖+E‖X(k+kn)− X̄(k)‖E‖Ȳ(k)‖

≤ M1E‖Y(k+kn)− Ȳ(k)‖+M2E‖X(k+kn)− X̄(k)‖ .

Hence, lim
n→∞

E‖X(k+kn)Y(k+kn)− X̄(k)Ȳ(k)‖ = 0 for eachk ∈ Z.

In a similar way, we can also prove

lim
n→∞

E‖X̄(k−kn)Ȳ(k−kn)−X(k)Y(k)‖ = 0

for eachk ∈ Z, and thereforeXY is almost automorphic in mean. �

For applications to nonlinear stochastic difference equations the following concept of
almost automorphic random sequence depending on parameters will be useful.

Let (B1,‖ ∙ ‖1) and (B2,‖ ∙ ‖2) be Banach spaces and letL1(Ω;B1) andL1(Ω;B2) be their
correspondingL1-spaces, respectively.
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Definition 2.11. A function F : Z× L1(Ω;B1) 7→ L1(Ω;B2), (n,U) 7→ F(n,U) is said to be
almost automorphic in mean inn ∈ Z uniformly in U ∈ L1(Ω;B1), if for every sequence{
k′n

}
⊂ Z there exists a subsequence{kn} such that

lim
n→∞

F(k+kn,U) =: F̄(k,U) in L1(Ω;B2) (2.4)

is well defined for eachk ∈ Z, U ∈ L1(Ω;B1), and

lim
n→∞

F̄(k−kn,U) = F(k,U) in L1(Ω;B2) (2.5)

for eachk ∈ Z andU ∈ L1(Ω;B1).

The proofs of the following results follows the same lines as in the deterministic con-
tinuous case (see [12] Theorem 2.1.3).

Theorem 2.12. Let F, G: Z× L1(Ω;B1)→ L1(Ω;B2) be almost automorphic random se-
quences in k∈ Z uniformly in U∈ L1(Ω;B1). Then the following assertions hold:

(i) F +G is almost automorphic in mean;

(ii) cF is almost automorphic in mean for every scalar c;

(iii) sup
k∈Z

E‖F,U(k)‖ = MU <∞ for each U∈ L1(Ω;B1);

(vi) sup
k∈Z

E‖F̄(k,U)‖ = NU < ∞ for each U∈ L1(Ω;B1), whereF̄ is defined in (2.4) and

(2.5).

We now state the following composition result.

Theorem 2.13.Let F : Z+ × L1(Ω;B1)→ L1(Ω;B2), (n,U) 7→ F(n,U) be almost automor-
phic in mean in n∈ Z+ uniformly in U∈ L1(Ω;B1). If in addition, F is Lipschitz in U in the
following sense: there exists L> 0 such that

E‖F(t,U)−F(t,V)‖2 ≤ L E‖U −V‖1 ∀U,V ∈ L1(Ω;B1), n ∈ Z+

then for any almost automorphic random sequence X= {X(n)}n∈Z, then the L1(Ω;B1)-valued
random sequence Y(n) = F(n,X(n)) is almost automorphic in mean.

The following result will play a key role in the study of almost automorphic solutions
of linear and nonlinear stochastic Volterra difference equations.

Theorem 2.14.Let b: Z+→ C be a summable sequence, i.e
∑∞

l=0 |b(l)| <∞. Then for any
almost automorphic random sequence X: Z→ L1(Ω;B), the random sequence W(∙) defined
by

W(k) =
k∑

l=−∞

b(k− l)X(l), k ∈ Z

is also almost automorphic in mean.
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Proof. Let (k′n) be an arbitrary sequence of integers. SinceX is almost automorphic in
mean, there exists a subsequence (kn) of (k′n) such that

lim
n→∞

E‖X(k+kn)− X̄(k)‖ = 0

for eachk ∈ Z and
lim
n→∞

E‖X̄(k−kn)−X(k)‖ = 0

for eachk ∈ Z.
DefineW̄(k) =

∑k
l=−∞b(k− l)X̄(l). We then have

E‖W(k+kn)−W̄(k)‖ = E
∥∥∥∥

k+kn∑

k=−∞

b(k+kn− l)X(l)−
k∑

l=−∞

b(k− l)X̄(l)
∥∥∥∥

= E
∥∥∥∥

k∑

l=−∞

b(k− l)[X(l +kn)− X̄(l)]
∥∥∥∥

≤
k∑

l=−∞

|b(k− l)|E‖X(l +kn)− X̄(l)‖ .

Note that

E‖W(k)‖ ≤
k∑

l=−∞

|b(k− l)|E‖X(l)‖ ≤ ‖X‖∞
k∑

l=−∞

|b(k− l)| <∞ .

Thus, by Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

E‖W(k+kn)−W̄(k)‖ ≤
k∑

l=−∞

|b(k− l)| lim
n→∞

E‖X(l +kn)− X̄(l)‖ = 0 .

Hence,
lim
n→∞

E‖W(k+kn)−W̄(k)‖ = 0

for eachk ∈ Z.
In a similar way, we can also prove

lim
n→∞

E‖W̄(k−kn)−W(k)‖ = 0

for eachk ∈ Z, and thereforeW is almost automorphic in mean. �

3 Almost Automorphic Solutions of Stochastic Volterra Differ-
ence Equations

3.1 Linear case

In this subsection we study the existence of almost automorphic solutions for linear stochas-
tic Volterra difference equation of type

X(ω,n+1)=
n∑

j=−∞

a(n− j)T X(ω, j)+ f (n)ξ(ω,n+1) , ω ∈ Ω, n ∈ Z (3.1)
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whereT is a bounded linear operator onB, a :N→ C is summable,f is an almost automor-
phic function. Eachξ(n) is a real-valued random variable.

We make the following assumption aboutξ through the paper:

(i) ξ = {ξ(n), n ∈ Z} is a sequence of independent real-valued random variables;

(ii) ξ is an almost automorphic random sequence.

LetL(B) be the space of all bounded linear operator onB. ForT ∈L(B), defines(T,k) ∈
L(B) as a solution of the difference equation

s(T,k+1) =

k∑

k=0

Ta(k− j)s(T, j), k= 0,1,2, ∙ ∙ ∙

s(T,0) = I

We have the following theorem.

Theorem 3.1. Assume that s(T, ∙) is a summable function and that f: Z→ B is an almost
automorphic function. Then, Eq.(3.1) has an almost automorphic solution given by

X(n+1)=
n∑

k=−∞

s(T,n−k) f (k)ξ(k+1) . (3.2)

Proof. Let X be the random sequence given in (3.2). Using the fact thatT is linear and that
the functions(T, ∙) is summable, we then have

n∑

j=−∞

a(n− j)T X( j)

=

n∑

j=−∞

a(n− j)T
( j−1∑

τ=−∞

s(T, j −1−τ) f (τ)ξ(τ+1)
)

= T
n−1∑

j=−∞

j∑

τ=−∞

a(n−1− j)s(T, j −τ) f (τ)ξ(τ+1)

= T
n−1∑

τ=−∞

n−1∑

j=τ

a(n−1− j)s(T, j −τ) f (τ)ξ(τ+1)

=

n−1∑

τ=−∞

(n−1−τ∑

j=0

Ta(n−1−τ− j)s(T, j)
)
f (τ)ξ(τ+1)

=

n−1∑

τ=−∞

s(T,n−τ) f (τ)ξ(τ+1)

=

n∑

τ=−∞

s(T,n−τ) f (τ)ξ(τ+1)− s(T,0) f (n)ξ(n+1)
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= X(n+1)− f (n)ξ(n+1)

which proves thatX is the solution of Eq.(3.1). Applying Theorems 2.7 and 2.9, we con-
clude thatX is almost automorphic in mean. �

3.2 Nonlinear case

To analyze Eq.(1.1), our strategy consists of studying the existence of almost automorphic
solutions to the corresponding stochastic Volterra difference of the form:

X(n+1)=
n∑

j=−∞

a(n− j)T X( j)+ f (n,X(n))ξ(n+1) , n ∈ Z (3.3)

whereT is a bounded linear operator onL1(Ω,B), a : N→ C is summable,f is an almost
automorphic random function inn ∈ Z uniformly in the second variable. Eachξ(n) is a
real-valued random variable.

In addition to Assumptions (i) and (ii ) on ξ, we assume that

(iii) ξ is independent ofX = {X(n), n ∈ Z}, the solution of Eq. (3.3).

For T ∈ L(B), defineNT =
∑∞

j=0‖s(T, j)‖.
We now state our main result.

Theorem 3.2. Let f : Z×L1(Ω;B)→ L1(Ω;B) be an almost automorphic random function
in k ∈ Z for each U∈ L1(Ω;B). Suppose that f satisfies Lipschitz condition: there exists an
L > 0 such that

E‖ f (k,U)− f (k,V)‖ ≤ LE‖U −V‖ , (3.4)

for all U, V ∈ L1(Ω;B) and k∈ Z. Then, Eq.(3.3) has a unique almost automorphic solution
X defined by

X(n+1)=
n∑

j=−∞

s(T,n−k) f (k,X(k))ξ(k+1)

provided that MLNT < 1.

Proof. We define the nonlinear operatorΓ : AA(Z;L1(Ω;B))→ AA(Z;L1(Ω;B)) by

F(U)(n) =
n−1∑

j=−∞

s(T,n−1−k) f (k,U(k))ξ(k+1) .

SinceU ∈ AA(Z;L1(Ω;B)) and f satisfies (3.4), it follows from Theorem 2.13 thatf (∙,X(∙))
is in AA(Z;L1(Ω;B)). We deduce from Theorems 2.10 and 2.14 thatΓ is well defined.
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Now, letU andV ∈ AA(Z;L1(Ω;B)) chosen independently ofξ. We then have

E‖Γ(U)(n)−Γ(V)(n)‖

≤
n−1∑

k=−∞

|s(T,n−1−k)|E
[
‖ f (k,U(k))− f (k,V(k))‖ |ξ(k+1)|

]

=

n−1∑

k=−∞

|s(T,n−1−k)|E‖ f (k,U(k))− f (k,V(k))‖E|ξ(k+1)|

≤ ML
n−1∑

k=−∞

|s(T,n−1−k)|E‖U(k)−V(k)‖

≤ MLNT‖U −V‖∞
n−1∑

k=−∞

|s(T,n−1−k)|

≤ MLNT‖U −V‖∞

for anyn ∈ Z.
Thus,

‖Γ(U)−Γ(V)‖∞ ≤ MLNT‖U −V‖∞ .

Hence,Γ is a contraction provided thatMLNT < 1. Using the Banach fixed point theo-
rem, we obtain thatΓ has a unique fixed point̄U, which is the unique almost automorphic
solution of Eq.(3.3). �

4 Application

For a givenλ ∈ C, defines(λ,k) ∈ C as a solution of the difference equation

s(λ,k+1) = λ

k∑

k=0

pn− j s(λ, j), k= 0,1,2, ∙ ∙ ∙ (4.1)

s(λ,0) = 1 (4.2)

where|p| < 1.
Define

Cs =
{
λ ∈ C :

∞∑

k=0

|s(λ,k)| <∞
}
.

Using (4.1)-(4.2), it is not hard to show thats(λ,k) = λ(λ+ p)k−1, k≥ 1, and hence

D(−p,1) :=
{
z∈ C : |z+ p| < 1

}
⊂ Cs .

Let |p| < 1 be fixed and takeλ ∈ D(−p,1). Consider the following stochastic difference
equation

X(n+1)= λ
n∑

j=−∞

pn− jX( j)+sin
( 1

2−sin(n)−sin(
√

2n)

)
X(n) ξ(n+1), n ∈ Z (4.3)
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whereξ = {ξ(n), n ∈ Z} is almost automorphic random sequence.
By Theorem 3.2, Equation (4.3) has an almost automorphic solutionX given by

X(n+1)= λ
n∑

k=−∞

(p+λ)n−k sin
( 1

2−sin(k)−sin(
√

2k)

)
X(k) ξ(k+1) .
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