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Abstract

In this paper, we introduce a concept of almost automorphy for random sequences.
Using the Banach contraction principle, we establish the existence and uniqueness of
an almost automorphic solution to some Volterra stochastferéince equation in a
Banach space. Our main results extend some known ones in the sense of mean almost
automorphy. As an application, almost automorphic solution to a concrete stochastic
difference equation is analyzed to illustrate our abstract results.
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1 Introduction

The paper deals with the existence and unigueness of almost automorphic solution of some
nonlinear stochastic Volterraf@ierence equations of convolution type

X(w,n+1) = Z a(in— NT X(w, j) + f(n, X(w,N))é(w,n+1), weQ,NeZ 1.1

j=—o0

on a Banach spad whereT is a bounded linear operator 8na: N — C is summablef
is an appropriate function to be specified later. Egch is a real-valued random variable.

The concept of almost automorphy is an important generalization of the classical almost
periodicity. It was introduced by Bochner [4], for more details about this topics we refer the
reader to [12, 13]. In recent years, the existence of almost periodic and almost automorphic
solutions on dferent kinds of dierential equations has been considerably investigated in
lots of publications [2, 5, 9] because of its significance and applications in physics, mechan-
ics, and mathematical biology. érence equations have received less studies about them.
During the last few years, Volterraftitrence equations have emerged vigorously in several
applied fields. Volterra systems mainly arise to model many real phenomena and describe
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Almost Automorphic Solutions to Stochastic Volterraiierence Equations 15

processes whose current state is determined by their entire pre-history. They also play a key
role in the study of competitive species in the population dynamics.

For a study of almost periodic or almost automorphic sequences we refer the reader to
Arayaet al [1], Bezandry and Diagana [2], Bezandey al. [3], Corduneanu [5], Cuevas
et al. [6], Diagana [7], Diaganat al. [8], Han and Hong [10], Hong and Nunez [11] and
references therein.

Motivated by the work of Arayat al[1] and Cuevagt al. [6], the main purpose of this
paper is to introduce the notion of almost automorphy for random sequences and apply the
concept to investigate the existence of almost automorphic solutions to Eq.(1.1).

The rest of this paper is organized as follows. In Section 2, we introduce the notion of
almost automorphic random sequences and study some of their basic properties. In Section
3, we prove the existence and uniqueness of almost automorhic solutions to some linear
and nonlinear stochasticftBrence equations, respectively. We illustrate our main result by
providing an example in Section 4.

2 Preliminaries

In this section we establish a basic theory for almost automorphic random sequences. To
facilitate our task, we first introduce the notations needed in the sequel.

Let (B,||-]]) be a Banach space and &t (F,P) be a complete probability space. Through-
out the rest of the papeZ,. denotes the set of all nonnegative integers. Def{€;B) to
be the space of aB-valued random variablég such that

ElIVI| = ( fQ IV(@)lIdP(w)) < . (2.1)

It is then routine to check thdt}(Q;B) is a Banach space when it is equipped with its
natural norn| - ||; defined by]|V||1 := E||V|| for eachV € LY(Q,B).

Let X = {Xn}nez be a sequence @-valued random variables satisfyilgjX,|| < oo for
eachn € Z. Thus, interchangeably we can, and do, speak of such a sequence as a function,
which goes fronZ into LY(Q;B).

This setting requires the following preliminary definitions.

Definition 2.1. An LY(Q;B)-valued random sequencé= {X(N)}ez is said to be Bohr
almost periodic in mean if for each> 0 there existfNg(¢) > 0 such that among anylp
consecutive integers there exists at least an intpder which

E[IX(n+p)-X(n)|| <&, YNeZ.

An integerp with the above-mentioned property is calledsaalmost period foX. The
collection of allB-valued random sequenc¥s= {X(n)}ez wWhich are Bohr almost periodic
in mean is then denoted BP(Z; L1(Q; B)).

Similarly, one defines the Bochner almost periodicity in mean as follows:

Definition 2.2. An L1(Q;B)-valued random sequene= {X(n)}nez is called mean Bochner
almost periodic if for every sequengey},.; C Z there exists a subsequer{cmeg(}keZ such

that{X(n+ m{())}kEZ converges (in the mean) uniformly ire Z.
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Following along the same arguments as in the proof of [Diagdred. [8], Theorem
2.4, p. 241], one can show that those two notions of almost periodicity coincide.

Theorem 2.3. An LY(Q; B)-valued random sequence=X{X(n)}nez iS Bochner almost pe-
riodic in mean if and only if it is Bohr almost periodic in mean.

The above characterization as well as the definition of automorphic functions in the
continuous case will motivate the following definition.

Definition 2.4. An L1(Q;B)-valued random sequenée= {X(n)}nez is said to be almost
automorphic in mean if for every sequenég} c Z there exists a subsequeniég} such
that

r!mo X(k+kq) =3 X(K) in LY(Q; B) (2.2)
is well defined for eack € Z and

r!mo X(k—kn) = X(K) in LY(Q; B) (2.3)
for eachk e Z

The collection of allB-valued random sequencis= {X(n)}nez Which are almost auto-
morphic in mean is then denoted BA(Z: L1(Q; B)).
Remark2.5. Note that if the convergence in Definition 2.4 is uniformZrthen we obtain
almost automorphy in mean.

Example 2.6. Consider the random mapping: Z — LY(Q,R) defined by

K) = Y
X 2+ cosk) + cos(V2k)

wherey is a random variable witkly| < c.
It can be shown thaX is almost automorphic in mean.

Almost automorphic random sequences have the following fundamental properties.

Theorem 2.7. Let X, Y be almost automorphic random sequences. Then the following
assertions hold:

(i) X+Y is almost automorphic in mean;
(i) cX is almost automorphic in mean for every scalar c;

(iii) For each fixed le Z, X, : Z — LY(Q;B) defined by XK) := X(k+1) is almost automor-
phic in mean;

(iv) The mappingX : Z — L1(Q;B) defined byX(k) = X(-k) is almost automorphic in
mean;

(v) X is bounded in {Q;B). That is,supE|IX(K)|| < co.
keZ
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(vi) SupE|IX(K)ll < supE[IX(K)|| whereX is defined in (2.2) and (2.3).
kez keZ

The proof of all statements of Theorem 2.7 follows the same lines as in the determinsitic
continuous case [12] and therefore is omitted.

As a consequence of the above theorem, the SPACE; L1(Q;B)) of almost automor-
phic random sequences equipped with the norm

IXlleo = SUPEIIX(K)II,
keZ

becomes a Banach space.

Theorem 2.8.1f Ais a bounded linear operator ont{Q;B) and X: Z — L1(Q;B) is almost
automorphic random sequence, then(RXk € Z is also almost automorphic in mean.

Proof. Let (k) be a sequence if. By assumption, we can then choose a subsequégke (
of (k;,) such that

1im [IX(k+kn) = X(K)| = 0 and_lim|IX(k~kn) = X(K)II = O,

for eachk € Z.
We then have

ENAX(K+kn) = AXK)Il < IAIENIX(K+ kn) = XK.

Hence, IME[AX(k+kn) - AX(K)|| = O for eachk € Z.
In a similar way, we can also prove

lim E|JAX (k- kn) = AX(K)|| = 0
for eachk € Z, and thereford X is almost automorphic in mean. O

Theorem 2.9.Leta : Z — C be an almost automorphic deterministic sequence and %
LY(Q;B) be an almost automorphic random sequence. TénZ — L1(Q; B) defined by
(@X)(K) = a(K)X(K), k € Z is almost automorphic in mean.

Proof. Let (k) be a sequence iA. By assumption, we can then choose a subsequérke (
of (k;,) such that

1) lim Jo(k+ k) (k) = 0 and_limja(k-kn) - (K| =0

and
2) lim [IX(k-+ka) = X(K)l =0 and limiIX(k—kn) = X(K)l| =0,

foreachkeZ.
Also, sincex andX are bounded, there exilt; > 0 andM; > 0 such that sup; [a(n)| < M
and sup. ElIX(n)l < Ma.
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We then have

Ellr(k+ kn) X (K + kn) = @(K) XK

< Ellr(k+ kn)[ X(k+ kn) = X(K)]II + Ell[ (K + kn) — (] XKl
< Jar(k+ Kn) EIX(K+Kn) = X(K)I| + (K + kn) — @(K)EIIX(K)]
< MLE[IX(K+kn) = X(K)Il + Malar(k + kn) — (k)|

Hence,n IME||a(k + kn)X(k+ kn) — c?(k))?(k)n =0 for eachk € Z.
In a similar way, we can also prove

lim Efla(k- kn) X (K — kn) — a(K)X(K)I| = O
for eachk € Z, and thereforerX is almost automorphic in mean. O

More generally, we have

Theorem 2.10.Let XY : Z — LY(Q; B) be almost automorphic random sequences. Assume
that X and Y are independent. Then X— LY(Q; B) defined by{XY)(k) = X(K)Y(K), ke Z
is almost automorphic in mean.

Proof. Let (k) be a sequence iA. By assumption, we can then choose a subsequérke (
of (kf,) such that

1) lim ElIX(k+kn) = X(K)| =0 and lim|X(k—kn)~X(K) =0

and
2) lim [IY(k+ke) = Y(K)ll = 0 and lim|I¥(k—kn) - Y(K)l =0,

foreachkeZ.
Also, sinceX andY are bounded, there exilt; > 0 andM; > 0 such that sup; [a(n)| < My
and sup.; E|IX(n)|| < M.
Using that fact thak andY are independent, we then have
ElIX(K+kn) YK+ kn) = X(K) Y (K)I
< ElIX(k+kn)[Y(K+ ka) = Y+ EIX(K+kn) = X(QTY(K)I
< EJIX(k+ka)l[ENY(k-+ k) = YR+ EIX(K+ka) = XKIENY (K]
< M1 E[IY(K+Kq) = Y(R)I| + MaElIX(K+ ) = X(K)II.

Hence, IME[IX(k+kn)Y(k+ k) - X(K)Y(K)|| = O for eachk € Z.
In a similar way, we can also prove
lim ElIX(k—kn)Y(k—kn) = XK Y(K)]| = O
for eachk € Z, and thereforeXY is almost automorphic in mean. O

For applications to nonlinear stochasti¢tdience equations the following concept of
almost automorphic random sequence depending on parameters will be useful.

Let By, |- ll1) and B2, |l2) be Banach spaces and l{(Q; B1) andL(Q;B,) be their
corresponding.t-spaces, respectively.
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Definition 2.11. A function F : Z x L1(Q;B1) — LY(Q;B>), (n,U) — F(n,U) is said to be
almost automorphic in mean me Z uniformly in U € LY(Q;B,), if for every sequence
{k} € Z there exists a subsequeri&g} such that

lim F(k+k,U) =t F(k U) in LY(Q; B2) (2.4)

is well defined for eack € Z, U € L}(Q; B1), and

lim F(k—ky,U) = F(k.U) in L{Q; B2) (2.5)

for eachk € Z andU € LY(Q;By).

The proofs of the following results follows the same lines as in the deterministic con-
tinuous case (see [12] Theorem 2.1.3).

Theorem 2.12. Let F, G: Zx LY(Q;B1) — LY(Q;B2) be almost automorphic random se-
quences in k Z uniformly in U e L1(Q;B,). Then the following assertions hold:

(i) F+G isalmost automorphic in mean;
(ii) cF is almost automorphic in mean for every scalar c;

(iii) supE||F,U(K)|| = My < oo for each Ue LY(Q; B);
kez

(Vi) SUpE[IF(k,U)|l = Ny < oo for each Ue L1(Q;B;), whereF is defined in (2.4) and
kezZ
(2.5).
We now state the following composition result.

Theorem 2.13.Let F: Z, x LY(Q; B1) — LY(Q;B>), (n,U) — F(n,U) be almost automor-
phic in mean in re Z, uniformly in U e LY(Q;B4). If in addition, F is Lipschitz in U in the
following sense: there exists=.0 such that

EIIF(t,U)-F(tV)ll2< LEJU=V|; YU,V € LY(Q;B1), ne Z,

then for any almost automorphic random sequeneg{X(n)}nez, then the £(Q; B1)-valued
random sequence(i) = F(n, X(n)) is almost automorphic in mean.

The following result will play a key role in the study of almost automorphic solutions
of linear and nonlinear stochastic Volterrafdrence equations.

Theorem 2.14.Let b: Z, — C be a summable sequence, }.&,Ib(l)| < co. Then for any
almost automorphic random sequenceZ— L1(Q;B), the random sequence(defined

by
k

W(K) = > bk-1)X(l), ke Z

|=—c0

is also almost automorphic in mean.
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Proof. Let (k;,) be an arbitrary sequence of integers. Sixces almost automorphic in
mean, there exists a subsequengg ¢f (k7,) such that

lim EfIX(k+kn) ~ X (K}l =0

for eachk € Z and _
lim ENX(k ko)~ X(K)lI = 0

for eachk € Z.

DefineW(k) = SK ___ b(k—1)X(l). We then have

—00
k

k+kn
E“k;wb(k+ kn = X(1) - |Z b(k—X()|

=—00

ElIW(K+ kn) — W(K)]|

k
E| |:Z_w b(k—NIX( + ko) = X()] |

IA

k
D o(k=IEIX( + ka) = XOI.

|=—c0

Note that y !
EIWEI < > Ibk=DIEIXU)I < [IXlleo ) Io(k=1)] < co.

|=—c0 |=—c0

Thus, by Lebesgue’s dominated convergence theorem, we obtain

k
lim EIMW(k-+kn) ~W(RII < ) Ib(k=D) lim EIX(1+ke) = X ()]l = 0.

I=—co
Hence, _
lim E[W(k+kn) ~W(K)II = 0

for eachk € Z.
In a similar way, we can also prove

lim E[W(k—kn) ~W(K)[| = 0

for eachk € Z, and therefor&V is almost automorphic in mean. o

3 Almost Automorphic Solutions of Stochastic Volterra Difer-
ence Equations

3.1 Linear case

In this subsection we study the existence of almost automorphic solutions for linear stochas-
tic Volterra diference equation of type
n
X(w,n+1) = Z ain— )T X(w, j)+ f(N)é(w,n+1), weQ,NneZ (3.1)

j=—o0
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whereT is a bounded linear operator &na: N — C is summablef is an almost automor-
phic function. Eacl¥(n) is a real-valued random variable.
We make the following assumption abguthrough the paper:

() &€=1{&(n), neZ}is asequence of independent real-valued random variables;
(i) ¢is an almost automorphic random sequence.

Let £(B) be the space of all bounded linear operatoBoforT € £(B), defines(T,k) €
L(B) as a solution of the étierence equation

k
D Tak- (T, j), k=0,1,2,--

k=0
I

S(T,k+1)

(T.0)

We have the following theorem.

Theorem 3.1. Assume that(3,-) is a summable function and that £ — B is an almost
automorphic function. Then, Eq.(3.1) has an almost automorphic solution given by

n

X(n+1)= > T.n-KfKEk+1). (3.2)

k=—00

Proof. Let X be the random sequence given in (3.2). Using the facfithatinear and that
the functions(T, ) is summable, we then have
n

D an-)HTX()

j=—c0

Za )T Z S(T.j~1-0)f()é(r+1))

—o0 T=—00

-1

j
=T > an-1- )T, j-1)f(@)é(r+1)

—00 T=—00

=}

-1 n-1

=T Za(n 1- DT, j-)f(@)é(r+1)

T=—00 j=T

>

n-1 n-1-7

= > (D) Tan-1-7- T, ) f(D)e(r +1)
T=—00 j=0
n-1

> AT.n-1)f(2)é(r+1)

T=—00

Z S(T,n—7)f(7)é(r+1)— S(T,0)f(N)é(n+1)

T=—00
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=X(n+1)- f(N)é(n+1)

which proves thaK is the solution of Eq.(3.1). Applying Theorems 2.7 and 2.9, we con-
clude thatX is almost automorphic in mean. |

3.2 Nonlinear case

To analyze Eq.(1.1), our strategy consists of studying the existence of almost automorphic
solutions to the corresponding stochastic Volterféedénce of the form:

X(h+1)= i a(n—PTX(j))+ f(n,X(N)é(N+1),neZ (3.3)

j=—c0

whereT is a bounded linear operator ad(Q,B), a: N — C is summablef is an almost
automorphic random function in € Z uniformly in the second variable. Eagiin) is a
real-valued random variable.

In addition to Assumptiong)and (i) on&, we assume that
(iii) ¢ is independent oK = {X(n), n € Z}, the solution of Eqg. (3.3).

ForT € £(B), defineNt = ZT;OIIS(T, DI
We now state our main result.

Theorem 3.2. Let f: Zx LY(Q;B) — LY(Q;B) be an almost automorphic random function
in k € Z for each Ue LY(Q;B). Suppose that f satisfies Lipschitz condition: there exists an
L > O such that

Ellf(k,U) - f(k,V)Il < LE[U -V, (3.4)

forall U, V € LY(Q; B) and ke Z. Then, Eq.(3.3) has a unique almost automorphic solution
X defined by

X(n+1)= Z S(T,n—K) f(k, X(K))é(k+1)

j=—o0

provided that MLN < 1.
Proof. We define the nonlinear operar AAZ; L1(Q; B)) — AAZ; L1(Q;B)) by
n-1

F(U)(n) = Z S(T,n-1-Kk)f(k,U(K)é(k+1).

j=—c0

SinceU € AA(Z; LY(Q; B)) and f satisfies (3.4), it follows from Theorem 2.13 thgt, X(-))
is in AA(Z; LY(Q; B)). We deduce from Theorems 2.10 and 2.14 thistwell defined.
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Now, letU andV € AAZ; LY(Q;B)) chosen independently ¢f We then have
EIICU)(n) —T(V)(n)ll

< kiz_j I(T.n—1-KIE[IIf(k,U(K)) - f (k. V{K)Ils(k+1)]
= kiz_j IS(T,n—1-K)IE|If (k. U(K)) - F(k.V(K)I El(k+ 1)
<ML ni IS(T,n—-1-K)EIU(K) - V(K
Ke—oo
< MLN7U -Vl nz—i IS(T,n—1-K)l
Ke—oo

< MLNr[lU =Vl

foranyne Z.
Thus,
IT(U) =T(V)llo < MLN7[IU = V||oo .

Hence,I' is a contraction provided tha?lLNy < 1. Using the Banach fixed point theo-
rem, we obtain thal' has a unique fixed poirdl, which is the unique almost automorphic

solution of Eq.(3.3). O
4  Application
For a givenl € C, defines(4,k) € C as a solution of the éierence equation
k .
SAk+1) = ) pIsL)). k=012 (4.1)
k=0
s(1,0) = 1 (4.2)
where|p| < 1.
Define

Cs={/l€CZi|S(/l,k)|<oo}.
k=0

Using (4.1)-(4.2), itis not hard to show ths(ft, k) = A(1+ p)*~1, k> 1, and hence
D(-p,1):={zeC:|z+pl< 1} cCs.

Let|p| < 1 be fixed and take € D(—p, 1). Consider the following stochasticfiirence
equation

1
2—sin(n) - sin(v2n)

X(h+1)=2 Zn: pYIX(j) +sin(

j=—c0

)X()é(n+1).neZ (4.3)
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whereé = {£(n), n € Z} is almost automorphic random sequence.
By Theorem 3.2, Equation (4.3) has an almost automorphic soldtiginen by

X(n+1)=2 > (p+A)"*sin( = )X(K) £k +1).

Nl 2—sin() —sin(v2k)
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