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Abstract

We show that integrable conformal Jacobi fibrations are in one-to-one correspon-
dence with source-simply connected fibered conformal contact groupoids. We also
prove that prequantizable Poisson fibrations give rise to Jacobi fibrations. In addi-
tion, source-simply connected symplectic groupoids associated to prequantizable and
integrable Poisson fibrations are also prequantizable.
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1 Introduction

In this note, our purpose is two-fold. Firstly, we introduce conformal Jacobi fibrations
(which unify Poisson and contact fiber bundles) and discuss their integration problem. Sec-
ondly, we examine applications of this theory to the prequantization of Poisson fibrations.
Recall that a Jacobi structure on a smooth manifold is given by a pair (Λ,R) consisting
of a bivector field Λ and a vector field R (called the Reeb vector field) that satisfy some
geometric properties (see below). Jacobi manifolds encompass Poisson manifolds, contact
manifolds as well as locally conformal symplectic manifolds. They were first introduced by
Lichnerowicz (see [13]). Here, by a conformal Jacobi fibration, we mean a locally trivial
fiber bundle p : M→ B whose fiber type F is a Jacobi manifold together with a collection
of trivializations whose transition maps preserve the conformal class of the Jacobi structure
on F. This notion naturally extends the concept of a Poisson fibration that was considered
in [2, 19].

Jacobi manifolds can be viewed as the infinitesimal counterpart of contact Lie groupoids,
in the sense that, the global geometric objects that integrate Jacobi manifolds are contact
Lie groupoids [6]. Lie groupoids which are generalizations of Lie groups, have been inten-
sively studied in differential geometry in recent years. They provide a fruitful framework
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for the study of many geometric objects (see [14] and references therein). Their correspond-
ing infinitesimal geometric objects are Lie algebroids which, include both Lie algebras and
foliations. The classical Lie’s third theorem says that there is a one-to-one correspondence
between finite dimensional Lie algebras and finite dimensional connected and simply con-
nected Lie groups. It is known that Lie’s third theorem cannot be directly extended to Lie
algebroids and Lie groupoids, nonetheless, the obstructions to its extension are controllable
as shown in [5].

Our first main result lies in this context: we show that the global objects associated
with conformal Jacobi fibrations are fibered conformal contact groupoids (see Theorem
3.5). Another interesting observation is that the prequantization of a Poisson fibration is
a Jacobi fibration. In the context of Lie groupoids, the notion of prequantization of sym-
plectic groupoids was introduced in [20]. Here, we show that the source-simply connected
symplectic groupoid associated to a prequantizable and integrable Poisson fibration is also
prequantizable (see Theorem 4.3).

The paper is organized as follows: In Section 2, we review known facts about Jacobi
manifolds and we introduce the notion of a conformal Jacobi fibration. We also brush up
groupoids, in particular, contact groupoids. Section 3 deals with the integration problem
for conformal Jacobi fibrations. In Section 4, we develop the prequantization of Poisson
fibrations.

2 Definitions and Basic Results

All manifolds are assumed to be paracompact, Hausdorff, smooth and connected. We also
assume that all maps between manifolds are smooth.

2.1 Locally conformal symplectic and Jacobi structures

A locally conformal symplectic (lcs for short ) form on a manifold M is a non-degenerate
2-formΩ for which, there exists an open coverU = (Ui) of M and smooth positive functions
fi : Ui→ R such that Ωi = fiΩ|Ui is a symplectic 2-form on Ui.

Obviously, if fi = 1 for all i then Ω is a symplectic form on M. In [11], Lee noticed that,
in the general case, the 1-forms d(ln fi) fit together into a closed 1-form ω on M such that:

dΩ = −ω∧Ω. (2.1)

More precisely, the above definition of a lcs form is equivalent to the existence of a
closed 1-form ω satisfying Equation (2.1). The 1-form ω is called the Lee form of Ω. It
is known that [11] that if the dimension of M is greater than 2 then the Lee 1-form ω is
uniquely determined by its corresponding lcs form Ω.

Two lcs forms Ω and Ω′ are said to be conformally equivalent if there exists some
positive function f such that

Ω′ = fΩ.

A locally conformal symplectic structure is an equivalence class of lcs forms for this re-
lation. Notice that the de Rham cohomology class of the Lee form is an invariant of the
lcs structure since a conformal rescaling of Ω changes its Lee form ω by adding an exact
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form. Observe that any lcs structure that contains a symplectic representative is globally
conformal symplectic. This happens when the Lee form is exact.

Example [1]. Consider a co-oriented contact structure on a manifold B, let α be a corre-
sponding contact 1-form and let p : M → B be a flat principal U(1)-bundle over B. Then
any connection 1-form ω on M induces a canonical lcs structure on M determined by the
conformal class of the pair (dθ+ω∧ θ,ω, ) where θ = p∗α.

To any lcs form Ω is associated a pair (Λ,R) of tensors defined by:

ιRΩ = −ω and Λ = Ω−1,

where ω is the corresponding Lee 1-form. In fact, locally conformal symplectic manifolds
are special cases of Jacobi manifolds. Recall that a Jacobi structure on M is defined by a
pair (Λ,R) where Λ is a bivector field and R is a vector field (called the Reeb vector field)
such that :

[Λ,Λ] = −2R∧Λ and [R,Λ] = 0. (2.2)

Here, the bracket [·, ·] stands for the Schouten-Nijenhuis bracket on multivector fields. Pois-
son structures are Jacobi structures for which R = 0. Jacobi structures were introduced and
studied by Lichnerowicz [13].

Given a Jacobi manifold (M,Λ,R), let Λ] : T ∗M→ T M be the bundle map defined by:

〈Λ](α),β〉 = Λ(α,β).

Then the distribution generated by Im(Λ]) and R is called the characteristic distribution of
the Jacobi structure. When the distribution coincides with T M we say that its corresponding
Jacobi structure is transitive. Locally conformal symplectic structures are odd-dimensional
transitive Jacobi structures. While even-dimensional transitive Jacobi structures are co-
orientable contact structures. Recall that a contact structure on a (2n+ 1)-dimensional
manifold is given by a hyperplane field ξ ⊂ T M which can be written locally as the kernel
of a 1-form α and such that α∧ (dα)n is a volume form. Co-orientable contact structures are
those for which the normal bundle ξ⊥ is trivial. In other words, these are contact structures
globally defined by a 1-form.

Let (Λ,R) be a Jacobi structure on M and let f be a smooth nowhere vanishing function
on M. The conformal transformation of (Λ,R) by f is a new Jacobi structure given by the
tensors:

Λ f = fΛ, R f = f R+Λ](d f ). (2.3)

We say that two Jacobi structures are conformally equivalent if they are related by a confor-
mal transformation. Such an equivalence class J of Jacobi structures is called a conformal
Jacobi structure and the pair (M,J) is said to be a conformal Jacobi manifold. A conformal
Jacobi structure is just a locally conformal Jacobi structure with an orientable line bundle.
When M is simply connected, all locally conformal Jacobi structures on M are globally
conformal.
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It is well-known that the poissonization of a Jacobi structure (Λ,R) on M is a Poisson
structure on the manifold M×R with corresponding bivector:

Λ̃ = e−t
(
Λ+
∂

∂t
∧R

)
, (2.4)

where t is the coordinate on R. In fact (Λ,R) defines a Jacobi structure if and only if Λ̃ is a
Poisson tensor.

2.2 Conformal Jacobi fibrations

Let (F,JF ) be a conformal Jacobi manifold. A conformal Jacobi fibration is a locally

trivial fiber bundle F ↪→ M
p
→ B whose structure group preserves the conformal Jacobi

structure on F. In other words, there is an open cover U = (Ui) of B and diffeomorphisms
φi : p−1(Ui)→ Ui×F satisfying the properties:

1. The following diagram commutes

p−1(Ui)
φi
−→ Ui×F

p↘ ↙ pr
Ui

2. If b ∈ Ui ∩U j then the transition map φi j(b) = φi(b) ◦ φ j(b)−1 preserves the conformal
class JF of Jacobi structures on F.

In particular, one obtains a lcs fibration if the fiber type F is a lcs manifold. When F is a
co-oriented contact manifold, this definition coincide with Lerman’s definition of a contact
fiber bundle [10]. Given a conformal Jacobi fibration, we consider the vertical sub-bundle

Vert = Ker(T p) ⊂ T M.

There is a vertical bivector field Λ and a vertical vector field R ∈ Γ(Vert(M)) such that the
conformal class of the pair (Λ,R) defines a conformal Jacobi structure which coincide with
the conformal Jacobi structure along the fibers.

2.3 Lie groupoids

A Lie groupoid over a manifold M is given by a smooth manifold G together with two
surjective submersions α,β : G→ M (called the source map and the target map), a smooth
associative multiplication m : G2 → G, a unit section ε : M → G and an inversion map
i : G→ G, where G2 = {(g,h) ∈ G×G | β(g) = α(h)} is the set of composable pairs and the
following properties are satisfied:

1. α(m(g,h)) = α(h) and β(m(g,h)) = β(g), ∀ (g,h) ∈ G2,

2. m(g,m(h,k)) = m(m(g,h),k), ∀g,h,k ∈ G such that α(g) = β(h) and α(h) = β(k),

3. α(ε(x)) = x and β(ε(x)) = x, ∀x ∈ M,
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4. m(g, ε(α(g))) = g and m(ε(β(g)),g) = g, ∀g ∈ G,

5. m(g, ι(g)) = ε(β(g)) and m(ι(g),g) = ε(α(g)), ∀g ∈ G.

Here, the base manifold M, the α-fibers and the β-fibers are supposed to be Hausdorff but
G is not necessarily Hausdorff. We will often identify M with ε(M).

A real-valued function r defined on a Lie groupoid G is multiplicative if:

r ◦m(g1,g2) = r(g1)+ r(g2), ∀ (g1,g2) ∈ G2.

Given a Lie groupoid G and a multiplicative function r on G, we define

G×r R = G×R⇒ M×R,

together with its source α, target β and multiplication given by:

α(g, s) = (α(g), s), β(g, s) = (β(g), s− r(g)), (g1, s1)(g2, s2) = (g1g2, s2). (2.5)

Then G×r R is a Lie groupoid if and only if r is multiplicative.

2.4 Contact groupoids

A contact groupoid [7, 8] is a Lie groupoid G
α
⇒
β

M together with a pair (θ,r) consisting of

a contact form θ, and a multiplicative function r on G satisfying the following property:

m∗θ = pr∗2(e−r) · pr∗1θ+ pr∗2θ. (2.6)

where m is the multiplication and the pri are the projections. The function r called the Reeb
function, or the Reeb cocycle of G.

Let G ⇒ M be a contact groupoid with a contact structure (θ,r). Given a smooth
nowhere vanishing function τ on M, we set

θτ = α
∗(τ)θ, rτ = r+ ln(

α∗τ

β∗τ
)

Then the pair (θτ,rτ) defines a new contact structure on G. We say that these two contact
structures are conformally equivalent. A conformal contact groupoid is a Lie groupoid
G⇒ M endowed with such a equivalence class of pairs (θ,r).

2.5 Prequantization

Prequantization is the first step in the geometric quantization procedure. Geometric quan-
tization for symplectic manifolds was independently developed by Kostant [9] and Souriau
[16]. The existence of a prequantization bundle for a symplectic manifold is guaranteed if
the symplectic form is integral. In fact, given a symplectic manifold (V,Ω) , where Ω is in-
tegral, (i.e. its de Rham cohomology class [Ω] is integral), then its prequantization consists
of the choice of a Hermitian line bundle K over V endowed with a connection ∇ on K with
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curvature 2πiΩ. This is equivalent to a principal U(1)-bundle τ : Ṽ → V together with a
connection 1-form θ on Ṽ satisfying τ∗Ω = dθ.

Geometric quantization has been extended to various geometric settings. Vaisman stud-
ied the geometric quantization for Poisson manifolds [17]. The case of Jacobi manifolds
was investigated by de León, Marrero and Padrón [12]. Recently, Weinstein and Zam-
bon considered a generalization to Dirac structures and quantizability conditions of a Dirac
structure. In the framework of generalized complex, generalized para-complex and gen-
eralized tangent geometry, prequantization spaces are discussed in [18]. The connection
between integrability and prequantization was studied by Crainic [4].

The prequantization condition for a Poisson manifold (P,ΛP) [17] is that the class [ΛP]
relative to the Lichnerowicz-Poisson cohomology is the image of some integral de Rham
class under the cochain map obtained by extending of the canonical bundle mapΛ]P : T ∗P→
T P, that is,

Λ
]
P (ΩP) = ΛP+ [ΛP,Z],

for some integral closed 2-form ΩP and for some vector field Z ∈ X(P).
Suppose (P,ΛP) is prequantizable. Let τ : P̃→ P be a U(1)-bundle with first Chern class

[ΩP] and let θ be a connection 1-form θ on P̃ with τ∗ΩP = dθ. It was shown in [3] that if
ΛH

P and ZH denote the horizontal lifts of ΛP and Z, respectively, then (ΛH
P +R∧ZH ,R) is a

Jacobi structure on P̃, where R is the generator of the U(1)-action on P̃.
A prequantization of the symplectic groupoid (G,Ω) is a Lie groupoid extension of G

by the trivial bundle of Lie groups U(1):

1→ U(1)→ G̃
p
→G→ 1

together with a a connection 1-form θ which is multiplicative and such that p∗Ω = dθ.

3 Integration of Jacobi fibrations

Following [2], we call Fib the category of locally trivial fiber bundle p : M→ B over a fixed
base manifold B whose morphisms are the fiber preserving maps over the identity:

M1
Φ
−→ M2

p1↘ ↙ p2
B

A fibered groupoid G⇒M is an internal groupoid in Fib, that is, an internal category where
every morphism is an isomorphism.

Thus, a fibered groupoid can be viewed as a fiber bundle with fiber type a groupoid
where the structure group acts by groupoid automorphisms. Notice that both the total space
G and the base M of a fibered groupoid are fibrations over B and all structure maps are fiber
preserving maps.
A fibered conformal contact groupoid is a fibered Lie groupoid G⇒ M whose fiber type is
a conformal contact groupoid F ⇒ F.
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Given a fibered contact groupoid G⇒ M, its fiber type F is the total space of a Lie
groupoid F ⇒ F over the fiber type F of M. It is well known that the base manifold of
a contact groupoid admits a Jacobi structure [6, 7, 8]. We have the following analogous
result:

Theorem 3.1. The base M of a fibered contact groupoid G⇒ M has a natural structure of
a Jacobi fibration.

To prove the above theorem, we need the following result which was established in [6]:

Proposition 3.2. [6] There is a one-to-one correspondence between conformal contact
groupoids G over M which are source-simply connected and integrable conformal Jacobi
structures on the base manifold M.

Proof of Theorem 3.1. From Proposition 3.2, one deduces that each fiber of the base M of
the fibered contact groupoid G⇒ M naturally admits a conformal Jacobi structure. More-
over, any local trivialization of the fibered contact groupoid G covers a local trivialization
of M. In addition, the transition maps preserve the conformal Jacobi structure on the fiber
type F. There follows Theorem 3.1.

Definition 3.3. A conformal Jacobi fibration is said to be integrable if it is the base of some
fibered conformal contact groupoid G⇒ M.

We have:

Proposition 3.4. Any conformal Jacobi fibration whose fiber type is integrable is also inte-
grable.

Proof: Suppose the fiber F of a conformal Jacobi fibration p : M→ B is integrable. Then
the induced vertical conformal Jacobi structure on M is also integrable. Let G⇒ M be
the corresponding source-simply connected contact groupoid that integrates this vertical
conformal Jacobi structure. Since the conformal Jacobi structure on F is integrable, it
determines a contact groupoid F with base F which is the fiber type of the fibered Lie
groupoid structure on G⇒ M. There follows Proposition 3.4.

As an immmediate consequence of Theorem 3.1 and Proposition 3.4, we get the fol-
lowing:

Theorem 3.5. There is a one-to-one correspondence between source-simply connected
fibered conformal contact groupoids and integrable conformal Jacobi fibrations.

4 Applications to the prequantization of symplectic fibered
groupoids

Recall that a Poisson fibration is a locally trivial fibration whose fiber type is a Poisson
manifold together with a collection of local trivializations whose transition functions are
Poisson diffeomorphisms. The global object associated to any Poisson fibration is called
a fibered symplectic groupoid, that is, a fiber bundle with fiber type a groupoid where the
structure group acts by groupoid automorphisms.
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Definition 4.1. A Poisson fibration π : N → B is said to be prequantizable if its fiber type
(P,ΛP) is prequantizable as a Poisson manifold.

From now on, we assume that the fiber type of the considered Poisson fibrations are com-
pact.

Theorem 4.2. Prequantizable Poisson fibrations admit Jacobi fibrations as their prequan-
tization bundles.

Proof: Let P ↪→ N
π
→ B be a prequantizable Poisson fibration. Since the fiber P is pre-

quantizable, we can choose a prequantization bundle Q→ P so that there exists a Jacobi
structure on Q, a 1-form θ with curvature form ΩP ∈ H2(P,Z) and a vector field Z on P such
that:

Λ
]
P (ΩP) = ΛP+ [ΛP,Z].

The vertical Poisson structure on N is also prequantizable. We can pick a prequantiza-
tion bundle M → N so that M is the total space of a Jacobi fibration over B with fiber Q,
endowed with a connection 1-form θ̃ compatible with the θ, (e.g. the pullback connection).
Then this determines a natural Jacobi fibration π̃ : M→ B with fiber type Q. We have the
commutatif diagram:

M
p

−−−−−→ N

π̃
y π

y
B

id
−−−−−→ B

Theorem 4.3. Let P ↪→ N
π
→ B be an integrable Poisson fibration which is prequantizable.

Then the symplectic groupoid Gs(N)that integrates N is also prequantizable.

Proof: Suppose the Poisson fibration P ↪→ N→ B is integrable and prequantizable. Denote
by Gs(P)⇒ P and Gs(N)⇒ N the source 1-connected symplectic groupoids that integrate
Poisson structure on the fiber P and the induced vertical Poisson structure on N, respec-
tively. They are related to their corresponding contact topological groupoids denoted by
Gc(P) and Gc(N), respectively. More precisely, we have the short exact sequences of topo-
logical groupoids [6]:

1→ ΣP→Gc(P)→Gs(P)→ 1

and
1→ ΣN →Gc(N)→Gs(N)→ 1

where ΣP (resp. ΣN) is the quotient of the trivial groupoid P×R (resp. N ×R) by a group
bundle over P (resp. N) whose fiber at x ∈ P (resp. n ∈ N) is the group of periods of the
restriction of the symplectic form of Gs(P) (resp.Gs(N)) to the source-fiber α−1(x)(resp,
α−1(n)). Because the vertical Poisson structure on N is prequantizable, it follows that its
symplectic groupoid Gs(N) is automatically prequantizable [22].
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