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Abstract

Using the Sasakian join construction with homology 3-spheres, we give a count-
ably infinite number of examples of Sasakian manifolds with perfect fundamental
group in all odd dimensiong 3. These have extremal Sasaki metrics with constant
scalar curvature. Moreover, we present further examples of both Sasaki-Einstein and
Sasakin-Einstein metrics.
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1 Introduction

Until recently, except for the rather obvious examples, little seemed to be known about
Sasakian manifolds with non-trivial fundamental group; see, howe@e1l. In this

note we construct many examples of Sasakian manifolds with a perfect fundamental group.
The examples we present all have extremal Sasaki metrics (in the sense of Calabi), and
have constant scalar curvature. When the Sasaki cone has dimension greater than one,
the Openness Theorem BES09 implies the existence of other extremal Sasaki metrics
which generally do not have constant scalar curvature. We leave for future work the explicit
construction of extremal non constant scalar curvature Sasaki metrics. Our main purpose
here is to prove the following theorems:
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Theorem 1.1. For each odd dimensiolr 3 there exists a countable infinity of Sasakian
manifolds with a perfect fundamentfinial group which admit Sasaki metrics with constant
scalar curvature. Furthermore, there is an infinite number of such Sasakian manifolds that
have the integral cohomology ring of § S +1.

Theorem 1.2. There exist a countably infinite number of aspherical contact 5-manifolds
with perfect fundamental group and the integral cohomology ring%o% S° that admit
Sasaki metrics with constant scalar curvature. Moreover, there are such manifolds that
admit a ray of Sasaki-Einstein metrics (hence, Lorentzian Sasaki-Einstein metrics).

The manifolds of Theorerh.2 differ from those of Theoren.1 with r = 1 which are
not aspherical since they hawg = Z.

Theorem 1.3. There exist negative SasakiEinstein (hence, Lorentzian Sasaki-Einstein)
7-manifolds with perfect fundamental group and arbitrary second Betti nupatder

Theorem 1.4.Let N be a simply connected quasi-regular Sasaki-Eing&¥is 1)-dimensional
manifold with Fano indexd and orderu. Then ifgcd( 30, v) = 1, the join S/T* *11e N is

a smooth(2r + 3)-manifold with perfect fundamental group and admits a Sasaki-Einstein
metric. Such examples exist with rational cohomology ring%o S+ for all r > 1.
Moreover, 8/T* x1 , S is Sasaki-Einstein and has integral cohomology ringokS°.

Many other examples of both Sasaki-Einstein and Sagdkinstein manifolds with
perfect fundamental group can be worked out by chooblirappropriately, as for exam-
ple in Chapters 11 and 13 oB{50§], and in particular the 5-dimensional Sasaki-Einstein
manifolds in BGKO5, Kol05, Kol07, BN10].

After presenting the necessary foundations in Secttomsd3, the proofs of Theorems
1.1-1.4are given, respectively, in Subsectidngd-5.4. The topological parts are presented
in Section4, and the geometrical parts in Sectign

2 Preliminaries on Sasakian Geometry

Here we give a brief review of Sasakian geometry referrin@®Q@8 for details and further
development. Sasakian geometry can be thought of roughly as the odd dimensional version
of Kahlerian geometry. Its relation to contact geometry mimics the relatiorabfdf ge-
ometry to symplectic geometry.

2.1 Sasakian Structures

A Sasakian structure on a smooth maniféddof dimension 2+ 1 consists of a contact
1-formn together with its Reeb vector fiefdwhich satisfies)(§) = 1 and_1dn =0, an
endomorphism fielé which annihilates and defines a strictly pseudoconvex CR structure
(D,J) satisfyingD = kern andJ = ®|p, and finally a compatible Riemannian metgc
defined by the equation

g=dno(®P®1)+nan, 1)

such that¢ is a Killing vector field ofg. We denote such a Sasakian structure by the
quadrupleS = (§,n,®,g). Note that the Reeb vector fiefdgenerates a one dimensional
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foliation Iz of M whose transverse structure ialder with transverse &hler formdn. The
transverse Ehler metric oriD isgr = dno (®®1). There is a freedom of scaling, namely,
given a Sasakian structute= (&,n,®,g) consider theransverse homothewefined by
sending the Sasakian structure to

S = (E)”?q)vg) = Sa: (a_lzvanvq)uga) Whereae IR‘+ andga = ag+ (az - a)n ®r] (2)

Sais another Sasakian structure which generally is inequivalefitbence, Sasakian struc-
tures come in rays.

WhenM is compact the closure of any leaf f is a torust of dimension at least one,
and the flow is conjugate to a linear flow on the torus (cf. Theorem 2.6.B®08). This
implies that for a dense subset of Sasakian structfires a compact manifold the leaves
are all compact 1-dimensional manifolds, i.e circles. S8are known agjuasiregularin
which case the foliatio¥s comes from a locally free circle action. Assuming this circle
action is effective the isotropy subgroups are all finite cyclic groups, and the least common
multiple v = v(S) of theirs orders is an invariant of the Sasakian strucrealled the
order of S. Then the quotient spacg has the structure of a projective algebraic orbifold
with an induced Khler formw such thatt*w = dn wherertis the quotient projection. The
isotropy subgroups of the local circle actionMrgive rise to the local uniformizing groups
of the orbifold. If the circles comprising the leaves®f all have the same period; is
said to beregular, and the quotient spacg is a smooth projective algebraic variety with
a trivial orbifold structure. A leaf off; that is not quasi-regular is a copy Bf in which
caseJs is said to beirregular. A theorem of RukimbiralRuk9g says that an irregular
Sasakian structure can be approximated by quasi-regular ones. A somewhat more general
case occurs if we drop the condition ti@t, J) be a CR structure, but only consider a strictly
pseudoconve&lmostCR structure, that is, the almost complex structlignot necessarily
integrable. Thers = (§,n,®,g) is called aK-contactstructure. A quasi-regular contact
structure is equivalent to having a compatible K-contact structRuk9g. All K-contact
structures considered in this paper are Sasakian. The (almost) complex stiumtueis
also related to the (almost) CR structdren M. For any foliate vector fiel&k on M we
havert, ®X = Jit. X. We say thadl = ®|q, is thehorizontal liftof J.

The flow of the Reeb vector field lies in the center of the automorphism group
Aut(S) of a Sasakian structute= (&, n, P, g); hence, any Sasakian structure on a compact
(2n+ 1)-dimensional manifold has ledimensional torusty in its automorphism group,
where 1< k< n+1. The subset! of the Lie algebray of this torus consisting of vec-
tor fields&’ that satisfy the positivity condition(&’) > 0 everywhere oM forms a cone
called theSasaki condBGS0§. It provides ak-dimensional family of Sasakian struc-
tures associated witS all having the same underlying CR structf®, J). There can be
many Sasaki cones associated with the same contact strdetaseseen, for example, in
[Boyl1Q Boyll BTF11, BTF12. These give rise to bouquets of Sasaki cones which cor-
respond to distinct conjugacy classes of tori in the contactomorphism grayD). For
more on the important infinite dimensionaBehet Lie grougon(D) we refer to Banyaga’s
seminal bookBan97.

The conditions on the Riemannian curvature for Sasaki metrics have been very well
studied, and we refer tdJal0, BG0O§ and references therein for details. It suffices here
to mention only some basic facts about the Ricci curvatured@rsectional curvature of
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a Sasaki metric. LeS = (§,n,®,9) be a Sasakian structure on(2n+ 1)-dimensional
manifold, then the Ricci curvature Riof g satisfies the identities

§ IRicg=2nn,  Ricg|p.p = Rict —29|pxp 3)

where Rig denotes the Ricci curvature of the transversdlér metric. One easily sees
from these equations that the corresponding scalar curvatures are related by

Sg=Sr—2n. (4)

If K is the ordinary Riemannian sectional curvaturegpthen thed sectional curvature

of g is defined byK (X, ®X) whereX is any vector field. Sasaki metrics of constant
sectional curvature are known 8asakian space form3here are three types of Sasakian
space forms, those with (X, ®X) = ¢ > —3,< —3 and= —3. Within each type differ-

ent constants are related by a transverse homothety. If we have a Sasakian space form of
constant® sectional curvature, then after a transverse homothety Equatigy we ob-

tain a Sasakian space form of constdnsectional curvature’ = %3 — 3. They are the
analogs of constant holomorphic sectional curvature in complex geometry. Indeed, under
the Boothby-Wang correspondence consthrsiectional curvature corresponds precisely

to constant holomorphic transverse sectional curvatutec + 3. Assuming the Sasakian
manifold is simply connected, in the spherical or positive case (3) the transverse
Kahler structure is that of complex projective sp&dR"; whereas, in the hyperbolic or
negative casec(< —3) the transverse &hler structure is that of the complex hyperbolic
ball B". Finally we make note of the Ricci tensor for the transveréhl&r structures of
constant holomorphic sectional curvatlteiz.

Rict = %Lkgp (5)

2.2 The Join Construction

We shall make use of thin constructionfirst introduced in BGOQ in the context of
Sasaki-Einstein manifolds, and developed further for general Sasakian struct®e€ia7,

see also Section 7.6.2 @G08. Products of Kihlerian manifolds are &hler, but products

of Sasakian manifolds do not even have the correct dimension. Nevertheless, one can easily
construct new quasi-regular Sasakian manifolds from old quasi-regular ones by construct-
ing circle orbibundles over the product ofiler orbifolds. Let; for i = 1,2 be compact
guasi-regular contact manifolds with Reeb vector fi€ldsespectively. These vector fields
generate locally free circle actions &y and their quotients are symplectic orbifol&s

Then the quotient of the produ€f = St x St action onM; x M, is 21 x Z,. Taking prim-

itive symplectic formsw on Z; we consider the symplectic formy, x, = k1w + kot on

Z1 x Zo whereky, ko are relatively prime positive integers. Then by the orbifold Boothby-
Wang constructionBGO0Q the total space of the principal circle orbibundle ov&rx 2,
corresponding to the cohomology cldsg, k,] € H?(21 x 22, Z) has a natural quasi-regular
contact structure whose contact foryg k, satisfiesdny, x, = T ux, K, Wherertis the nat-

ural orbibundle projection. Moreover, if the base spaggare complex orbifolds and the

wy Kahler forms, the total space of this orbibundle, denotedlbyy, x, M2, has a natural
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Sasakian structure. It is callede join of My andM,. Generally,My x, k, M2 is only an
orbifold; however, if gcduikz, U2k ) = 1 it will be a smooth manifold, wheng is the order
the Sasakian structures bh. So if M; has Sasakian structur§s= (&;,ni, ®;,g;) we obtain
a new Sasakian structusg, x, on M1, k, M2 such that the following diagram

M1><M2
N\

lns M1 *i; k, M2 (6)

/
Z;LXZZ

commutes. Hereg is the quotient projection of th&? torus action, the southeast arrow
is the quotient projection by the circle action generated by the vectorﬁg{d — 2—th

and the southwest arrow is the quotient projection of the Reeb vectorgﬁélﬂJr Z—ﬁziz of
|V|;|_ *ky ko |\/|2.

Although we are not able to distinguish diffeomorphism typelloy, , M2 generally,
we can distinguish contact structures by the first Chern dg$8) of the contact bundle
D.

2.3 Extremal Sasakian Structures

Given a Sasakian structu®= (&,n,®,g) on a compact manifolt1>"*1 we deform the
contact 1-form byn — n(t) = n +t{ where( is a basic 1-form with respect to the char-
acteristic foliationJ; defined by the Reeb vector fiefd Heret lies in a suitable interval
containing 0 and such thatt) Adn(t) # 0. This gives rise to a family of Sasakian struc-
turesS(t) = (&,n(t),P(t),g(t)) that we denote bg(&,J) whered is the induced complex
structure on the normal bundigJ;) = TM/L; to the Reeb foliatiord; which satisfy
the initial conditionS(0) = S. On the spacé&(&,J) we consider the “energy functional”
E:8(&,J)—R defined by

E(g) = /M%dug, @)

i.e. theL2-norm of the scalar curvatuisy of the Sasaki metrig. Critical pointsg of this
functional are callecextremal Sasaki metricsSimilar to the Kahlerian case, the Euler-
Lagrange equations for this functional say&3S09 that g is critical if and only if the
gradient vector fieldgrad;sy is transversely holomorphic, so, in particular, Sasakian met-
rics with constant scalar curvature are extremal. Since the scalar cursgtanelated to

the transverse scalar curvatifeof the transverse &hler metric bys; = sj — 2n, a Sasaki
metric is extremal if and only if its transverseaKler metric is extremal. Hence, in the
guasi-regular case, an extremahider orbifold metric lifts to an extremal Sasaki metric,
and conversely an extremal Sasaki metric projects to an extreatdeKorbifold metric.
Note that the deformation — n(t) = n +t¢ not only deforms the contact form, but also
deforms the contact structufie to an equivalent, isotopic, contact structure. So when we
say that a contact structuf® has an extremal representative, we mean so up to isotopy.
Deforming the Kahler form within its Kahler class corresponds to deforming the contact
structure within its isotopy class.



Charles P. Boyer and Christina W. Tennesen-Friedman 103

As mentioned above Sasaki metrics of constant scalar curvature are a special case of
extremal Sasaki metrics. We shall abbreviate constant scalar curvature by CSC. A further
special case of interest are the so-called Sagakinstein metrics, or simply-Einstein
(see for exampleBGMO06, BG0g and references therein). Recall that a Sasakian (or K-
contact) structuré& = (&,n, P, g) is calledn-Einsteinif there are constants b such that

Ricg=ag+bn®n (8)

where Rig is the Ricci curvature af. The constanta, b satisfya+b = 2n. The scalar cur-
vaturesy of ann-Einstein metric is constant. Indeed, if the manifold has dimensionp P,
then the scalar curvature satisfigs= 2n(a+ 1). However, as we can easily see, not every
constant scalar curvature Sasaki metrig-ginstein. In fact, many of the CSC Sasaki met-
rics that we construct have a diagonal Ricci tensor consisting of constant diagonal blocks.
Notice that ifb = 0 we obtain the more familiar Einstein metric,Ig<Einstein is a general-
ization of Einstein. In this case the scalar curvagyre 2n(2n+ 1) and the transverse scalar
curvature isst = 4n(n+ 1). Moreover, it follows from Equation3) that a Sasaki metrig
is n-Einstein if and only if the transversedkler metrich is Einstein. So one easily sees
that a transverse &bler-Einstein metric is negative if and onlyaf< —2, and positive if
and only ifa> —2. We refer to these as negative (positigetinstein metrics, respectively.
Furthermore, given a positivg-Einstein metric there is a transverse homothety whose re-
sulting metric is Sasaki-Einstein. Even more is true in dimension 3: a 3-dimensional Sasaki
metric isn-Einstein if and only if it has constadt sectional curvaturegGMO06).

It is easy to see that any Sasakian structure gives rise naturally to a Sasaki metric with
a Lorentzian signature, see Section 11.8.18G0g. Moreover, in the Lorentzian signa-
ture, one can apply a transverse homothety to a negative Sadzikistein metric to obtain
a Lorentzian Sasaki-Einstein metric. Thus, we can obtain many examples of Lorentzian
Sasaki-Einstein metric§om11].

3 Seifert Fibered Homology3-Spheres

Homology spheres are by definition manifolds whose integral homology coincides with that
of a sphere. In dimension 3 this is equivalent to the fundamental group jpeifert that is,

it coincides with its commutator subgroup. We want the homology 3-spheres that we con-
sider to admit a Sasakian structure; hence, they must be Seifert fibered homology spheres
with an effective fixed point free circle action. Here we give a brief review of such homol-
ogy 3-spheres followingdav02 LR10] and the translation 0§ei33 in [ST8Q. It is known

that the binary icosahedral grolipis the only non-trivial finite perfect subgroup 8tJ(2)

(see page 181 infol67)). It is a double cover of the simple grolif order 60, the icosa-
hedral group. Moreover, it follows from Perelman’s proof of the Poiacamjecture that

up to diffeomorphism the only compact 3-manifold with a non-trivial finite perfect funda-
mental group is the celebrated PoirieaphereS® /T*. The remainder of the Seifert fibered
homology 3-spheres, except f8%, can be realized as a homogeneous space of the form
PSL2,IR)/I wherePSL(2,R) denotes the universal cover of the projective linear group
PSL(2,R), andl is a cocompact discrete subgroupR$L(2,R) [NR78 RV81, LR10].
Hence,m(M3) is infinite andM? is aspherical. Recall that a manifol is asphericalif

(M) = 0 for allk > 1. Summarizing we have
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Proposition 3.1. Let M® be a Seifert fibered homology 3-sphere which is not the standard
sphere nor the Poincérsphere. Then Mis aspherical and a homogeneous space of the
formPSL(2,IR)/I" for some cocompact infinite discrete subgrdugrurthermore;y (M3)

is infinite and perfect.

3.1 The Orbifold Base

We consider the homology 3-sphere as the Seifert bugitile-M3—B whereB is an
orbifold. As will become evident below in all cases the base of the Seifert fibration is
< with an orbifold structure. We refer the reader to Chapter 4868Q9 for the basics

of orbifolds. In order to work with orbifold cohomology classes we consider Haefliger's
[Hae84 classifying spac®B of an orbifoldB. We represent the orbifol by a propegétale

Lie groupoid§ (or any Morita equivalent Lie groupoid) and IBB denote the classifying
space of, then the integral orbifold cohomology groups and homotopy groups are defined
by H! ,(B,Z) = H(BB,Z) and ®"°(B,Z) = 14(BB,Z), see Section 4.3 of8iG0g for
further details.

We have

Lemma 3.2. Let M2 be a Seifert fibered homology 3-sphere that is not the standard sphere
S®. Thent@™(B) is a quotient ofry(M?3), and hence, perfect. If #is not the Poincag
sphere, them®™(B) = Ofor i > 2 andm§™(B) ~ 4 (M3)/Z. If M3 = /T, thentg™(B) ~

7, (B) ~ (S} /1*) ~ 1 (S®) for i > 3, andm@™(B) is L.

Proof. Since in all casesz(M?) = 0 we have the homotopy exact sequence

0——1E™(B) —— Z T (M?)——TE(B)— {1} ©)

which proves the first statement. M3 is not the Poincdr sphere themy (M3) is infinite,
so by Lemma 14.3.1 oL JR10] Y is injective which proves the second statementMffis
the Poincai sphere them (M3) ~ I* and Lemma 14.3.1 ot R10] says thaB is §. From
the exact sequencé)(and the fact thaty (M%) = I* we see that®™(B) is eitherl* or .
We claim that it must b&. The following argument is taken fronzim11]. The orbifold
structure ofB is described by the branched co&r—S?/G whereG is eitherl or I*.
Now as we shall see shortly the Poineaphere can be represented by the lifR, 3,5)
and the orbifold Riemann-Hurwitz formula is

1
f)=1G/(2-29-SF(1- =
X(S) = 6l(2-29- F (1- )
whereX is Euler characteristic and is the genus of the Riemann surface, so we have
X(S%) = 2,9 =0, and(myg,mp, mg) = (2,3,5). Thus, the formula gives| = 60, soG = 1.
Then from the exact sequend® (ve see thatd™(B) ~ Z and the map is multiplication
by 2. O

In all cases in this paper the 2-dimensional orbifBlds developablethat is, it is a
global quotient, namely8 = /18" (B).
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A result of Neumann and Raymond#llR78 says that up to orientation any Seifert
fibered homology 3-sphere can be realized as a link of complete intersections of gener-
alized Brieskorn manifoldsHan73. Moreover, it follows from Section 9.6 oHGO0§ that
any such link admits a Sasakian structure. Seifert fibrations as complete intersections is
also treated in$av02 Loo84] as well as recently in Section 14.11 &ff10].

3.2 Complete Intersections of Brieskorn Manifolds

Here we essentially follow Section 14.11 &H10]. Leta= (ap,--- ,a,) be a sequence of
integers withg; > 2 and letC = (cj;) be ann— 1 by n+ 1 matrix of complex numbers. We
also assume that eaoh- 1 by n— 1 minor determinant of is nonzero. Then the complex
variety

Ve(@) = {ze €| fi=cioZ 4+ +cn"=0,i=0,---,n—2} (10)

is nonsingular away from the origin i1, and the link
L(a) = Vc(a)n S (11)

is a smooth 3-dimensional manifold which is independef@ ap to diffeomorphism. Note
thatVc has aC* action defined by — (A"z, --- . A%z,) with weights

lcm(ag, - -+ ,an)
WJ == T.

The unit circleS' ¢ C* acts on the link-(a) without fixed points, so it is a Seifert manifold.
The Seifert invariants are given on page 336LdR10]. The unnormalized invariants are

M= {oaga 07 O,S]_(GO,BO), cee 751((1”’ BI’]}

where N
|Cm(ao’...7an) apar---@j---an

|Cm(a07...’aj7...’an) | |Cm(a07...,aj7...’an)

_1 _q) f0fc@ o
g_2(2+(n 1)Icm(ao,-~-,an) J;sj)

andp; ande are determined by

aj

- Bi apay -+
—eM) =Y si—L = .
M) ,; 'aj  lem(ag, -+ ,an)?

This last equation becomes

ZJBJ'WJ' =1 (12)
=

Hereg is the genus of the base Riemann surface. Note that the vaasynot the most
general type of complete intersection even for dimension 3. Generally, complete intersec-
tions have a multidegre®= (do, --- ,dn—2), butin our case here the degrelare all equal,
namelyd = Icm(ap, - - ,ay). We define the weight vector = (wo, - - - ,wy) and|w| = 3 ; wj.
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The linkL(ay, ...,an) is the total space of a8 orbibundle over a projective algebraic orb-
ifold Z, ande(M) is the orbifold Euler number of the orbibundle. Note that the Euler
number of the orbifold canonical bundle of this orbifold9s*.. We now consider the
main case of our interest, namelNR7g

Lemma 3.3. The link L(a) is a homology 3-sphere if and only if the integegs.a. , a, are
pairwise relatively prime.

In this case the weights avg = ag--- & - - - a, and the degred = ay- - - a, which satis-
fiesd = w;a; for all j. (This last equation holds in generally for Brieskorn manifolds). So
in the case of homology spheres we have

a;=a;, sj=1, g=0. —e(M):—“:%. (13)

The equation fof3; becomes
n & B 1
JZO a; apay - - an ’

As mentioned previously every Seifert fibered manifold that is an integer homology
sphere is diffeomorphic up to orientation to a Brieskorn complete intersdota. .., a,)
[NR7§. Furthermore, they are all homogeneous manifolds which except for the P@incar
sphere have the forlRSL(2,R) /" whererl is an infinite discrete group such tHatlr'| =T.

The Poincag sphere is represented &y (2,3,5). It is the homogeneous spaBel(2) /T
wherel” is the binary icosahedral group, a finite group of order 120. Conditions on the
Seifert invariants that a given Seifert manifold can be represent®&6E2,R)/I" where

[ is a cocompact discrete subgroupR8L(2,IR) were given in RvV81]. Also the fact that

any complete intersection link of the form1) is a homogeneous spaBSL(2,R)/I" or
SU(2)/I* was proved inlNeu71.

Example 3.4 Whenn = 2 we have the Brieskorn 3-manifoldgag,a;,az) which were
treated extensively inMil75]. Whenn = 3 we can redefine the coordinates giving the
complete intersection

BAE+L+E =0, o +af +0B +0Z =0,

The condition on the minor determinantsis# ¢ foralli # j =0,---,3.

3.3 Sasakian Structures on Homology Spheres

It follows from Proposition 9.6.1 o G08] that the links. (a) admit a quasiregular Sasakian
structure induced from the Sasakian structureS8hi! as a complete intersection. Now
L(a) is the total space of ag' orbibundle over a projective algebraic variefy, of com-
plex dimension one, that is, a Riemann surface embedded as a complete intersection in the
weighted projective spadeP(w). Given the form of the weights for homology spheres,
we see thaCCIP(w) is isomorphic as a projective variety €P" and Z,, is isomorphic to
CTP! but with a non-trivial orbifold structure.

Recall from Definition 7.5.24 of§G0§ that a Sasakian structug = (§,n,®,q) is
positive (negativejf the basic first Chern clas@(iﬁ) can be represented by a positive
(negative) definitg¢1, 1) form.
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Lemma 3.5. Let L(a) be a homology 3-sphere. Then except for the Polasgphere with
link L(2,3,5), the Sasakian structure on the linkd) is negative. The Sasakian structure
on the Poincag sphere I2,3,5) is positive.

Proof. Note that the basic first Chern clasf§ ) is the pullback of the orbifold first Chern
class which ié""‘%w‘ times the area forra on CIPL. Thus, we have

C(l)rb(ZW) =

olr

(> wj—(n—1)ap--an)a. (14)
]

If n=2then itis well known Mil75] and easy to see that2, 3,5) is the only non-standard
homology sphere for whicty > 0. So we assume that> 3 and without loss of generality
we can assume thap < a; < --- < a; anda;j > 2. We then have

’d‘—|w‘ = (nfl)ao...aanao...é_\j...an
J

> (n_l)ao...an_(n+1)a1...an
= ((n—1)ap—(n+1))ar---a, > (n—3)az---a, > 0.

O]

WhenM? is a homology sphere with infinite fundamental group arising from the link
L(a), the basd = B(a) is & with an orbifold structure consisting of+ 1 orbifold points.
So if M2 is not the Poincdr sphere, or equivalently thai(M?) is infinite, there are + 1
singular orbits corresponding to setting= 0 wherej =0,...,n. The order of the isotropy
subgroup whem; = 0 isa;j, so the total order of the orbifold quotientds = ao - - - a, which
coincides with the ordew of the Sasakian structure.

We are now ready for Belgun’s theorem. The version given in Theorem 10.1.3 of
[BGOY is more convenient for our purposes, and we give only what we need here.

Theorem 3.6([Bel0]]). Let M be a3-dimensional compact manifold admitting a Sasakian
structureS = (§,n,®,g). Then

1. If Sis positive, M is spherical, and there is a Sasakian metric of congtes#ctional
curvaturel in the same deformation class as g

2. If S is negative, M is oﬁ\S/L(Z, R) type, and there is a Sasakian metric of constant
d-sectional curvature-4 in the same deformation class as g

In the positive case the metrigalso has constant Riemannian sectional curvature 1.
Moreover, in case 1 of the theorem there is a ray of consbesectional curvature with
¢ > —3 which corresponds to constant transverse holomophic sectional curgat@re O.
In case 2 there is a ray of constahsectional curvature with ¢ < —3 which corresponds
to constant transverse holomorphic sectional curvatw@& < 0. Except for the standard
sphere the automorphism group ®fis one dimensional consisting of the flow generated
by the Reeb vector field. Thus, the Sasaki cone is one dimensional for these structures.
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3.4 Orbifold K ahler-Einstein Metrics on B,

It follows from Theorem3.6 and the orbifold Boothby-Wang TheoreBG0Q that B,
admits a Kahler-Einstein orbifold metric. For example for the Poigcaphere witha =
(2,3,5), the orbifold first Chern class of the base orbif@glis 3™ (B,) = 3—100( wherea
is primitive in H2(B,, Z). So if p: BBa—B, is the orbifold classifying mapp*cd™ is
primitive in ngb(Ba,Z). Moreover,c‘jrb pulls back to an integer cohomology classMg
which of course in our case is 0.

We want to emphasize, as mentioned previously, that the orbifalddft-Einstein met-
rics on B, correspond to Sasakj-Einstein metrics orM3. In the positive case when
M3 = S*/I* anda = (2,3,5), the positive Kahler-Einstein metric o, 35 with scalar
curvature 8 corresponds to the standard constant sectional curvatur@ &autional cur-
vature) 1 metric oi$°/T*. In the negative case thealer-Einstein metric 0B, with scalar
curvature—2 corresponds to constagit sectional curvature-4 on M2. In both cases by
rescaling the Khler-Einstein metric oB,, we obtain a ray of Sasakj-Einstein metrics on
M2 with constantb sectional curvature.

In order to construct-Einstein metrics on joins, we need to consideritagex In
[BGOQ we worked with positive Sasakian structure in which case we defined the Fano
index. For complete intersections it | — |d|. However, here in all but one case, the
Sasakian structure is negative, so we definec#meonical indexas |, = |d| — |w|. For
homology sphereb!3, |d| = (n—1)ag---a, and|w| = Yjd:---dj--an.

4 The Join of an Homology 3-Sphere

Here we letM2 be a homology sphere described by the litkay, ..., a,) of Section3.2

and we assume that > 2 for all i, so that it is not the standard sphere. As seen in the
last sectiorl\/lg has a natural Sasakian structure of constasectional curvature, and we

can easily obtain higher dimensional Sasakian manifolds with perfect fundamental group
by applying the join construction.

4.1 The Topology ofMg*kJ N with N Simply Connected

Theorem 4.1. Let N be a simply connecte?t + 1-dimensional quasi-regular Sasakian
manifold of orderu, and let M be an homology sphere described in Sect®® so
gcd{a} = 1. Ifalsogcd(lag - - - an, ku) = 1 then the(k,1)-join M3 N is a2r + 3-dimensional
Sasakian manifold. Moreover, if Ms not the Poincai sphere we have

° Mg*kJ N has a perfect fundamental group isomorphic to a quotiemt G¥13).
o T (M3x N) is aZ extension of the perfect groug™(B,) ~ m (M2) /Z.

o T5(M3x N) ~ 15(N) fori> 2.

If M2 is the Poincaé sphere ¥/1*, then

e Iflis odd M3 %k N has a perfect fundamental group equallto

e Iflis even M« N has a perfect fundamental group equal to either I*.
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o TH(M3x N) ~1i(S*) mg(N) foralli > 3.
Proof. The fact thail\/lg *i| N is a smooth Sasakian manifold of dimension+23 follows
from Proposition 7.6.6 ofBG0§. There are two relevant fibrations involving the join.

By Proposition 7.6.7 of BG0§ Mgm N can be realized asd/Z;-bundle over the base
orbifold B, of Mg’, that is we have an orbifold fibration

N/7Z)——M3 %) N—B, (15)
whose long exact homotopy sequence is
0—Tu(N)—To(M3x N) —T8™(By) — Z) — 1 (M3 N) —T8™(B,) — 1. (16)
On the other hand we have the circle bundle that defines the join, namely
St—M3 x N—M35 N, (17)
which gives the long exact sequence
0—Tp(M3 x N)—Tp(M3 x| N)—Z——Ty (M3)—1y (M3 % N)—1.  (18)

Since the quotient of a perfect group is perfect, this implies that in all cases the fundamental
group ofM3 x| N is perfect.

Now if M2 is not the Poincdr sphere Lemma.2says that foi > 2, °™(B,) = 0 which
implies thatry (M3 x| N) is aZ,; extension of §™(B,). The second statement then follows
immediately. The third statement also follows from the exact homotopy sequence and the
fact thatr®™(B,) = 0 fori > 2.

When M3 is the Poinca sphereS®/T*, the long exact homotopy sequends)(be-
comes, again using Lemn3a2,

——Tp(N)——Tu(M3 4 N) 7——7, T (M3 N)——T——1. (19)

But also in this case the long exact homotopy sequeb®egfves

0——Tp(N) ——To(M3 4 N)——Z——T* —— Ty (M3 %) N)—— 1. (20)

From the exact sequenc20j, Ty (M3 N) is eitherl or I*. But from (19) if | is odd, then
Trl(Mg*kJ N) cannot bel* which proves the first statement of this case. Howevdr,sf
even,nl(Mg*kJ N) can be eithel or I*. The final statement follows from the homotopy
exact sequence o17). O

Also whenl is odd the map inZ0)
(M3 % N)/TR(N) = Z——7Z
is multiplication by 2; whereas, the similar map i8] is multiplication byl.

Remark 4.1. Notice that for fixeda andv, there are infinitely manyk,|) that satisfy the
smoothness conditiagcd(lag - - - an, ku) = 1.
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For cohomology we have

Lemma 4.2. Assume the hypothesis of Theorrh Then H(M2 x| N, Z) ~ H?(N,Z) @
7.

Proof. Now M2 is a homology sphere, and by Theordri Mg*m N has perfect fundamen-
tal group, so the Gysin sequence of the fibratibr) gives the short exact sequence

0——Z——H*(M3 % N, Z)——H?3(N,Z)—0
which splits sinceH?(N, Z) is free. O
A special case of interest ¢ = S 1, the (2r + 1)-sphere.

Proposition 4.3. Let M2 be an homology 3-sphere. Then the joif ¢, S*** has the
rational cohomology ring of Sx S+ for all relatively prime positive integers k and the
join M3 %1 S +1 has the integral conomology ring of § S*+1 for all positive integers
k. If r = 1, the join M2 x| S* has the integral conomology ring of § S for all relatively

prime positive integers,k

Proof. Our proof uses the spectral sequence method employ&d9(0, BGO( (see also
Section 7.6.2 of BG0§). The fibration (L7) together with the torus bundle with total space
M2 x S+ gives the commutative diagram of fibrations

Mg % SZrJrl Mg*k,l 82r+1 le

l | lw 21)
M3x S+l — - BByxCP' —— BS'xBS

whereBG is the classifying space of a gro@or Haefliger’s classifying spacéifpe84 of
an orbifold if G is an orbifold. Note that by definitioRl. , (Ba,Z) = H'(BBa,Z) and an

orb
easy argument of the orbifold fibrati@®— M3 — B, shows thaH (Ba, Z) = H* (S, Z).
So cohomologicallyBB, is S°. We also note thaBSt = CIP® with cohomology ringz|g
with s€ H?(CP*,Z).

Now the mapy is that induced by the inclusice® — (€'®,e*®). So writing
H*(BS' x BS, Z) = Z[s1, 5]

we see thafp*s; = Isand*s, = —ks. TheE, term of the Leray-Serre spectral sequence of
the top fibration of diagran®() is E}4 = HP(BS',HI(M$ x S**+1, Z)). The non-zero terms
occur whenp is even, say @, andq=0,3,2r +1,2r + 4. Leta, 3 denote the orientation
class ofM3, S +1, respectively. The cohomology ring of the fiberix, B], whereas, that
of the base i%[g]. Then ifr > 1 the differentialds(a) = (Is)?, so we need = 1 to avoid
torsion inH* ~ torsion inHz. Then by naturality we havel(a ® s?P) = 2P +2, but then
dari2(B) = 0 anddyr;2(a UB) = $ ® B, so the classes that survive &g, Us which
proves the result for > 1.

Whenr = 1 we haved4ga) = 128? andd4(B) = k?s? which implies that the primative
integral clask?a —1%p € E2’3 survives, and this proves the result together with Pocar
duality. O
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4.2 The Topology ofM3 x M3

Here we consider the join of two homology 3-spheres. We assume thal,gdg) = 1
which implies that at most one of them can be the Poimsghere. From the fibratiod7)
with N replaced byM? we obtain

0—Tp(M3 x M3) —TR(M3 | ME) —Z—1y (M3 x M3)—15 (M3 %) M3)— 1.

Now M2 x M2 has perfect fundamental gromp(M3) x T4 (M2), and if neither is the Poincar
sphereM? x M2 is aspherical. Hencem (M3 i M2) is perfect andt (M3 MZ) = 0 for
i > 3. On the other hand, from the orbibun@e— M3 x| M3— B, x B, we have

0—TR(M3 i1 M3)—T8"(Ba) x T8 (Bp) —Z—Ta (M3 #k) M3) — T8 (Ba) x T§™(By) — 1.
(22)
Now 18" (B,) andm8™(By) vanish by Lemma.2, somp (M3 M) = 0 makingM3x; M3
aspherical and its fundamental group is perfect, but not simple.
Concerning the cohomology M3 | M3 we have:

Proposition 4.4. For all relatively prime positive integers kthe 5-manifold I\Q*M Mg has
the integral conomology ring o?S« S°.

Proof. The proof is similar to the = 1 case of Propositio#.3, so the details are left to the
reader. O

Combining this theorem with the above analysis gives

Theorem 4.5. The 5-manifolds Igl*kJ Mg are aspherical with perfect fundamental group
and the integral cohomology ring of & S°.

4.3 Distinguishing Contact Structures

The crudest invariant of a contact structure is the first Chern dg$§3) of the contact
bundle; nevertheless, it can distinguish countably many contact structures in many cases. A
much more subtle contact invariant is the contact homology of Eliashberg, Giventhal, and
Hofer [EGHOQ employed for example irgP12. However, in the present paper we cannot
even pin down the diffeomorphism type, so we only make usg ¢b distinguish contact
structures.

Here we consider only a special case where given two base orbBgldsedB,, we
assume thap*c‘{rb(Bi) = —l;a; wherel; is the canonical indéxof B; anda; € ngb(Bi,Z)
is a generator. In this case we have

p*cf™®(By x Bp) = — 1101 — lo0. (23)

Now consider thest bundle determined by the#fler classiay + ko0, on By x By. Let
Tt M1, K, Mo——B1 x B> denote the bundle projection. By the join construction we know
that Tt (ky01 + ko02) = [dn] = 0. So there is a generatpe H2(M1*k17k2 M2, 7Z.) such that

1Since we mainly deal with negative Sasakian structures, we use the canonical index instead of the Fano
index used inBGO0Q. Of course, the Fano index is just the negative of the canonical index.
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a1 = koy andrt'a, = —kpy. Now the first Chern class of the contact bundle is the pullback
of the orbifold first Chern class dg; x By, that s,

Cﬂ@) = T[*C(:frb(Bl X Bz) = —|1T[*(11 — |2T[*(Xz = <|2k1 — |1k2)y. (24)

The mod 2 reduction afy (D) is a topological invariant, namely the second Stiefel-Whitney
classwy (M1 g, k, M2) € H2(Mq *,.k, M2, Z2). This allows us to distinguish different man-
ifolds with the same perfect fundamental group.

5 Extremal Sasaki Metrics on Joins of Homology Spheres

We shall always assume thdg is an homology 3-sphere with constamsectional curva-
ture either 1 or—4 and that it is not the standard sphere. So it is either the P@&ispénere
with constant sectional curvature 1 or a negative homology sphere with cofstantional
curvature—4.

Theorem 5.1. Let N be a simply connected quasi-regular Sasakian manifold of dimension
2r + 1 which fibers in the orbifold sense over a projective algebraic orbitBldvith an
orbifold K&hler metric h of constant scalar curvature S. bebe the order of the Sasakian
structure on N and assume thgtd(lag - - - a,,ku) = 1. Then the join I\g*kJ N is a smooth
Sasakian manifold of dimensidn + 3 with perfect fundamental group and the induced
Sasakian structure has a ray of extremal CSC Sasaki metrics.

Proof. The proof easily follows from the join construction together with Theodein [

WhenN has a Sasakian structure whose automorphism g2oupS) has dimension
greater than 1, one can deform in the Sasaki cone to obtain new extremal Sasakian struc-
tures. Indeed, the Openness TheoremBit $0§ guarentees the existence of an open set
of such extremal Sasaki metrics.

5.1 Extremal Sasakian metrics orM3 x| S +1

We can easily obtain constant scalar curvature Sasakian metrics on mahifplgdsS> +1
from the lift of the product Khler orbifold metric orB(a) x CP". Let us describe the
orbifold structure orB(a). As an algebraic variety it i€P* with n+ 1 distinct marked
points. Thus, as an algebraic variety the proddi@) x CP' is CP* x CPP" with a non-
trivial orbifold structure on the first factor described by branch divigoes 5; A;. On the
first factor we have an orbifold &hler-Einstein metric with scalar curvature, and on
the second factor the standard Fubini-Study metric with constant scalar curvgtusel4.
Since there are an infinite number of intedeksay, .. ., a, that satisfy gcag - - - an, k) = 1,
Theoremst.1and5.1, and the results of Sectigh3imply

Theorem 5.2. Let M2 be a negative homology sphere and assumegbdfag- - - an, k) =

1. Then there is a countably infinite number (@f + 3)-dimensional contact manifolds
M3 %) 1 with a perfect fundamental group that admit a ray of extremal CSC Sasaki
metrics.

Then Propositiort.3and Theorend.2 immediately give Theorerh.1 of the introduc-
tion.
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5.2 Extremal Sasakian metrics orM3 x; M3

Notice that since both homology 3-spheres have congtesdctional curvature, the bases
have constant holomorphic sectional curve; hence, they both have @8lerkorbifold
metrics. So if gcdag: - an,kbp- - by) = 1, the 5-manifoldV3 ) M2 has a CSC Sasaki
metric. This includes the case when one of the homology 3-spheres is the Bapbare.

When both homology 3-spheres are negative, we obtain Sgsikistein metrics in
certain cases. In order to get such metrics we need to sele&t thdibundle oveB, x
By, whose Euler class is proportional to the orbifold first Chern ct@%Ba x Bp) with
negative proportionality constant. From Equati@d)(we have with obvious notation

_ |Wa\—\da\a+ Wi —

cO™(B, x Bp) = 0 B. (25)
da db

So by EquationZ4) to obtain a Sasaki-Einstein metric orM3 x; M2 we needc; (D) =

T c§"®(B, x Bp) = 0, and we do this by choosing= |da| — |Wa| = 1a andl = |dp| — [Wp| = I

as long as they are relatively prime. As BGO0Q to handle the case when they are not
relatively prime, we define theelative indicesy

|a |b

T gedlaly)’ " gedlaly)

Then gcdJa,Jp) = 1. So generally we obtain a SasakEinstein metric Ong*kJ Mg by
choosingk = J, andl = J,. We also make note of the easily shown fact that{dgd,) = 1
for all awith thea; pairwise relatively prime. This guarentees that as long asigod}, ) =
1, there is a Sasakj-Einstein metric oM3 x;_4, M3. Summarizing we have

Theorem 5.3. Let M2 and I\/ﬁ be negative homology 3-spheres with canonical indiges |
and b, respectively. Then

1. Ifgcd(lda, kdy) = 1 the 5-dimensional contact manifalt¥lS x| M2, D) with ¢ (D) =
(klp — 1)y admits a CSC Sasaki metric.

2. Ifgcd(da, dy) = 1, the 5-dimensional contact manifolfi3 g, 5, M3, D) with ¢, (D) =
0 admits a ray of negative SasakiEinstein metrics; hence, it also admits Lorentzian
Sasaki-Einstein metrics.

Since for fixeda andb there are a countably infinite number of relatively prime pairs
(k,1) that satisfy gcdda, kdy) = 1, there are a countably infinite number of such contact
5-manifolds.

Combining Theoremd.5and5.3 proves Theorem.2 of the Introduction.

5.3 More Sasakin-Einstein Manifolds

Itis now straightforward to construct higher dimensional examplgsBinstein and Lorentzian
Sasaki-Einstein metrics. Since as mentioned abovédgdd) = 1 = gcd(J,,J), we have

Theorem 5.4. Let M2 be a negative homology 3-sphere and let N be a simply connected
negative Sasakian manifold with canonical index | and orddretJ,,J denote the relative
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canonical indices. Then gcd(d,J,v) = 1 the manifold M xj, 1N has perfect fundamental
group and admits a ray of negative Sasgkkinstein metrics, and hence, a Lorentzian
Sasaki-Einstein metric.

Proof of Theoreni..3. In order to prove Theorerh.3 we need to find simply connected
negative eta-Einstein 5-manifolds with arbitrary second Betti nurbpdhat satisfy the
hypothesis of Theoreri.4 Then by Lemmat.2 we will have arbitraryb,(M3 x5 g N) =

b2(N) +1 > 1. In order to find suctN we make use of the work of Gome&fm1]

on negativen-Einstein structures on arbitrary connected sum§?of S°. To exhaust all
connected sumKS? x S*) we divide the analysis into seven cases, two infinite series and
five sporatic cases. In each case we need only to check thélt gee= 1. Then we can
always finda such gcdd,, v) = 1. The first series is given by the link of the hypersurface
Z+ 242 4 Ak 1z 4 2417, = 0. Herek > 1 and the second Betti numberis | = 2k 4 1.

One checks that this has= 2(4k + 1) and| = 16k(4k+ 1) — (4k+3)2. It follows that
gcdl,u) = 1in this case. The second series applidste: k— 1 with k > 9 and odd. Here

the hypersurface ig + Z + Z + Z = 0 which had = k—8 andu = 2k. One easily sees

that gcdl,v) = 1 in this case. The remaining five cases lax€0,1,2,4,6. The last two

are represented irom11; however, their weights and indices are quite large, but more
importantly, thd = 4 case has g¢tl,u) = 11, so the join will not be smooth. The cdse 6

in [Gom1] does satisfy this condition, so it can be used. Nevertheless, in the table below
we give simpler polynomials to cover these five sporatic cases. We used Orlik’s formula
(see Corollary 9.3.13irgG08§) with a Maple program to compute the second Betti number
b,. Note that they are not necessarily connected suré »fS, as there may be torsion in
Ho(N, Z).

Sporatic Cases with=1

w Polynomial
(56,68) |3+74+Z2+23
(2,4,611) | 22+ B+ 2+ B2
(6,7,28,42)| Z*+ 22+ Z +2
(4,5,20,30)| Z°+Z*+25+74
(34.12,16)| 2>+ A +ZB+Zzn

@-bl\)l—‘ol\?'

O]

5.4 Sasaki-Einstein Metrics on Manifolds with Perfect Fundamental Group

Since the only positive homology 3-sphere with perfect fundamental group is the Roincar
sphereS*/T*, only joins with S*/I* can give Sasaki-Einstein metrics. Furthermore, since
from Belgun’s Theoren3.6 the positive case corresponds to the bi-invariant constant sec-
tional curvature 1 metric, these can all be obtained as quotieni$ bf the join of the
standardS® with any simply connected Sasaki-Einstein manifold. So we can consider all
the examples inBGO0Q which involve a join ofS® with a simply connected Sasaki-Einstein
manifold. We only need to choodel to obtain a monoton&' orbibundle, that is, its
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cohomology class is primitive and proportional to the first Chern class of the orbifold anti-
canonical bundleKo‘r%(Z) with Z = 21 x Z,. We also need to scale the orbifoldiKler
metrich on Z so that its scalar curvature i$ + ny)(n1 4+ nz + 1) where the orbifoldz;
has complex dimensiam.

The Poinca& sphere can be represented by the link of the polynozglialﬁ + z% with
weight vectow = (6,10, 15) and degred = 30. It has Fano indel = |w|—d=31-30=
1. So using Theorem& 1 and4.3we obtain Theorem.4 of the Introduction.
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