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Abstract

In this paper we prove the interior controllability of the Linear Beam Equation{
utt −2β∆ut +∆

2u = 1ωu(t, x), in (0, τ)×Ω,
u = ∆u = 0, on (0, τ)×∂Ω,

where β > 1, Ω is a sufficiently regular bounded domain in RN (N ≥ 1), ω is an open
nonempty subset of Ω, 1ω denotes the characteristic function of the set ω and the
distributed control u ∈ L2([0, τ]; L2(Ω)). Specifically, we prove the following statement:
For all τ > 0 the system is approximately controllable on [0, τ]. Moreover, we exhibit
a sequence of controls steering the system from an initial state to a final state in a
prefixed time τ > 0.
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1 Introduction

This paper has been motivated by the works in [1], [3], [4], [5],[7],[8] and [9] where a new
technique is used to prove the approximate controllability of some diffusion process.

Following [1] and [4], in this paper we study the interior approximate controllability of
the Linear Beam Equation{

utt −2β∆ut +∆
2u = 1ωu(t, x), in (0, τ)×Ω,

u = ∆u = 0, on (0, τ)×∂Ω,
(1.1)

where β > 1, Ω is a sufficiently regular bounded domain in RN (N ≥ 1), ω is an open
nonempty subset ofΩ, 1ω denotes the characteristic function of the set ω and the distributed
∗E-mail address: hleiva@ula.ve
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control u ∈ L2([0, τ]; L2(Ω)).
The approximate controllability of the following linear beam equation with the controls
acting in the whole set Ω follows from [3]{

utt −2β∆ut +∆
2u = u(t, x), in (0, τ)×Ω,

u = ∆u = 0, on (0, τ)×∂Ω.
(1.2)

In this paper,we are interested in the interior approximate controllability of the linear beam
equation, which is more interesting problem from the applications point of view since the
control is acting only in a subset or part of the plate Ω. Roughly speaking, we prove the
following statement(see Theorem 3.4) : For all τ > 0 the system is approximately control-
lable on [0, τ]. Moreover, we can exhibit a sequence of controls steering the system from
an initial state to a final state in a prefixed time (see Theorem 3.4). Equation (1.1) arise in
the mathematical study of structural damped nonlinear vibrations of a string or a beam and
was considered in [11] and references therein.

2 Abstract Formulation of the Problem.

Let Z = L2(Ω) and consider the linear unbounded operator
A : D(A) ⊂ Z→ Z defined by Aφ = −∆φ, where

D(A) = H1
0(Ω)∩H2(Ω). (2.1)

The operator A has the following very well known properties: the spectrum of A consists of
only eigenvalues

0 < λ1 < λ2 < · · · < λn→∞,

each one with multiplicity γn equal to the dimension of the corresponding eigenspace.
a) There exists a complete orthonormal set {φn} of eigenvectors of A.

b) For all z ∈ D(A) we have

Az =
∞∑

n=1

λn

γn∑
k=1

< z,φn,k > φn,k =

∞∑
n=1

λnEnz, (2.2)

where < ·, · > is the inner product in X and

Enz =
γn∑

k=1

< z,φn,k > φn,k. (2.3)

So, {En} is a family of complete orthogonal projections in z and

z =
∞∑

n=1

Enz, z ∈ Z. (2.4)

c) −A generates an analytic semigroup {T (t)}t≥0 given by

T (t)z =
∞∑

n=1

e−λntEnz. (2.5)
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d) The fractional powered spaces Zr are given by:

Zr = D(Ar) = {z ∈ Z :
∞∑
j=1

λ2r
j ‖E jz‖2 <∞}, r ≥ 0,

with the norm

‖z‖r = ‖Arz‖ =


∞∑
j=1

λ2r
j ‖E jz‖2


1/2

, z ∈ Zr,

and

Arz =
∞∑
j=1

λr
jE jz. (2.6)

Also, for r ≥ 0 we define Zr = Zr ×Z, which is a Hilbert Space with norm given by∥∥∥∥∥∥
[

u
v

]∥∥∥∥∥∥2
Zr

= ‖u‖2r + ‖v‖
2.

Hence, (1.1) can be written as an abstract system of ordinary differential equations in the
Hilbert space Z1 = Z1×Z as follows:{

u′ = v
v′ = −A2u−2βAv+1ωu

(2.7)

Finally, system (1.1) can be rewritten as a first order system of ordinary differential
equations in the Hilbert space Z1 = Z1×Z as follows:

z′ =Az+Bωu, z ∈ Z1 t ≥ 0, (2.8)

where u ∈ L2([0, τ];U), U = L2(Ω),

A =

[
0 IZ

−A2 −2βA

]
, (2.9)

is an unbounded linear operator with domain

D(A) = {u ∈ H4(Ω) : u = ∆w = 0}×D(A),

and B : U −→ Z1, Bω =
[

0
1ω

]
is a bounded linear operator.

Proposition 2.1. The adjoint of operators BΩ and Bω are given by

B∗Ω =
[

0 IZ
]
, B∗ω =

[
0 1ω

]
Now, we shall prove that the linear unbounded operator A given by the linear beam

equation (2.9) generates a strongly continuous semigroup which decays exponentially to
zero. In fact, using Lemma 2.1 from [6] we can prove the following theorem.
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Theorem 2.2. The operator A, given by (2.9), is the infinitesimal generator of a strongly
continuous semigroup {T (t)}t≥0 represented by

T (t)z =
∞∑
j=1

eA jtP jz, z ∈ Z1, t ≥ 0 (2.10)

where
{
P j
}

j≥0
is a complete family of orthogonal projections in the Hilbert space Z1 given

by

P j =

[
E j 0
0 E j

]
, j = 1,2, . . . ,∞, (2.11)

and

A j = B jP j, B j =

[
0 1
−λ2

j 2βλ j.

]
, j ≥ 1. (2.12)

Moreover, the eigenvalues σ1( j), σ2( j), of the matrix B j are simple and given by:

σ1( j) = −λ jρ1, σ2( j) = −λ jρ2,

where 0 < ρ1 < ρ2 are given by

ρ1 = β−

√
β2−1 and ρ2 = β+

√
β2−1

and this semigroup decays exponentially to zero

‖T (t)‖ ≤ Me−µt, t ≥ 0, (2.13)

where
µ = λ1ρ1

The following gap condition plays an important role in this paper

λ j+1

λ j
>
ρ2

ρ1
. (2.14)

Proposition 2.3. The operator P j : Zr→ Zr, j ≥ 0, defined by

P j =

[
E j 0
0 E j

]
, j ≥ 1 , (2.15)

is a continuous(bounded) orthogonal projections in the Hilbert space Zr.

Proof First we shall show that P j(Zr) ⊂ Zr, which is equivalent to show that E j(Zr) ⊂ Zr. In
fact, let z be in Zr and consider E jz. Then

∞∑
n=1

λ2r
n ‖EnE jz‖2 = λ2r

j ‖E jz‖2 <∞
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Therefore, E jz ∈ Zr,∀z ∈ Zr.
Now, we shall prove that this projection is bounded. In fact, from the continuous inclusion
Zr ⊂ Z, there exists a constant k > 0 such that

‖z‖ ≤ k‖z‖r, ∀z ∈ Zr.

Then, for all z ∈ Zr we have the following estimate

‖E jz‖2r =

∞∑
n=1

λ2r
n ‖EnE jz‖2 = λ2r

j ‖E jz‖2

≤ λ2r
j ‖z‖

2 ≤ λ2r
j k2‖z‖2r

Hence ‖E jz‖ ≤ λr
jk‖z‖r, which implies the continuity of E j : Zr→ Zr. So, P j is a continuous

projection on Zr.

3 Proof of the Main Theorem

In this section we shall prove the main result of this paper on the controllability of the linear
system (2.8). But, before we shall give the definition of approximate controllability for this
system. To this end, for all z0 ∈ Z1 and u ∈ L2(0, τ;U) the the initial value problem{

z′ =Az+Bωu(t),z ∈ Z1,

z(0) = z0,
(3.1)

where the control function u belong to L2(0, τ;U), admits only one mild solution given by

z(t) = T (t)z0+

∫ t

0
T (t− s)Bωu(s)ds, t ∈ [0, τ]. (3.2)

Definition 3.1. (Approximate Controllability) The system (2.8) is said to be approxi-
mately controllable on [0, τ] if for every z0, z1 ∈ Z1, ε > 0 there exists u ∈ L2(0, τ;U) such
that the solution z(t) of (3.2) corresponding to u verifies:

z(0) = z0 and ‖z(τ)− z1‖ < ε.

Consider the following bounded linear operator:

G : L2(0, τ;Z)→ Z1, Gu =
∫ τ

0
T (τ− s)Bωu(s)ds, (3.3)

whose adjoint operator G∗ : Z1 −→ L2(0, τ;Z) is given by

(G∗z)(s) = B∗ωT ∗(τ− s)z, ∀s ∈ [0, τ], ∀z ∈ Z1. (3.4)

Lemma 3.2. (see [4] and [5]) The equation (2.8) is approximately controllable on [0, τ] if,
and only if, one of the following statements holds:
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a) Rang(G) = Z1.

b) Ker(G∗) = {0}.

c) 〈GG∗z,z〉 > 0, z , 0 in Z1.

d) limα→0+ α(αI+GG∗)−1z = 0.

e) supα>0 ‖α(αI+GG∗)−1‖ ≤ 1.

f) B∗ωT ∗(t)z = 0, ∀t ∈ [0, τ], ⇒ z = 0.

g) For all z ∈ Z1 we have Guα = z−α(αI+GG∗)−1z, where

uα =G∗(αI+GG∗)−1z, α ∈ (0,1].

So, limα→0 Guα = z and the error Eαz of this approximation is given by

Eαz = α(αI+GG∗)−1z, α ∈ (0,1].

For the proof of the main theorem of this paper we shall use the following version of
Lemma 3.14 from [2] and Lemma 4.4 from [1].

Lemma 3.3. Let {α1( j)} j≥1, {β1 j} j≥1 and {α2( j)} j≥1,{β2 j} j≥1 be sequences of real numbers
such that α2( j) < α1( j) and

αs( j+1) < αs( j), α1( j+1) < α2( j). (3.5)

for s = 1,2; j = 1,2,3, . . . . Then, for any τ > 0 we have that

∞∑
j=1

(
eα1( j)tβ1 j+ eα2( j)tβ2 j

)
= 0, ∀t ∈ [0, τ] (3.6)

if, and only if,
β1 j = β2 j = 0,∀ j ≥ 1. (3.7)

Now, we are ready to formulate and prove the main theorem of this work.

Theorem 3.4. (Main Result) Under condition (2.14), for all nonempty open subset ω of Ω
and τ > 0 the system (2.8) is approximately controllable on [0, τ]. Moreover, a sequence of
controls steering the system (2.8) from initial state z0 to an ε neighborhood of the final state
z1 at time τ > 0 is given by

uα(t) = B∗ωT (τ− t)(αI+GG∗)−1(z1−T (τ)z0), α ∈ (0,1],

and the error of this approximation Eα is given by

Eα = α(αI+GG∗)−1(z1−T (τ)z0), α ∈ (0,1].
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Proof . We shall apply part f) of lemma 3.2 to prove the controllability of system (2.8). To
this end, we observe that

T ∗(t)z =
∞∑
j=1

eA∗j tP∗jz, z ∈ Z, t ≥ 0,

and, since the eigenvalues of the matrix A j are simple, there exists a family of complete
complementary projections {q1( j),q2( j)} on R2 such that

eA∗j t = eσ1( j)tq∗1( j)P∗j + eσ2( j)tq∗2( j)P∗j .

Therefore,

B∗ωT ∗(t)z =
∞∑
j=1

B∗ωeA∗j tP∗jz =
∞∑
j=1

2∑
s=1

eσs( j)tB∗ωP∗s, jz,

where Ps, j = qs( j)P j = P jqs( j).

Now, suppose that B∗ωT ∗(t)z = 0, ∀t ∈ [0, τ]. Then,

B∗ωT ∗(t)z =

∞∑
j=1

B∗ωeA∗j tP∗jz =
∞∑
j=1

2∑
s=1

eσs( j)tB∗ωP∗s, jz = 0.

⇐⇒

∞∑
j=1

2∑
s=1

eσs( j)t(B∗ωP∗s, jz)(x) = 0, ∀x ∈Ω.

The assumption (2.14) implies that the sequence {αs( j) = −λ jρs : s = 1,2; j = 1,2, . . . } satis-
fies the conditions on Lemma 3.3. In fact, we have trivially that
α2( j) < α1( j) and from (2.14) we obtain −λ j+1ρ1 < −λ jρ2 Therefore,

αs( j+1) < αs( j), α1( j+1) < α2( j).

Then, from Lemma 3.3 we obtain for all x ∈Ω that

(B∗ωP∗s, jz)(x) = 0, ∀x ∈Ω, s = 1,2; j = 1,2,3, . . . .

Since

q∗i ( j) =
 ai j

11 ai j
12

ai j
21 ai j

22

 , i = 1,2; j = 1,2,3,4, . . . ,

we get ∀x ∈Ω, i = 1,2; j = 1,2,3,4, . . . that

(B∗ωP∗s, jz)(x) =
[

1ω[ai j
21E jz1(x)+ai j

22E jz2(x)]
]
= 0

That is to say,

(B∗ωP∗s, jz)(x) =
[

ai j
21E jz1(x)+ai j

22E jz2(x)
]
= 0, ∀x ∈ ω.

Now, putting f (x) = ai j
21E jz1(x)+ai j

22E jz2(x), ∀x ∈Ω, we obtain that{
(∆+λ jI) f ≡ 0 in Ω,

f (x) = 0 ∀x ∈ ω.
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Then, from the classical Unique Continuation Principle for Elliptic Equations (see [10]), it
follows that f (x) = 0, ∀x ∈Ω. So, we get for i = 1,2; j = 1,2,3,4, . . . that

(B∗ωP∗s, jz)(x) =
[

ai j
21E jz1(x)+ai j

22E jz2(x)
]
= 0, ∀x ∈Ω.

Hence

B∗ΩT ∗(t)z =
∞∑
j=1

B∗ΩeA∗j tP∗jz =
∞∑
j=1

2∑
s=1

eσs( j)tB∗ΩP∗s, jz = 0, ∀t ∈ [0, τ].

Since system (1.2)(see [3]) is approximately controllable, then from part f) of lemma 3.2
we get that z = 0.
So, putting z = z1−T (τ)z0, using (3.2) and part g) of Lemma 3.2, we obtain the nice result:

z1 = lim
α→0+
{T (τ)z0+

∫ τ
0

T (τ− s)Bωuα(s)ds}.

Proof of Lemma 3.3. By analytic extension we obtain

∞∑
j=1

(
eα1( j)tβ1 j+ eα2( j)tβ2 j

)
= 0, ∀t ∈ [0,∞).

Now, dividing this expression by eα1(1)t we get

β11+

∞∑
j=2

e(α1( j)−α1(1))tβ1 j+

∞∑
j=1

e(α2( j)−α1(1))tβ2 j = 0, ∀t ∈ [0,∞).

Since α1( j)−α1(1)) < 0 for j > 1 and α2( j)−α1(1) < 0 for j ≥ 1, then passing to the limit
when t→∞ we obtain that β11 = 0
Then, we have that

∞∑
j=2

eα1( j)tβ1 j+

∞∑
j=1

eα2( j)tβ2 j, ∀t ∈ [0,∞).

Now, dividing this expression by eα2(1)t we get

β21+

∞∑
j=2

e(α1( j)−α2(1))tβ1 j+

∞∑
j=2

e(α2( j)−α2(1))tβ2 j = 0, ∀t ∈ [0,∞).

From (3.5) we have that α1( j)−α2(1)) < 0 and α2( j)−α2(1) < 0 for j ≥ 2. Then passing to
the limit when t→∞ we obtain that β21 = 0
Then, we have that

∞∑
j=2

eα1( j)tβ1 j+

∞∑
j=2

eα2( j)tβ2 j = 0, ∀t ∈ [0,∞).

Repeating this procedure from here, we would obtain that β12 = β22 = 0, and continuing this
way we get β1 j = β2 j = 0,∀ j ≥ 1.



38 H. Leiva and W. Pereira

References

[1] S. BADRAOUI,Approximate Controllability of a Reaction-Diffusion System with a
Cross Diffusion Matrix and Fractional Derivatives on Bounded Domains. Journal of
Boundary Value Problems, Vol. 2010(2010), Art. ID 281238, 14pgs.

[2] R.F. CURTAIN, A.J. PRITCHARD, Infinite Dimensional Linear Systems. Lecture
Notes in Control and Information Sciences, 8. Springer Verlag, Berlin (1978).
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