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Abstract
We determine the first homology group with coefficients in H1(N;Z) for various mapping class

groups of a non–orientable surface N with punctures and/or boundary.

1. Introduction

1. Introduction
Let Nn

g,s be a smooth, non–orientable, compact surface of genus g with s boundary com-
ponents and n punctures. If s and/or n is zero, then we omit it from the notation. If we do
not want to emphasise the numbers g, s, n, we simply write N for a surface Nn

g,s. Recall that
Ng is a connected sum of g projective planes and Nn

g,s is obtained from Ng by removing s
open discs and specifying a set Σ = {z1, . . . , zn} of n distinguished points in the interior of N.

Let Diff(N) be the group of all diffeomorphisms h : N → N such that h is the identity on
each boundary component and h(Σ) = Σ. By (N) we denote the quotient group of Diff(N)
by the subgroup consisting of maps isotopic to the identity, where we assume that isotopies
are the identity on each boundary component. (N) is called the mapping class group of
N.

The mapping class group (Sn
g,s) of an orientable surface is defined analogously, but we

consider only orientation preserving maps.
For any 0 ≤ k ≤ n, let 

k(N) be the subgroup of (N) consisting of elements which
fix Σ pointwise and preserve a local orientation around the punctures {z1, . . . , zk}. For k = 0,
we obtain so–called pure mapping class group (N), and for k = n we get the group


+(N) consisting of maps that preserve local orientation around all the punctures.

1.1. Background.
1.1. Background. Homological computations play a prominent role in the theory of

mapping class groups. In the orientable case, Mumford [14] observed that H1((Sg)) is
a quotient of Z10. Then Birman [1, 2] showed that if g ≥ 3, then H1((Sg)) is a quotient
of Z2, and Powell [17] showed that in fact H1((Sg)) is trivial if g ≥ 3. As for higher
homology groups, Harer [4,5] computed Hi((Sg)) for i = 2, 3 and Madsen and Weiss [10]
determined the rational cohomology ring of the stable mapping class group.

In the non–orientable case, Korkmaz [7, 8] computed H1((Ng)) for a closed surface
Ng (possibly with marked points). This computation was later [22] extended to the case of
a surface with boundary. As for higher homology groups, Wahl [27] identified the stable
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rational cohomology of (N) and Randal-Williams [18] (among other results) extended
this identification to Z2 coefficients.

As for twisted coefficients, Morita in a series of papers [11–13] obtained several funda-
mental results, in particual he proved that

H1((Sg); H1(Sg;Z)) � Z2g−2, for g ≥ 2,

H1((Sg); H1(Sg;Z)) � 0, for g ≥ 1,

H1((S1
g); H1(S1

g;Z)) � Z, for g ≥ 2,

H1((Sg,1);Λ3H1(Sg;Z)) � Z ⊕ Z, for g ≥ 3.

We showed in [23] that if Ng,s is a non–orientable surface of genus g ≥ 3 with s ≤ 1
boundary components, then

(1.1) H1((Ng,s); H1(Ng,s;Z)) �

⎧⎪⎪⎨⎪⎪⎩Z2 ⊕ Z2 ⊕ Z2 if g ∈ {3, 4, 5, 6},
Z2 ⊕ Z2 if g ≥ 7.

There are also similar computations for the hyperelliptic mapping class groups 
h(Sg).

Tanaka [26] showed that H1(h(Sg); H1(Sg;Z)) � Z2 for g ≥ 2, and in the non–orientable
case we showed in [24] that

H1(h(Ng); H1(Ng;Z)) � Z2 ⊕ Z2 ⊕ Z2, for g ≥ 3.

There is also a lot of interesting results concerning the stable twisted (co)homology groups
of mapping class groups – see [6, 9, 19, 20] and references there.

1.2. Main results.
1.2. Main results. The purpose of this paper is to extendthe the formula (1.1) to the case

of surfaces with punctures and/or boundary. We prove the following theorems.

Theorem 1.1. If Nn
g,s is a non–orientable surface of genus g ≥ 3 with s boundary com-

ponents and n punctures, then

H1(
k(Nn

g,s); H1(Nn
g,s;Z)) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z
3+n
2 if g = 3 and s = k = 0,

Z
1+n+k
2 if g = 3, s = 0 and k > 0,

Z
n+3s+k
2 if g = 3 and s > 0,

Z
3+n−k
2 if g = 4 and s = 0,

Z
2+n+s−k
2 if g = 4 and s > 0,

Z
3+n−k
2 if g = 5 or g = 6,

Z
2+n−k
2 if g ≥ 7.

Theorem 1.2. If Nn
g,s is a non–orientable surface of genus g ≥ 3 with s boundary com-

ponents and n ≥ 2 punctures, then

H1((Nn
g,s); H1(Nn

g,s;Z)) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z
5
2 if g ∈ {3, 4} and s = 0,

Z
3s+2
2 if g = 3 and s > 0,

Z
4+s
2 if g = 4 and s > 0,

Z
5
2 if g = 5 or g = 6,

Z
4
2 if g ≥ 7.
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Note that we obtained the formula (1.1) from the full presentation for the mapping class
group (Ng,s), where g + s ≥ 3 and s ∈ {0, 1}, obtained by Paris and Szepietowski [15].
However, we do not have full presentations for the groups 

k(Nn
g,s) and (Nn

g,s), which
makes our computation less straightforward.

The starting point for this computation is a simplification of known generating sets for
the groups 

k(Nn
g,s) and (Nn

g,s) – see Theorems 4.4, 4.5 and 4.6 in Section 4. Then,
in Sections 6, 7 and 8 we perform a detailed analysis of possible relations between these
generators in order to obtain a minimal set of generators for the first homology group –
see Propositions 6.1, 6.2, 7.1, 7.2 and 8.1. The proofs that these sets of generators are
indeed linearly independent occupy Sections 9 and 10. One essential ingredient in these two
sections is our recent computation [16] of the homology group

H1(
+(N2

3 ); H1(N2
3 ;Z)) � Z5

2.

Section 3 is devoted to the technical details of the action of the mapping class group (N)
on the first homology group H1(N;Z). This analysis is continued in Section 5, where we
set up a technical background for the computations of the twisted first homology group of
various mapping class groups – see Propositions 5.1, 5.2 and 5.3.

2. Preliminaries

2. Preliminaries2.1. Non–orientable surfaces.
2.1. Non–orientable surfaces. Represent the surface Nn

g,s as a sphere with g crosscaps
μ1, . . . , μg, n marked points z1, . . . , zn, and s boundary components (Fig.1). Let

α1, . . . , αg−1, β1, . . . , β⌊ g−2
2

⌋, β0, . . . , β
⌊
g−2

2

⌋, δ1, . . . , δs, ε1, . . . , εs+n

be two–sided circles indicated in Fig.1, Fig.2, and Fig.3. Small arrows in these figures
indicate directions of Dehn twists

a1, . . . , ag−1, b1, . . . , b⌊ g−2
2

⌋, b0, . . . , b⌊ g−2
2

⌋, d1, . . . , ds, e1, . . . , es+n

associated with these circles. We also define: ε0 = α1 and e0 = a1.
For any two consecutive crosscaps μi, μi+1 we define a crosscap transposition ui to be the

map which interchanges these two crosscaps (see Fig.4). Similarly, for any two consecutive
punctures zi, zi+1 we define elementary braid si (Fig.4).

Finally, let vi, for i = 1, . . . , n be the puncture slide of zi along the path νi indicated in
Fig.3.

Fig.1. Surface Nn
g,s as a sphere with crosscaps.
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Fig.2. Circles β1, β2, . . . , β⌊ g−2
2

⌋ and β0, β1, . . . , β
⌊
g−2

2

⌋.

Fig.3. Circles ε1, ε2, . . . , εs+n and paths ν1, . . . , νn.

Fig.4. Crosscap transposition ui and elementary braid si.

2.2. Homology of groups.
2.2. Homology of groups. Let us briefly review how to compute the first homology of a

group with twisted coefficients – for more details see Section 5 of [24] and references there.
For a given group G and G-module M (that is ZG-module) we define C2(G) and C1(G) as

the free G-modules generated respectively by symbols [h1|h2] and [h1], where hi ∈ G. We
define also C0(G) as the free G-module generated by the empty bracket [·]. Then the first
homology group H1(G; M) is the first homology group of the complex

C2(G) ⊗G M
∂2⊗Gid �� C1(G) ⊗G M

∂1⊗Gid �� C0(G) ⊗G M ,

where

∂2([h1|h2]) = h1[h2] − [h1h2] + [h1], ∂1([h]) = h[·] − [·].
For simplicity, we write ⊗G = ⊗ and ∂ ⊗ id = ∂ henceforth.

If the group G has a presentation G = 〈X |R〉, then we have an excat sequence

(2.1) 1 �� N(R) �� F(X) �� G �� 1 ,

where F(X) is the free group generated by elements of X (generators) and N(R) is the normal
closure in F(X) of the set of relations R. Sequence (2.1) gives the following excat seqence
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(see for example [3] and references there)

N(R)/[N(R),N(R)] ⊗G M i �� H1(F(X); M) �� H1(G; M) �� 0 ,

where N(R)/[N(R),N(R)] is the abelianization of N(R). Hence, we can identify

H1(G; M) = H1(F(X); M)/Im(i).

Let us now describe how to use the above identification in practice. Let

〈X〉 = 〈[x] ⊗ m | x ∈ X,m ∈ M〉 ⊆ C1(F(X)) ⊗ M,

then H1(G; M) is a quotient of 〈X〉 ∩ ker ∂1.
The kernel of this quotient corresponds to relations in G (that is elements of R). To be

more precise, if r ∈ R has the form x1 · · · xk = y1 · · · yn and m ∈ M, then i(r) ∈ H1(F(X); M)
is equal to

(2.2) r ⊗ m :
k∑

i=1

x1 · · · xi−1[xi] ⊗ m −
n∑

i=1

y1 · · · yi−1[yi] ⊗ m.

Then

H1(G; M) = 〈X〉 ∩ ker ∂1/〈R〉,
where

R = {r ⊗ m | r ∈ R,m ∈ M}.

3. Action of (Nn
g,s) on H1(Nn

g,s;Z)

3. Action of (Nn
g,s) on H1(Nn

g,s;Z)
Let γ1, . . . , γg, δ1, . . . , δs+n be circles indicated in Fig.1. Note that γ1, . . . , γg are one–

sided, δ1, . . . , δs+n are two–sided and the Z-module H1(Nn
g,s;Z) is generated by homology

classes [γ1], . . . , [γg], [δ1], . . . , [δs+n−1]. These generators are free provided s + n > 0. In
abuse of notation we will not distinguish between the curves γ1, . . . , γg, δ1, . . . , δs+n and
their cycle classes.

The mapping class group (Nn
g,s) acts on H1(Nn

g,s;Z), hence we have a representation

ψ : (Nn
g,s)→ Aut(H1(Nn

g,s;Z)).

It is straightforward to check that

ψ(a j) = I j−1 ⊕
[

0 1
−1 2

]
⊕ Ig− j−1 ⊕ Is+n−1,(3.1)

ψ(a−1
j ) = I j−1 ⊕

[
2 −1
1 0

]
⊕ Ig− j−1 ⊕ Is+n−1,

ψ(u j) = ψ(u−1
j ) = I j−1 ⊕

[
0 1
1 0

]
⊕ Ig− j−1 ⊕ Is+n−1,
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ψ(b1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Ig +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 1 −1 1
−1 1 −1 1
−1 1 −1 1
−1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ⊕ 0g−4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊕ Is+n−1,(3.2)

ψ(b−1
1 ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Ig +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ⊕ 0g−4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊕ Is+n−1,

ψ(e j)(ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−γ2 − δ1 − δ2 + . . . − δ j if ξ = γ1 and j < s + n,

γ1 + 2γ2 + δ1 + δ2 + . . . + δ j if ξ = γ2 and j < s + n,

ξ if ξ � γ1, ξ � γ2 and j < s + n,

(3.3)

ψ(e−1
j )(ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2γ1 + γ2 + δ1 + δ2 + . . . + δ j if ξ = γ1 and j < s + n,

−γ1 − δ1 − δ2 + . . . − δ j if ξ = γ2 and j < s + n,

ξ if ξ � γ1, ξ � γ2 and j < s + n,

ψ(d j) = ψ(d−1
j ) = Ig ⊕ Is+n−1,

ψ(s j) = ψ(s−1
j ) = Ig ⊕ Is+ j−1 ⊕

[
0 1
1 0

]
⊕ In− j−2, if j < n − 1,(3.4)

ψ(sn−1)(ξ) = ψ(s−1
n−1)(ξ) =

⎧⎪⎪⎨⎪⎪⎩−(2γ1 + . . . + 2γg − δ1 + . . . + δs+n−1) if ξ = δs+n−1,

ξ if ξ � δs+n−1,

ψ(v j)(ξ) = ψ(v−1
j )(ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−δs+ j if ξ = δs+ j and j < n,

γg + δs+ j if ξ = γg and j < n,

ξ if ξ � γg and ξ � δs+ j and j < n,

(3.5)

ψ(vn)(ξ) = ψ(v−1
n )(ξ) =

⎧⎪⎪⎨⎪⎪⎩γg − (2γ1 + . . . + 2γg + δ1 + . . . + δs+n−1) if ξ = γg,

ξ if ξ � γg,

where Ik is the identity matrix of rank k.

4. Generators for the groups 
k(Nn

g,s) and (Nn
g,s)

4. Generators for the groups 
k(Nn

g,s) and (Nn
g,s)

The main goal of this section is to obtain simple generating sets for the groups 
k(Nn

g,s)
and (Nn

g,s) – see Theorems 4.4, 4.5 and 4.6 below. However, we first prove some technical
lemmas.

For the rest of this section, let a j,i, b̂1, b̂1,i, d̂i for j = 1, 2, 3, 4, i = 1, . . . , s + n be Dehn
twists about circles α j,i, β̂1, β̂1,i, δ̂i shown in Fig.5.

Lemma 4.1. Let g ≥ 3 and 1 ≤ i ≤ s + n, then a1,i and a2,i are in the subgroup G ≤
(Nn

g,s) generated by

{u1, u2, a2, ei−1, ei} .



The First Homology Group with Twisted Coefficients 491

Fig.5. Circles α j,i, β̂1, β̂1,i, δ̂i.

Proof. It is straightforward to check that

α2,i = eia2(εi−1), α1,i = u2u1(α2,i).

Hence,

a2,i = eia2ei−1a−1
2 e−1

i ∈ G, a1,i = u2u1a2,iu−1
1 u−1

2 ∈ G. �

Lemma 4.2. Let g ≥ 5 and 1 ≤ i ≤ s, then di is in the subgroup G ≤(Nn
g,s) generated

by

{u1, u2, u3, u4, a1, a2, a3, a4, ei−1, ei, b1} .
Proof. By Lemma 4.1, a1,i, a2,i ∈ G. Moreover,

α3,i = u−1
2 u−1

3 (α2,i), α4,i = u−1
3 u−1

4 (α3,i), β̂1 = u−1
3 u1(β1), β̂1,i = a4a−1

4,i (̂β1).

This proves that

a3,i, b̂1, b̂1,i ∈ G.

Moreover, by Lemma 6.12 of [22], there is a lantern relation

dia1a3̂b1,i = a3,ia1,îb1.

This proves that di ∈ G. �

Lemma 4.3. Let g ≥ 3 and s > 0, then ds is in the subgroup G ≤(Nn
g,s) generated by{

u1, . . . , ug−1, a1, . . . , ag−1, e1, . . . , es+n−1, d1, . . . , ds−1

}
.

Proof. Let H ≤ G be the subgroup of G generated by{
u1, . . . , ug−1, a1, . . . , ag−1, e1, . . . , es+n−1

}
and let ds+1 = ds+2 = . . . = ds+n = 1.

Note first that,

εs+n = a2a3 . . . ag−1ug−1 . . . u3u2(α1),

and

(4.1) es+n = (a2 . . . ag−1ug−1 . . . u2)a−1
1 (a2 . . . ag−1ug−1 . . . u2)−1 ∈ H.
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We will prove by induction, that for each k = 1, 2, . . . , s + n,

(4.2) d1d2 . . . dk

(
d̂k

)−1 ∈ H.

Since d̂1 = d1, the statement is true for k = 1.
It is straightforward to check that, for each k = 1, 2, . . . , s + n there is a lantern relation

(4.3) a1ek+1d̂kdk+1 = eka1,k+1d̂k+1.

Assume that

d̂k = hd1d2 . . . dk

for some h ∈ H. Then, by the formulas (4.1), (4.3) and Lemma 4.1, we have

d̂kdk+1d̂−1
k+1 = e−1

k+1a−1
1 eka1,k+1,

hd1d2 . . . dkdk+1d̂−1
k+1 = e−1

k+1a−1
1 eka1,k+1,

d1d2 . . . dkdk+1d̂−1
k+1 = h−1e−1

k+1a−1
1 eka1,k+1 ∈ H.

This completes the inductive proof of (4.2). In particular,

d1d2 . . . ds = d1d2 . . . ds+n = hd̂s+n,

for some h ∈ H. Moreover, it is straightforward to check that

d̂s+n = (u1u2 . . . ug−1)g ∈ G,

hence

ds = d−1
s−1 . . . d

−1
2 d−1

1 hd̂s+n ∈ G. �

Theorem 4.4. Let g ≥ 3. Then the mapping class group 
+(Nn

g,s) = 
n(Nn

g,s) is
generated by

{a1, . . . , ag−1, u1, e1, . . . , es+n−1}
and additionally ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{d1, . . . , ds−1} if g = 3,

{b1, d1, . . . , ds−1} if g = 4,

{b1} if g ≥ 5.

Proof. Let G be the subgroup of 
+(Nn

g,s) generated by elements specified in the state-
ment of the theorem. By Theorem 4.1 of [21], 

+(Nn
g,s) is generated by the crosscap slide

y = a1u1 and 2g + n + 2s − 4 twists:{
a1, . . . , ag−1, b1, . . . , b⌊ g−2

2

⌋, b0, . . . , b⌊ g−2
2

⌋, e1, . . . , es+n−1, d1, . . . , ds

}
(note that b⌊ g−2

2

⌋ = b−1⌊
g−2

2

⌋ if g is even). It is enough to show that all these generators are in G.

By Theorem 3.1 of [15],
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bi+1 = (bi−1a2ia2i+1a2i+2a2i+3bi)5(bi−1a2ia2i+1a2i+2a2i+3)−6,

for i = 1, . . . ,
⌊
g − 2

2

⌋
− 1 and b0 = a0.

Hence bi ∈ G, for i = 2, . . . ,
⌊
g−2

2

⌋
.

By Lemma 3.8 of [15],

ui+1 = aiai+1u−1
i a−1

i+1a−1
i , for i = 1, . . . , g − 2,

hence u2, u3, . . . , ug−1 ∈ G. Now it is straightforward to check, that

a2i+2 · · · ag−2ag−1ug−1 · · · u2i+3u2i+2(βi) = βi, for i = 0, . . . ,
⌊
g − 2

2

⌋
.

This shows, that bi is conjugate to bi by an element of G. Hence bi ∈ G, for i = 0, . . . ,
⌊
g−2

2

⌋
.

This together with Lemma 4.3 complete the proof if g < 5.
Finally, if g ≥ 5, then Lemma 4.2 implies that di ∈ G, for i = 1, . . . , s. �

Theorem 4.5. Let g ≥ 3 and 0 ≤ k ≤ n. Then the mapping class group 
k(Nn

g,s) is
generated by 

+(Nn
g,s) and (n − k) puncture slides

{vk+1, . . . , vn}.
Proof. The statement follows from the short exact sequence

1 −−−−−→ 
+(Nn

g,s)
i−−−−−→ 

k(Nn
g,s)

p−−−−−→ Zn−k
2 −−−−−→ 1

and the fact that {p(vk+1), . . . , p(vn)} generate Zn−k
2 . �

Theorem 4.6. Let g ≥ 3 and n ≥ 2. Then the mapping class group (Nn
g,s) is generated

by 
+(Nn

g,s) and

{vn, s1, . . . , sn−1}.
Proof. By Theorem 4.5, the pure mapping class group (Nn

g,s) = 
0(Nn

g,s) is gener-
ated by 

+(Nn
g,s) and {v1, . . . , vn}. Moreover, we have the short exact sequence

1 −−−−−→ (Nn
g,s)

i−−−−−→ (Nn
g,s)

p−−−−−→ Sn −−−−−→ 1,

where Sn is the symmetric group on n letters. Now the statement follows from the fact that
p(s1), . . . , p(sn−1) generate Sn and the relation

vi−1 = s−1
j−1v j s j−1, for i = 2, . . . , n. �

For further reference, let us prove that

Proposition 4.7. Let g ≥ 3, n ≥ 2 and 1 ≤ j ≤ n − 1. Then

es+ j−1es+ j+1s j = es+ j s3
jes+ j.

Proof. It is straightforward to check that εs+ j+1 bounds in N a disk with three holes:
εs+ j−1, δ j, δ j+1. This implies that there is a lantern relation of the form
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es+ j+1es+ j−1d jd j+1 = es+ j s2
j

(
s jes+ j s−1

j

)
,

es+ j+1es+ j−1 = es+ j s3
jes+ j s−1

j ,

es+ j+1es+ j−1s j = es+ j s3
jes+ j. �

5. Computing 〈X〉 ∩ ker ∂1

5. Computing 〈X〉 ∩ ker ∂1

Let G =(Nn
g,s), M = H1(Nn

g,s;Z) and assume that s + n > 0. Let

ξi =

⎧⎪⎪⎨⎪⎪⎩γi for i = 1, . . . , g,

δi−g for i = g + 1, . . . , g + s + n − 1.

If h ∈ G, then

∂1([h] ⊗ ξi) = (h − 1)[·] ⊗ ξi = (ψ(h)−1 − Ig)ξi,

where we identified C0(G) ⊗ M with M by the map [·] ⊗ m �→ m.
Let us denote

[a j] ⊗ ξi, [u j] ⊗ ξi, [b1] ⊗ ξi, [e j] ⊗ ξi, [d j] ⊗ ξi, [s j] ⊗ ξi, [v j] ⊗ ξi

respectively by

a j,i, u j,i, b1,i, e j,i, d j,i, s j,i, v j,i,

where i = 1, . . . , g + s + n − 1.
Using formulas (3.1)–(3.5), we obtain

∂1(a j,i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
γ j + γ j+1 if i = j,

−γ j − γ j+1 if i = j + 1,

0 otherwise,

(5.1)

∂1(u j,i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−γ j + γ j+1 if i = j,

γ j − γ j+1 if i = j + 1,

0 otherwise,

∂1(b1,i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
γ1 + γ2 + γ3 + γ4 if i = 1, 3,

−γ1 − γ2 − γ3 − γ4 if i = 2, 4,

0 otherwise,

∂1(e j,i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
γ1 + γ2 + (δ1 + . . . + δ j) if i = 1,

−γ1 − γ2 − (δ1 + . . . + δ j) if i = 2,

0 otherwise,

(5.2)

∂1(d j,i) = 0,

if j < n − 1, then ∂1(s j,i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−δs+ j + δs+ j+1 if i = g + s + j,

δs+ j − δs+ j+1 if i = g + s + j + 1,

0 otherwise,
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∂1(sn−1,i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−(2γ1 + . . . + 2γg) − (δ1 + . . . + δs+n−1) − δs+n−1

if i = g + s + n − 1,

0 otherwise,

if j < n, then ∂1(v j,i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
δs+ j if i = g,

−2δs+ j if i = g + s + j,

0 otherwise,

∂1(vn,i) =

⎧⎪⎪⎨⎪⎪⎩−(2γ1 + . . . + 2γg) − (δ1 + . . . + δs+n−1) if i = g,

0 otherwise.

The above formulas show that all of the following elements are contained in ker ∂1

(K1) a j,i for j = 1, . . . , g − 1 and i = 1, . . . , j − 1, j + 2, . . . , g + s + n − 1,
(K2) a j, j + a j, j+1 for j = 1, . . . , g − 1,
(K3) u1,i for i = 3, . . . , g + s + n − 1,
(K4) u1,1 + u1,2,
(K5) e j,i for j = 1, . . . , s + n − 1 and i = 3, 4, . . . , g + s + n − 1,
(K6) e j,1 + e j,2 for j = 1, . . . , s + n − 1,
(K7) d j,i for j = 1, . . . , s − 1 and i = 1, . . . , g + s + n − 1,
(K8) b1,i for i = 5, . . . , g + s + n − 1,
(K9) b1,i + b1,1 for i = 2, 4,

(K10) b1,3 − b1,1,
(K11) b1,1 − a1,1 − a3,3.

Proposition 5.1. Let g ≥ 3, s + n > 0 and G = 
+(Nn

g,s). Then 〈X〉 ∩ ker ∂1 is the
abelian group generated freely by Generators (K1)–(K6) and additionally⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(K7) if g = 3,

(K7), (K8)–(K11) if g = 4,

(K8)–(K11) if g ≥ 5.

Proof. By Theorem 4.4, 〈X〉 is generated freely by a j,i, u1,i, e j,i and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d j,i if g = 3,

b1,i, d j,i if g = 4,

b1,i if g ≥ 5.

Suppose that h ∈ 〈X〉 ∩ ker ∂1. We will show that h can be uniquely expressed as a linear
combination of generators specified in the statement of the proposition.

We decompose h as follows:
• h = h0 = h1 + h2, where h1 is a combination of Generators (K1)–(K2) and h2 does

not contain a j,i with i � j;
• h2 = h3 + h4, where h3 is a combination of Generators (K3)–(K4) and h4 does not

contain u1,i with i � 1;
• h4 = h5 + h6, where h5 is a combination of Generators (K5)–(K6) and h6 does not

contain e j,i for i > 1.
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If g = 3 or g = 4, we decompose h6 = h7+h8, where h7 is a combination of Generators (K7)
and h8 does not contain d j,i. If g ≥ 5, we define h7 = 0 and h8 = h6.

If g ≥ 4, we decompose h8 = h9 + h10, where h9 is a combination of Generators (K8)–
(K11) and h10 does not contain b1,i. If g = 3 we define h9 = 0 and h10 = h8.

Observe also that for each k = 0, . . . , 8, hk+1 and hk+2 are uniquely determined by hk.
Element h10 has the form

h10 =

g−1∑
j=1

α ja j, j + αu1,1 +

s+n−1∑
j=1

β je j,1

for some integers α, α1, . . . , αg−1, β1, . . . , βs+n−1. Hence

0 = ∂1(h10) = α1(γ1 + γ2) + α2(γ2 + γ3) + . . . + αg−1(γg−1 + γg)

+ α(−γ1 + γ2) + β1(γ1 + γ2 + δ1) + β2(γ1 + γ2 + δ1 + δ2)

+ . . . + βs+n−1(γ1 + γ2 + δ1 + δ2 + . . . + δs+n−1).

This implies that βs+n−1 = . . . = β2 = β1 = 0, and then αg−1 = . . . = α2 = α1 = α = 0 and
thus h10 = 0. �

By an analogous argument and Propositions 4.5, 4.6, we get

Proposition 5.2. Let g ≥ 3, s + n > 0, 0 ≤ k ≤ n and G = 
k(Nn

g,s). Then 〈X〉 ∩ ker ∂1

is the abelian group generated by generators specified in the statement of Proposition 5.1
and additionally

(K12) ṽ j,i for k < j ≤ n and 1 ≤ i ≤ g + s + n − 1,

where

ṽ j,i=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v j,i if k< j≤n and i�{g, g+ s+ j},
v j,g+es+ j−1,1−es+ j,1 if k< j<n and i=g,

v j,g+s+ j−2es+ j−1,1+2es+ j,1 if k< j<n and i=g+ s+ j,

vn,g+es+n−1,1+a1,1−u1,1+2a2,2+. . .+2ag−1,g−1 if j=n and g is odd,

vn,g+es+n−1,1+a1,12a3,3+. . .+2ag−1,g−1 if j=n and g is even.

Proposition 5.3. Let g ≥ 3, n ≥ 2 and G = (Nn
g,s). Then 〈X〉 ∩ ker ∂1 is the abelian

group generated by generators specified in the statement of Proposition 5.1, Generators
(K12) with j = n specified in the statement of Proposition 5.2, and additionally

(K13) s j,i if j ≤ n − 1 and i � {g + s + j, g + s + j + 1},
(K14) s j,g+s+ j + s j,g+s+ j+1 if j < n − 1,
(K15) s j,g+s+ j − es+ j−1,1 + 2es+ j,1 − es+ j+1,1 if j < n − 1,

(K16)

⎧⎪⎪⎨⎪⎪⎩sn−1,g+s+n−1+2es+n−1,1−es+n−2,1+a1,1−u1,1+2a2,2+. . .+2ag−1,g−1 if g is odd,

sn−1,g+s+n−1+2es+n−1,1−es+n−2,1+a1,1+2a3,3+. . .+2ag−1,g−1 if g is even.
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6. Bounding H1(
+(Nn

g,s); H1(Nn
g,s;Z)) from above

6. Bounding H1(
+(Nn

g,s); H1(Nn
g,s;Z)) from above

In this section we will use the formula (2.2) to rewrite some relations between generators
specified in Theorem 4.4 as relations between homology classes. Our goal is to reduce these
generating sets for homology groups to the ones specified in Propositions 6.1 and 6.2 below.

Let

i : Ng,1 → Nn
g,s

be an embedding of a non–orientable subsurface of genus g with one boundary component
such that Ng,1 is disjoint from δ1, . . . , δs+n (the complement of Ng,1 in Nn

g,s is a disk containing
δ1, . . . , δs+n). This embedding induces homomorphisms

(Ng,1)
i∗−−−−−→ 

+(Nn
g,s)⏐⏐⏐⏐⏐"� ⏐⏐⏐⏐⏐"�

Aut(H1(Ng,1;Z))
i∗−−−−−→ Aut(H1(Nn

g,s;Z))

This leads to the following homomorphism

H1((Ng,1); H1(Ng,1;Z))
i∗−−−−−→ H1(

+(Nn
g,s); H1(Nn

g,s;Z)).

Moreover, some of the generators specified in the statement of Proposition 5.1 are im-
ages under this homomorphism of generators used in Proposition 4.2 of [23] to compute
H1((Ng,1); H1(Ng,1;Z)). This allows to transfer (via i∗) some of the relations between
these generators obtained in Section 5 of [23]. In particular,

• Generators (K1): a j,i for j = 1, . . . , g − 1, i = 1, . . . j − 1, j + 2, . . . , g generate a
cyclic group of order at most 2. They are trivial if g ≥ 7.
• Generators (K2) generate a cyclic group of order at most 2. They are trivial if g ≥ 4.
• Generators (K3): u1,i for i = 1, . . . , g − 2 generate a cyclic group of order at most 2.
• Generator (K4) is trivial.
• Generators (K8): b1,i for i = 5, . . . , g are superfluous (they can be expressed in terms

of generators (K1)).
• Generators (K9), (K10) are trivial.
• Generator (K11) has order at most 2.

The formula (2.2) and the relation

a ja j+1a j = a j+1a ja j+1, for j = 1, . . . , g − 2,

imply that for i > g

0 = ([a j] + a j[a j+1] + a ja j+1[a j] − [a j+1] − a j+1[a j] − a j+1a j[a j+1]) ⊗ ξi

= a j,i + a j+1,i + a j,i − a j+1,i − a j,i − a j+1,i = a j,i − a j+1,i.

Hence

(6.1) a j,i = a1,i for j = 1, . . . , g − 1, i > g.

If s + n ≥ 2, then the relation

a1e j = e ja1 for j = 1, . . . , s + n − 1
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gives

0 = ([a1] + a1[e j] − [e j] − e j[a1]) ⊗ ξi

= [a1] ⊗ (I − ψ(e−1
j ))ξi − [e j] ⊗ (I − ψ(a−1

1 ))ξi

= ±
⎧⎪⎪⎨⎪⎪⎩(a1,1 + a1,2) + a1,g+1 + . . . + a1,g+ j − (e j,1 + e j,2) if i = 1, 2,

0 if i > 2.

This relation implies that Generators (K6) are superfluous

(6.2) e j,1 + e j,2 = (a1,1 + a1,2) + a1,g+1 + . . . + a1,g+ j.

The braid relation

a2e ja2 = e ja2e j for j = 1, . . . , s + n − 1

gives

0 = ([a2] + a2[e j] + a2e j[a2] − [e j] − e j[a2] − e ja2[e j]) ⊗ ξi

= [a2] ⊗ (I + ψ(e−1
j a−1

2 ) − ψ(e−1
j ))γi + [e j] ⊗ (ψ(a−1

2 ) − I − ψ(a−1
2 e−1

j ))γi

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2,i − e j,i if i � {1, 2, 3},
a2,1 − e j,3 + a2,g+1 + . . . + a2,g+ j if i = 3,

(∗) + (a2,2 + a2,3) + (e j,1 + e j,2) + e j,g+1 + . . . + e j,g+ j if i = 2,

(∗) if i = 1.

In the above formula (∗) denotes some expression homologous to 0 by previously obtained
relations. As we progress further, we will often perform simplifications based on previously
obtained relations, from now on we will use symbol ‘≡’ in such cases.

The first two cases of this relation and the formula (6.1) imply that Generators (K5)

(6.3) e j,i =

⎧⎪⎪⎨⎪⎪⎩a1,i if i ≥ 4,

a2,1 + a1,g+1 + . . . + a1,g+ j if i = 3.

are superfluous.
The third case together with formulas (6.2) and (6.3) imply that

2a1,g+ j = 0 for j = 1, 2, . . . , s + n − 1,

or equivalently

2(e j,1 + e j,2) = 0.

The relation

a jdk = dka j for j = 1, . . . , g − 1, k = 1, . . . , s − 1

gives

0 = ([a j] + a j[dk] − [dk] − dk[a j]) ⊗ ξi = [a j] ⊗ (I − ψ(d−1
k ))ξi − [dk] ⊗ (I − ψ(a−1

j ))ξi

= ±
⎧⎪⎪⎨⎪⎪⎩dk, j + dk, j+1 if i = j, j + 1,

0 if i � { j, j + 1}.
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This implies that Generators (K7)

(6.4) dk, j = (−1) j−1dk,1 for j = 2, . . . , g, k = 1, . . . , s − 1

are superfluous.
Similarly, the relation

u1dk = dku1

implies that

0 = [dk] ⊗ (ψ(u−1
1 ) − I)γ2 = dk,1 − dk,2 = 0, for k = 1, . . . , s − 1,

which together with the formula (6.4) implies that

2dk,1 = 0 for k = 1, . . . , s − 1.

Relation

e jdk = dke j

implies that

0 = [dk] ⊗ (ψ(e−1
j ) − I)γ1 ≡ dk,g+1 + . . . + dk,g+ j for k = 1, . . . , s, j = 1, . . . , s + n − 1.

This implies that Generators (K7): d j,i are trivial for i > g.
Suppose now that g = 3 and consider the relation

(6.5) (u1es+n)2 = d̂s+n = (a1a2)6,

where d̂s+n is defined as in Section 4. The right–hand side of this relation is a chain relation,
and the left–hand side is a square of a crosscap slide (see [25], Theorem 7.17, Relation (8)).
If i > 3, and

M = I + ψ(a−1
2 a−1

1 ) + ψ(a−1
2 a−1

1 )2 + . . . + ψ(a−1
2 a−1

1 )5,

N = I + ψ(e−1
s+nu−1

1 ),

then Relation (6.5) gives

0 = [u1] ⊗ Nξi + [es+n] ⊗ ψ(u1
−1)Nξi − [a1] ⊗ Mξi − [a2] ⊗ ψ(a−1

1 )Mξi.

If we now assume that i > g, then we get

0 = 2[u1] ⊗ ξi + 2[es+n] ⊗ ξi − 6[a1] ⊗ ξi − 6[a2] ⊗ ξi = 2u1,i + 2[es+n] ⊗ ξi.(6.6)

As we observed in the formula (4.1),

es+na2u2a1 = a2u2,

hence if i > 3, then

0 = ([es+n] + [a2] + [u2] + [a1] − [a2] − [u2]) ⊗ ξi = [es+n] ⊗ ξi + a1,i.(6.7)

By combining formulas (6.6) and (6.7) we get

2u1,i = 0, for i > 3.
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Note that at this point we proved

Proposition 6.1. Let s + n ≥ 1. Then H1(
+(Nn

3,s); H1(Nn
3,s;Z)) is generated by

{a1,1 + a1,2, a1,3, a1,4, . . . , a1,2+s+n, u1,3, u1,4, . . . , u1,2+s+n, d1,1, . . . , ds−1,1}
and each of these generators has order at most 2.

For the rest of this section assume that g ≥ 4.
The relation

e ja3 = a3e j for j = 1, . . . , s + n − 1,

gives

0 = [e j] ⊗ (I − ψ(a−1
3 ))γ1 − [a3] ⊗ (I − ψ(e−1

j ))γ1 = a3,1 + a3,2 + a3,g+1 + . . . + a3,g+ j.

Together with the formula (6.1) this implies that Generators (K1): a j,i are trivial for i > g.
Observe that relations

u ju j+1u j = u j+1u ju j+1, for j = 1, 2,

easily imply that

u3,i = u2,i = u1,i, for i > g.

Hence, the relation

e ju3 = u3e j, for j = 1, . . . , s + n − 1,

gives

0 = [e j] ⊗ (I − ψ(u−1
3 ))γ1 − [u3] ⊗ (I − ψ(e−1

j ))γ1

= u3,1 + u3,2 + u3,g+1 + . . . + u3,g+ j = u3,1 + u3,2 + u1,g+1 + . . . + u1,g+ j.

This implies that Generators (K3): u1,i are trivial for i > g.
Relation

e jb1 = b1e j, for j = 1, . . . , s + n − 1,

gives

0 = [e j] ⊗ (I − ψ(b−1
1 ))(γ1 − γ3) − [b1] ⊗ (I − ψ(e−1

j ))(γ1 − γ3)

= b1,1 + b1,2 + b1,g+1 + . . . + b1,g+ j.

This implies that Generators (K8): b1,i are trivial for i > g.
At this point we proved

Proposition 6.2. Let g > 3 and s+n ≥ 1. Then H1(
+(Nn

g,s); H1(Nn
g,s;Z)) is generated

by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{
a1,3, u1,3, b1,1 − a1,1 − a3,3, d1,1, . . . , ds−1,1

}
if g = 4,{

a1,3, u1,3, b1,1 − a1,1 − a3,3
}

if g = 5, 6,{
u1,3, b1,1 − a1,1 − a3,3

}
if g ≥ 7,

and each of these generators has order at most 2.
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7. Bounding H1(
k(Nn

g,s); H1(Nn
g,s;Z)) from above

As in the previous section, we will use the formula (2.2) to reduce the generating set for
the group H1(

+(Nn
g,s); H1(Nn

g,s;Z)) to the one specified in the statements of Propositions
7.1 and 7.2 below.

By Proposition 5.2, H1(
k(Nn

g,s); H1(Nn
g,s;Z)) is generated by generators of the group

H1(
+(Nn

g,s); H1(Nn
g,s;Z)) and additionally Generators (K12) corresponding to puncture

slides vk+1, . . . , vn (see Proposition 4.5). All the computations from the previous section hold
true, hence H1(

k(Nn
g,s); H1(Nn

g,s;Z)) is generated by Generators (K12): ṽ j,i and elements
specified in the statements of Propositions 6.1 and 6.2.

Note that for any x ∈ 
+(Nn

g,s) and k < j ≤ n,

y = v−1
j xv j ∈ 

+(Nn
g,s),

hence both x and y are products of generators of 
+(Nn

g,s) (that is these products do not
contain puncture slides). Therefore, the relation

xv j = v jy

gives

0 = [x] ⊗ γi + [v j] ⊗ ψ(x−1)γi − [v j] ⊗ γi − [y] ⊗ ψ(v−1
j )γi

= [v j] ⊗ (ψ(x−1) − I)γi + Ax
j,i =

g+s+n−1∑
r=1

mrv j,r + Ax
j,i =

g+s+n−1∑
r=1

mr̃v j,r + Ãx
j,i,

for some coefficients mr and expressions Ax
j,i, Ãx

j,i which contain neither v j,r nor ṽ j,r. More-
over, by Proposition 5.2,

g+s+n−1∑
r=1

mr̃v j,r = −Ãx
j,i

is an element of the kernel ker ∂1, hence this element is a linear combination of generators
specified in the statements of Propositions 6.1 and 6.2.

Now we use the above general analysis to two special cases: x = ai, i = 1, . . . , g − 1 and
x = ei, i = 1, . . . , s + n − 1.

In the first case we get

0 = [v j] ⊗ (ψ(a−1
i ) − I)γi + Aai

j,i = ṽ j,i + ṽ j,i+1 + Ãai
j,i.

This implies that generators ṽ j,2, . . . , ṽ j,g are superfluous.
In the second case we get

0 = [v j] ⊗ (ψ(e−1
i ) − I)γi + Aei

j,i = ṽ j,1 + ṽ j,2 + ṽ j,g+1 + . . . + ṽ j,g+i + Ãai
j,i.

This implies that generators ṽ j,g+1, . . . , ṽ j,g+s+n−1 are superfluous.
Relations a1v j = v ja1 and u1v j = v ju1 give

0 = [v j] ⊗ (ψ(a−1
i ) − I)γi − [a1] ⊗ (ψ(v−1

j ) − I)γi = v j,1 + v j,2,

0 = [v j] ⊗ (ψ(u−1
i ) − I)γi − [u1] ⊗ (ψ(v−1

j ) − I)γi = v j,1 − v j,2.

respectively. This implies that 2v j,1 = 2̃v j,1 = 0 and we proved
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Proposition 7.1. Let g > 3, s + n ≥ 1 and 0 ≤ k ≤ n. Then the group H1(
k(Nn

g,s);
H1(Nn

g,s;Z)) is generated by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{
a1,3, u1,3, b1,1 − a1,1 − a3,3, d1,1, . . . , ds−1,1, vk+1,1, . . . , vn,1

}
if g = 4,{

a1,3, u1,3, b1,1 − a1,1 − a3,3, vk+1,1, . . . , vn,1
}

if g = 5, 6,{
u1,3, b1,1 − a1,1 − a3,3, vk+1,1, . . . , vn,1

}
if g ≥ 7,

and each of these generators has order at most 2.

For the rest of this section assume that g = 3.
If j < n, then relations a1v j = v ja1 and u1v j = v ju1 give

0 = [v j] ⊗ (ψ(a−1
1 ) − I)γ3 − [a1] ⊗ (ψ(v−1

j ) − I)γ3 = −a1,3+s+ j,

0 = [v j] ⊗ (ψ(u−1
1 ) − I)γ3 − [u1] ⊗ (ψ(v−1

j ) − I)γ3 = −u1,3+s+ j,

respectively. Hence, a1,i = u1,i = 0 if i > 3 + s + k.
Finally, if s + k > 0, then relations a1vn = vna1 and u1vn = vnu1 give

0 = [vn] ⊗ (ψ(a−1
1 ) − I)γ3 − [a1] ⊗ (ψ(v−1

n ) − I)γ3

= 2(a1,1 + a1,2) + 2a1,3 + a1,4 + . . . + a1,2+s+n = a1,4 + . . . + a1,3+s+k,

0 = [vn] ⊗ (ψ(u−1
1 ) − I)γ3 − [u1] ⊗ (ψ(v−1

n ) − I)γ3

= 2(u1,1 + u1,2) + 2u1,3 + u1,4 + . . . + u1,2+s+n = u1,4 + . . . + u1,3+s+k,

respectively. Hence, a1,3+s+k and u1,3+s+k are superfluous provided s + k > 0. This proves

Proposition 7.2. Let s + n ≥ 1 and 0 ≤ k ≤ n. Then H1(
k(Nn

3,s); H1(Nn
3,s;Z)) is

generated by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{
a1,1 + a1,2, a1,3, u1,3, vk+1,1, . . . , vn,1

}
if s + k = 0,

{a1,1 + a1,2, a1,3, a1,4, . . . , a1,2+s+k, u1,3, u1,4, . . . , u1,2+s+k,

d1,1, . . . , ds−1,1, vk+1,1, . . . , vn,1} if s + k > 0,

and each of these generators has order at most 2.

8. Bounding H1((Nn
g,s); H1(Nn

g,s;Z)) from above

8. Bounding H1((Nn
g,s); H1(Nn

g,s;Z)) from above
As in the previous two sections, we will use the formula (2.2) to reduce the generating set

for the group H1((Nn
g,s); H1(Nn

g,s;Z)) to the one specified in the statement of Proposition
8.1 below.

By Proposition 5.3, H1((Nn
g,s); H1(Nn

g,s;Z)) is generated by generators of the group
H1(

+(Nn
g,s); H1(Nn

g,s;Z)), Generators (K12) corresponding to puncture slide vn and ad-
ditionally Generators (K13)–(K16) corresponding to elementary braids: s1, . . . , sn−1. All
computations from the previous two sections hold true, hence H1((Nn

g,s); H1(Nn
g,s;Z)) is

generated by generator (K12): vn,1, generators (K13)–(K16), and elements specified in the
statements of Propositions 6.1 and 6.2. Moreover if g = 3 and i ≥ 3+ s, then a1,i and u1,i are
superfluous.

If i � s + j, then the relation

eis j = s jei
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gives

0 = [s j] ⊗ (ψ(e−1
i ) − I)γ1 − [ei] ⊗ (ψ(s−1

j ) − I)γ1 = s j,1 + s j,2 + s j,g+1 + . . . + s j,g+i = Aj,i.

In particular, Generator (K14)

s j,g+s+ j + s j,g+s+ j+1 = Aj,s+ j+1 − Aj,s+ j−1 = 0

is trivial and Generators (K13) of the form

s j,g+i =

⎧⎪⎪⎨⎪⎪⎩Aj,i − Aj,i−1 = 0 if i > 1,

Aj,1 − (s j,1 + s j,2) if i = 1

are superfluous.
The relation

s jai = ais j for i < g

gives

(8.1) 0 = [s j] ⊗ (ψ(a−1
i ) − I)γi − [ai] ⊗ (ψ(s−1

j ) − I)γi = s j,i + s j,i+1.

Relation s js j+1s j = s j+1s js j+1 gives

0 = ([s j] + s j[s j+1] + s js j+1[s j] − [s j+1] − s j+1[s j] − s j+1s j[s j+1]) ⊗ γ1

= s j,i + s j+1,i + s j,i − s j+1,i − s j,i − s j+1,i = s j,i − s j+1,i.

This together with the formula (8.1) implies that Generators (K13) generate a cyclic group.
Moreover, the relation

s ju1 = u1s j

implies that

0 = [s j] ⊗ (ψ(u−1
1 ) − I)γ1 − [u1] ⊗ (ψ(s−1

j ) − I)γ1 = s j,1 − s j,2,

which together with the formula (8.1) implies that the cyclic group generated by generators
(K13) has order at most two.

By Proposition 4.7,

es+ j−1es+ j+1s j = es+ j s3
jes+ j,

and this relation gives

0 =([es+ j−1] + es+ j−1[es+ j+1] + es+ j−1es+ j+1[s j]) ⊗ γ1(8.2)

− ([es+ j] + es+ j(1 + s j + s2
j)[s j] − es+ j s3

j[es+ j]) ⊗ γ1

=es+ j−1,1 + [es+ j] ⊗ (−I − ψ(s−3
j )ψ(e−1

s+ j)γ1 + [es+ j+1] ⊗ ψ(e−1
s+ j−1)γ1

+ [s j] ⊗
(
ψ(e−1

s+ j+1)ψ(e−1
s+ j−1) − (I + ψ(s−1

j ) + ψ(s−2
j ))ψ(e−1

s+ j)
)
γ1.

If j < n − 1 this gives

0 = (s j,g+s+ j − es+ j−1,1 + 2es+ j,1 − es+ j+1,1)

+ (es+ j,1 + es+ j,2) + (es+ j,g+1 + . . . + es+ j,g+s+ j−1 + es+ j,g+s+ j+1)
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− (es+ j+1,1 + es+ j+1,2) − (es+ j+1,g+1 + . . . + es+ j+1,g+s+ j−1) + (∗).
This implies that Generator (K15) is superfluous. If j = n − 1, then the formula (8.2) yields
a more complicated expression, however it is also of the form

0 = sn−1,g+s+n−1 + (∗),
where (∗) denotes some expression which does not contain s j,i. This implies that Generator
(K16) is also superfluous, and we proved that

Proposition 8.1. Let g ≥ 3 and n ≥ 2. Then H1((Nn
g,s); H1(Nn

g,s;Z)) is generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1,1 + a1,2, a1,3, u1,3, vn,1, s1,1 if g = 3 and s = 0,

a1,1 + a1,2, a1,3, a1,4, . . . , a1,2+s, u1,3, u1,4, . . . , u1,2+s,

d1,1, . . . , ds−1,1, vn,1, s1,1 if g = 3 and s > 0,

a1,3, u1,3, b1,1 − a1,1 − a3,3, d1,1, . . . , ds−1,1, vn,1, s1,1 if g = 4,

a1,3, u1,3, b1,1 − a1,1 − a3,3, vn,1, s1,1 if g = 5 or g = 6,

u1,3, b1,1 − a1,1 − a3,3, vn,1, s1,1 if g ≥ 7,

and each of these generators has order at most 2.

9. Bounding H1(
k(Nn

g,s); H1(Nn
g,s;Z)) from below

9. Bounding H1(
k(Nn

g,s); H1(Nn
g,s;Z)) from below

In this section we use various quotients of 
k(Nn

g,s) in order to prove that all homology
classes specified in Propositions 7.1 and 7.2 are nontrivial. This will complete the proof of
Theorem 1.1.

If we glue a disk to each boundary components of Nn
g,s and forget about punctures, then

we get a closed non–orientable surface Ng of genus g. If

i : Nn
g,s → Ng

is the corresponding inclusion map, then i induces homomorphisms


k(Nn

g,s)
i∗−−−−−→ (Ng)⏐⏐⏐⏐⏐"ψ ⏐⏐⏐⏐⏐"ψ

Aut(H1(Nn
g,s;Z))

i∗−−−−−→ Aut(H1(Ng;Z))

This leads to the following homomorphism

H1(
k(Nn

g,s); H1(Nn
g,s;Z))

i∗−−−−−→ H1((Ng); H1(Ng;Z)).

Moreover, by Theorem 1.1 of [23] (see the very last formula in the proof of that theorem),
we have

i∗(a1,1 + a1,2) � 0 if g = 3,

i∗(u1,3) � 0 if g ≥ 3,

i∗(a1,3) � 0 if g ∈ {3, 4, 5, 6},
i∗(b1,1 − a1,1 − a3,3) � 0 if g ≥ 4
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and all these classes are linearly independent.
In order to prove that homology classes corresponding to puncture slides are nontrivial,

fix k < j ≤ n and consider the following homomorphisms

α : 
+(Nn

g,s)→ Z2,

β : H1(Nn
g,s;Z)→ Z2.

The first homomorphism is defined as follows: α( f ) = 1 if and only if f changes the local
orientation around the puncture z j. The second one is the composition

H1(Nn
g,s;Z) −−−−−→ H1(Nn

g,s;Z2) −−−−−→ 〈γ1〉.
of the reduction to Z2 coefficients and the projection:⎧⎪⎪⎨⎪⎪⎩γ1, γ2, . . . , γg �−→ γ1,

δ1, δ2, . . . , δs+n−1 �−→ 0.

It is straightforward to check that for any m ∈ H1(Nn
g,s;Z) and f ∈ 

+(Nn
g,s)

β( f (m)) = β(m).

Hence, if we regard 〈γ〉 as a trivial α(
+(Nn

g,s)) module, then (α, β) induce homomor-
phism

H1(
k(Nn

g,s); H1(Nn
g,s;Z))

(α, β)−−−−−→ H1(Z2;Z2) � Z2.

Moreover, if x is one of the generators specified in the statements of Propositions 7.1 and
7.2, then

(α, β)(x) � 0 ⇐⇒ x = v j,1.

This implies that v j,1 is nontrivial and independent from other generators.
If s ≥ 2 and g ≤ 4, then for any fixed 1 ≤ j ≤ s − 1 there is a homomorphism

H1(
k(Nn

g,s); H1(Nn
g,s;Z))

i∗−−−−−→ H1((Ng+2); H1(Ng+2;Z))

induced by the inclusion i : Nn
g,s → Ng+2, where Ng+2 is a closed non–orientable surface of

genus g + 2 obtained from Nn
g,s, by forgetting the punctures, connecting boundary compo-

nents of numbers 1 ≤ j ≤ s − 1 and s by a cylinder, and gluing a disk to all the remaining
boundary components.

Moreover, δ j becomes a two–sided nonseparating circle in Ng+2, hence we can choose
generators for (Ng+2) so that

i∗(d j,1) = a1,3 ∈ H1((Ng+2); H1(Ng+2;Z)).

By Theorem 1.1 of [23], this homology class is nontrivial provided g+2 ≤ 6. This completes
the proof of Theorem 1.1 if g > 3 or s + k ≤ 1.

Hence, assume that g = 3 and s + k ≥ 2. Fix 1 ≤ j ≤ s + k − 1 and and glue a disk with
a puncture to each boundary component of Nn

3,s. Then forget about all the punctures except
those with numbers j and s + k. As a result we obtain an inclusion

i : Nn
3,s → N2

3 ,
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which leads to a homomorphism

H1(
k(Nn

g,s); H1(Nn
g,s;Z))

i∗−−−−−→ H1((N2
3 ); H1(N2

3 ;Z)).

By Theorem 1.2 of [16],

i∗(a1,3+ j) = a1,4 � 0,

i∗(u1,3+ j) = u1,4 � 0.

This implies that generators a1,4, . . . , a1,2+s+k, u1,4, . . . , u1,2+s+k are nontrivial and linearly
independent. This concludes the proof of Theorem 1.1.

10. Bounding H1((Nn
g,s); H1(Nn

g,s;Z)) from below

10. Bounding H1((Nn
g,s); H1(Nn

g,s;Z)) from below
In this section we will show that all generators specified in the statement of Proposition

8.1 are nontrivial and linearly independent. This will complete the proof of Theorem 1.2.
As in the previous section, we argue that homology classes

(10.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1,1 + a1,2 if g = 3,

a1,4, . . . a1,2+s if g = 3 and s > 1,

u1,4, . . . u1,2+s if g = 3 and s > 1,

a1,3 if g < 7,

u1,3,

b1,1 − a1,1 − a3,3 if g ≥ 4,

d j,1 if g ≤ 4 and 1 ≤ j ≤ s − 1

are nontrivial and independent. Hence, it is enough to show that if

0 = A + νvn,1 + μs1,1,

where A is a linear combination of generators (10.1), then ν = μ = 0. Let

β : H1(Nn
g,s;Z)→ Z2

be defined as in the previous section and define

α : (Nn
g,s)→ Z2

as follows: α( f ) = 1 if and only if f changes the local orientation around an odd number of
punctures. Then there is an induced homomorphism

H1((Nn
g,s); H1(Nn

g,s;Z))
(α, β)−−−−−→ H1(Z2;Z2) � Z2

and

0 = (α, β)(A + νvn,1 + μs1,1) = ν.

Now define

α′ : (Nn
g,s)→ Z2

to be the sign of the permutation
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(z1, . . . , zn) �→ ( f (z1), f (z2), . . . , f (zn)),

that is α′( f ) = 1 if and only if the above permutation is odd. As before, there is an induced
homomorphism

H1((Nn
g,s); H1(Nn

g,s;Z))
(α′, β)−−−−−→ H1(Z2;Z2) � Z2

and

0 = (α, β)(A + νvn,1 + μs1,1) = μ.

This concludes the proof of Theorem 1.2.
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