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Abstract
We compute the rational Betti numbers of the real toric varieties associated to Weyl chambers

of types E7 and E8, completing the computations for all types of root systems.

1. Introduction

1. Introduction
It is known that a root system of type R generates a non-singular complete fan ΣR by its

Weyl chambers and co-weight lattice [10], and that ΣR corresponds to a smooth compact
(complex) toric variety XR by the fundamental theorem for toric geometry. In particular, the
real locus of XR is called the real toric variety associated to the Weyl chambers, denoted by
XRR .

It is natural to ask for the topological invariants of XRR . By [6], the Z2-Betti numbers of XRR
can be completely computed from the face numbers of ΣR. In general, however, computing
the rational Betti numbers of a real toric variety is much more difficult. In 2012, Henderson
[8] computed the rational Betti numbers of XRAn

. The computation of other classical and ex-
ceptional types has been carried out using the formulae for rational Betti numbers developed
in [13] or [5]. At the time of writing this paper, results have been established for XRR of all
types except E7 and E8.

For the classical types R = An, Bn,Cn, and Dn, the kth Betti numbers βk of XRR are known
to be as follows (see [8], [4], [3]):
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;Q) =

(
n + 1

2k

)
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(
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where ar is the rth Euler zigzag number (A000111 in [11]) and br is the rth generalized
Euler number (A001586 in [11]).
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For the exceptional types R = G2, F4, and E6, the Betti numbers of XRR are as in Table 1
(see [2, Proposition 3.3]).

Table 1. Nonzero Betti numbers of XRG2
, XRF4

, and XRE6

βk(XRR ) R = G2 R = F4 R = E6

k = 0 1 1 1
k = 1 9 57 36
k = 2 0 264 1,323
k = 3 0 0 4,392

The purpose of this paper is to compute the Betti numbers for the remaining exceptional
types E7 and E8. The reason these cases have remained unsolved to date is that, as remarked
in [2], the corresponding fans are too large to be dealt with. We provide a technical method
to decompose all facets of the Coxeter complex; using this method, we obtain explicit sub-
complexes KS that play an important role in our main computation. Furthermore, we obtain
a smaller simplicial complex by removing vertices in KS without changing its homology
groups so that the Betti numbers can be computed.

Theorem 1.1. The kth Betti numbers βk of XRE7
and XRE8

are as follows.

βk(XRE7
;Q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if k = 0

63, if k = 1

8,127, if k = 2

131,041, if k = 3

122,976, if k = 4

0, otherwise.

βk(XRE8
;Q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if k = 0

120, if k = 1

103,815, if k = 2

6,925,200, if k = 3

23,932,800, if k = 4

0, otherwise.

2. Real toric varieties associated to the Weyl chambers

2. Real toric varieties associated to the Weyl chambers
We recall some known facts about the real toric varieties associated to the Weyl chambers,

following the notation in [2] unless otherwise specified.
Let ΦR be an irreducible root system of type R in a finite dimensional Euclidean space

and WR its Weyl group. The connected components of the complement of the reflection
hyperplanes are called the Weyl chambers. We fix a particular Weyl chamber, called the
fundamental Weyl chamber Ω, and the fundamental co-weights ω1, . . . , ωn form the set of



Real Toric Varieties of Types E7 and E8 411

its rays. Then, Z({ω1, . . . , ωn}) has a lattice structure, called the co-weight lattice. Consider
the set of Weyl chambers as a nonsingular complete fan ΣR with the co-weight lattice. From
the set V = {v1, . . . , vm} of rays spanning ΣR we obtain the simplicial complex KR, called the
Coxeter complex of type R on V , whose faces in KR are obtained via the corresponding faces
in ΣR (see [1] for more details). The directions of rays on the co-weight lattice give a linear

map λR : V → Zn. In addition, the composition map ΛR : V
λR→ Zn mod 2−→ Zn

2 can be expressed
as an n × m (mod 2) matrix, called a (mod 2) characteristic matrix. Let S be an element of
the row space Row(ΛR) of ΛR, the vector space spanned by the row vectors of ΛR. Since
each column of ΛR corresponds to a vertex v ∈ V , S can be regarded as a subset of V . Let us
consider the induced subcomplex KS of KR with respect to S. It is known that the reduced
Betti numbers of KS are related to the Betti numbers of XRR .

Theorem 2.1 ([2]). For any root system ΦR of type R, let WR be the Weyl group of ΦR.
Then, there is a WR-module isomorphism

H∗(XRR ) �
⊕

S∈Row(ΛR)

H̃∗−1(KS),

where KS is the induced subcomplex of KR with respect to S.

The definition of the WR-action on Row(ΛR) is explained in Lemma 3.1 in [2], and implies
that

(2.1) KS � KgS for S ∈ Row(ΛR) and g ∈ WR.

Combining Theorem 2.1 with (2.1), we need only investigate representatives KS of the WR-
orbits in Row(ΛR).

Proposition 2.2 ([2]). For type E7, there are 127 nonzero elements in Row(ΛE7). In
addition, there are exactly three orbits (whose representatives are denoted by S1, S2, and
S3), and the numbers of elements for each orbit are 63, 63, and 1, respectively.

For type E8, there are 255 nonzero elements in Row(ΛE8). There are only two orbits
(whose representatives are denoted by S4 and S5), and the numbers of elements for each
orbit are 120 and 135, respectively.

Thus, for our purpose, it is enough to compute the (reduced) Betti numbers of KSi for
1 ≤ i ≤ 5. For practical reasons such as memory constraints and high time complexity, it
is not easy to obtain KS directly by computer programs. The remainder of this section is
devoted to introducing an effective way to obtain KS.

For a fixed fundamental co-weight ω, let Hω be the isotropy subgroup of ω in WR, and let
Kω be the subcomplex of KR such that the set of facets of Kω is {h ·Ω | h ∈ Hω}, where Ω is
the fundamental Weyl chamber.

Lemma 2.3. The set of facets of KR is decomposed as the union of the sets of all facets
of Kg = g · Kω for all g ∈ WR/Hω.

Proof. For each facet σ ∈ KR, there uniquely exists gσ ∈ WR such that gσ · Ω = σ by
Propositions 8.23 and 8.27 in [7]. Thus, there is exactly one gσ · Hω ∈ WR/Hω such that σ
is a facet of Kgσ as desired. �
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Obviously, the set of facets of KS is then obtainable as the union of the sets of all facets
of KgS for all g ∈ WR/Hω.

In this paper, we fix the fundamental co-weight ω to correspond to α1 for type E7, and to
correspond to α8 for type E8 in Figure 1.

Fig.1. The Dynkin diagrams for types E7 and E8

However, since Kg still has many facets, it is not easy to obtain KgS from Kg directly; see
Table 2.

Table 2. Statistics for KR when R = E7 and E8

R = E7 R = E8

# vertices of KR 17,642 881,760

# facets of KR 2,903,040 696,729,600

|WR/Hω| 126 240

# facets of Kg 23,040 2,903,040

Hence, we establish a lemma to improve the time complexity. Denote by VgS the set of
vertices in KgS .

Lemma 2.4. Let g, h ∈ WR/Hω. If g · Vh
S = VghS , then g · Kh

S = KghS .

Proof. For g ∈ WR/Hω, we naturally consider g a simplicial isomorphism from Kh to Kgh.
If g · Vh

S = VghS , then the restriction of g to Kh
S is well-defined. Thus, g is also regarded as a

simplicial isomorphism between Kh
S and KghS . �

By the above lemma, when g · Vh
S = VghS , KghS is obtainable without any computation.

Since checking the hypothesis of the lemma is much easier than forming KgS from Kg, a
good deal of time can be saved. Using this method, one can obtain KS within a reasonable
time with standard computer hardware.

3. Simplicial complexes for types E7 and E8

3. Simplicial complexes for types E7 and E8
Since each KS for the types E7 or E8 is too large for direct computation, it is impossible to

compute their Betti numbers directly using existing methods. In this section, we introduce
the specific smaller simplicial complex K̂S whose homology group is isomorphic as a group
to that of KS.
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Let K be a simplicial complex. The link LkK(v) of v in K is a set of all faces σ ∈ K such
that v � σ and {v} ∪σ ∈ K, while the (closed) star StK(v) of v in K is a set of all faces σ ∈ K
such that {v} ∪ σ ∈ K. For a vertex v of KS satisfying LkK(v) � ∅, we consider the following
Mayer-Vietoris sequence:

· · · → H̃k(LkK(v))→ H̃k(K − v) ⊕ H̃k(StK(v))→ H̃k(K)→ H̃k−1(LkK(v))→ · · · ,
where K − v = {σ \ {v} | σ ∈ K} and k is a positive integer. We note that H̃k(StK(v)) = 0 for
k ≥ 0 since StK(v) is a topological cone. Therefore, for k ≥ 0, if H̃k(LkK(v)) is trivial, then
H̃k(K − v) � H̃k(K) as groups. In this case, we call v a removable vertex of K.

Let us consider the canonical action of the Weyl group WR on the vertex set VR of KR. It
is known that there are exactly n vertex orbits V1, . . . ,Vn of KR, where n is the number of
simple roots of WR.

Theorem 3.1. For a subcomplex L of KR, the simplicial complex obtained by the algo-
rithm below has the same homology group as L.

Algorithm
1: K ← L
2: for i = 1, . . . , n do
3: W ← ∅
4: for each v ∈ Vi do
5: if v is removable in K then
6: W ← W ∪ {v}
7: end if
8: end for
9: K ← K −W := {σ \W | σ ∈ K}

10: end for
11: Return K

Proof. By Proposition 8.29 in [7], for each facet  of KR, every vertex orbit of KR contains
exactly one vertex of . That is, for any v, w ∈ Vi, v and w are not adjacent. Then, for any
subcomplex K of KR and v, w ∈ Vi, v is not contained in LkK(w).

Note that, for removable vertices v and w of K, w is still removable in K − v if w is not
in the link of v in K, whereas there is no guarantee that w is removable in K − v in general.
Thus, we can remove all removable vertices of K in Vi from K at once without changing
their homology groups. We do this procedure inductively for every vertex orbit to obtain K,
and obviously, that H∗(K) � H∗(L) as groups. �

If line 5 of the algorithm above is replaced with ‘if LkK(v) forms a cone then’, simplicial
complex K returned in line 11 is unique up to isomorphism, regardless of any changes in the
order of vertex orbits [9]. However, Theorem 3.1 is enough to compute the Betti numbers
of KSi for 1 ≤ i ≤ 5.

In this paper, we fix the order by size of orbit, with |Vi| < |Vi+1|. Let K̂S be the complex
resulting from KS as obtained by the algorithm in Theorem 3.1. Then, the sizes of K̂S

obtained as in Table 3 are dramatically smaller than the sizes of KS.
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Table 3. Numbers of vertices of KS and K̂S

E7 S = S1 S = S2 S = S3

KS 9,176 8,672 4,664

K̂S 408 928 4,664

E8 S = S4 S = S5

KS 432,944 451,200

K̂S 9,328 15,488

The following proposition establishes some properties of KS and K̂S.

Proposition 3.2.
(1) KS1 and KS4 have two connected components; the other KS are connected.
(2) For S = S1, S4, two components of KS are isomorphic.
(3) All K̂S are pure simplicial complexes.
(4) Each component of K̂S1 is isomorphic to some induced subcomplex of KD6 .
(5) Each component of K̂S4 is isomorphic to K̂S3 .

The above proposition was checked by a computer program. The Python codes used for
validation are available at https://github.com/Seonghyeon-Yu/E7-and-E8. Note that to
verify the correctness of these codes, we computed the Betti numbers for the types already
known in Table 1 using the codes.

In conclusion, by Proposition 3.2, we only need to compute the Betti numbers of KS for
S = S2, S3, and S5, since the Betti numbers of KS of KD6 are already computed in [3] for all
S ∈ Row(ΛD6 ).

Remark 3.3.
(1) Each isomorphism in Proposition 3.2 (2) can be represented as one of simple roots;

see Figure 1. For the type E7, the simple root α3 represents the isomorphism be-
tween the components of K̂S1 ; for the type E8, the simple root α2 represents the
isomorphism between the components of K̂S4 .

(2) Denote by K̄S a connected component of K̂S. The f -vectors f (K̄S) of K̄S as follows:

f (K̄S1 ) = (204, 1312, 1920) f (K̄S4 ) = (4664, 36288, 60480)

f (K̄S2 ) = (928, 6848, 15360, 11520) f (K̄S5 ) = (15488, 193536, 645120)

f (K̄S3 ) = (4664, 36288, 60480)

As seen, the f -vectors of K̄S3 and K̄S4 are the same because of Proposition 3.2 (5).
From the f -vectors, we can compute the Euler characteristic of KS.

4. Computation of the Betti numbers

4. Computation of the Betti numbers
In this section, we shall use a computer program SageMath 9.3 [12], to compute the Betti

numbers of the given simplicial complexes. From Proposition 3.2, we already know the
Betti numbers of K̂S1 . For S2 and S3, we can compute the Betti numbers of K̂S within a
reasonable time; see Table 4.

From Table 4, we can immediately conclude the following theorem.
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Table 4. Nonzero reduced Betti numbers of KS for S in Row(ΛE7 )

β̃k(KS) S = S1 S = S2 S = S3

k = 0 1 0 0

k = 1 0 129 0

k = 2 1,622 0 28,855

k = 3 0 1,952 0

# orbit 63 63 1

Theorem 4.1. The kth Betti numbers βk of XRE7
are as follows:

βk(XRE7
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if k = 0

63, if k = 1

8,127, if k = 2

131,041, if k = 3

122,976, if k = 4

0, otherwise.

By Proposition 3.2 and the above result, we now have the Betti numbers of K̂S4 . For any
vertex v of K̂S5 , we can check H̃0(LkK̂S5

(v)) = H̃1(LkK̂S5
(v)) = 0 by the program. Hence, we

have the Mayer-Vietoris sequence

0 = H̃1(LkK̂S5
(v))→ H̃1(K̂S5 − v) ⊕ H̃1(StK̂S5

(v))→ H̃1(K̂S5 )→ H̃0(LkK̂S5
(v)) = 0.

Since H̃1(StK̂S5
(v)) is trivial, H̃1(K̂S5 − v) is isomorphic to H̃1(K̂S5 ). For the largest vertex

orbit V of K̂S5 , by the same proof argument as for Theorem 3.1, H̃1(K̂S5 − V) is isomorphic
to H̃1(K̂S5 ). Note that the size of K̂S5 − V is much smaller than K̂S5 . Thus, β̃1(KS5 ) can be
computed within a reasonable time from K̂S5 −V instead of K̂S5 . However, there is no vertex
of K̂S5 such that H̃2(LkK̂S5

(v)) = 0. Thus, for k = 2, 3 we must compute β̃k(K̂S5 ) directly,
which takes a few days of run time. See Table 5 for the results.

Table 5. Nonzero reduced Betti numbers of KS for S in Row(ΛE8 )

β̃k(KS) S = S4 S = S5

k = 0 1 0

k = 1 0 769

k = 2 57,710 0

k = 3 0 177,280

# orbit 120 135

Table 5 implies the following theorem.
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Theorem 4.2. The kth Betti numbers βk of XRE8
are as follows:

βk(XRE8
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if k = 0

120, if k = 1

103,815, if k = 2

6,925,200, if k = 3

23,932,800, if k = 4

0, otherwise.

The Euler characteristic number χ(X) of a topological space X is equal to the alternating
sum of the Betti numbers βk(X) of X. We can use this fact as a confidence check for our
results.

Remark 4.3. The Z2-cohomology ring of a real toric variety is completely determined by
its fan [6], and then, it can be obtained that χ(XRE7

) = 0 and χ(XRE8
) = 17,111,296. Obviously,

the alternating sums of the Betti numbers based on our results match χ(XRE7
) and χ(XRE8

),
respectively.
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