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Abstract
A 4-move is a local move of links replacing two parallel arcs with 4 half twists. The no-

tion of 4-moves can be extended to handlebody-links naturally. In this paper, we detect 4-
move inequivalent handlebody-links by using Alexander type invariants obtained from an f -
twisted Alexander matrix, which is defined by way of a derivative for multiple conjugation
quandles. We give a link-homotopically trivial handlebody-link which cannot be reduced to a
trivial handlebody-link by 4-moves.

1. Introduction

1. Introduction
A k-move is a well-known local move for classical links replacing two parallel arcs with k

half twists, which may reduce a link to a trivial link in some cases. A 2-move is identical with
a crossing change, which is an unknotting operation. The Montessinos–Nakanishi 3-move
conjecture [19] stated that any link can be reduced to a trivial link by 3-moves, but it was
refuted in [8]. The Nakanishi 4-move conjecture [19, 26] states that any knot can be reduced
to the trivial knot by 4-moves, and it remains as an open problem. As a generalization of
this conjecture, it was expected that if two links are link-homotopic, that is, one can be
obtained from the other by self-crossing changes, then they can be transformed into each
other by 4-moves, but Dabkowski and Przytycki [9] resolved this conjecture in the negative
by constructing a three component link-homotopically trivial link which can not be reduced
to a trivial link by 4-moves. Behavior of 4-moves for classical links has been studied in, for
example, [2, 7, 10, 18, 27, 28, 29, etc.].

The notion of k-moves for classical links can be extended to handlebody-links naturally.
A handlebody-link is a disjoint union of handlebodies embedded in the 3-sphere, which is a
generalization of a classical link to higher genera. A handlebody-link can be also regarded
as a quotient structure of a spatial graph. In the same as classical links, a 2-move is an un-
knotting operation for handlebody-links. There have been some studies of crossing changes
of handlebody-links in [1, 17, 23], for example. However, unlike the case of classical links,
properties of k-moves for handlebody-links have not been studied well yet.

A quandle [20, 21] is an algebra whose axioms correspond to the Reidemeister moves
for links. A quandle yields various invariants for links such as quandle coloring numbers,
quandle cocycle invariants [6] and so on. A multiple conjugation quandle (MCQ) [12] is
an algebra whose axioms correspond to the Reidemeister moves for handlebody-links. As
same as a quandle, an MCQ yields various invariants for handlebody-links such as MCQ
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coloring numbers, MCQ cocycle invariants [5] and so on. The author [24] introduced a pair
of maps called an MCQ Alexander pair and showed that any linear extension of an MCQ
can be realized by using it. Using an MCQ Alexander pair f , Ishii and the author [16]
defined the f -twisted Alexander matrix, which produces some Alexander type invariants
of handlebody-links. In this paper, we show that these invariants obtained from a certain
MCQ Alexander pair detect 4-move inequivalences of handlebody-links. We give a link-
homotopically trivial handlebody-link which can not be reduced to a trivial handlebody-link
by 4-moves.

This paper is organized as follows. In Section 2, we introduce k-moves of handlebody-
links and some facts briefly. In Section 3, we recall the notions of a multiple conjugation
quandle (MCQ) and an MCQ Alexander pair. We see an example of an MCQ Alexan-
der pair used in the main theorem in Section 6. In Section 4, we recall the notions of an
MCQ presentation and the fundamental MCQ of a handlebody-link, which is an invariant
of handlebody-links. In Section 5, we review the f -twisted Alexander matrix, which pro-
vides Alexander type invariants of handlebody-links, with an MCQ Alexander pair f . In
Section 6, we introduce some approaches to detect k-move inequivalences of handlebody-
links and show that the invariants defined in [16] (described in Section 5) can detect 4-move
inequivalences of them. We prove that a certain link-homotopically trivial handlebody-link
is not 4-move equivalent to any trivial handlebody-link.

2. Handlebody-links and k-moves

2. Handlebody-links and k-moves
A handlebody-link is a disjoint union of handlebodies embedded in the 3-sphere S3. A

handlebody-knot is a one component handlebody-link. In this paper, we assume that every
component of a handlebody-link is of genus at least 1. A handlebody-knot is trivial if its
exterior is a handlebody. An n-component handlebody-link is trivial if there exist disjoint n
3-balls in S3 whose each component contains a trivial handlebody-knot. Two handlebody-
links are equivalent if there is an orientation-preserving self-homeomorphism of S3 sending
one to the other.

A k-move is a local move on handlebody-links as illustrated in Fig. 1. Two handlebody-
links are k-move equivalent if they are related by a finite sequence of k-moves and iso-
topies of S3. A 2-move is identical with a crossing change, which is an unknotting oper-
ation. Two handlebody-links are link-homotopic if they are related by a finite sequence of
self-crossing changes, which are crossing changes on the same components, and isotopies
of S3. A handlebody-link is link-homotopically trivial if it is link-homotopic to a trivial
handlebody-link. We know that every genus 2 handlebody-knot up to 6 crossings [15] is 3-
and 4-move equivalent to the genus 2 trivial handlebody-knot. Moreover we can see that
every non-split irreducible handlebody-link with n > 1 components having total genus n+ 1
up to 6 crossings [3] is 3-move equivalent to the genus 2 trivial handlebody-knot.

3. Multiple conjugation quandles and MCQ Alexander pairs

3. Multiple conjugation quandles and MCQ Alexander pairs
A quandle [20, 21] is a non-empty set Q with a non-associative binary operation � :

Q × Q→ Q satisfying the following axioms:
• For any a ∈ Q, a � a = a.
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Fig.1. A k-move for a handlebody-link.

• For any a ∈ Q, the map �a : Q→ Q defined by �a(x) = x � a is bijective.
• For any a, b, c ∈ Q, (a � b) � c = (a � c) � (b � c).

We denote the iterated map (�a)n : Q→ Q by �na for n ∈ Z. We define the type of a quandle
Q by

type Q = min{n ∈ Z>0 | x �n y = x for any x, y ∈ Q},
where we set min ∅ := ∞ for the empty set ∅, and Z>0 denotes the set of positive integers.
Any finite quandle has a finite type.

Let G be a group. We define a binary operation � on G by a � b = b−1ab. Then (G, �) is
a quandle, called the conjugation quandle of G and denoted by Conj G. We define another
binary operation � on G by a�b = ba−1b. Then (G, �) is a quandle, called the core quandle of
G and denoted by Core G. For a positive integer n, we denote by Zn the cyclic group Z/nZ
of order n. We define a binary operation � on Zn by a � b = 2b− a. Then (Zn, �) is a quandle,
called the dihedral quandle of order n and denoted by Rn.

Definition 3.1 ([12]). A multiple conjugation quandle (MCQ) X is a disjoint union of
groups Gλ(λ ∈ Λ) with a non-associative binary operation � : X × X → X satisfying the
following axioms:

• For any a, b ∈ Gλ, a � b = b−1ab.
• For any x ∈ X and a, b ∈ Gλ, x � eλ = x and x � (ab) = (x � a) � b, where eλ is the

identity of Gλ.
• For any x, y, z ∈ X, (x � y) � z = (x � z) � (y � z).
• For any x ∈ X and a, b ∈ Gλ, (ab) � x = (a � x)(b � x), where a � x, b � x ∈ Gμ for

some μ ∈ Λ.

In this paper, we often omit parentheses. When doing so, we apply binary operations from
left on expressions, except for group operations, which we always apply first. For example,
we write a �1 b �2 cd �3 (e �4 f �5 g) for ((a �1 b) �2 (cd)) �3 ((e �4 f ) �5 g) simply, where each
�i is a binary operation, and c and d are elements of the same group.

For two MCQs X1 =
⊔
λ∈ΛGλ and X2 =

⊔
μ∈M Gμ, an MCQ homomorphism ρ : X1 → X2

is defined to be a map from X1 to X2 satisfying ρ(x � y) = ρ(x) � ρ(y) for any x, y ∈ X1 and
ρ(ab) = ρ(a)ρ(b) for any λ ∈ Λ and a, b ∈ Gλ. An MCQ homomorphism from X1 to X2 is
also called an MCQ representation of X1 to X2. We denote by Hom(X1, X2) the set of MCQ
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homomorphisms from X1 to X2.
We recall the definition of a G-family of quandles. A G-family of quandles is an algebraic

system which yields an MCQ.

Definition 3.2 ([14]). Let G be a group with the identity element e. A G-family of quan-
dles is a non-empty set X with a family of binary operations �g : X × X → X (g ∈ G)
satisfying the following axioms:

• For any x ∈ X and g ∈ G, x �g x = x.
• For any x, y ∈ X and g, h ∈ G, x �e y = x and x �gh y = (x �g y) �h y.
• For any x, y, z ∈ X and g, h ∈ G, (x �g y) �h z = (x �h z) �h

−1gh (y �h z).

Let (Q, �) be a quandle. Then (Q, {�i}i∈Ztype Q) is a Ztype Q-family of quandles, where we put
Z∞ := Z. Let (X, {�g}g∈G) be a G-family of quandles. Then X × G =

⊔
x∈X({x} × G) is an

MCQ with

(x, g) � (y, h) := (x �h y, h−1gh), (x, g)(x, h) := (x, gh)

for any x, y ∈ X and g, h ∈ G [12]. We call it the associated MCQ of (X, {�g}g∈G).
Then we recall the definition of MCQ Alexander pairs. Throughout this paper, we assume

that every ring has the multiplicative identity 1 � 0.

Definition 3.3 ([24]). Let X =
⊔
λ∈ΛGλ be an MCQ and R a ring. The pair ( f1, f2) of

maps f1, f2 : X × X → R is an MCQ Alexander pair if f1 and f2 satisfy the following
conditions:

• For any a, b ∈ Gλ,

f1(a, b) + f2(a, b) = f1(a, a−1b).

• For any a, b ∈ Gλ and x ∈ X,

f1(a, x) = f1(b, x),

f2(ab, x) = f2(a, x) + f1(b � x, a−1 � x) f2(b, x).

• For any x ∈ X and a, b ∈ Gλ,

f1(x, eλ) = 1,

f1(x, ab) = f1(x � a, b) f1(x, a),

f2(x, ab) = f1(x � a, b) f2(x, a).

• For any x, y, z ∈ X,

f1(x � y, z) f1(x, y) = f1(x � z, y � z) f1(x, z),

f1(x � y, z) f2(x, y) = f2(x � z, y � z) f1(y, z),

f2(x � y, z) = f1(x � z, y � z) f2(x, z) + f2(x � z, y � z) f2(y, z).

An MCQ Alexander pair is related to a linear extension of an MCQ [24, 25]. Several
examples of MCQ Alexander pairs are given in [16]. The MCQ Alexander pair in the
following example will be used in Section 6.
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Example 3.4 ([16, Example 3.7]). Let Q := Core G be the core quandle of a group G. Let
X := Q×Z2 be the associated MCQ of a Z2-family of quandles (Q, {�i}i∈Z2 ). We define maps
f1, f2 : X × X → R[G]/I by

f1((x, a), (y, b)) =

⎧⎪⎪⎨⎪⎪⎩
1 if b = 0,

−yx−1 otherwise,

f2((x, a), (y, b)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if a = 0,

−1 − xy−1 if a = 1 and b = 0,

1 + yx−1 if a = 1 and b = 1,

where R[G] is the group ring of G over a ring R, and I is a two-sided ideal of R[G]. Then
the pair ( f1, f2) is an MCQ Alexander pair.

4. The fundamental MCQ of a handlebody-link

4. The fundamental MCQ of a handlebody-link
In this section, we recall the notions of presentations of MCQs and the fundamental MCQ

of a handlebody-link briefly. For details see [13].
For a set of pairwise disjoint sets SΛ = {Sλ | λ ∈ Λ}, the free MCQ FMCQ(SΛ) over SΛ

is a free object in the category of MCQs. It is known that every MCQ has a presentation
〈SΛ |R〉, which is also denoted 〈Sλ (λ ∈ Λ) |R〉 for R ⊂ FMCQ(SΛ) × FMCQ(SΛ). We call SΛ
the generating set of 〈SΛ |R〉 and an element of R a relator of 〈SΛ |R〉. A relator (a, b) is
also written as a = b. For x ∈ ⋃

SΛ, we use the same symbol x for the element of 〈SΛ |R〉
represented by x. A presentation 〈SΛ |R〉 is called a finite presentation if

⋃
SΛ and R are

finite. For a finitely presented MCQ, we often write

〈x1,1, . . . , x1,n1 ; . . . ; xl,1, . . . , xl,nl | r1, . . . , rm〉
:= 〈{x1,1, . . . , x1,n1}, . . . , {xl,1, . . . , xl,nl} | {r1, . . . , rm}〉.

A diagram of a handlebody-link is a diagram of a spatial trivalent graph whose regular
neighborhood is the handlebody-link, where a spatial trivalent graph is a finite trivalent
graph embedded in S3. In this paper, a trivalent graph may contain circle components. Two
handlebody-links are equivalent if and only if their diagrams are related by a finite sequence
of Reidemeister moves depicted in Fig. 2 [11]. Let D be a diagram of a handlebody-link.
A Y-orientation of D is a collection of orientations of all edges of D without sources and
sinks with respect to the orientation as shown in Fig. 3, where an edge of D is a piece of
a curve each of whose endpoints is a vertex. In this paper, a circle component of D is also
regarded as an edge of D. It is known that every diagram has a Y-orientation. We may
represent an orientation of an edge by a normal orientation, which is obtained by rotating a
usual orientation counterclockwise by π/2 on a diagram. A vertex of a Y-oriented diagram
can be allocated a sign; the vertex is said to have a sign +1 or −1 as shown in Fig. 3.

Let H be a handlebody-link represented by a Y-oriented diagram D. We denote by C(D),
V(D) and (D) the sets of crossings, vertices and arcs of D, respectively. For each c ∈ C(D),
we denote by vc the over-arc of c, and we denote by uc and wc the under-arcs of c such that
the normal orientation of vc points from uc to wc as illustrated in the left of Fig. 4. For each
τ ∈ V(D), if τ has a sign +1 (resp. −1), we denote by wτ the arc whose initial (resp. terminal)
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Fig.2. The Reidemeister moves of handlebody-links.

Fig.3. Y-orientations and signs of verteces.

vertex is τ, and we denote by uτ and vτ the arcs incident to τ such that the normal orientation
of wτ points from uτ to vτ as illustrated in the center and right of Fig. 4. We denote by

	(D) the quotient set of (D) by the equivalence relation generated by

⋃
τ∈V(D){uτ, vτ, wτ}2,

that is, two arcs x, x′ ∈ (D) are equivalent if there exist arcs x1, x2, . . . , xn ∈ (D) such
that x = x1, x′ = xn, and that xi and xi+1 have a common vertex of D for each i. For
example, for the Y-oriented diagram D of a handlebody-knot depicted in Fig. 5, we have

	(D) = {{x1, x2, x3}, {x4, . . . , x10}, {x11}, . . . , {x14}}. Then we define

MCQ(D) :=
〈

	(D)

∣∣∣ rc, rτ (c ∈ C(D), τ ∈ V(D))
〉
,

where rc and rτ denote the relators (uc � vc, wc) and (uτvτ, wτ), respectively. The isomor-
phism class of MCQ(D) does not depend on the choice of a diagram D of H and its Y-
orientation [13]. We then define MCQ(H) := MCQ(D) and call it the fundamental MCQ of
H. This presentation is called the Wirtinger presentation of MCQ(H) with respect to D.

Fig.4. Notations of arcs.

Let D be a Y-oriented diagram of a handlebody-link H and let X be an MCQ. An X-
coloring of D is a map C : (D)→ X satisfying the conditions

C(uc) �C(vc) = C(wc) and C(uτ)C(vτ) = C(wτ)

for each c ∈ C(D) and τ ∈ V(D). We denote by ColX(D) the set of X-colorings of D. An
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Fig.5. A Y-oriented diagram of a handlebody-knot.

X-coloring of D can be regarded as an MCQ representation of MCQ(D) to X, that is, we can
then identify ColX(D) with Hom(MCQ(D), X). Hence its cardinality is an invariant for the
handlebody-link, called the MCQ coloring number.

Let D be a Y-oriented diagram of a handlebody-link H and D′ a Y-oriented diagram
of H obtained by changing the Y-orientation of D. We then obtain the MCQ isomor-
phism f(D,D′) : MCQ(D) → MCQ(D′) sending x into xε(x) for any x ∈ (D), where
ε(x) = 1 if the Y-orientations of D and D′ coincide on x; otherwise ε(x) = −1 (see [13]).
Moreover, let D′′ a Y-oriented diagram of H obtained by applying one of Reidemeister
moves preserving the Y-orientation to D once. We then obtain a unique MCQ isomor-
phism f(D,D′′) : MCQ(D) → MCQ(D′′) sending x into x for any x ∈ (D ∩ D′′), where
(D ∩ D′′) denotes the set of arcs in the outside of the disk where the move is applied.
Let H and H′ be handlebody-links represented by Y-oriented diagrams D and D′, respec-
tively. Let ρ : MCQ(D) → X and ρ′ : MCQ(D′) → X be MCQ representations. Then
(H, ρ) and (H′, ρ′) are equivalent, denoted by (H, ρ) � (H′, ρ′), if there exists a sequence
D = D1 ↔ · · · ↔ Dn = D′ of Reidemeister moves preserving the Y-orientation and Y-
orientation changes such that ρ′ = ρ◦ f −1

(D1,D2)◦· · ·◦ f −1
(Dn−1,Dn). Clearly, if two handlebody-links

H and H′ represented by Y-oriented diagrams D and D′ respectively are equivalent, there is
a bijection Φ : Hom(MCQ(D), X) → Hom(MCQ(D′), X) such that (H, ρ) � (H′,Φ(ρ)) for
any MCQ representation ρ : MCQ(D)→ X.

5. f -twisted Alexander matrices for handlebody-links

5. f -twisted Alexander matrices for handlebody-links
In this section, we recall f -twisted Alexander matrices for handlebody-links with an

MCQ Alexander pair f . See [16] for more details.
Let SΛ = {Sλ | λ ∈ Λ} be a finite set of pairwise disjoint finite sets and x1, . . . , xn the

elements of
⋃

SΛ. Let X = 〈SΛ | {r1, . . . , rm}〉 be a finitely presented MCQ. Let FMCQ(SΛ)
be the free MCQ on SΛ and pr : FMCQ(SΛ) → X the canonical projection. We often omit
“pr” to represent pr(x) as x. Let f = ( f1, f2) be an MCQ Alexander pair of maps f1, f2 :
X × X → R. We denote by Gμ a direct summand of FMCQ(SΛ), that is, FMCQ(SΛ) =

⊔
μ∈ΛGμ

for some index set Λ. For j ∈ {1, . . . , n}, the f -derivative with respect to x j [16] is a map
∂ f

∂x j
: FMCQ(SΛ)→ R satisfying
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∂ f

∂x j
(x � y) = f1(x, y)

∂ f

∂x j
(x) + f2(x, y)

∂ f

∂x j
(y),

∂ f

∂x j
(ab) =

∂ f

∂x j
(a) + f1(a, a−1)

∂ f

∂x j
(b),

∂ f

∂x j
(xi) = δi j

for any x, y ∈ FMCQ(SΛ), a, b ∈ Gμ and i ∈ {1, . . . , n}, where δi j denotes the Kronecker delta.
By using the second condition, the equations ∂ f

∂x j
(eμ) = 0 and ∂ f

∂x j
(a−1) = − f1(a, a) ∂ f

∂x j
(a)

hold. For a relator ri = (r′i , r
′′
i ), we define

∂ f

∂x j
(ri) :=

∂ f

∂x j
(r′i ) −

∂ f

∂x j
(r′′i ).

Let R be a ring. We denote by M(m, n; R) the set of m × n matrices over R. Two matrices
A1 and A2 over R are equivalent, denoted by A1 ∼ A2, if they are related by a finite sequence
of the following transformations:

• (a1, . . . , ai, . . . , a j, . . . , an)↔ (a1, . . . , ai + a jr, . . . , a j, . . . , an) (r ∈ R),

•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

ai
...

a j
...

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

ai + ra j
...

a j
...

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(r ∈ R), • A↔
(
A
0

)
, • A↔

(
A 0
0 1

)
.

Let R be a commutative ring, and let A ∈ M(m, n; R). A k-minor of A is the determinant
of a k × k submatrix of A. For any d ∈ Z≥0, the d-th elementary ideal Ed(A) of A is the ideal
of R generated by all (n − d)-minors of A if n − m ≤ d < n, and

Ed(A) :=

⎧⎪⎪⎨⎪⎪⎩
0 if d < n − m,

R if n ≤ d.

If A ∼ B, then it follows Ed(A) = Ed(B).
Let X = 〈x | r〉 = 〈x1, . . . , xk; . . . ; xl, . . . , xn | r1, . . . , rm〉 be a finitely presented MCQ and

ρ : X → Y an MCQ representation. For an MCQ Alexander pair f = ( f1, f2) of maps
f1, f2 : Y × Y → R, we set f ◦ (ρ × ρ) := ( f1 ◦ (ρ × ρ), f2 ◦ (ρ × ρ)), which is also an
MCQ Alexander pair. Then the f -twisted Alexander matrix of (X, ρ) (with respect to the
presentation 〈x | r〉) [16] is defined by

A(X, ρ; f ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f◦(ρ×ρ)
∂x1

(r1) · · · ∂ f◦(ρ×ρ)
∂xn

(r1)
...

. . .
...

∂ f◦(ρ×ρ)
∂x1

(rm) · · · ∂ f◦(ρ×ρ)
∂xn

(rm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ M(m, n; R).

Let H be a handlebody-link represented by a Y-oriented diagram D. Let ρ : MCQ(D) →
X be an MCQ representation. Let f = ( f1, f2) be an MCQ Alexander pair of maps f1, f2 :
X × X → R. Then we define the f -twisted Alexander matrix of (H, ρ) (with respect to D) by
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A(H, ρ; f ) := A(MCQ(D), ρ; f ).

We also define

Ed(H, ρ; f ) := Ed(A(MCQ(D), ρ; f ))

if R is a commutative ring. These are invariants of the pair of the handlebody-link H and the
MCQ representation ρ, that is, if (H, ρ) � (H′, ρ′), then we have A(H, ρ; f ) ∼ A(H′, ρ′; f )
and Ed(H, ρ; f ) = Ed(H′, ρ′; f ) [16].

These invariants take the following values for trivial handlebody-links (see [16, Proposi-
tion 6.5]). Let Og be a trivial handlebody-link having total genus g. Let Dg be a Y-oriented
diagram of Og. For any MCQ representation ρ : MCQ(Dg) → X and MCQ Alexander pair
f = ( f1, f2) of maps f1, f2 : X × X → R, we have

A(Og, ρ; f ) ∼
(
0 · · · 0

)
∈ M(1, g; R).

Especially, we have

Ed(Og, ρ; f ) =

⎧⎪⎪⎨⎪⎪⎩
0 if d < g,

R if g ≤ d

if R is a commutative ring.

6. Detecting k-move inequivalent handlebody-links

6. Detecting k-move inequivalent handlebody-links
In this section, we provide some methods to distinguish k-move equivalence classes of

handlebody-links. In particular, we show that the invariants introduced in [16], (described
in Section 5), detect 4-move inequivalent handlebody-links.

It is well-known that 2k-moves for two component classical links do not change the link-
ing numbers modulo k for any k ∈ Z>0. In the following, we consider a similar property for
handlebody-links. Let H be a two component handlebody-link, and let H1,H2 be its com-
ponents and m, n be genera of them, respectively. Let {e1, . . . , em} and { f1, . . . , fn} be bases
of the first homology groups of H1 and H2, respectively. We can regard ei and f j as closed
oriented circles embedded in S3. Then the invariant factors, also called elementary divisors,
d1, . . . , dl of (lk(ei, f j)) ∈ M(m, n;Z) is an invariant of H up to multiplication by ±1, where
lk(ei, f j) denotes the linking number of ei and f j. In [22], the linking number of H is defined
by

lk(H) =

⎧⎪⎪⎨⎪⎪⎩
{|d1|, . . . , |dl|} if 0 < l,

{0} othewise

as a multiset. Clearly, link-homotopic two component handlebody-links have the same link-
ing number. We can also regard (lk(ei, f j)) as an m × n matrix over Zk for k ∈ Z>0. It is
known that any matrix over a principal ideal ring has unique invariant factors up to multi-
plication by a unit (see [4, Theorem 15.24]). Since Zk is a principal ideal ring, the matrix
(lk(ei, f j)) ∈ M(m, n;Zk) has unique invariant factors d1, . . . , dl up to multiplication by a unit
of Zk. We then have the following proposition.

Proposition 6.1. Let H be a two component handlebody-link and let {e1, . . . , em} and
{ f1, . . . , fn} be bases of the first homology groups of the components of H, respectively. Then
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for any k ∈ Z>0, the invariant factors d1, . . . , dl of (lk(ei, f j)) ∈ M(m, n;Zk) is invariant up to
multiplication by a unit of Zk under 2k-moves for H.

Proof. Since lk(ei, f j) ∈ Zk is invariant under 2k-moves for H, then (lk(ei, f j)) ∈
M(m, n;Zk) is also invariant under that. Furthermore, a replacement of a basis of the first
homology group of a component of H causes multiplying an invertible matrix on Zk to
(lk(ei, f j)). This operation does not change the invariant factors of (lk(ei, f j)) up to multipli-
cation by a unit of Zk. �

In Proposition 6.1, the invariant factors d1, . . . , dl of (lk(ei, f j)) ∈ M(m, n;Zk) can be
identified with lk(H) regarded as a multiset over Zk.

For example, let H be the two component handlebody-link depicted in Fig. 6. Then we
have lk(H) = {1}. On the other hand, for any two component trivial handlebody-link H0,
we have lk(H0) = {0}. Hence H is not 4-move equivalent to a trivial handlebody-link by
Proposition 6.1.

Fig.6. A two component handlebody-link H.

Let R4k be the dihedral quandle for k ∈ Z>0 and X := R4k × Z2 the associated MCQ
of the Z2-family of quandles (R4k, {�i}i∈Z2 ). Let H1 and H2 be handlebody-links which are
deformed into each other by a 4k-move. Let D1 and D2 be Y-oriented diagrams of H1 and
H2, respectively. We may assume that D1 and D2 are identical except in the disk where the
4k-move is applied. For any X-coloring ρ1 of D1, we obtain the unique X-coloring ρ2 of
D2 which coincides with ρ1 except in the disk where the 4k-move is applied as depicted in
Fig. 7. Then the map from ColX(D1) to ColX(D2) sending ρ1 into ρ2 is bijective. Therefore,
#ColX(D1) is invariant under 4k-moves for H1.

Fig.7. The X-colorings ρ1 ∈ ColX(D1) and ρ2 ∈ ColX(D2).
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Theorem 6.2. Let R4 be the dihedral quandle and X := R4 × Z2 the associated MCQ of
the Z2-family of quandles (R4, {�i}i∈Z2 ), where we regard R4 as the core quandle Core〈t | t4〉.
Let f = ( f1, f2) be the MCQ Alexander pair of maps f1, f2 : X × X → Z4[t±1]/(t2 + 1) or
f1, f2 : X × X → Z2[t±1]/(t3 + t2 + t + 1) introduced in Example 3.4, that is,

f1((x, a), (y, b)) =

⎧⎪⎪⎨⎪⎪⎩
1 if b = 0,

−yx−1 otherwise,

f2((x, a), (y, b)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if a = 0,

−1 − xy−1 if a = 1 and b = 0,

1 + yx−1 if a = 1 and b = 1.

Then for any handlebody-link H, the multiset

{Ed(H, ρ; f ) | ρ ∈ Hom(MCQ(H), X)}
is an invariant under 4-moves for H for each d ∈ Z≥0.

Proof. First, we remark that the two MCQ Alexander pairs in the statement are given by
settings R = Z4, I = (t2 + 1) and R = Z2, I = (t3 + t2 + t + 1) in Example 3.4, respectively.

Let H1 and H2 be handlebody-links which are deformed into each other by a 4-move. Let
D1 and D2 be Y-oriented diagrams of H1 and H2, respectively. We may assume that D1 and
D2 are identical except in the disk where the 4-move is applied as depicted in Fig. 8.

Fig.8. Y-oriented diagrams D1 and D2.

Let ρ1 be an X-coloring of D1, and let ρ2 be the X-coloring of D2 which coincides with
ρ1 except in the disk where the 4-move is applied as depicted in Fig. 7. Then it is suffi-
cient to show A(H1, ρ1; f ) ∼ A(H2, ρ2; f ). Let MCQ(D1) and MCQ(D2) be the Wirtinger
presentations of MCQ(H1) and MCQ(H2) with respect to D1 and D2, respectively. We then
have

MCQ(D1) =
〈
x1, . . . , xn

∣∣∣r1
〉
,

MCQ(D2) =
〈
x1, . . . , xn+4

∣∣∣∣∣∣ r2, x1 � xε2 = xn+1, x2 � xn+1 = xn+2,

xn+1 � xεn+2 = xn+3, xn+2 � xn+3 = xn+4

〉
,

which can be transformed into
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〈
x1, . . . , xn+4

∣∣∣∣∣∣ r2, x1 � xε2 � x1 � xε2 = xn+3,

x2 � x1 � xε2 � x1 � xε2 = xn+4

〉

by using certain transformations of presentations of MCQs equipped with MCQ representa-
tions, so-called “Tietze transformations” [13, 16], which do not change equivalence classes
of f -twisted Alexander matrices, for some ε ∈ {1,−1} and some relations r1 and r2 satisfying
r2|xn+3=x1,xn+4=x2 = r1. In the following, we show that

∂ f◦(ρ×ρ)
∂x j

(x1 � xε2 � x1 � xε2) =
∂ f◦(ρ×ρ)
∂x j

(x1),(1)

∂ f◦(ρ×ρ)
∂x j

(x2 � x1 � xε2 � x1 � xε2) =
∂ f◦(ρ×ρ)
∂x j

(x2)(2)

for each j ∈ {1, . . . , n + 4}, ε ∈ {1,−1} and an MCQ representation ρ : MCQ(D2) → X. We
write fi ◦ (ρ × ρ) as f ρi for each i = 1, 2. We then have

∂ f◦(ρ×ρ)
∂x j

(x1 � xε2 � x1 � xε2)(3)

= f ρ1 (x1 � xε2 � x1, xε2)
∂ f◦(ρ×ρ)
∂x j

(x1 � xε2 � x1) + f ρ2 (x1 � xε2 � x1, xε2)
∂ f◦(ρ×ρ)
∂x j

(xε2)

= · · ·
= f ρ1 (x1 � xε2 � x1, xε2) f ρ1 (x1 � xε2, x1) f ρ1 (x1, xε2)

∂ f◦(ρ×ρ)
∂x j

(x1)

+ f ρ1 (x1 � xε2 � x1, xε2) f ρ1 (x1 � xε2, x1) f ρ2 (x1, xε2)
∂ f◦(ρ×ρ)
∂x j

(xε2)

+ f ρ1 (x1 � xε2 � x1, xε2) f ρ2 (x1 � xε2, x1)
∂ f◦(ρ×ρ)
∂x j

(x1)

+ f ρ2 (x1 � xε2 � x1, xε2)
∂ f◦(ρ×ρ)
∂x j

(xε2).

When ρ(x1) = (tp, 1) and ρ(x2) = (tq, 1) for some integers p and q, we have

(3) = (−t−p+q − t−2p+2q − t−3p+3q)
∂ f◦(ρ×ρ)
∂x j

(x1)

+ (1 + t−p+q + t−2p+2q + t−3p+3q)
∂ f◦(ρ×ρ)
∂x j

(xε2)

=
∂ f◦(ρ×ρ)
∂x j

(x1)

since 1 + t−p+q + t−2p+2q + t−3p+3q = 0 in Z4[t±1]/(t2 + 1) and in Z2[t±1]/(t3 + t2 + t + 1), and

otherwise we can easily see that (3) =
∂ f◦(ρ×ρ)
∂x j

(x1). Hence we obtain the equality (1). Next

we have
∂ f◦(ρ×ρ)
∂x j

(x2�x1�xε2�x1�xε2)(4)

= f ρ1 (x2�x1�xε2�x1, xε2)
∂ f◦(ρ×ρ)
∂x j

(x2�x1�xε2�x1)+ f ρ2 (x2�x1�xε2�x1, xε2)
∂ f◦(ρ×ρ)
∂x j

(xε2)
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=· · ·
= f ρ1 (x2�x1�xε2�x1, xε2) f ρ1 (x2�x1�xε2, x1) f ρ1 (x2�x1, xε2) f ρ1 (x2, x1)

∂ f◦(ρ×ρ)
∂x j

(x2)

+ f ρ1 (x2�x1�xε2�x1, xε2) f ρ1 (x2�x1�xε2, x1) f ρ1 (x2�x1, xε2) f ρ2 (x2, x1)
∂ f◦(ρ×ρ)
∂x j

(x1)

+ f ρ1 (x2�x1�xε2�x1, xε2) f ρ1 (x2�x1�xε2, x1) f ρ2 (x2�x1, xε2)
∂ f◦(ρ×ρ)
∂x j

(xε2)

+ f ρ1 (x2�x1�xε2�x1, xε2) f ρ2 (x2�x1�xε2, x1)
∂ f◦(ρ×ρ)
∂x j

(x1)

+ f ρ2 (x2�x1�xε2�x1, xε2)
∂ f◦(ρ×ρ)
∂x j

(xε2).

When ρ(x1) = (tp, 1) and ρ(x2) = (tq, 1) for some integers p and q, we have

(4) = −t−p+q(1 + t−p+q + t−2p+2q + t−3p+3q)
∂ f◦(ρ×ρ)
∂x j

(x1)

+ t−2p+2q ∂ f◦(ρ×ρ)
∂x j

(x2) + (2 + t−p+q + t−3p+3q)
∂ f◦(ρ×ρ)
∂x j

(xε2)

=
∂ f◦(ρ×ρ)
∂x j

(x2),

and otherwise we can easily see that (4) =
∂ f◦(ρ×ρ)
∂x j

(x2). Hence we obtain the equality (2).

Putting r2 = {r1, . . . , rk}, by the equalities (1) and (2), we have

A(H2, ρ2; f ) ∼
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1 a2 B an+3 an+4

1 0 0 −1 0
0 1 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1 + an+3 a2 + an+4 B 0 0

0 0 0 −1 0
0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼

(
a1 + an+3 a2 + an+4 B

)
= A(H1, ρ1; f ),

where

ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f◦(ρ×ρ)
∂xi

(r1)
...

∂ f◦(ρ×ρ)
∂xi

(rk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f◦(ρ×ρ)
∂x3

(r1) · · · ∂ f◦(ρ×ρ)
∂xn+2

(r1)
...

. . .
...

∂ f◦(ρ×ρ)
∂x3

(rk) · · · ∂ f◦(ρ×ρ)
∂xn+2

(rk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . �

Example 6.3. Let H be the link-homotopically trivial three component handlebody-link
represented by the Y-oriented diagram D depicted in Fig. 9. Let X and f = ( f1, f2) be the
MCQ and the MCQ Alexander pair of maps f1, f2 : X × X → Z4[t±1]/(t2 + 1) that are the
same as Theorem 6.2, respectively. Let ρ : MCQ(H) → X be the MCQ representation
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depicted in Fig. 9. Then the Wirtinger presentation of MCQ(H) with respect to D is given
by 〈

x1, x2, x3; x4;
x5, x6, x7; x8; x9

∣∣∣∣∣∣ x6 � x1 = x7, x1 � x7 = x2, x8 � x3 = x8, x4 � x8 = x3,

x9 � x4 = x9, x5 � x9 = x4, x3x1 = x2, x7x5 = x6

〉
.

Hence we have

A(H, ρ; f ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 −1 −1 0 0
−1 −1 0 0 0 0 2 0 0
0 0 −1 − t−1 0 0 0 0 0 0
0 0 −1 −t 0 0 0 0 0
0 0 0 −1 − t 0 0 0 0 0
0 0 0 −1 −t−1 0 0 0 0
1 −1 1 0 0 0 0 0 0
0 0 0 0 −1 −1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼

(
2 + 2t 0 0 0

)
and E3(H, ρ; f ) = (2 + 2t). On the other hand, let H0 be the three component trivial
handlebody-link consisting of one genus 2 component and two genus 1 components. As
seen in Section 5, for any MCQ representation ρ0 : MCQ(H0)→ X, we have

A(H0, ρ0; f ) ∼
(
0 0 0 0

)
and E3(H0, ρ0; f ) = 0. Consequently, H is not 4-move equivalent to the trivial handlebody-
link by Theorem 6.2.

Fig.9. A Y-oriented diagram D of the three component handlebody-link H.

Remark 6.4. In Example 6.3, since the handlebody-link H is link-homotopically trivial,
the linking number of any two components of H is {0} as well as H0. Furthermore, H and H0

have the same X-coloring numbers; #Hom(MCQ(H), X) = #Hom(MCQ(H0), X) = 1024.
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