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Abstract
In this paper, we extend Zakeri’s result in [27] on boundaries of bounded type Siegel disks of

some entire functions to some transcendental meromorphic functions as follows: We consider
a one parameter family of some transcendental meromorphic functions with one pole, two
critical points, one finite asymptotic value zero, and bounded type fixed Siegel disks centered at
the origin. We show that if two critical values coincide, then the boundary of the Siegel disk is a
quasicircle containing exactly one critical point, and the set Ω1 of all parameters for which two
critical values coincide is countably infinite. We also show that there exist uncountable sets Ω2
and Ω3 such that the boundary of the Siegel disk is a quasicircle containing exactly one critical
point for any parameter in Ω2 and the boundary of the Siegel disk is a quasicircle containing
exactly two critical points for any parameter in Ω3. Furthermore, we can construct Ω2 so that
for uncountably many parameters in Ω2, the critical values which are the images of the critical
points outside the boundaries of the Siegel disks are in the Siegel disks, on the boundaries of
the Siegel disks, and outside the closures of the Siegel disks.

1. Introduction

1. Introduction
Let f : C → Ĉ be a transcendental meromorphic function. The nth iteration f n(z) is

defined for all points in C except for the countable set consisting of the preimages of ∞ by
f , f 2, · · · , f n−1.

A point z0 ∈ C is called an irrationally indifferent p-periodic point if there exists a mini-
mum integer p such that f p(z0) = z0 and λ := ( f p)′(z0) = e2πiθ (θ ∈ R \ Q). The λ is called
the multiplier of z0. In addition, the point z0 is called a fixed point if p = 1. The point z0

is called a Siegel point if there exist a maximal f p-invariant domain D ⊂ Ĉ and an analytic
homeomorphism φ : D → D such that φ( f p(φ−1(z))) = λz and φ(z0) = 0. Otherwise, z0 is
called a Cremer point. In the former case, the domain D is simply connected and we call D
the Siegel disk of period p centered at z0. In addition, D is called fixed if p = 1. If θ satisfies
the following condition: ∑

n

log qn+1

qn
< ∞,

where pn/qn is the nth convergent of θ obtained from the continued fraction expansion, then
z0 is a Siegel point (see [8] and [22] or [21, p.132, Theorem 11.10]). An irrational number is
called a Brjuno number if it satisfies the condition above. The set  of all Brjuno numbers
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is uncountable and dense in R. An irrational number is called of bounded type if {ak}∞k=0
is bounded, where [a0; a1, a2, . . . , ak, . . . ] is its continued fraction. An irrational number of
bounded type is always a Brjuno number. Hence if θ is of bounded type, then z0 is a Siegel
point. In this case, we call z0 (or the Siegel disk D centered at z0) bounded type.

Points c ∈ C and f (c) are called a critical point and a critical value respectively if f ′(c) =
0. A point a ∈ Ĉ is called an asymptotic value if there exists a continuous curve γ(t) (0 ≤ t <
1) with limt→1 γ(t) = ∞ and limt→1 f (γ(t)) = a. We call critical values, asymptotic values,
and their accumulation points singular values.

Let S be the set of all transcendental entire functions of the form

P(z) exp (Q(z)),

where P and Q are polynomials. The set S is a proper subset of the Speiser class consisting
of all entire functions with finitely many singular values. Functions in S are also called
structurally finite in the sense of [25]. Zakeri studied boundaries of bounded type fixed
Siegel disks centered at the origin for functions in S. His result is as follows:

Theorem ([27]). Let f ∈ S. If f has a bounded type fixed Siegel disk centered at the
origin, then the boundary of the Siegel disk is a quasicircle containing at least one critical
point.1)

Let S̃ be the set of all transcendental meromorphic functions of the form

R(z) exp (Q(z)),

where R(z) and Q(z) are a rational map which has at least one pole and a polynomial respec-
tively. Functions in S̃ and functions in S share many important properties. For example, they
have finitely many critical points, two asymptotic values 0 and∞, and finitely many zeros.2)

Thus we can expect the result for functions in S̃ similar to that for functions in S. We ask the
following question:

Question 1. Let f ∈ S̃. Suppose that f has a bounded type fixed Siegel disk centered at
the origin. Is the fixed Siegel disk bounded by a quasicircle containing at least one critical
point?

We consider the easiest case as follows: Henceforth fix any irrational number θ of bounded
type. Suppose that f ∈ S̃, the degrees of R and Q are 1, and f has a bounded type Siegel
fixed point at the origin with multiplier λ = e2πiθ. The function f is conformally conjugate
to

gα(z) := e2πiθ z
1 − α+1

α
z
eαz

1)Zakeri’s original statement includes Shishikura’s result which says that all bounded type Siegel disks of
polynomials of degree d ≥ 2 are bounded by quasicircles containing critical points. On the other hand, since
the space S is not invariant under affine conjugations moving the origin, Theorem does not say anything about
bounded type fixed Siegel disks centered at points other than the origin. Zakeri mentioned this technical problem
in his paper [27]. In [18], for an arbitrary positive integer q, Kisaka and Naba construct some functions in S with
q bounded type fixed Siegel disks centered at points other than the origin, whose boundaries are quasicircles
containing critical points.

2)Meromorphic functions with finitely many critical points and asymptotic values share important dynamical
properties (see [4], [5], [6], [11], and [23]).
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for some α ∈ C \ {0,−1} (see Proposition 3.1). The one parameter family {gα}α∈C\{0,−1} has
the following properties:

(1) gα has two critical points 1 and

cα :=
−1
α + 1

,

two asymptotic values 0 and∞, and one pole

tα :=
α

α + 1
(see Proposition 3.1).

(2) gα′ � gα is conformally conjugate to gα if and only if α′ = 1/(α + 1) − 1 (see
Proposition 3.2).

Main Theorem. Let 	α be the bounded type fixed Siegel disk of gα centered at the origin.
Then:

(i) If two critical values gα(1) and gα(cα) coincide, then 	α is bounded by a quasicircle
containing exactly one critical point. Moreover, the set Ω1 := {α | gα(1) = gα(cα)}
is countably infinite.

(ii) There exists an uncountable set Ω2 such that if α ∈ Ω2, then 	α is bounded by a
quasicircle containing exactly one critical point. Moreover, the quasicircle constant
can be taken so that it is independent of α ∈ Ω2.

(iii) There exists an uncountable set Ω3 such that if α ∈ Ω3, then 	α is bounded by a
quasicircle containing exactly two critical points. Moreover, the quasicircle con-
stant can be taken so that it is independent of α ∈ Ω3.

(iv) We can construct Ω2 so that it is connected and it consists of three uncountable sets
Ω2,1, Ω2,2, and Ω2,3 such that:
(a) If α ∈ Ω2, j ( j = 1, 2, 3), then v(α) ∈ 	α, v(α) ∈ ∂	α, and v(α) � 	α respectively,

where v(α) is the critical value of gα for α ∈ Ω2 which is the image of the
critical point outside the boundary ∂	α.

(b)

Ω2,2 ⊂ ∂Ω2,1 ∩ ∂Ω2,3, Ω3 ⊂ ∂Ω2,3.

Remark 1.1. We give two constructions of Ω2 in Section 5 and Section 7. The second
construction of Ω2 will show Main Theorem (iv) (see Section 7).

Keen and Zhang studied the one parameter family

{g̃α(z) := (e2πiθz + αz2)ez}α∈C\{0},
where θ is of bounded type (see [17]). Like gα, g̃α has two critical points, two asymptotic
values 0 and∞, and a bounded type fixed Siegel disk 	̃α centered at the origin. They showed
that for every α ∈ C\{0}, 	̃α is bounded by a quasicircle containing critical points and that for
α in some uncountable set, the boundary ∂	̃α contains exactly two critical points. However,
they did not provide the information on the position of the critical values of g̃α as in Main
Theorem (iv). It is natural to expect that Keen and Zhang’s proof is applicable to our case
and we obtain the result on the Siegel disk 	α of gα as in [17]. Unfortunately, since gα has
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one pole tα, we cannot use their method as in [17] (and cannot use the method as in [27]). In
particular, we have the difficulty of making the number of critical points in the boundaries
∂	α exactly one or two. Hence in order to show Main Theorem, we have to modify Keen
and Zhang’s argument. We use the result of [9] in order to prove Main Theorem (i). The
proofs of Main Theorem (ii), (iii), and (iv) are inspired by quasiconformal surgery methods
of [9], [17], and [26]. We modify some meromorphic functions fβ (defined in Section 5) into
gα with the bounded type fixed Siegel disks 	α bounded by quasicircles containing critical
points. The advantage of our surgery technique is that we obtain such gα for uncountably
many parameters α and that we control the number of critical points in the boundaries ∂	α
and the position of critical values as in Main Theorem (iv). This is done by choosing fβ
carefully.

This paper is organized as follows: In Section 2, we introduce basic definitions and facts.
We characterize the family {gα}α∈C\{0,−1} in Section 3. In Section 4, Section 5 and Section
6, we prove Main Theorem (i), (ii), and (iii) respectively. In Section 7, we give another
construction of Ω2 and show Main Theorem (iv). We devote Section 8 to some concluding
remarks.

2. Preliminaries

2. Preliminaries
We introduce preliminary definitions and results.

Definition 2.1 (Quasiregular mappings). Let U be an open subset of C. A continuous
mapping ϕ : U → C is a K-quasiregular mapping if ϕ is locally K-quasiconformal except
at a discrete set of points in U for some K ≥ 1. The constant K is called a quasiregular
constant.3)

Note that quasiconformal mappings or quasiregular mappings between Riemann surfaces
are defined by their local coordinates.

Definition 2.2 (Quasicircles). A Jordan curve γ ⊂ Ĉ is called a K-quasicircle if there
exists a K-quasiconformal mapping φ : Ĉ→ Ĉ such that γ = φ(S1), where S1 := {z | |z| = 1}.
This K is called a quasicircle constant of γ. We call γ a quasicircle if it is a K-quasicircle
for some K ≥ 1.

We can tell whether a Jordan curve is a quasicircle or not by the following lemma:

Lemma 2.3 ([1], [12, p.23, Theorem 2.2.5]). Let γ ⊂ Ĉ be a Jordan curve and let
Diam(X) be the Euclidean diameter of a set X ⊂ C. Then γ is a K-quasicircle for some
K ≥ 1 if and only if there exists a constant A ≥ 1 such that for every pair of two distinct
points z1, z2 ∈ γ \ {∞},

min
j=1,2

Diam(γ j) ≤ A|z1 − z2|,

where γ1 and γ2 are the components of γ \ {z1, z2}. Moreover, K and A depend only on each
other.

3)This is one of the equivalent definitions of quasiregular mappings. See [7] for alternative definitions. For
basic properties of quasiconformal mappings, see also [2] or [20].
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We prepare the following lemma:

Lemma 2.4 ([27, p.488, Lemma 2.2]). Let γ ⊂ Ĉ be a K-quasicircle, let U be a com-
ponent of Ĉ \ γ, and let g : D → U be a conformal mapping. Then g extends to a K2-
quasiconformal mapping of Ĉ.

3. Characterization of the family {gα}α∈C\{0,−1}

3. Characterization of the family {gα}α∈C\{0,−1}
In this section, we characterize the one parameter family {gα}α∈C\{0,−1} defined in the in-

troduction by the following propositions:

Proposition 3.1. Let f ∈ S̃ have the following properties:
(a) f can be written by

f (z) =
az + b
cz + d

etz,

where ad − bc, c, and t are non-zero;
(b) f has a bounded type Siegel fixed point at the origin with multiplier λ = e2πiθ.

Then f is conformally conjugate to

gα(z) = e2πiθ z
1 − α+1

α
z
eαz

for some α ∈ C \ {0,−1}. Moreover, gα has two critical points 1 and cα = −1/(α + 1), two
asymptotic values 0 and∞, and one pole tα = α/(α + 1).

Proof. Since f has a fixed point at the origin, we have b = 0, and hence ad � 0. In
addition, it follows from the assumption (b) that f ′(0) = a/d = e2πiθ. Set

s := −c/d � 0.

Then we can write

f (z) = e2πiθ z
1 − sz

etz.

An easy calculation shows that

f ′(z) = e2πiθ+tz−stz2 + tz + 1
(1 − sz)2 .

Hence f has two non-zero critical points u and v which are roots of −stz2 + tz + 1 = 0. Let

L(z) := uz.

It follows that L−1 ◦ f ◦ L has two critical points 1 and v/u. Moreover, we obtain

f̃ (z) := L−1 ◦ f ◦ L(z) = e2πiθ z
1 − s̃z

et̃z,

where s̃ = su � 0 and t̃ = tu � 0. Since f̃ ′(1) = 0, we have

−s̃t̃ · 12 + t̃ · 1 + 1 = 0,

and hence s̃ = (t̃ + 1)/t̃. It follows from this, s̃ � 0, and t̃ � 0 that t̃ ∈ C \ {0,−1}, and hence
f̃ (z) = gα(z), where α = t̃. By the construction, gα has two critical points 1 and cα, and one
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pole tα. Since the map z �→ eαz has two asymptotic values 0 and∞, and

e2πiθ z
1 − α+1

α
z
→ −e2πiθ α

α + 1
(z→ ∞),

gα has two asymptotic values 0 and∞. �

Proposition 3.2. Let α and α′ be two distinct points in C \ {0,−1}. Then gα and gα′ are
conformally conjugate if and only if α′ = 1/(α + 1) − 1.

Proof. Suppose that α′ = 1/(α + 1) − 1 and

l(z) := −(α + 1)z.

An easy calculation shows that l−1 ◦ gα′ ◦ l = gα.
Suppose that there exists a conformal map l̃ : Ĉ → Ĉ such that l̃−1 ◦ gα′ ◦ l̃ = gα. Since

both gα′ and gα have an essential singularity at ∞ and only two asymptotic values 0 and
∞, l̃ fixes 0 and ∞. It follows that l̃(z) = kz for some k � 0. Moreover, since l̃(1) = k
is a critical point of gα′ , we have k = 1 or k = −1/(α′ + 1). Since gα′ � gα, we have
k � 1, and hence k = −1/(α′ + 1) and α′ � −2. Since gα′ has another critical point
l̃(−1/(α + 1)) = 1/{(α′ + 1)(α + 1)} = 1, we obtain α′ = 1/(α + 1) − 1. �

4. Proof of Main Theorem (i)

4. Proof of Main Theorem (i)
We use the following result of [9] to prove Main Theorem (i):

Lemma 4.1 ([9, p.2140, Theorem 1.5.]). Let U ⊂ Ĉ be an open set and let a meromorphic
function f : U → Ĉ have the following properties:

(a) The set of all singular values of f is contained in {a, b, c} for some a, b, c ∈ Ĉ;
(b) a ∈ U and a is a bounded type Siegel fixed point;
(c) c ∈ Ĉ \ U or f (c) = c.

Moreover, let γ′ be an injective path which goes from a to b while avoiding {a, b, c} in
between and let γ be the lift of γ′ by f which has an endpoint a. (Note that f (γ) ⊂ γ′.) Then
one and only one of the following three cases occurs:

(1) γ ends on a non-critical point in U. In addition, U = Ĉ and f is a Möbius transfor-
mation.

(2) γ ends on a critical point. (We call the critical point the main critical point.) In
addition, the Siegel disk 	 centered at a is bounded by a quasicircle which contains
the main critical point and does not contain other critical points.

(3) γ leaves every compact subset of U. In addition, 	 is not compactly contained in U.

Proof of Main Theorem (i). By the assumption, gα has exactly one critical value gα(1) =
gα(cα) and two asymptotic value 0 and∞. Hence we can apply Lemma 4.1 to gα by putting
U = C, f = gα, a = 0, b = gα(1), and c = ∞. Since gα is transcendental, either of the cases
(2) and (3) holds. Since b = gα(1) is not an asymptotic value, the case (3) does not occur.
Therefore, the case (2) occurs.

Next, we show the existence of Ω1. Put gα(1) = gα(cα). Then it follows that
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F(α) :=
1

(α + 1)2 e−α/(α+1) − eα = 0.

F(α) has an essential singularity at α = −1 and does not have an asymptotic value 0 at
α = −1. By Picard’s theorem and Iversen’s theorem, the set Ω1 := {α | gα(1) = gα(cα)} is
countably infinite (see [16] or [10, p.8, Theorem 1.6] for Iversen’s theorem). �

Remark 4.2. Two critical points 1 and cα = −1/(α+1) of gα coincide only when α = −2.
By Main Theorem (i), 	−2 is bounded by a quasicircle containing the critical point 1 of g−2.

5. Proof of Main Theorem (ii)

5. Proof of Main Theorem (ii)
For β ∈ C \ {0}, we define

fβ(z) :=
⎧⎪⎨⎪⎩ z

1−(β+1)z/βeβz (β ∈ C \ {0,−1}),
ze−z (β = −1).

Note that if β → −1, then fβ → f−1 locally uniformly. By the argument in Section 3, when
β ∈ C \ {0,−1}, fβ has two critical points 1 and cβ = −1/(β+1), two asymptotic values 0 and
∞, and one pole tβ = β/(β + 1). We have cβ, tβ → ∞ as β→ −1. For any r > 0, we define

Br := (−1,−1 + r].

Henceforth we restrict β to Br (or Br = Br ∪ {−1}). We prove Main Theorem (ii) by going
through the following three steps:

Step 1. By choosing a small enough r > 0 and using fβ, we construct an M-quasiregular
mapping Fβ : C→ Ĉ for every β ∈ Br with the following properties:

(1) Fβ(0) = 0, Fβ(D) = (D), and Fβ|S1 is a critical circle map;
(2) Fβ and

Rθ(z) := e2πiθz

are quasiconformally conjugate on D;
(3) Fβ depends continuously on β ∈ Br;
(4) The constant M is independent of β ∈ Br.

Step 2. We show that there exists an M1-quasiconformal mapping ϕβ : Ĉ → Ĉ which fixes
0, 1, and∞, and has the following properties:

(1) For some α ∈ C \ {0,−1},
Gβ(z) := ϕβ ◦ Fβ ◦ ϕ−1

β (z) = e2πiθ z
1 − α+1

α
z
eαz = gα,

where gα is as in the introduction.
(2) gα(= Gβ) has the Siegel disk 	α centered at the origin whose boundary ∂	α is an

M1-quasicircle containing exactly one critical point 1;
(3) The constant M1 is independent of β ∈ Br.

Step 3. From Step 2, we define the surgery map

 : Br → C \ {0,−1}, β �→ α,
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where Gβ = gα. We show that the surgery map  is continuous and (β) → −1 as β → −1.
Since the set (Br) is uncountable, and ∂	α is an M1-quasicircle containing exactly one
critical point 1 for any α ∈ (Br), we obtain Main Theorem (ii) by taking

Ω2 := (Br).

We prepare the following lemmas for the steps above:

Lemma 5.1. Let β ∈ Br, let

Dβ := {z | |z| < | fβ(1)|},
and let Uβ be the connected component of f −1

β (Dβ) which contains the origin. (Note that
fβ(0) = 0.) If r > 0 is small enough, then fβ|Uβ

: Uβ → Dβ is univalent and Uβ is simply
connected. Moreover, Uβ has the following properties:

(1) ∂Uβ is a piecewise smooth Jordan curve containing exactly one critical point 1:
(2) Uβ ⊂ D.

Proof. Suppose that β ∈ Br. fβ has two critical values fβ(1) and fβ(cβ). We have

fβ(1) = −βeβ, fβ(cβ) = − β

(1 + β)2 e−β/(1+β).

Since fβ(1)→ e−1 and fβ(cβ)→ ∞ as β→ −1, we have fβ(cβ) � Dβ for r > 0 small enough.
By [9, p.2155, Lemma 5.3], fβ|Uβ

: Uβ → Dβ is univalent and Uβ is simply connected.
Obviously, ∂Dβ does not contain the asymptotic values 0 and ∞ of fβ. It follows from this
that ∂Uβ is a Jordan curve (see [9, p.2155, Lemma 5.4]). Since ∂Uβ is a preimage of ∂Dβ by
fβ, ∂Uβ is piecewise smooth. By the construction, we have fβ([0, 1)) ∈ R, f ′β(z) � 0 for any
z ∈ [0, 1), fβ(1) > 0, and fβ(0) = 0. It follows that f ′β(z) > 0 for any z ∈ [0, 1), and hence
[0, 1) ⊂ Uβ. This implies that ∂Uβ contains the critical point 1. An easy calculation shows
that | fβ(z)| > fβ(1) for any z ∈ S1 \ {1}, and hence Uβ ⊂ D. By the construction, another
critical point cβ is not in ∂Uβ for r > 0 small enough.

Similarly, we can show the case β = −1. We omit the details. �

Lemma 5.2. If r > 0 is small enough, then there exists a constant K ≥ 1 such that ∂Uβ is
a K-quasicircle for all β ∈ Br.

Proof. The proof is similar to that of [17, p.142, Lemma 2.4]. We have to pay attention
to the existence of the pole tβ of fβ for β ∈ Br and modify the argument.

Suppose that r > 0 is small enough so that the statement of Lemma 5.1 holds. We take
two distinct points x and y in ∂Uβ so that they divide ∂Uβ into two Jordan arcs I and I′. (We
mean that I ∪ I′ = ∂Uβ and I ∩ I′ = {x, y}.) For any piecewise smooth arc segment J, let |J|
be the Euclidean length of J. We can assume that | fβ(I)| ≤ | fβ(I′)| without loss of generality.
Let Diam(X) be as in Lemma 2.3. By Lemma 2.3, we have only to show that there exists a
constant A > 0 independent of β ∈ Br, x, and y such that

(5.1) Q(β, x, y) :=
Diam(I)
|x − y| < A.

Since fβ(I) ⊂ ∂Dβ and ∂Dβ = {z | |z| = fβ(1)} is a circle, we have



Boundaries of Bounded Type Siegel Disks 297

(5.2) | fβ(I)| ≤ (π/2)| fβ(x) − fβ(y)|.
Henceforth let L be the closed straight line segment joining x and y. It follows from (5.2)
and | fβ(x) − fβ(y)| ≤ | fβ(L)| that

(5.3) | fβ(I)| ≤ (π/2)| fβ(L)|.
By Lemma 5.1, we have L ⊂ D. In addition, recall that fβ has the pole tβ with tβ → ∞ as
β → −1. Thus if r > 0 is small enough, then tβ � D, and hence tβ � L. Therefore, there
exists a q ∈ L such that | f ′β(q)| = maxz∈L | f ′β(z)| > 0. It follows that

(5.4) | fβ(L)| ≤ | f ′β(q)||L|.
By the definition of a diameter, there exist points b1, b2 ∈ I such that |b1 − b2| = Diam(I).
Moreover, there also exists a j = 1 or 2 such that:

1 � {z | |z − b j| ≤ Diam(I)/5}.
Let Ĩ be the connected component of

{z | |z − b j| ≤ Diam(I)/10} ∩ I

which contains b j. By definition, it follows that:

(5.5) |Ĩ| ≥ Diam(I)/10;

(5.6) |z − 1| ≥ Diam(I)/10 for any z ∈ Ĩ.

Since Ĩ does not contain critical points 1 and cβ of fβ, there exists a p ∈ Ĩ such that | f ′β(p)| =
minz∈Ĩ | f ′β(z)| > 0. It follows that

(5.7) | fβ(Ĩ)| ≥ | f ′β(p)||Ĩ|.
From (5.4), (5.5), (5.7), the definition of Q(β, x, y), and Ĩ ⊂ I, we see that

| f ′β(q)|
| f ′β(p)| ≥

| fβ(L)|
|L| ·

|Ĩ|
| fβ(Ĩ)| =

| fβ(L)|
| fβ(Ĩ)| ·

|Ĩ|
Diam(I)

· Diam(I)
|L| ≥ 1

10
| fβ(L)|
| fβ(I)| · Q(β, x, y).(5.8)

It follows from (5.3) that

(5.9)
| fβ(I)|
| fβ(L)| ≤

π

2
.

The inequalities (5.8) and (5.9) yield

(5.10) Q(β, x, y) ≤ 5π
| f ′β(q)|
| f ′β(p)| .

An easy calculation shows that

f ′β(z) = −β2 (z − 1)(z + 1/(β + 1))
(β + 1)(z − β/(β + 1))2 eβz.

Thus we have
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(5.11)
| f ′β(q)|
| f ′β(p)| =

|p − β/(β + 1)|2
|q − β/(β + 1)|2 ·

|q − 1|
|p − 1| ·

|q + 1/(β + 1)|
|p + 1/(β + 1)| · |e

β(q−p)|.

Since L ⊂ D and Ĩ ⊂ I ⊂ D, we have |p| ≤ 1 and |q| ≤ 1. Thus we obtain for every β ∈ Br,

(5.12) |eβ(q−p)| < e2(1+r).

Moreover, when r > 0 is small enough, it follows that for every β ∈ Br,

(5.13)
|p − β/(β + 1)|2
|q − β/(β + 1)|2 < 2;

(5.14)
|q + 1/(β + 1)|
|p + 1/(β + 1)| < 2.

(This is because the left-hand sides of (5.13) and (5.14) converge to 1 as β→ −1.) From the
triangle inequality, q ∈ L, and the definition of a diameter, we see that

|q − 1| ≤ |q − p| + |p − 1|(5.15)

≤ |q − x| + |x − p| + |p − 1|
≤ |x − y| + |x − p| + |p − 1|
≤ 2Diam(I) + |p − 1|.

The inequalities (5.6) and (5.15) show that

|q − 1|
|p − 1| ≤

2Diam(I) + |p − 1|
|p − 1| =

2Diam(I)
|p − 1| + 1 ≤ 2Diam(I)

Diam(I)/10
+ 1 = 21.(5.16)

It follows from (5.10)–(5.16) that if r > 0 is small enough, then for any β ∈ Br and any pair
of x and y in Uβ,

Q(β, x, y) < 420πe4 =: A,

as required. �

Henceforth we suppose that r > 0 is small enough so that the statements of Lemma 5.1 and
Lemma 5.2 hold.

Lemma 5.3. Let {βn}n∈N ⊂ Br be a sequence with βn → β∞ ∈ Br as n → ∞. Then
∂Uβn → ∂Uβ∞ as n→ ∞ with respect to the Hausdorff metric.

Proof. Suppose that there exist a subsequence {β′n}n∈N ⊂ {βn}n∈N and a δ > 0 such that
the Hausdorff metric between ∂Uβ′n and ∂Uβ∞ is greater than δ for any n ≥ 1. By the
Riemann mapping theorem and Carathéodory’s theorem, we can take a homeomorphism
ω̃βn : D → Uβn which is conformal in D, and fixes 0 and 1. By Lemma 2.4, we can extend
ω̃βn into a K2-quasiconformal mapping ωβn of Ĉ fixing 0 and 1, where K is as in Lemma
5.2. From the construction, every limit function of {ωβn |Ĉ\{0,1}}n∈N cannot be the constant 0
or 1. Therefore, there exists a subsequence {β′′n }n∈N ⊂ {β′n}n∈N such that ωβ′′n → ω locally
uniformly on C, where ω is a K2-quasiconformal mapping of Ĉ fixing 0 and 1. Let

γ := ω(S1) ⊂ C.
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By the construction, γ is a K2-quasicircle with ∂Uβ′′n → γ (as n → ∞) with respect to the
Hausdorff metric. By Lemma 5.1, we have Uβ′′n ⊂ D for any n ≥ 1, and hence γ ⊂ D. In
addition, from the fact that fβ′′n → fβ∞ uniformly on D and the definition of Dβ, it follows
that

fβ′′n (∂Uβ′′n )→ fβ∞(γ), ∂Dβ′′n → ∂Dβ∞

with respect to the Hausdorffmetric. Since ∂Dβ′′n = fβ′′n (∂Uβ′′n ), we obtain fβ∞(γ) = ∂Dβ∞ . By
Hurwitz’s theorem, fβ∞ is univalent on the bounded component of C\γ, and hence γ = ∂Uβ∞ .
It follows that ∂Uβ′′n → ∂Uβ∞ with respect to the Hausdorff metric. This contradicts the fact
that {β′′n }n∈N ⊂ {β′n}n∈N. �

Next, we introduce the following version of the Herman-Świa̧tek theorem:

Lemma 5.4 ([9, p.2147, Theorem 3.8], [14], [15], and [24]). Let  be a family of holo-
morphic maps defined in a neighborhood of S1 with the following properties:

(a) There exists an open annulus A containing S1 such that every f ∈  is defined in A;
(b) f (S1) = S1 and f |S1 is a critical circle map;
(c) There exists an R > 0 such that for every f ∈  , the rotation number of f |S1 has all

its entries of the continued fraction less than or equal to R;
(d)  is precompact on A for the Euclidean metric.

Then there exists a k > 1 such that for every f ∈  , f |S1 is k-quasisymmetrically conjugate
to rotation.4)

Proof of Main Theorem (ii). Our proof is divided into the three steps which we mentioned
at the beginning of this section. Recall that we restricted β to Br (or Br) and r > 0 is small
enough for the statements of Lemma 5.1 and Lemma 5.2 to hold.

Step 1: By the Riemann mapping theorem and Carathéodory’s theorem, for β ∈ Br, we can
take a homeomorphism ρβ : Ĉ \ D → Ĉ \ Uβ which is conformal in Ĉ \ D, and satisfies
ρβ(∞) = ∞ and ρβ(1) = 1. By Lemma 2.4, we can extend ρβ into a K2-quasiconformal
mapping ρ̂β of Ĉ fixing 1 and∞, where K is as in Lemma 5.2.

For any sequence {βn}n∈N ⊂ Br with βn → β∞ ∈ Br as n → ∞, it follows from the
construction that every limit function of {ρ̂βn |Ĉ\{1,∞}}n∈N cannot be the constant 1 or∞. Thus
there exists a subsequence {β′n}n∈N ⊂ {βn}n∈N such that ρ̂β′n → σ locally uniformly on C,
where σ is a K2-quasiconformal mapping of Ĉ fixing 1 and ∞. It follows from Lemma
5.3 that σ|

Ĉ\D = ρβ∞ , and hence ρ̂β′n |Ĉ\D = ρβ′n → ρβ∞ locally uniformly on C \ D. This
implies that the set of all limit functions of {ρβn}n∈N contains only ρβ∞ , and hence ρβn → ρβ∞
locally uniformly on C \ D. Therefore, ρβ depends continuously on β ∈ Br. The map
fβ ◦ ρβ|S1 : S1 → ∂Dβ is a homeomorphism, where Dβ is as in Lemma 5.1. From the
standard theory about the rotation number, there exists a unique θβ ∈ [0, 1) such that for

Lβ(z) :=
e2πiθβz
| fβ(1)| ,

the rotation number of Lβ ◦ fβ ◦ ρβ|S1 : S1 → S1 is the θ which was fixed at the beginning
4)For the definition of quasisymmetric mappings from S1 to itself, see [13] or [9, p.2144, Definition 3.2]. The

rotation is the map z �→ e2πiθz, where θ is the rotation number of f |S1 .
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(see [7, p.103, Theorem 3.20]). By the construction, Lβ depends continuously on β ∈ Br.
For β ∈ Br, we define

F̃β(z) := Lβ ◦ fβ ◦ ρβ(z) (z ∈ C \ D).

The Schwarz reflection principle shows that if r > 0 is small enough, then there exists an
l > 1 such that for any β, F̃β is extended to a holomorphic map F̂β in {z | |z| > 1/l}. Hence-
forward, we fix a small enough r > 0 so that such extension goes well and the statements of
Lemma 5.1 and Lemma 5.2 hold. Set

Al := {z | 1/l < |z| < l}.
By the construction, F̂β|Al depends continuously on β ∈ Br, and hence the family {F̂β|Al}β∈Br

satisfies the assumption of Lemma 5.4. By Lemma 5.4, there exists a k-quasisymmetric
mapping sβ : S1 → S1 for β ∈ Br such that

sβ ◦ F̂β|S1 ◦ s−1
β = Rθ, sβ(1) = 1,

where k > 1 is independent of β and Rθ(z) = e2πiθz. By the theory of Ahlfors-Beurling, we
can extend sβ as a homeomorphism ŝβ : D → D which is an M-quasiconformal mapping
in D with sβ(0) = 0, where M depends only on k, and hence M is independent of β (see [9,
p.2148, Lemma 3.10]). Since F̂β|S1 = F̃β|S1 depends continuously on β, one can show that
sβ depends continuously on β ∈ Br. Then it follows from the way of its extension that ŝβ
also depends continuously on β. For β ∈ Br, we define Fβ as follows:

Fβ(z) :=
{

F̃β(z) (z ∈ C \ D),
ŝ−1
β ◦ Rθ ◦ ŝβ(z) (z ∈ D).

Since F̃β|S1 = F̂β|S1 = s−1
β ◦ Rθ ◦ sβ, Fβ is continuous. In addition, Fβ : C → Ĉ is locally

M-quasiconformal except at the two preimages of the two critical points of fβ by ρβ. Thus
Fβ is an M-quasiregular mapping. By the construction, Fβ satisfies the following properties:

(1) Fβ(0) = 0, Fβ(D) = (D), and Fβ|S1 is a critical circle map;
(2) Fβ and Rθ are quasiconformally conjugate on D;
(3) Fβ depends continuously on β ∈ Br;
(4) The constant M is independent of β ∈ Br.

Thus, we achieve the goal of Step 1.

Step 2: We construct an Fβ-invariant almost complex structure on Ĉ with Beltrami coeffi-
cient μβ satisfying ||μβ||∞ < k′ for some k′ < 1 independent of β as follows: Let μŝβ be the
Beltrami coefficient of ŝβ in D. If z ∈ F−n

β (D) for some integer n ≥ 0, then we define μβ(z)
as the pullback of μŝβ(F

n
β(z)) by Fn

β. Otherwise, set μβ(z) := 0. Since the almost complex
structure on D with Beltrami coefficient μŝβ is Fβ-invariant, the almost complex structure on
Ĉ with coefficient μβ is well-defined and Fβ-invariant. We have ||μβ||∞ < k′ for some k′ < 1,
since Fβ is holomorphic on C \ D and Fβ(D) = (D). Moreover, we can take k′ < 1 indepen-
dent of β, since the quasiregular constant M of Fβ is independent of β. By the integrability
theorem (see [7, p.40, Theorem 1.28]), there exists a quasiconformal mapping ϕβ : Ĉ → Ĉ
which solves the Beltrami equation with coefficient μβ and fixes 0, 1, and∞. Therefore,
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Gβ := ϕβ ◦ Fβ ◦ ϕ−1
β : C→ Ĉ

is meromorphic. By the construction, Gβ has the only one zero 0 and the only one pole.
Thus there exist an entire function h(z) and non-zero constants b and p such that

Gβ(z) = b
z

z − p
eh(z).

We can show that h(z) is a polynomial of degree 1 as follows: When |z| is large enough,
we have

(∗) φ1 ◦Gβ(z) = fβ ◦ φ2(z),

where

φ1 := L−1
β ◦ ϕ−1

β , φ2 := ρβ ◦ ϕ−1
β .

Obviously, φ1 and φ2 are quasiconformal mappings. Since φ1 and φ−1
2 are Hölder continuous

at∞, there exist positive constants K′ > 1, C1, and C2 such that

|φ1(z)| ≥ C1|z|1/K′ , |φ2(z)| ≤ C2|z|K′ for |z| large enough.

From this and | fβ(z)| ≤ e|z|2 (|z| → ∞), there exist positive constants A and N such that

max
|z|=R

eh(z) ≤ eARN
for R > 0 large enough.

Thus h(z) is a polynomial. In addition, the relation (∗) implies that both of fβ and Gβ have
only one positive (or negative) sector in a punctured neighborhood of∞ in the sense of [27,
p.495]. Therefore, we deduce that h(z) is a polynomial of degree 1.

By the construction, we have G′β(0) = e2πiθ and G′β(1) = 0. Hence as in the proof of
Proposition 3.1, we obtain for some α ∈ C \ {0,−1},

Gβ(z) = gα(z) = e2πiθ z
1 − α+1

α
z
eαz.

It follows from the construction that gα(= Gβ) has the Siegel disk 	α = ϕβ(D) centered at
the origin. Since ||μβ||∞ < k′ for k′ < 1 independent of β, there exists a constant M1 ≥ 1
independent of β such that ϕβ is M1-quasiconformal. Thus the boundary ∂	α = ϕβ(S1) is an
M1-quasicircle containing exactly one critical point 1 of gα. Therefore, the argument above
completes Step 2.

Step 3: From Step 2, we can define the surgery map

 : Br → C \ {0,−1}, β �→ α,

where Gβ = gα. In order to show that  is continuous, we claim the following assertion,
whose proof is similar to the argument in [17, p.157, Section 5] or [26, p.218, Section 11]:

Assertion. Let {βn}n∈N ⊂ Br be any sequence with βn → β∞ ∈ Br as n → ∞. Then there
exists a subsequence {β′n}n∈N ⊂ {βn}n∈N such that (β′n)→ (β∞) as n→ ∞.

Proof of the assertion. By Step 2, there exist a subsequence {β′n}n∈N ⊂ {βn}n∈N and an
M1-quasiconformal mapping ϕ : Ĉ → Ĉ such that ϕβ′n → ϕ locally uniformly on C (as
n→ ∞). We define
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ς := ϕ ◦ Fβ∞ ◦ ϕ−1, ςn := ϕβ′n ◦ Fβ′n ◦ ϕ−1
β′n , ς∞ := ϕβ∞ ◦ Fβ∞ ◦ ϕ−1

β∞ .

If ς = ς∞, then (β′n)→ (β∞). The proof is completed in the case. Henceforth we suppose
that ς � ς∞.

We can show that if ς � ς∞, then μβ′n → μβ∞ with respect to the spherical measure as
follows: For a measurable set E ⊂ Ĉ, let Area(E) be the Lebesgue area of E in the spherical
metric. In addition, we define

Qε
n := {z ∈ C | |μβ′n(z) − μβ∞(z)| > ε},

for ε > 0 and n ≥ 1. It suffices to show that for any ε > 0 and any C > 0, if n is large
enough, then Area(Qε

n) < C. By the definitions of μβ′n and μβ∞ , we obtain

(5.17) Qε
n ⊂

⋃
k≥0

F−k
β′n (D) ∪

⋃
k≥0

F−k
β∞(D).

Obviously, ς and ς∞ are quasiconformally conjugate. It follows from ς � ς∞, ςn → ς

locally uniformly, and the argument similar to that in [26, p.201] or [17, p.157, p.158] that
for n large enough, there exist quasiconformal mappings ξn : Ĉ→ Ĉ such that:

(i) ξn fixes 0, 1, and∞;
(ii) ξn satisfies

ξn ◦ ς = ςn ◦ ξn;

(iii) The complex dilatations χn of ξn are uniformly bounded, and

||χn||∞ → 0 (n→ ∞).

Hence we have

τn ◦ Fβ∞ = Fβ′n ◦ τn,

where τn := ϕ−1
β′n
◦ ξn ◦ ϕ. It follows from the construction that for every n ≥ 1,

τn(D) = D, τn(Ĉ \ D) = Ĉ \ D, τn(0) = 0, τn(∞) = ∞,
and the complex dilatations of quasiconformal mappings τn are uniformly bounded. Thus
from this, the fact that the area of the Riemann sphere is finite, and the area distortion
theorem (see [3, p.37, Theorem 1.1]), we deduce that for any δ > 0, there exists an integer
N ≥ 1 such that:

(5.18) Area

⎛⎜⎜⎜⎜⎜⎜⎝⋃
k≥0

F−k
β∞(D) \

⋃
0≤k≤N

F−k
β∞(D)

⎞⎟⎟⎟⎟⎟⎟⎠ < δ,
and for n large enough,

(5.19) Area

⎛⎜⎜⎜⎜⎜⎜⎝⋃
k≥0

F−k
β′n (D) \

⋃
0≤k≤N

F−k
β′n (D)

⎞⎟⎟⎟⎟⎟⎟⎠ < δ.
Note that every connected component of F−k

β′n
(D) is the image of some connected component

of F−k
β∞(D) by τn. It follows from the properties (i) and (iii) of ξn that ξn → Id

Ĉ
locally

uniformly, and hence τn → Id
Ĉ

locally uniformly. We have for n large enough,
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(5.20) Area

⎛⎜⎜⎜⎜⎜⎜⎝ ⋃
0≤k≤N

F−k
β′n (D) \

⋃
0≤k≤N

F−k
β∞(D)

⎞⎟⎟⎟⎟⎟⎟⎠ < δ.
From the construction, ŝβ′n ◦FN

β′n
→ ŝβ∞ ◦FN

β∞ locally uniformly on
⋃

0≤k≤N F−k
β∞(D) as n→ ∞.

In addition, when z ∈ ⋃
0≤k≤N F−k

β∞(D) and n is large enough, the complex dilatation of
ŝβ′n ◦ FN

β′n
at z and that of ŝβ∞ ◦ FN

β∞ at z are μβ′n(z) and μβ∞(z) respectively. It follows from this
and the construction that for n large enough,

(5.21) Area

⎛⎜⎜⎜⎜⎜⎜⎝Qε
n ∩

⋃
0≤k≤N

F−k
β∞(D)

⎞⎟⎟⎟⎟⎟⎟⎠ < δ.
From (5.17)–(5.21), we obtain

Area(Qε
n) < 4δ.

Since δ > 0 is arbitrary, we can take 4δ = C. This implies that μβ′n → μβ∞ with respect to the
spherical measure.

From the argument above and [19, p.29, Theorem 4.6], we have ϕβ′n → ϕβ∞ locally uni-
formly. It follows that ς = ς∞. On the other hand, we assumed that ς � ς∞. This is a
contradiction, and hence we obtain ς = ς∞ and (β′n) → (β∞) as n → ∞. This completes
the proof of the assertion. �

The assertion implies that if βn → β∞ ∈ Br, then the set {(βn)}n∈N is bounded and has
only one accumulation point (β∞). It follows that (βn)→ (β∞) as n→ ∞, and hence 

is continuous.
Finally, we show that (β) → −1 as β → −1. Recall that ϕβ : Ĉ → Ĉ is an M1-

quasiconformal mapping fixing 0, 1, and ∞, where M1 is independent of β, and ρβ can be
extended to a K2-quasiconformal mapping of Ĉ fixing 1 and ∞, where K is as in Lemma
5.2. Thus

{ψβ := ϕβ ◦ ρ−1
β }β∈Br

is uniformly Hölder continuous at∞ in the sense of [20, p.70] (see [20, p.70, Theorem 4.3]).
In addition, since g(β) has a critical point c(β) = −1/((β)+1) = ψβ(−1/(β+1)), it follows
from −1/(β + 1)→ ∞ as β→ −1 that

−1
(β) + 1

= ψβ

( −1
β + 1

)
→ ∞

as β → −1. This shows that (β) → −1 as β → −1, and hence (Br) is uncountable.
Moreover, by the construction, 	α is an M1-quasicircle containing exactly one critical point
1 when α ∈ (Br) (see Step 2). Thus we can take

Ω2 := (Br).

Therefore, we have the desired result of Main Theorem (ii). �

Remark 5.5. From this construction of Ω2 and Proposition 3.2, there exists an uncount-
able set Ω̃2 such that if α ∈ Ω̃2, then ∂	α is a quasicircle containing exactly one critical point
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cα. Moreover, it follows from the construction that gα(cα) � 	α for α ∈ Ω2.

6. Proof of Main Theorem (iii)

6. Proof of Main Theorem (iii)
In this section, we show Main Theorem (iii) by the quasiconformal surgery in Section 5.

Let fβ be as in Section 5. For 0 < r < π, we restrict β to the set

Cr := {z = −1 + eiθ | θ ∈ [π − r, π) ∪ (π, π + r]}.
Lemma 6.1. Let β ∈ Cr, let

Dβ := {z | |z| < | fβ(1)|},
and let Uβ be the connected component of f −1

β (Dβ) which contains the origin. (Note that
fβ(0) = 0.) If r > 0 is small enough, then fβ|Uβ

: Uβ → Dβ is univalent and Uβ is simply
connected. Moreover, Uβ has the following properties:

(1) ∂Uβ is a piecewise smooth Jordan curve containing exactly two critical points 1 and
cβ = ei(π−θ);

(2) There exists a large enough R > 1 independent of β such that

Uβ ⊂ E,

where E := {z | |z| ≤ R} \ {z | |z − tβ| < 1/R}.
Proof. We show that ∂Uβ contains 1 and cβ as follows: An easy calculation shows that

for 0 < x < 1,

| fβ(x)|2 = | fβ(xei(π−θ))|2 = 2x2(1 − cos θ)
(x − (1 − cos θ))2 + sin2 θ

e−2x+2x cos θ =: M(x).

In addition, we have

M′(x) =
4x(1 − cos θ)2(1 − x)(x2 + (2 cos θ − 1)x + 2)

((x − (1 − cos θ))2 + sin2 θ)2
e−2x+2x cos θ.

Therefore, we have M′(x) > 0 for any 0 < x < 1. Thus Uβ contains

{x | 0 < x < 1} ∪ {xei(π−θ) | 0 < x < 1},
and hence ∂Uβ contains 1 and cβ. From the argument in the proof of Lemma 5.1, it follows
that f |Uβ

: Uβ → Dβ is univalent and ∂Uβ is a piecewise smooth Jordan curve. This shows
(1).

Since
fβ

eβz =
z

(1 − (β + 1)z/β)
→ −β

β + 1
(z→ ∞)

and ∂Dβ = {z | |z| = | fβ(1)|} is bounded away from 0 and ∞, which are asymptotic values
of z �→ eβz, there exists some compact set E′ such that Uβ ⊂ E′ for any β ∈ Cr. Moreover,
since the pole tβ → 2 and fβ → f−2 uniformly in a neighborhood of t−2 = 2 with respect to
the spherical metric as β → −1 + eiπ = −2, we can choose a large enough R > 0 such that
the property (2) holds if r > 0 is small enough. �
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Lemma 6.2. If r > 0 is small enough, then there exists a constant K ≥ 1 independent of
β such that ∂Uβ is a K-quasicircle for any β ∈ Cr.

Proof. The proof is similar to that of Lemma 5.2. However, we have to modify the
treatment of the pole tβ and pay attention to the two critical points 1 and cβ in ∂Uβ. Suppose
that r > 0 is small enough so that the statement of Lemma 6.1 holds. We need to show that
there exists a constant A > 0 independent of β ∈ Cr and two distinct points x and y in ∂Uβ

such that

(6.1) Q(β, x, y) :=
Diam(I)
|L| < A,

where I and I′ are two Jordan arcs with ∂Uβ = I∪ I′, I∩ I′ = {x, y}, and | fβ(I)| ≤ | fβ(I′)|, and
L is the closed straight line segment joining x and y. Let d be the Euclidean distance from
tβ to the straight line segment L. Suppose that d < 1/(2R). Then the property (2) in Lemma
6.1 assures that |L| > 1/R. Since Diam(I) ≤ 2R, we have

(6.2) Q(β, x, y) =
Diam(I)
|L| <

2R
1/R
= 2R2.

Henceforth, we consider the case d ≥ 1/(2R). There exist two points b1 and b2 in I such
that |b1 − b2| = Diam(I). In addition, there exists a connected component Î of

{z | 3Diam(I)/10 ≤ |z − b1| ≤ 2Diam(I)/5} ∩ I

with |Î| ≥ Diam(I)/10. If

{1, cβ} ∩ {z | |z − b j| ≤ Diam(I)/5} � ∅
for j = 1, 2, then we define Ĩ := Î. Otherwise, there exists a j = 1 or 2 such that:

{1, cβ} ∩ {z | |z − b j| ≤ Diam(I)/5} = ∅.
In this case, let Ĩ be the connected component of

{z | |z − b j| ≤ Diam(I)/10} ∩ I

which contains b j. By definition, we have

(6.3) |Ĩ| ≥ Diam(I)/10;

(6.4) |z − cβ| ≥ Diam(I)/10, |z − 1| ≥ Diam(I)/10 for any z ∈ Ĩ.

As in the proof of Lemma 5.2, we can show that there exist points q ∈ L and p ∈ Ĩ such that

(6.5) Q(β, x, y) ≤ 5π
| f ′β(q)|
| f ′β(p)| .

From the argument similar to the proof of Lemma 5.2, the property (2) in Lemma 6.1, (6.3),
(6.4), and the assumption d ≥ 1/(2R), there exists a constant A′ > 0 independent of β, x, and
y such that

(6.6)
| f ′β(q)|
| f ′β(p)| < A′.
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From (6.2), (6.5), and (6.6), we can take A := max{5πA′, 2R2}. �

Remark 6.3. In Lemma 6.2, we suppose that r > 0 is small enough. However, by using
the compactness of Cr ∪ {−2} and modifying the proofs in Lemma 6.1 and Lemma 6.2, one
can remove the assumption. Let

C̃ := {z = −1 + eiθ | θ ∈ (0, π) ∪ (π, 2π)},
and let Dβ and Uβ be as in Lemma 6.1 for β ∈ C̃. It follows from the proof of Lemma 6.1 that
| fβ(1)| = | fβ(cβ)| and ∂Uβ contains exactly two critical points of fβ for any β ∈ C̃. However,
since fβ is not defined for β = 0 = −1 + e2πi, and | fβ(1)| = | fβ(cβ)| → 0 and the pole tβ → 0
as β→ 0, we do not know whether there exists a constant K ≥ 1 independent of β such that
∂Uβ is a K-quasicircle for any β ∈ C̃ or not.

Proof of Main Theorem (iii). From Lemma 6.1 and Lemma 6.2, we can apply the quasi-
conformal surgery technique in Section 5 to fβ for β ∈ Cr. Hence there exists a continuous
mapping

 : Cr → C \ {0,−1}
such that ∂	(β) is a quasicircle containing exactly two critical points. Note that the construc-
tion assures that we can choose the quasicircle constant of ∂	(β) independent of β ∈ Cr.
Moreover, there exist quasiconformal mappings ψβ for β ∈ Cr of Ĉ fixing 1 and∞ such that:

(1) {ψβ}β∈Cr is uniformly Hölder continuous at 1 in the sense of [20, p.70];
(2) g(β) has two critical points 1 and

c(β) =
−1

(β) + 1
= ψβ

( −1
β + 1

)
.

Since −1/(β + 1)→ 1 as β→ −2, we have

c(β) =
−1

(β) + 1
→ 1 (β→ −2),

and hence

(β)→ −2 (β→ −2).

Thus (Cr) is uncountable. We can take

Ω3 := (Cr). �

7. Proof of Main Theorem (iv)

7. Proof of Main Theorem (iv)
In this section, we give another construction of Ω2 and prove Main Theorem (iv). We

extend the surgery map  : Cr → C\ {0,−1} in the proof of Main Theorem (iii) into the map
 : Qr → C \ {0,−1}, where Qr ⊃ Cr is defined as follows: For any 0 < r < π, let

Ir := {z = k(r) + iy | −l(r) < y < l(r)},
where k(r) and l(r) are the real part and the imaginary part of −1 + ei(π−r) ∈ Cr respectively,
and let Qr be the bounded closed domain whose boundary is
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{−2} ∪Cr ∪ Ir.

Note that k(r) → −2 and l(r) → 0 as r → 0. Let Dβ and Uβ be as in Lemma 6.1 for
β ∈ Qr. As in the proofs of Lemma 5.1, Lemma 6.1, and Lemma 6.2, we can easily show
the following lemma:

Lemma 7.1. Let

B̂r := (−2, k(r)].

If r > 0 is small enough and β ∈ B̂r, then | fβ(1)| > | fβ(cβ)| holds, fβ|Uβ
: Uβ → Dβ is

univalent, and ∂Uβ is a piecewise smooth Jordan curve which contains exactly one critical
point 1 of fβ. Moreover, there exists a constant K ≥ 1 independent of β such that ∂Uβ is a
K-quasicircle for any β ∈ B̂r.

Henceforth let Q̃r be the interior of Qr.

Lemma 7.2. If r > 0 is small enough and β ∈ Q̃r, then fβ|Uβ
: Uβ → Dβ is univalent and

∂Uβ is a piecewise smooth Jordan curve which contains exactly one critical point 1 of fβ.
Moreover, there exists a constant K ≥ 1 independent of β such that ∂Uβ is a K-quasicircle
for any β ∈ Q̃r.

Proof. First of all, we show that ∂Uβ contains the critical point 1 of fβ as follows: Let

M(x) := | fβ(x)|2,
where β = −2 + X + iY ∈ Q̃r for 0 < X ≤ k(r) + 2 < 2 and −l(r) < Y < l(r), and 0 < x < 1.
An easy calculation shows that

M′(x) = L(x) · P(x),

where

L(x) :=
2x(2 − X)((2 − X)2 + Y2)(1 − x)e2(−2+X)x

((−2 + X + (1 − X)x)2 + Y2(1 − x)2)2 ,

P(x) := ((1 − X)2 + Y2)x2 − (Y2 + (X − 1)(X − 3))x + 2 − X + Y2/(2 − X).

Obviously, we obtain L(x) > 0. Since 0 < X < 2, we have

P(1) = X + Y2/(2 − X) > 0.

It follows from this that if r > 0 is small enough, then P(x) > 0 for 0 < x < 1. This implies
that Uβ contains (0, 1), and hence ∂Uβ contains the critical point 1 of fβ.

Next, we show that fβ : Uβ → Dβ is univalent and cβ � ∂Uβ as follows: Let β =
−2 + X + iY ∈ Q̃r for 0 < X ≤ k(r) + 2 < 2 and −l(r) < Y < l(r). Note that

| fβ(1)/β| = |eβ|, | fβ(cβ)/β| = |e−β/(β+1)/(β + 1)2|.
Let

H(X, Y) := |eβ| − |e−β/(β+1)/(β + 1)2| = e−2+X − 1
(−1 + X)2 + Y2 eF(X,Y),

where
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F(X, Y) :=
(2 − X)(−1 + X) − Y2

(−1 + X)2 + Y2 .

One can check that
∂H(X, Y)

∂Y
=

2Y
((−1 + X)2 + Y2)3 eF(X,Y) ·G(X, Y),

where

G(X, Y) :=
(
X − 1

2

)2

+ Y2 − 1
4
.

For any fixed 0 < X ≤ k(r) + 2, define Y(X) > 0 and T (X) > 0 by

G(X,±Y(X)) = 0, −2 + X ± iT (X) ∈ Cr.

We have Y(X) < T (X), and hence

∂H(X, Y)
∂Y

< 0 (−T (X) < Y < −Y(X), 0 < Y < Y(X)),

∂H(X, Y)
∂Y

= 0 (Y = 0, ±Y(X)),

∂H(X, Y)
∂Y

> 0 (−Y(X) < Y < 0, Y(X) < Y < T (X)).

Since H(X, 0) > 0 from Lemma 7.1 and H(X,±T (X)) = 0, there exists a constant W(X) ∈
(0, Y(X)) such that:

H(X, Y) > 0 (−W(X) < Y < 0, 0 < Y < W(X)),(7.1)

H(X, Y) = 0 (Y = ±W(X)),(7.2)

H(X, Y) < 0 (−T (X) < Y < −W(X), W(X) < Y < T (X)).(7.3)

By Lemma 7.1, we have cβ � Uβ and | fβ(1)| > | fβ(cβ)| for any β ∈ B̂r. Obviously, the
mappings

β �→ cβ, β �→ | fβ(1)|, β �→ | fβ(cβ)|
are continuous. Therefore, there exist the positive values:

S+(X) := sup{L > 0 | cβ � Uβ for any β ∈ I+(L)},

S−(X) := sup{L > 0 | cβ � Uβ for any β ∈ I−(L)},
where

I+(L) := {β = −2 + X + iY ∈ Q̃r | 0 < Y < L},

I−(L) := {β = −2 + X + iY ∈ Q̃r | −L < Y < 0}.
Suppose that S+(X) < T (X). Then, as in the proofs of Lemma 5.1, Lemma 6.1, and Lemma
6.2, fβ : Uβ → Dβ is univalent, and there exists a constant K′ ≥ 1 independent of β such that
∂Uβ is a K′-quasicircle for any β ∈ I+(S+(X)). Let

β(X) := −2 + X + iS+(X).
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It follows from the argument in the proof of Lemma 5.3 that ∂Uβ(X) is a (K′)2-quasicircle
and fβ(X) : Uβ(X) → Dβ(X) is univalent. Therefore, we have cβ(X) � Uβ(X). Since H(X, Y) < 0
for W(X) < Y < T (X) from (7.3), we obtain S+(X) ≤ W(X). Let pβ ∈ Uβ be the preimage of
fβ(cβ) by fβ for β ∈ I+(S+(X)) ∪ {β(X)}. Note that pβ � cβ and pβ ∈ Uβ for β ∈ I+(S+(X)).
From the construction, we see that S+(X) = W(X) and pβ → pβ(X) ∈ ∂Uβ(X) as β → β(X).
Moreover, since the multiplicity of cβ is unchanged for all β ∈ Q̃r, it follows that pβ(X) �
cβ(X). This implies that cβ � Uβ for all β ∈ I+(S+(X))∪{β(X)}. This contradicts the definition
of S+(X), and hence S+(X) ≥ T (X). Similarly, we can show that S−(X) ≥ T (X). Since
0 < X ≤ k(r) + 2 is arbitrary, fβ|Uβ

: Uβ → Dβ is univalent and ∂Uβ is a piecewise smooth
Jordan curve containing exactly one critical point of fβ for any β ∈ Q̃r. As in the proof
of Lemma 6.2, for some constant K ≥ 1 independent of β, ∂Uβ is a K-quasicircle for any
β ∈ Q̃r. �

Remark 7.3. Let W(X) be as in the proof of Lemma 7.2. Obviously, the map

W : (0, k(r) + 2]→ R, X �→ W(X)

is continuous. Note that W(X) → 0 as X → 0. In addition, it follows from the proof of
Lemma 7.2 that ∂Dβ contains fβ(cβ) and ∂Uβ does not contain cβ for β = −2 + X ± iW(X).

It follows from Lemma 6.1, Lemma 6.2, Lemma 7.2, and the quasiconformal surgery tech-
nique in Section 5 that:

Lemma 7.4. There exists a continuous mapping

 : Qr → C \ {0,−1}
such that:

(1) If α ∈ (Cr), then ∂	α contains exactly two critical points;
(2) If α ∈ (Q̃r ∪ Ir), then ∂	α contains exactly one critical point 1;
(3) (−2) = −2.

Remark 7.5. From the construction, the three sets (Cr), (Q̃r ∪ Ir), and {−2} are mutu-
ally disjoint.

Moreover, it follows from Remark 7.3, Lemma 7.4, and (7.1), (7.2), and (7.3) in the proof
of Lemma 7.2 that:

Lemma 7.6. Let  be as in Lemma 7.4. Then there exist uncountable sets Ω2,1, Ω2,2, and
Ω2,3 in (Q̃r) such that:

(1) (Q̃r) = Ω2,1 ∪Ω2,2 ∪Ω2,3;
(2) If α ∈ Ω2,1, then gα(cα) ∈ 	α;
(3) If α ∈ Ω2,2, then gα(cα) ∈ ∂	α;
(4) If α ∈ Ω2,3, then gα(cα) � 	α;
(5) Ω2,2 ⊂ ∂Ω2,1 ∩ ∂Ω2,3, Ω3 := (Cr) ⊂ ∂Ω2,3.

Remark 7.7. Obviously, the three sets Ω2,1, Ω2,2, and Ω2,3 are mutually disjoint. The set
(Q̃r) may contain some open set.
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Proof of Main Theorem (iv). By Lemma 7.4 and Lemma 7.6, we can also take

Ω2 := (Q̃r).

Furthermore, this construction of Ω2 := (Q̃r) shows the claim. �

8. Concluding remarks

8. Concluding remarks
In this paper, we deal with the one parameter family {gα}α∈C\{0,−1}. By Main Theorem, gα

has the Siegel disk 	α (centered at the origin) bounded by a quasicircle containing critical
points for uncountably many α. However, there are many parameters α left. We ask the
following questions:

Question 2. Are 	α bounded by quasicircles containing at least one critical point of gα
for all α ∈ C \ {0,−1}?
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