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Abstract
We prove that the transcendental motive of any quasi-elliptic surface is trivial. To prove this,

we focus on the uniruledness of quasi-elliptic surfaces.

1. Introduction

1. Introduction
Let k be an algebraically closed field of characteristic p ≥ 0. Let X be a smooth projec-

tive surface over k and h(X) its Chow motive with Q-coefficients. Kahn-Murre-Pedrini [4]
proved that X admits a refined Chow-Künneth decompositon h(X) � ⊕4

i=0hi(X) with

h2(X) � halg
2 (X) ⊕ t2(X).

The motive t2(X) is called the transcendental motive of X. It is a birational invariant and, for
a prime number l � p,

H∗ét(t2(X)) = H2
ét(X,Ql)tr and CH∗(t2(X)) = T (X)Q,

where H2
ét(X,Ql)tr is the transcendental lattice and T (X)Q is the Albanese kernel. The mo-

tives hi(X) (for i � 2) and halg
2 (X) are well understood, but the transcendental motive t2(X) is

still mysterious. For example, there is the following conjecture:

Conjecture 1.1 (Conservativity). If H∗ét(t2(X)) = 0, then t2(X) = 0.

When k = C, Conjecture 1.1 is equivalent to the famous conjecture of Bloch [2]. It is
known for surfaces over C of Kodaira dimension κ < 2, but is wide open for surfaces of
κ = 2 (e.g. [8] for some examples of surfaces where Conjecture 1.1 is proved).

In this paper, we prove Conjecture 1.1 for quasi-elliptic surfaces, which can exist in char-
acteristic 2 and 3, only. More precisely, the purpose of this paper is to prove the following:

Theorem 1.2. Let f : X → C be a quasi-elliptic surface. Then

t2(X) = 0.

1.1. Organization.
1.1. Organization. This paper is organized as follows. In Section 2, we recall the defini-

tions and properties of uniruled surfaces, Shioda-supersingular surfaces, and quasi-elliptic
surfaces. In this paper, we focus on the uniruledness of quasi-elliptic surfaces (Theorem
2.9). In Section 3, we prove two lemmas about homomorphisms between transcendental
motives (Lemma 3.1 and Lemma 3.5). In Section 4, we prove Theorem 1.2. More precisely,
we prove that the transcendental motive of any uniruled surface is trivial (Theorem 4.1).
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1.2. Notation.
1.2. Notation. Throughout this paper, let k be an algebraically closed field of character-

istic p ≥ 0 and let (k) be the category of smooth projective varieties over k.

2. The uniruledness of quasi-elliptic surfaces

2. The uniruledness of quasi-elliptic surfaces2.1. Uniruled surfaces.
2.1. Uniruled surfaces. In this subsection, we recall the notions of uniruledness and

birationally ruledness.
Let X ∈ (k) be a surface.

(i) We say X is uniruled if there exist a curve C and a dominant rational map

φ : P1 ×C � X.

We say X is separably uniruled (resp. purely inseparable uniruled) if there exists a
such a rational map φ inducing a separable (resp. purely inseparable) extension of
function fields.

(ii) We say X is birationally ruled if there exist a curve C and a birational map

φ : P1 ×C
�
� X.

The following fact is well-known.

Proposition 2.1. Let X ∈ (k) be a surface. Then the following are equivalent:

(i) X is birationally ruled;
(ii) X is separably uniruled;

(iii) X has negative Kodaira dimension.

Proof. (i) ⇒ (ii): This is clear. (ii) ⇒ (iii): If X is separably uniruled, then there exist a
curve C and a dominant rational map φ : P1 × C � X such that the extension of function
fields k(P1 × C)/k(X) is separable. Then Pn(P1 × C) = Pn(P1) · Pn(C) = 0 · Pn(C) = 0 for
every n ≥ 1. Since k(P1 × C)/k(X) is separable, Pn(P1 × C) ≥ Pn(X). Thus Pn(X) = 0 for
every n ≥ 1. Namely, X has negative Kodaira dimension.

(iii)⇒ (i): For example, see [1, Theorem 13.2, p.195] �

To derive the uniruledness of quasi-elliptic surfaces, we need the following:

Theorem 2.2 (Noether-Tsen). Let φ : Y � B be a dominant rational map from a surface
Y to a curve B satisfying the following conditions :

(i) k(B) is algebraically closed in k(Y);
(ii) The generic fiber of φ has arithmetic genus 0.

Then Y is birationally-isomorphic to P1 × B.

Proof. For example, see [1, Theorem 11.3, p.166]. �

2.2. Shioda-supersingular surfaces.
2.2. Shioda-supersingular surfaces. In this subsection, we recall the notions of Lef-

schetz numbers and Shioda-supersingularity.
Let X ∈ (k) be a surface. Let Br(X) := H2

ét(X,Gm) denote the cohomological Brauer
group of X. For a prime number l � p, we consider the l-adic Tate module

Tl(Br(X)) := lim←−n
Ker([ln] : Br(X)→ Br(X)).
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We call λ(X) := rankZl(Tl(Br(X))) the Lefschetz number of X. It is a birational invariant.

The Kummer sequence 0→ μln → Gm
×ln→ Gm → 0 gives an exact sequence

0→ NS(X) ⊗ Zl → H2
ét(X,Zl(1))→ Tl(Br(X))→ 0.

Thus, we have

λ(X) = b2(X) − ρ(X),

where b2(X) and ρ(X) denote the second Betti number and the Picard number of X, respec-
tively. Since b2 is the independent of l, so is λ.

Definition 2.3. A surface X is Shioda-supersingular if λ(X) = 0 i.e., b2(X) = ρ(X).

In particular, Conjecture 1.1 becomes the following statement:

Conjecture 2.4 (= Conjecture 1.1). If X is a Shioda-supersingular surface, then

t2(X) = 0.

In this paper, we prove Conjecture 2.4 for quasi-elliptic surfaces (Theorem 1.2). Now, we
recall the following property of Lefschetz numbers:

Lemma 2.5 ([9, Lemma, p.234]). Let φ : Y � X be a dominant rational map of surfaces
over k. Then

λ(Y) ≥ λ(X).

For the reader’s convenience, we include a proof of the following fact due to Shioda:

Corollary 2.6 ([9, Corollary 2, p.235]). Any uniruled surface is Shioda-supersingular.

Proof. Let X be a uniruled surface. By definition, there is a dominant rational map
φ : P1 ×C � X for some curve C. Now, one has

b2(P1 ×C) = ρ(P1 ×C) = 2.

(Indeed, we have H2
ét(P

1 × C,Ql) � ⊕i+ j=2Hi
ét(P

1,Ql) ⊗ H j
ét(C,Ql) by the Künneth de-

composition. Then, we have H2
ét(P

1,Ql) = H2
ét(C,Ql) = Ql by Poincare duality. Since

both P1 and C are irreducible, we have H0
ét(P

1,Ql) = H0
ét(C,Ql) = Ql. Thus, we get

b2(P1×C) = 2 by H1
ét(P

1,Ql) = 0. On the other hand, we have NS(P1×C) = NS(P1)⊕NS(C)⊕
Hom(Jac(P1), Jac(C)). Since both P1 and C have dimension 1, we have NS(P1) = NS(C) =
Ql. Thus, we get ρ(P1×C) = 2 by Jac(P1) = 0. Therefore, we get b2(P1×C) = ρ(P1×C) = 2.)

Namely, λ(P1×C) = 0. Since φ is dominant, λ(X) = 0 by Lemma 2.5. Thus, X is Shioda-
supersingular. �

2.3. Quasi-elliptic surfaces.
2.3. Quasi-elliptic surfaces. In this subsection, we recall the uniruledness of quasi-

elliptic surfaces (Theorem 2.9). Let us begin with the following definition:

Definition 2.7. A genus 1 fibration from a surface is a proper morphism

f : X → C

from a smooth, relatively-minimal surface X onto a normal curve C such that the generic
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fiber Xη is a normal, geometrically-integral, curve with arithmetic genus 1.
The fibration f is called quasi-elliptic (resp. elliptic) if the geometric generic fiber Xη̄ is

not normal (resp. normal).

Remark 2.8. In fact, if f is quasi-elliptic, then Xη̄ is a singular rational curve with one
cusp. Quasi-elliptic surfaces can occur only in characteristic 2 and 3 (e.g. [3]).

The following result plays a key role in the proof of Theorem 1.2.

Theorem 2.9. Let f : X → C be a quasi-elliptic surface over an algebraically closed field
k of characteristic p > 0. Then, there are a birationally ruled surface Y and a proper map
π : Y → X of degree p. More precisely, any quasi-elliptic surface is (purely inseparable)
uniruled.

Proof. The ideas of the proof are based on [3, Section 1] or [5, Theorem 9.4, p.266].
Let F : C(1/p) → C be the Frobenius morphism of degree p. Let K and L be the functions
fields of C and C(1/p), respectively. Let Xη be the generic fiber of f . Since f is quasi-elliptic,
Xη⊗K L is not normal. Let Yξ be the normalization of Xη⊗K L. Then Yξ has arithmetic genus
0. Let φ : Y → C(1/p) be a regular, relatively minimal model of Yξ. Then, there are the
following commutative diagrams

Y −−−−−→ X ×C C(1/p) π−−−−−→ X

φ

⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐� f

C(1/p) C(1/p) −−−−−→
F

C

Now, the generic fiber of φ is Yξ, and L = k(C(1/p)) is algebraically closed in k(Y) (since
φ∗Y � C(1/p) ). By Noether-Tsen’s theorem (Theorem 2.2), Y is birationally isomorphic to
P1 ×C(1/p). Hence, we get a dominant rational map

P1 ×C(1/p) � X.

Since L/K is purely inseparable, X is purely inseparable uniruled. �

Remark 2.10. Any genus 1 fibration has Kodaira dimension −∞, 0, or 1 (e.g. [1]). By
Proposition 2.1 and Theorem 2.9, any quasi-elliptic surface has Kodaira dimension 0 or 1.

Remark 2.11. By Theorem 2.9 and Corollary 2.6, we have
quasi-elliptic =⇒ uniruled =⇒ Shioda-supersingular

3. Transcendental motives

3. Transcendental motives3.1. Chow motives.
3.1. Chow motives. In this subsection, we recall the notions of Chow motives and tran-

scendental motives. Let k be an algebraically closed field of characteristic p ≥ 0. Let (k) be
the category of smooth projective varieties over k. For every V ∈ (k), we denote by CHi(V)
the Chow group of codimensional i-cycles with Q-coefficients, and CH(V) = ⊕iCHi(V). Let
U,V,W ∈ (k). For α ∈ CH(U×V), β ∈ CH(V×W), define β◦α := pUW∗(p∗UV(α)·p∗VW(β)) ∈
CH(U×W) where pUV , pVW , and pUW are the appropriate projections. We denote by rat(k)
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the contravariant category of Chow motives with Q-coefficients over k, which is Q-linear,
pseudoabelian, tensor category. An object M of rat(k) is the triple M = (V, p,m), where
V ∈ (k), p ∈ CHdim(V)(V × V) a projector (i.e., p ◦ p = p), and m ∈ Z. If V,W ∈ (k) are
irreducible, then

Homrat(k)((V, p,m), (W, q, n)) = q ◦ CHdim(V)+n−m(V ×W) ◦ p.

For M = (V, p,m),N = (W, q, n) ∈ rat(k), we denote by M ⊕ N the sum and by the
tensor product M ⊗ N. In particular, if m = n, then M ⊕ N = (V � W, p ⊕ q,m). For a
non-negative integer n, let L⊕n := L ⊕ · · · ⊕ L and L⊗n = L ⊗ · · · ⊗ L (n-times). For a prime
number l � p, we consider the l-adic étale cohomology theory H∗ét which induces a functor
H∗ét : rat(k)→ Vectgr

Ql
such that Hi

ét((V, p,m)) = p∗Hi−2m
ét (V,Ql).

Let V ∈ (k) be a variety of dimension d. We denote by h(V) = (V,ΔV , 0) the Chow
motive of V . Here ΔV is the diagonal of V in CHd(V × V). If d ≤ 2, then V admits a
Chow-Künneth decomposition, that is, there is a decomposition

h(V) � ⊕2d
i=0hi(V)

such that hi(V) = (V, πi(V), 0), π are pairwise orthogonal projectors, and cl(πi) coincides
with (2d − i, i)-component of ΔV in the Künneth component of H2d

ét (V × V,Ql). Here cl :
CHd(V × V)hom → H2d

ét (V × V,Ql) is the cycle map. Then h0(V) � 1 and h2d(V) � L⊗2d. In
particular, h(P) = 1 ⊕ L. Moreover, for two curves C,D ∈ (k), by [6, 6.1.5, p.69],

(1) h(C × D) � ⊕2
i=0 ⊕ j+k=i h j(C) ⊗ hk(D).

From now on, let X ∈ (k) be a surface. The motive h1(X) (resp. h3(X)) is controlled by
the Picard (resp. Albanese) variety of X. Thus, hi is well understood for i � 2. Let

h2(X) = halg
2 (X) ⊕ t2(X) = (X, πalg

2 (X), 0) ⊕ (X, πtr
2 (X), 0)

be the decomposition of h2(X) as in [4]. The motive t2(X) is called the transcendental motive
of X. It is a birational invariant and H2

ét(h
alg
2 (X)) = NS(X)Ql and H2

ét(t2(X)) = H2
ét(X,Ql)tr. By

construction, halg
2 (X) � L⊕ρ(X), so halg

2 is also well understood. However, t2 is still mysterious.
For example, see Conjecture 1.1 (= Conjecture 2.4).

Now, we prove a necessary and sufficient condition for t2 = 0.

Lemma 3.1. Let X ∈ (k) be a surface. Then

h2(X) � L⊕b2(X) if and only if t2(X) = 0.

In particular, if b2(X) � ρ(X), then t2(X) � 0.

Proof. Assume h2(X) � L⊕b2(X). Since halg
2 (X) � L⊕ρ(X), we have t2(X) � Lb2−ρ. Since

Hom(L, t2(X)) = 0 (e.g. [4]), we have Hom(Lb2(X)−ρ(X), t2(X)) = 0, so t2(X) = 0.
Conversely, assume t2(X) = 0. Then h2(X) = halg

2 (X) � L⊕ρ(X). Take the cohomology:
H2

ét(t2(X)) = H2
ét(X,Ql)tr � Q

b2−ρ
l . Since t2(X) = 0, we have Qb2−ρ

l = 0, so b2 = ρ. Thus,
h2(X) � L⊕b2(X). On the contrary, if b2 � ρ, then t2(X) � 0. �

3.2. Homomorphisms between transcendental motives.
3.2. Homomorphisms between transcendental motives. In this subsection, we prove

some results on homomorphisms between transcendental motives. Let k be an algebraically
closed field. Let X, Y ∈ (k) be surfaces.
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CH2(X × Y)≡ : the subgroup of CH2(X × Y) generated by the classes supported on subva-
rieties of the form X × N or M × Y , with M a closed subvariety of X of dimension < 2 and
N a closed subvariety of Y of dimension < 2.

We define a homomorphism

ΦX,Y : CH2(X × Y)→ Homrat(k)(t2(X), t2(Y))

α �→ πtr
2 (Y) ◦ α ◦ πtr

2 (X).

Theorem 3.2 ([4, Theorem 7.4.3, p.165]). There is an isomorphism of groups

CH2(X × Y)/CH2(X × Y)≡ � Homrat(k)(t2(X), t2(Y)).

To prove the functorial relation for ΦX,Y , we need the following lemma:

Lemma 3.3. Let α ∈ CH2(X × Y) and γ ∈ CH2(Y × X)≡. Then

(i) γ ◦ α ∈ CH2(X × X)≡ and (ii) α ◦ γ ∈ CH2(Y × Y)≡.

Proof. The proof of (ii) is similar to (i). Thus, it suffices to prove (i). Without loss of
generality, we may assume that γ is irreducible and supported on Y ×C with dim(C) ≤ 1.

First, assume dim(C) = 0. Let p ∈ X be a closed point. For γ = [Y × p], then

γ ◦ α = [Y × p] ◦ α = pYXY
YY∗ (α × Y · Y × X × p) = pYXY

YY∗ (α × p) = [pYX
Y∗ (α) × p].

Thus γ ◦ α ∈ CH2(X × X)≡. Next, assume dim(C) = 1. Since γ is supported on Y × C,
there are a smooth irreducible curve C and a closed embedding ι : C ↪→ X such that γ =
Γι ◦ D in CH2(Y × X), where Γι ∈ CH1(C × X) is the graph of ι and D ∈ CH2(Y ×C). Since
the support of the second projection of Γι has dimension ≤ 1, the support of the second
projection of γ ◦ α has dimension ≤ 1, and hence γ ◦ α ∈ CH2(X × X)≡. �

The following result is the functorial relation for ΦX,Y :

Proposition 3.4 ([7, p.62]). For surfaces X, Y, Z ∈ (k),

ΨY,Z(β) ◦ ΨX,Y(α) = ΨX,Z(β ◦ α) in Homrat(k)(t2(X), t2(Z)).

Proof. Let ΔY = π0 + π1 + π
alg
2 + π

tr
2 + π3 + π4 be the CK-decomposition in CH2(Y × Y).

Since πtr
2 (Y) ◦ πtr

2 (Y) = πtr
2 (Y), it suffices to prove in Hom(t2(X), t2(Z))

πtr
2 (Z) ◦ β ◦ πtr

2 (Y) ◦ α ◦ πtr
2 (X) = πtr

2 (Z) ◦ β ◦ α ◦ πtr
2 (X).

By Theorem 3.2, it suffices to prove

β ◦ πtr
2 (Y) ◦ α − β ◦ α ∈ CH2(X × Z)≡.

By the constructions of πi for i � 2 and πalg
2 (e.g. [4]),

πi(Y) ∈ CH2(Y × Y)≡ and π
alg
2 (Y) ∈ CH2(Y × Y)≡.

By Lemma 3.3,

(2) β ◦ πi(Y) ◦ α ∈ CH2(X × Z)≡ and β ◦ πalg
2 (Y) ◦ α ∈ CH2(X × Z)≡

Therefore, we get
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β◦πtr
2 (Y)◦α−β◦α=β◦(ΔY−π0(Y)−π4(Y)−πalg

2 (Y)−π1(Y)−π3(Y))◦α−β◦α
(2)
=α◦(−π0(Y)−π4(Y)−πalg

2 (Y)−π1(Y)−π3(Y))◦β in CH2(X×Z)≡. �

Using Proposition 3.4, we prove the following:

Lemma 3.5. Let π : Y → X be a finite morphism of surfaces. Let Γπ ∈ CH2(Y × X) be
the graph of π and tΓπ its transpose. Then there is an isomorphism of Chow motives

t2(Y) � t2(X) ⊕ (Y, πtr
2 (Y) − ΨX,Y(Γ) ◦ ΨY,X(tΓ), 0).

Proof. Let d be the degree of π. We let p := 1/d · ΨX,Y(tΓπ) ◦ ΨY,X(Γπ).
(i) We prove that p and πtr

2 (Y)−p are pairwise orthogonal projectors. In Hom(t2(Y), t2(Y)),

p ◦ p = 1/d2 · ΨX,Y(tΓπ) ◦ ΨY,X(Γπ) ◦ ΨX,Y(tΓ) ◦ ΨY,X(Γ)

= 1/d2 · ΨX,Y(tΓπ ◦ Γπ ◦t Γπ ◦ Γπ) by Proposition 3.4

= 1/d · ΨX,Y(tΓπ ◦ Γπ) by Γπ ◦tΓπ = d · ΔX

= 1/d · ΨX,Y(tΓπ) ◦ ΨY,X(Γπ) by Proposition 3.4

= p.

Thus p is a projector. Similarly, one has p ◦ πtr
2 (Y) = πtr

2 (Y) ◦ p = p. Thus, πtr
2 (Y) − p is also

a projector, and p and πtr
2 (Y) − p are orthogonal.

(ii) We prove t2(X) � (Y, p, 0). We let

α := 1/d · p ◦ ΦX,Y(tΓπ) ◦ πtr
2 (X) ∈ Hom(t2(X), (Y, p, 0))

β := 1/d · πtr
2 (X) ◦ ΨY,X(Γπ) ◦ p ∈ Hom((Y, p, 0), t2(X)).

By the same way as in (i), we have α ◦ β = p and β ◦ α = πtr
2 (X), so we get t2(X) � (Y, p, 0).

(iii) We prove t2(Y) � t2(X) ⊕ (Y, πtr
2 (Y) − p, 0). By (i) and (ii), we get isomorphisms

t2(Y)
(i)
� (Y, p, 0) ⊕ (Y, πtr

2 (Y) − p, 0)
(ii)
� t2(X) ⊕ (Y, πtr

2 (Y) − p, 0).

Thus, we complete the proof of Lemma 3.5. �

To prove t2 = 0 for uniruled surfaces (Theorem 4.1), we need the following:

Lemma 3.6 ([7, p.66]). Let φ : Y � X be a dominant rational map of surfaces. Then
t2(X) is the direct summand of t2(Y), that is, there are a motive M and a decompostion

t2(Y) � t2(X) ⊕ M.

Proof. By the elimination of indeterminacy of φ (since dim(X) = 2), there are a surface
Z, a birational morphism ψ : Z → Y , and a finite surjective morphism π : Z → X such that
the diagram

Z
π

���
��

��
��

�
ψ

����
��

��
�

Y
φ �� X

is commutative. By Lemma 3.5, there is a decomposition t2(Z) � t2(X)⊕M for some motive
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M. Since t2 is a birational invariant, t2(Y) � t2(Z). Therefore, we get t2(Y) � t2(X) ⊕ M for
some motive M. �

4. Proof of Main theorem

4. Proof of Main theorem
To prove our main theorem, we prove the following:

Theorem 4.1. Let X be a uniruled surface. Then t2(X) = 0.

Proof. Since X is uniruled, there are a curve C and a dominant rational map

φ : P1 ×C � X.

By Lemma 3.6, there are a motive M and a decomposition

t2(P1 ×C) � t2(X) ⊕ M.

Thus, it suffices to prove t2(P1 ×C) = 0. Indeed, there is a CK-decomposition

h2(P1 ×C) � ⊕ j+k=2h j(P1) ⊗ hk(C)

by (1). Since both P1 and C have dimension 1, we have h0(−) = 1 and h2(−) = L, so we get
h2(P1 × C) � L⊕2 because h1(P) = 0. By the argument as in the proof of Corollary 2.6, we
have b2(P1 × C) = ρ(P1 × C) = 2. Thus, we have h2(P1 × C) � L⊕b2(P1×C). By Lemma 3.1,
we get t2(P1 ×C) = 0. This completes the proof of Theorem 4.1. �

Remark 4.2. Let C and D be smooth projective curves over C with positive genus. Let
X = C × D. Then pg(X) = pg(C) · pg(D) > 0. By [10, pp.155-156], b2(X) � ρ(X). By
Lemma 3.1, we get t2(X) � 0, that is, h2(X) � L⊕b2(X).

Our main theorem is the following:

Theorem 4.3 (= Theorem 1.2). Let f : X → C be a quasi-elliptic surface. Then

t2(X) = 0.

Proof. By Theorem 2.9, X is uniruled. By Theorem 4.1, t2(X) = 0. �
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