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Abstract
Let k be a field. In this article, we identify the component of weight 2 of the natural Gm,k-

graduation on the k-algebra of the arc scheme attached to an affine algebraic variety X with
the module of the 2-nd order derivations on X. We in particular deduce, from this property,
characterizations of the geometry of hypersurfaces (in affine spaces) in terms of the nilpotency
on arc scheme.

1. Introduction

1. Introduction1.1.
1.1. Let k be a field. For every integer m ∈ N, every n ∈ N ∪ {∞} let us note An :=

k[x1, . . . , xm]n := k[(xi, j); i ∈ {1, . . . ,m}, j ∈ {0, . . . , n}] which has a structure of A :=
k[x1, . . . , xm]-module via the identification of A0 = k[x1, . . . , xm]0 and A. For every polyno-
mial f ∈ k[x1, . . . , xm], there exists a unique family (Δs( f ))s∈N of polynomials in
k[x1, . . . , xm]∞, only depending on the polynomial f , such that the following equality holds
in the ring k[x1, . . . , xm]n[t]:

(1.1) f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎝

n∑
j=0

xi, jt j

⎞⎟⎟⎟⎟⎟⎟⎠
i∈{1,...,m}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
n∑

s=0

Δs( f )
(
(xi, j)i∈{1,...,m}

j∈{0,...,s}

)
ts (mod tn+1).

For every affine k-variety X = Spec(k[x1, . . . , xm]/I) and every n ∈ N ∪ {∞} the k-scheme
Ln(X) defined by Spec(k[x1, . . . , xm]n/〈Δs( f ), s ∈ {0, . . . , n}, f ∈ I〉) is the associated jet
scheme of level n when n ∈ N and the associated arc scheme when n = ∞. The natural
Gm,k-action on An, with n ∈ N ∪ {∞}, defined to be with weight j on every variable xi, j for
every integer i ∈ {1, . . . ,m} and every integer j ∈ {0, . . . , n}, induces a graduation on An

for which the polynomial Δs( f ) is a homogeneous element with weight s for every integer
s ∈ N and every polynomial f ∈ A. We say that Δs( f ) is isobaric with weight s. This usual
observation gives rise to a Gm,k-action on the k-scheme Ln(X), for every n ∈ N∪{∞} (which
also is an action of the multiplicative monoid A1

k).

1.2.
1.2. Let X be an affine k-variety. Attached to the former Gm,k-action, we consider the

weight grading on the k-algebra (L∞(X)); we denote it by

(L∞(X)) =
⊕
n≥0

Wn
(X).

In this decomposition, one can easily observe that the (X)-module W1
(X) can be naturally

identified with the module of Kähler differential forms Ω1
(X) on X.
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1.3.
1.3. In this article, we extend this observation by constructing a natural isomorphism of

(X)-modules between W2
(X) and the module Ω(2)

(X)/k formed by the 2-nd order differential
forms on X. Precisely, for every integer n ≥ 1, we show how to use the universal property
defining Ω(n)

(X)/k in order to exhibit a morphism of (X)-modules

(1.2) ϕn
(X) : Ω(n)

(X)/k → Wn
(X)

and show the following statement:

Theorem 1.4. Let k be a field. Let I ⊂ A = k[x1, . . . , xm] be an ideal and B = A/I. The
morphism of B-modules ϕ2

B induces an isomorphism of B-modules from Ω(2)
B/k to W2

B.

Let us stress that, for n = 1, the morphism ϕn
(X) provides the identification mentionned

above and that, for n ≥ 3, the picture is much more complicated since ϕn
(X) stops to be

bijective in general. For example, when the k-variety is assumed to be smooth, the modules
Ω

(n)
(X)/k,W

n
(X) are free (X)-modules but, in general, with nonequal ranks.

1.5.
1.5. Theorem 1.4 has various geometric applications in the study of arc scheme. A by-

product of our main result can be formulated as follows:

Corollary 1.6. Let k be a perfect field. Let m ≥ 1 be a positive integer. Let X be an
integral hypersurface of Am

k .

(1) The following assertions are equivalent:
(a) The hypersurface X is normal.
(b) The (X)-module W2

(X) is torsionfree.
(c) The (X)-module Nilrad((L∞(X))) ∩W2

(X) = (0).
(2) The following assertions are equivalent:

(a) The hypersurface X is regular.
(b) The (X)-module W2

(X) is projective.

In particular, if X is an integral affine plane curve, then (X)-module W2
(X) is torsionfree

if and only if it is projective.

2. Notations, conventions

2. Notations, conventions2.1.
2.1. In this article, k is a field with an arbitrary characteristic. A k-variety is a k-scheme of

finite type. If the field k is assumed to be perfect, every reduced k-variety X is geometrically
reduced, then Reg(X) (which can be understood equivalently as the locus formed by the
regular points or the smooth points) is not empty or, equivalently, Sing(X) � X.

2.2.
2.2. Let R be a k-algebra and M be a R-module. Let n ≥ 1 be a positive integer. Accord-

ing to [11, Chapter I,§1], a n-th order k-derivation from R to M is a differential operator
with a zero constant term, that is to say a morphism of k-vector spaces D : R −→ M which
satisfies the Leibniz rule with order n:

(2.1) D(a0 · · · an) =
n∑

s=1

(−1)s−1
∑

0≤i1<···<is≤n

ai1 · · · ais D(a0 · · · âi1 · · · âis · · · an)
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for every element a0, · · · , an ∈ R. In this identity, one denotes by a0 · · · âi1 · · · âis · · · an

the element
∏

0≤ j≤n
j�i1,··· ,is

a j. We denote by Der(n)
k (R, M) the R-module formed by n-th order k-

derivations from R to M, and simply Der(n)
k (R,R) by Der(n)

k (R). One has Der(1)
k (R) = Derk(R).

Example 2.3. The datum of f �→ (Δs( f ))s∈N induces a Hasse-Schmidt derivation (e.g.,
see [7, §27] or [2, Proposition 7.5.1]). In this way, one knows that the k-linear map Δn : f �→
Δn( f ), defines, for every integer n ≥ 1, a n-th order derivation from A to Wn

A, by [11, Chapter
I, Proposition 5].

2.4.
2.4. By [12, Proposition 1.6], one knows that the functor attached to R �→ Der(n)

k (R)
is representable by a R-module Ω(n)

R/k called the module of Kähler differentials of order n.
(When n = 1, this construction corresponds to the usual notion of module of Kähler dif-
ferentials.) We give a concrete description of the R-module Ω(n)

R/k (simply denoted by Ω(n)
R )

which is due to [11, Chapter II,§1] and [12, §1]. The k-algebra R ⊗k R, endowed with the
morphism of k-algebra R −→ R ⊗k R which maps x ∈ R to x ⊗ 1, can be considered as a
R-algebra. Let J be the kernel of the product map R ⊗k R −→ R. For every element x ∈ R,
let us stress that the element 1 ⊗ x − x ⊗ 1 belongs to the ideal J; the subset of J defined by
the datum of the elements of the form 1 ⊗ x − x ⊗ 1 forms a generating system of the ideal
J. The module of Kähler differentials of order n then is constructed as the quotient J/Jn+1.
It is equipped with the following derivation of order n

dR : R −→ Ω
(n)
R/k = J/Jn+1

x �−→ [1 ⊗ x − x ⊗ 1].

For every element x ∈ R, we denote by [1 ⊗ x − x ⊗ 1] the class of the element 1 ⊗ x − x ⊗ 1
modulo Jn+1. Let us observe that, by construction the R-module Ω(n)

R/k is generated by the
family (dR(x))x∈R.

Example 2.5. Let A = k[x1, . . . , xm]. The A-module Ω(n)
A/k is free. A basis consists of the

differential forms (dA(x))α :=
∏

i∈{1,...,m} dA(xi)αi with α ∈ Nm. The universal derivation dA is
given by the formula :

(2.2) dA( f ) =
∑

1≤|α|≤n

δα( f )d(x)α

for every polynomial f ∈ A (see [11, Chapter II,§2]). In this formula, the polynomial δα( f )
is obtained as the coefficient of tα1

1 · · · tαm
m in the expression f ((xi + ti)) − f ((xi)i).

3. Proof of theorem 1.4

3. Proof of theorem 1.43.1.
3.1. Let n ≥ 1 be an integer. Let I ⊂ A be an ideal and B = A/I. Let π : A → B

be the quotient morphism and πn : An → Bn := An/〈Δs( f ) : s ∈ {0, . . . , n}, f ∈ I〉 the
induced morphism. The morphism of k-modules πn ◦Δn : A→ Wn

B induces, by the universal
property of quotient, a n-th order derivation from B to Wn

B. Hence, by [12, Proposition 1.6],
we deduce, by adjunction, the existence of a canonical morphism of B-modules

(3.1) ϕn
B : Ω(n)

B −→ Wn
B
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which satisfies the formula ϕn
B(dB( f )) = πn ◦ Δn( f ) for every element f ∈ A.

3.2.
3.2. Let us begin by recalling the proof of the corresponding statement when n = 1.

We observe that the morphism ϕ1
A, defined by dxi �→ xi,1 for every integer i ∈ {1, . . . ,m},

induces an isomorphism from Ω1
B � Ω

1
A/〈d f , f ∈ I〉 + IΩ1

A to W1
B � W1

A/〈xi,1 f , Δ1( f ), i ∈
{1, . . . ,m}, f ∈ I〉 since dA( f ) =

∑m
i=1 ∂xi( f )dA(xi) and Δ1( f ) =

∑m
i=1 ∂xi( f )xi,1.

3.3.
3.3. Let us prove theorem 1.4. Let us begin by a preliminary observation. For every

integer i ∈ {1, . . . ,m}, we set Ti = xi,1t + xi,2t2. Let us set, for every integer i ∈ {1, . . . ,m},
Tα =

∏m
i=1 Tαi

i and ei = (0, · · · , 1, · · · , 0) for the i-th canonical basis vector in Nm. We have

f ((xi,0+Ti)i)= f ((xi,0)i)+

⎛⎜⎜⎜⎜⎜⎜⎝∑
|α|=1

δα( f )Tα

⎞⎟⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎝∑
|α|=2

δα( f )Tα

⎞⎟⎟⎟⎟⎟⎟⎠+(· · · )

= f ((xi,0)i)+

⎛⎜⎜⎜⎜⎜⎝ m∑
i=1

δei( f )xi,1

⎞⎟⎟⎟⎟⎟⎠ t+

⎛⎜⎜⎜⎜⎜⎝ m∑
i=1

δei( f )xi,2

⎞⎟⎟⎟⎟⎟⎠ t2+

⎛⎜⎜⎜⎜⎜⎜⎝∑
i≤ j

δei+e j( f )xi,1x j,1

⎞⎟⎟⎟⎟⎟⎟⎠ t2+(· · · ).

Because of the uniqueness of the Δi( f ), we conclude that

(3.2) Δ2( f ) =

⎛⎜⎜⎜⎜⎜⎝ m∑
i=1

δei( f )xi,2

⎞⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎝ ∑

1≤i≤ j≤m

δei+e j( f )xi,1x j,1

⎞⎟⎟⎟⎟⎟⎟⎠ .
◦ Let us describe our main ingredients. By subsection 3.1, we know that B2 =

A2/〈{ f ,Δ1( f ),Δ2( f ), f ∈ I}〉. We set I2 := 〈{ f ,Δ1( f ),Δ2( f ), f ∈ I}〉 ⊂ A2. In this way, we
deduce that

W2
B =

W2
A + I2

I2
=

W2
A

I2 ∩W2
A

=

(
⊕1≤i≤ j≤mA · xi,1x j,1

)⊕(⊕i∈{1,...,m}A · xi,2
)

IW2
A + 〈{xi,1Δ1( f ),Δ2( f ), f ∈ I, i ∈ {1, . . . ,m}}〉 .

On the other hand, by [1, Proposition 2.5] or [11, Chapter II, Corollary 14.1], we know that

Ω
(2)
B �

Ω
(2)
A ⊗A B

〈dA( f ) ⊗ 1, dA(xi)dA( f ) ⊗ 1, i ∈ {1, . . . ,m}, f ∈ I〉 .

In this end, by subsection 3.1, the morphism of A-modules ϕ2
A (resp. ϕ2

B) is defined by
dA( f ) �→ Δ2( f ) (resp. ϕ2

B(dB( f )) = π2 ◦ Δ2( f )) for every polynomial f ∈ A.

◦ Let us introduce the morphism of A-modules ψ2
A : W2

A → Ω(2)
A . Because of formula (3.2),

we introduce the morphism of A-modules ψ2
A defined by ψ2

A(xi,2) = dA(xi) and ψ2
A(xi,1x j,1) =

dA(xi)dA(x j) for every pair of integers (i, j) ∈ {1, . . . ,m}2. Let us stress that, by the construc-
tion of the morphism ψ2

A and formula (3.2) , we have

(3.3) ψ2
A(ϕ2

A(dA( f ))) = ψ2
A(Δ2( f )) = dA( f ).

In other words, the morphism ψ2
A is a retraction of ϕ2

A.

◦ Let us prove that ψ2
A induces a morphism of B-modules from W2

B to Ω(2)
B . For every

integer j ∈ {1, . . . ,m}, we have

ψ2
A(Δ1( f )x j,1) = ψ2

A(
m∑

i=1

∂xi( f )xi,1x j,1) =
m∑

i=1

∂xi( f )ψ2
A(xi,1x j,1) =

m∑
i=1

∂xi( f )dA(xi)dA(x j).
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On the other hand, since the product of three terms of the form dA(xs) is zero in Ω(2)
A , we

have:

dA( f )dA(x j)=dA(x j)

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
1≤|α|≤2

δα( f )dA(x)α
⎞⎟⎟⎟⎟⎟⎟⎠=dA(x j)

⎛⎜⎜⎜⎜⎜⎜⎝∑
|α|=1

δα( f )dA(x)α
⎞⎟⎟⎟⎟⎟⎟⎠=

m∑
i=1

∂xi( f )dA(xi)dA(x j).

In other words, the formula ψ2
A(Δ1( f )x j,1) = dA( f )dA(x j) holds true for every integer j ∈

{1, . . . ,m}. In the end, for every integer j ∈ {1, . . . ,m}, we also have ψ2
A( f x j,2) = f dA(x j).

Hence, the morphism ψ2
A induces a morphism of B-modules ψ2

B : W2
B → Ω(2)

B .
◦ Let us prove that the morphisms of B-modules ϕ2

B, ψ
2
B are mutually inverse. By equaliy

(3.3), we know that ψ2
B also is a retraction of ϕ2

B. Let P̄ ∈ W2
B. By the very definitions, for

every lifting P ∈ W2
A, there exist polynomials ai, bi ∈ A, with i ∈ {1, . . . ,m}, such that:

P =
m∑

i=1

aixi,2 +
∑

1≤i≤ j≤m

bi, jxi,1x j,1.

Let us observe that, since the family (Δs)s is a high-order derivation, we have, for every
i, j ∈ {1, . . . ,m},

Δ2(xix j) =
2∑

s=0

Δs(xi)Δ2−s(x j) = xi,0x j,2 + xi,2x j,0 + xi,1x j,1.(3.4)

On the other hand, by the very definition of dA, we have

(3.5) dA(xix j) = xidA(x j) + x jdA(xi) + dA(xi)dA(x j).

By the definitions of the morphisms ϕ2
A, ψ

2
A and formulas (3.4) and (3.5), we obtain that

(ϕ2
B ◦ ψ2

B)(P̄) = (π2 ◦ ϕ2
A)

⎛⎜⎜⎜⎜⎜⎜⎝
m∑

i=1

aidA(xi) +
∑

1≤i≤ j≤m

bi, jdA(xi)dA(x j)

⎞⎟⎟⎟⎟⎟⎟⎠
= π2

⎛⎜⎜⎜⎜⎜⎜⎝
m∑

i=1

aixi,2 +
∑

1≤i≤ j≤m

bi, jϕ
2
A(dA(xi)dA(x j))

⎞⎟⎟⎟⎟⎟⎟⎠
= π2

⎛⎜⎜⎜⎜⎜⎜⎝
m∑

i=1

aixi,2 +
∑

1≤i≤ j≤m

bi, jϕ
2
A(dA(xix j) − xidA(x j) − x jdA(xi))

⎞⎟⎟⎟⎟⎟⎟⎠
= π2

⎛⎜⎜⎜⎜⎜⎜⎝
m∑

i=1

aixi,2 +
∑

1≤i≤ j≤m

bi, j(Δ2(xix j) − xiΔ2(x j) − x jΔ2(xi))

⎞⎟⎟⎟⎟⎟⎟⎠
= π2

⎛⎜⎜⎜⎜⎜⎜⎝
m∑

i=1

aixi,2 +
∑

1≤i≤ j≤m

bi, j xi,1x j,1

⎞⎟⎟⎟⎟⎟⎟⎠
= P̄.

Remark 3.4. In general, there is no hope for Wn
B to be isomorphic to Ω(n)

B . We illustrate
here this remark by several properties. By [1, Theorem 4.3], one knows that, for every in-
teger n ≥ 1, the k-variety H = V( f ), attached to f ∈ A, is normal if and only if Ω(n)

(H)
is torsion-free. (Let us stress that for n = 1 the former property is classical; e.g., see [6,
Corollary 9.8].) In other hand, it is quite simple to find examples of such a normal hy-
persurface H with nonzero Tors(Wn

(H)). As an illustration, one can consider example 4.9,
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and, more generally, [5, Conjecture 9.1] suggests that any normal hypersurface H without
rational singularity share this property. Another observation leads us to conclude that, in
general, Wn

B,Ω
(n)
B are not isomorphic. If the k-algebra B is assumed to be smooth, then both

B-modules Wn
B,Ω

(n)
B are free; but their ranks in general differ.

4. Applications

4. Applications
In this section, we show that theorem 1.4 and properties of the 2-nd order derivation

module can be used to prove corollary 1.6. We also explain how to use theorem 1.4 to study
the torsion submodule of the 2-nd order derivation module. Other general results on the
interpretation of geometric properties on algebraic varieties in terms of nilpotency on arc
scheme can be found, e.g., in [10, 13, 14, 15].

Lemma 4.1. Let k be a field of characteristic zero. Let n ≥ 1 be a positive integer. Let X
be an integral affine k-variety. Then the (X)-module Tors(Wn

(X)) is formed by the nilpotent
isobaric functions on L∞(X) with weight n.

Proof. Let us fix an embedding X ↪→ Am
k = Spec(k[x1, . . . , xm]) defined by the datum

of a prime ideal I of A. We denote by [I] the ideal of A∞ generated by the Δn(g) for every
integer n ∈ N and every polynomial g ∈ I. By definition, one have L∞(X) = Spec(A∞/[I]).
Let f̄ ∈ (L∞(X)) be a function that we assumed to be isobaric with weight n. Then, the
function f̄ is torsion if and only if there a nonzero ā ∈ (X) such that ā f̄ = 0; hence,
the function ā f̄ belongs to the nilradical of (L∞(X)), which is prime ideal of (L∞(X))
by the Kolchin irreducibility. We conclude that the function f̄ belongs to the nilradical
of (L∞(X)). Indeed, if any polynomial lifting a ∈ k[x1, . . . , xm] belongs to the radical
of [I] in A∞, then, because of a direct argument of weight, we shall have a ∈ I which is
impossible by the assumption on ā. Conversely, if f̄ is nilpotent, e.g., by [8, Lemma 3.7],
there exists a polynomial h � I and an integer s ∈ N such that hs f ∈ [I], which implies that
f̄ ∈ Tors((L∞(X))) by definition. That concludes the proof. �

4.2.
4.2. For every R-module M, we denote by M∨ its dual, i.e., M∨ := HomR(M,R). We

assume from now on that R is a noetherian domain, M � (0) is finitely generated. Let K be
the fraction field of R. Let 	K(M) : M → MK := M ⊗R K be the localization morphism. One
observes, because of the very definitions, that:

(4.1) Tors(M) := TorsR(M) = Ker(	K(M)).

Moreover, if cM : M → M∨∨ is the canonical morphism of R-modules, one also has:

(4.2) Tors(M) = Ker(cM).

This formula needs a quick justification. The following diagram is commutative Since the

bottom horizontal morphism is an isomorphism, then, by (4.1), it follows from the commu-
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tativity of the former diagram that Tors(M) = c−1
M (	K(M∨∨)−1(0)). But, since R is a domain

and M∨∨ a dual, we know 	−1
K (M∨∨)(0) = Tors(M∨∨) = (0). In the end, let us observe that

the morphism 	K(M) factorizes into

M
	x(M)−−−→ Mx := M ⊗R Rx

	K (Mx)−−−→ MK

for every point x ∈ Spec(R). Thus, one has

(4.3) Tors(M) =
⋂

x∈Spec(R)

(M ∩ TorsRx(Mx)).

Thus, the Rx-module Tors(Mx) is torsionfree for every point x ∈ Spec(R) if and only if
Tors(M) = (0),

Proposition 4.3. Let k be a field of characteristic zero. Let n ≥ 1 be a positive integer.
Let X be an integral affine k-variety. Then submodule of the nilradical of (L∞(X))) formed
by the isobaric functions with weight n equals the submodule⋂

θ∈(Wn
(X))

∨
Ker(θ).

Proof. By lemma 4.1, we need to prove that Tors(Wn
(X)) =

⋂
θ∈(Wn

(X))
∨ Ker(θ). Now, let

us observe that
⋂
θ∈(Wn

(X))
∨ Ker(θ) coincides with the kernel N of the canonical morphism

Wn
(X) → (Wn

(X))
∨∨. The proof concludes from the fact that Tors(Wn

(X)) = N; see formula
(4.2). �

Recall that the morphism of B-modules 	 �→ 	 ◦ dB defined from HomB(Ω(2)
B , B) to Der(2)

k (B)
is an isomorphism; hence, by theorem 1.4, we deduce that HomB(W2

B, B) � Der(2)
k (B). Let

θ ∈ Der(2)
k (B) be a 2-nd order derivation such that θ = 	◦dB with 	 ∈ HomB(Ω(2)

B , B). Thanks
to the former remark, one can define the image of any element P̄ ∈ W2

B by θ by setting

θ · P̄ = 	((ϕ2
B)−1(P̄)) ∈ B.

Proposition 4.3 asserts that P̄ ∈ W2
B is torsion if and only if its image by every 2-nd order

derivation is zero. This property can be linked to [15, Corollary 1.4] or [4, Corollary 4.8].

Example 4.4. To illustrate this point of view, let us consider the polynomial f = x3+y2 ∈
k[x, y], with B = A/〈 f 〉. Let us set g := 4x0y2−x1y1−6x2y0, h := 8y0y2+12x2

0x2+3x0x2
1 ∈ A2

whose images in the ring B are respectively denoted by ḡ, h̄. The relations in the ring A2

2y3
0g = y2

0 ·
(
4x0(2y0y2) − x1(2y0y1) − 12y2

0x2

)
≡ y2

0 ·
(
4x0(−3x2

0x2 − 3x0x2
1 − y2

1) − x1(2y0y1) − 12y2
0x2

)
(mod Δ2( f ))

≡ y2
0 ·

(
−9x2

0x2
1 − 4x0y

2
1 − x1(3x2

0x1 + 2y0y1) − 12x2(x3
0 + y

2
0)
)

(mod Δ2( f ))
≡ −x0 · (9x0y

2
0x2

1 + (2y0y1)2) (mod f ,Δ1( f ),Δ2( f ))
≡ −x0 · (9x0y

2
0x2

1 + 9x4
0x2

1) (mod f ,Δ1( f ),Δ2( f ))
≡ −9x2

0x2
1 · (y2

0 + x3
0) (mod f ,Δ1( f ),Δ2( f ))

≡ 0 (mod f ,Δ1( f ),Δ2( f ))

imply that g is a torsion element in the ring B2 (which is nonzero). In the same spirit, we
observe that
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h ≡ −4(3x2
0x2 + 3x0x2

1 + y
2
1) + 12x2

0x2 + 3x0x2
1 (mod Δ2( f ))

≡ −(9x0x2
1 + 4y2

1) (mod Δ2( f )).

Then, we conclude, in the same way, that y2
0h ∈ I2; hence, h̄ is a (nonzero) torsion element

in B2. Let us consider the 2-nd order derivation (3x2∂y − 2y∂x)2 ∈ Der(2)
k (A). It clearly

induces a 2-nd order derivation θ ∈ Der(2)
k (B) such that θ = 	 ◦ dB with 	 : Ω(2)

B → B defined
by dB(x̄) �→ −6x̄2, dB(ȳ) �→ −12x̄ȳ, dB(x̄)2 �→ 8ȳ2, dB(ȳ)2 �→ 18x̄4, dB(x̄)dB(ȳ) �→ −12x̄2ȳ.
Then, we obtain, by the very definition, that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ · ḡ = 4x(−12x̄ȳ) − (−12x̄2ȳ) − 6y(−6x̄2)
= 0,

θ · h̄ = 8y(−12x̄ȳ) + 12x2(−6x̄2) + 3x(8ȳ2)
= −72x̄(ȳ2 + x̄3)
= 0.

Remark 4.5. Let us note that one can attach, to every 	 ∈ (Wn
(X))

∨, a n-th order derivation
θ	 ∈ Der(n)

k ((X)) defined by 	 ◦ ϕn
(X) ◦ dn

(X). This observation suggests the following
question: does every n-th order derivation θ ∈ Der(n)

k ((X)) factorize through Wn
(X) (in a

non-unique way)? Since every differential operator on smooth varieties are generated by
derivations, we can deduce that this question admits a positive answer for smooth varieties
X. This question is also related to the following one, which is stronger1: does the morphism
ϕn
(X) admit a retraction ψn

(X) : Wn
(X) → Ω(n)

(X)? Once again, we can prove that, if the
k-variety X is assumed to be smooth, this second question also admits a positive answer. It
seems to us plausible that such questions are related to the singularities of X.

4.6.
4.6. The existence of an isomorphism W2

B → Ω(2)
B for every k-algebra B = A/I of finite

type provides new algorithms to compute Tors(Ω(2)
B ). Indeed, after identifying Tors(Ω(2)

B )
with Tors(W2

B), one can apply the algorithms introduced in [9, §5] whose output will provide
a presentation for Tors(W2

B). We denote by [I] the ideal generated by the Δs( f ), with f ∈ I
and s ∈ N, in the ring A∞. Precisely, these algorithms will compute, in this particular case, a
Groebner basis for the ideal N2 =

√
[I] ∩ A2 in the ring A2. This Groebner basis obviously

gives rise to a generating system for Tors(W2
B) by lemma 4.1. See example 4.7. (See also

[5, 8] for related considerations).

Example 4.7. To illustrate this remark, let us consider the polynomial f = x3 + y2 ∈
k[x, y], with B = A/〈 f 〉. We set E( f ) = 3y0x1 − 2x0y1. Here, [9, §5] applied with the
lexicographic order and ordering y2 > y1 > y0 > x2 > x1 > x0, provides a Groebner basis for
the nilpotent functions in (B∞) induced by polynomials in A2. From this computation we
deduce in particular a presentation of Tors(W2

B) by “picking out” the elements with weight
w ≤ 2 (see lemma 4.1). We obtain that Tors(W2

B) coincides with

π2(〈 f W2
A, x1E( f ), y1E( f ), 9x0x2

1 + 4y2
1, 4x0y2 − x1y1 − 6x2y0, 8y0y2 + 12x2

0x2 + 3x0x2
1〉)

Then we deduce that Tors(Ω(2)
B ) is isomorphic to the quotient of Ω(2)

A ⊗A B by the submodule

1Actually, this second question is equivalent to the problem to determine whether, for every (X)-module M,
for every n-th order derivation θ ∈ Der(n)

k ((X),M), there exists a morphism 	 ∈ Hom(X)(Wn
(X),M) such that

θ = 	 ◦ ϕn
(X) ◦ dn

(X).
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generated by the images of the following elements:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3ydA(x)2 − 2xdA(x)dA(y),
3ydA(x)dA(y) − 2xdA(y)2,

9xdA(x)2 + 4dA(y)2,

4xdA(y) − dA(x)dA(y) − 6ydA(x), and
8ydA(y) + 12x2dA(x) + 3xdA(x)2.

4.8.
4.8. Let us prove corollary 1.6. We set B = (X). By theorem 1.4, we need to prove the

corresponding properties for the (X)-module Ω(2)
B . By [11, Theorem 9], one knows that

Ω
(2)
Bx
� Ω(2)

B ⊗B Bx for every point x ∈ X

◦ Since the noetherian ring B is regular if and only if Bx is regular for every point x ∈ X,
[3, Proposition 4.1] proves assertion (2).
◦ From [1, Theorem 4.3], following the same argument, we also deduce that X is normal

if and only if Ω(2)
Bx

is torsionfree for every point x ∈ X. We conclude the proof of the first
equivalence in assertion (1) by applying (4.3) to M = Ω(2)

B . The last equivalence in assertion
(1) directly follows from lemma 4.1.

Example 4.9. Let k be a field of characteristic zero. Let us consider the polynomial
f = x3

1 + x3
2 + x3

3 in the ring k[x1, x2, x3] with associated surface H ⊂ A3
k . It is well-

known that this k-variety is a normal variety with a singular point at the origin which is not
a rational singularity. Let us also note that its tangent space is reduced, as every normal
hypersurface of an affine space. In particular, W1

(H) is torsionfree, i.e., there is no nontriv-
ial isobaric function on L∞(X) with weight 1 which are nilpotent. Indeed, by subsection
3.2, we know that it means that Ω1

(H) is torsionfree; this property is implied by the nor-
mality of H (see [6, Corollary 9.8]). There also is no nontrivial nilpotent isobaric function
on L∞(X) with weight 2 by corollary 1.6. This observation can also be checked by a di-
rect computation. Indeed, the algorithms introduced in [9] confirms this result. Moreover,
with this tool, we observe for example that the regular function induced by the polynomial
g := x2

10x20x21x30x32 − x10x11x2
20x30x32 + x2

10x20x21x2
31 − x10x11x2

20x2
31 − x2

10x20x22x30x31 −
x2

10x2
21x30x31+ x10x12x2

20x30x31+ x2
11x2

20x30x31+ x10x11x20x22x2
30+ x10x11x2

21x2
30− x10x12x20x21

x2
30 − x2

11x20x21x2
30 induces a nilpotent function on L∞(X) (see lemma 4.1); but it is isobaric

with weight 3.
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