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Abstract
One main purpose of the present paper is to reorganize, in terms of the notion of a Schwarz

system, a proof, by means of Schwarzian derivatives, of the existence of complex projective
structures on compact hyperbolic Riemann surfaces and a proof, by means of Sugiyama-Yasuda
locally exact differentials, of the existence of Frobenius-projective structures of level two on
projective smooth curves in characteristic two. Moreover, we also construct quasi-Schwarz
systems for certain Frobenius-affine and Frobenius-projective structures on projective smooth
curves in positive characteristic.
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Introduction

The author of the present paper pointed out a certain similarity between Schwarzian
derivatives and locally exact differentials defined in [6] by Sugiyama and Yasuda, i.e.,
Sugiyama-Yasuda locally exact differentials, in the study of Frobenius-projective structures
[cf. [2, Remark 7.1.1]]. One main purpose of the present paper is to reorganize

• the proof, by means of Schwarzian derivatives, of the existence of complex projective
structures on compact hyperbolic Riemann surfaces given in [1, §9, (a), Corollary 2] and

• the proof, by means of Sugiyama-Yasuda locally exact differentials, of the existence
of Frobenius-projective structures of level 2 on projective smooth curves in characteristic 2
given in [6, §3] [cf. also [2, §2] and [2, §3]]

in terms of the notion of a Schwarz system. Put another way, one main purpose of the present
paper is to give one “precise mathematical formulation” of the similarity pointed out in [2,
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Remark 7.1.1].
Let X be a topological space. Then a Schwarz system [cf. Definition 1.2] on X is defined

to be a suitable collection of data

( ,,U, {∼U}U∈U, θ :  ×  → )

consisting of

• a sheaf  of sets on X,

• a sheaf  of abelian groups on X,

• an open basis U of X,

• an equivalence relation ∼U on the set  (U) for each U ∈ U, and

• a morphism θ :  ×  →  of sheaves of sets on X.

Suppose that we are given a Schwarz system S = ( ,,U, {∼U}U , θ) on X. Then we shall
refer to

• a collection ( fU)U∈O of local sections fU ∈  (U) of the sheaf  — where O is an open
covering of X whose element is contained in U— such that fU |W ∼W fV |W for each U, V ∈ O
and each W ∈ U with W ⊆ U ∩ V as a global object associated to S [cf. Definition 1.6] and

• an equivalence class, with respect to a certain equivalence relation defined by the ∼U’s
[cf. Definition 1.9, (i)], of global objects as a global structure associated to S [cf. Defini-
tion 1.9, (ii)].

Moreover, one may associate, to S, a cohomology class in the first cohomology group
H1(X,). We shall refer to this class as the obstruction class of S [cf. Definition 1.5].

The main result of the theory of Schwarz systems, i.e., established in §1 of the present
paper, is as follows [cf. Theorem 1.7, (ii), and Theorem 1.12, (iv)].

Theorem A. Let X be a topological space and S = ( ,,U, {∼U}U∈U, θ) a Schwarz
system on X. Then the following assertions hold:

(i) It holds that there exists a global structure associated to S if and only if the obstruc-
tion class of S vanishes.

(ii) Suppose that the obstruction class of the Schwarz system S vanishes. Then the set of
global structures associated to S has a structure of Γ(X,)-torsor.

In §2 of the present paper, we reorganize the proof, by means of Schwarzian derivatives,
of the existence of complex projective structures on compact hyperbolic Riemann surfaces
given in [1, §9, (a), Corollary 2] from the point of view of Theorem A. More precisely, for
a given Riemann surface X, we construct a Schwarz system SP

X such that

(§2-a) the sheaf “” of the Schwarz system SP
X is the invertible sheaf of holomorphic

quadratic differentials on X,

(§2-b) the morphism “θ” of the Schwarz system SP
X is given by the Schwarzian deriva-

tives [cf., e.g., [1, p.164] and [1, p.167]], and

(§2-c) a global structure associated toSP
X is essentially the same as a complex projective
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structure [cf., e.g., [1, p.167]] on X

[cf. Theorem 2.4 and Remark 2.4.1]. In particular, if the given Riemann surface X is com-
pact and hyperbolic, then since [one verifies easily that] the first cohomology group of the
invertible sheaf of holomorphic quadratic differentials on X — that contains the obstruction
class of SP

X [cf. (§2-a)] — vanishes, it follows from Theorem A that the set of complex pro-
jective structures on X [cf. (§2-c)] is nonempty and has a structure of torsor under the space
of global holomorphic quadratic differentials [cf. (§2-a)] on X [cf. Corollary 2.5].

In §3 of the present paper, we reorganize the proof, by means of Sugiyama-Yasuda locally
exact differentials, of the existence of Frobenius-projective structures of level 2 on projective
smooth curves in characteristic 2 given in [6, §3] [cf. also [2, §2] and [2, §3]] from the point
of view of Theorem A. More precisely, for a given projective smooth curve X over an
algebraically closed field of characteristic 2, we construct a Schwarz system S2,2,P

X whose
obstruction class vanishes such that

(§3-a) the sheaf “” of the Schwarz system S2,2,P
X is the invertible sheaf of locally exact

differentials on X,

(§3-b) the morphism “θ” of the Schwarz system S2,2,P
X is given by the Sugiyama-Yasuda

locally exact differentials [cf. [6, Definition 2.8]], and

(§3-c) a global structure associated to S2,2,P
X is essentially the same as a Frobenius-

projective structure of level 2 [cf. [2, Definition 3.1]] on X

[cf. Theorem 3.5 and Remark 3.5.1, (ii)]. In particular, it follows from Theorem A that
the set of Frobenius-projective structures of level 2 on X [cf. (§3-c)] is nonempty and has a
structure of torsor under the space of global locally exact differentials [cf. (§3-a)] on X [cf.
Corollary 3.6, (ii)].

Moreover, in the present paper, we also construct certain quasi-Schwarz systems [cf. Def-
inition 1.2] on projective smooth curves in positive characteristic. More precisely, we con-
struct,

• in §4 of the present paper, a quasi-Schwarz system on a projective smooth curve in
characteristic 2 whose global structure is essentially the same as a Frobenius-affine structure
of level 2 [cf. [3, Definition 3.1]] on the curve [cf. Theorem 4.9 and Remark 4.9.1, (ii)],

• in §5 of the present paper, a quasi-Schwarz system on a projective smooth curve in
positive characteristic whose global structure is essentially the same as a Frobenius-affine
structure of level 1 on the curve [cf. Theorem 5.5 and Remark 5.5.1, (ii)], and

• in §6 of the present paper, a quasi-Schwarz system on a projective smooth curve in pos-
itive characteristic whose global structure is essentially the same as a Frobenius-projective
structure of level 1 on the curve [cf. Theorem 6.4 and Remark 6.4.1, (ii)].

1. Schwarz Systems

1. Schwarz Systems
In the present §1, we introduce and discuss the notion of a Schwarz system [cf. Defini-

tion 1.2 below]. Let X be a topological space.
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Definition 1.1. Let U be an open basis of X. Then we shall say that an open covering O
of X is a U-covering of X if the inclusion O ⊆ U holds.

Remark 1.1.1. Let U be an open basis of X and O1, O2 two U-coverings of X. Then one
verifies easily that there exists a refinement of both O1 and O2 that forms a U-covering of X.

Definition 1.2. We shall say that a collection of data

( ,,U, {∼U}U∈U, θ :  ×  → )

consisting of

• a sheaf  of sets on X,

• a sheaf  of abelian groups on X,

• an open basis U of X,

• an equivalence relation ∼U on the set  (U) for each U ∈ U, and

• a morphism θ :  ×  →  of sheaves of sets on X

is a quasi-Schwarz system on X if, for each U ∈ U, the following three conditions are
satisfied:

(1) The set  (U) is nonempty, and the first cohomology group H1(U,) vanishes.

(2) For each f1, f2, f3 ∈  (U), the cocycle condition

θ(U)( f1, f3) = θ(U)( f1, f2) + θ(U)( f2, f3)

is satisfied.

(3) For each f0 ∈  (U), the map  (U) → (U) of sets given by sending f ∈  (U)
to θ(U)( f , f0) ∈ (U) factors through the natural quotient map  (U) �  (U)/ ∼U , and,
moreover, the resulting map  (U)/ ∼U→ (U) is injective:

 (U)
θ(U)(−, f0) ��

�� ������������
(U)

 (U)/ ∼U

� �

���
�

�
�

�

Moreover, we shall say that a quasi-Schwarz system ( ,,U, {∼U}U∈U, θ :  × → ) is a
Schwarz system if the following condition is satisfied:

(4) For each U ∈ U, x ∈ U, f ∈  (U), and a ∈ (U), there exist V ∈ U and g ∈  (V)
such that x ∈ V ⊆ U, and, moreover, the equality θ(V)(g, f |V) = a|V holds.

Remark 1.2.1. Let ( ,,U, {∼U}U∈U, θ) be a quasi-Schwarz system on X, U an element
of U, and f1, f2 ∈  (U) local sections of the sheaf  . Then it follows from condition (2) of
Definition 1.2 that

(i) the equalities θ(U)( f1, f1) = 0, θ(U)( f1, f2) = −θ(U)( f2, f1) hold.

In particular, it follows from condition (3) of Definition 1.2 that
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(ii) it holds that f1 ∼U f2 if and only if θ(U)( f1, f2) = 0.

In the remainder of the present §1, let S = ( ,,U, {∼U}U∈U, θ) be a quasi-Schwarz
system on X.

Definition 1.3. Let O be a U-covering of X and ( fU)U∈O a collection of local sections
fU ∈  (U) of the sheaf  . Then we shall refer to the image in the first cohomology
group H1(X,) of the element of the first Čech cohomology group Ȟ1(O,) determined
[cf. condition (2) of Definition 1.2] by the collection (θ(U ∩ V)( fU |U∩V , fV |U∩V))U,V∈O of lo-
cal sections θ(U ∩ V)( fU |U∩V , fV |U∩V) ∈ (U ∩ V) of the sheaf  as the cohomology class
determined by ( fU)U .

Lemma 1.4. Let O f , Og be U-coverings of X and ( fU)U∈O f , (gV)V∈Og collections of local
sections fU ∈  (U), gV ∈  (V) of the sheaf  . Then the cohomology class determined by
( fU)U coincides with the cohomology class determined by (gV)V.

Proof. Let us first observe that one verifies easily that, to verify Lemma 1.4, we may
assume without loss of generality — by replacing O f and Og by a refinement of both O f

and Og that forms a U-covering of X [cf. Remark 1.1.1] — that O f = Og. For each U ∈ O f ,

write aU
def
= θ(U)( fU , gU) ∈ (U). Then it follows from condition (2) of Definition 1.2 and

Remark 1.2.1, (i), that, for each U, V ∈ O f , the equalities

θ(U ∩ V)( fU |U∩V , fV |U∩V)

= θ(U ∩ V)( fU |U∩V , gU |U∩V) + θ(U ∩ V)(gU |U∩V , gV |U∩V) + θ(U ∩ V)(gV |U∩V , fV |U∩V)

= aU |U∩V + θ(U ∩ V)(gU |U∩V , gV |U∩V) − aV |U∩V

hold. Thus, the cohomology class determined by ( fU)U coincides with the cohomology class
determined by (gV)V , as desired. This completes the proof of Lemma 1.4. �

Definition 1.5. We shall refer to the cohomology class in H1(X,) determined by some
[cf. Lemma 1.4] collection of local sections of the sheaf  with respect to some U-covering
of X [cf. condition (1) of Definition 1.2] as the obstruction class of S.

Definition 1.6. We shall say that a collection ( fU)U∈O of local sections fU ∈  (U) of the
sheaf  — where O is a U-covering of X — is a global object associated to S if, for each
U, V ∈ O and each W ∈ U with W ⊆ U ∩ V , the local section fU |W ∈  (W) is equivalent
— i.e., with respect to the equivalence relation ∼W — to the local section fV |W ∈  (W). We
shall write

Γ(X,S)

for the set of global objects associated to S.

The first main result of the theory of Schwarz systems is as follows.

Theorem 1.7. Let X be a topological space and S = ( ,,U, {∼U}U∈U, θ) a quasi-
Schwarz system on X. Then the following assertions hold:

(i) If the set Γ(X,S) is nonempty, then the obstruction class of the quasi-Schwarz system
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S vanishes.

(ii) Suppose that the quasi-Schwarz system S is a Schwarz system. Then it holds that
the set Γ(X,S) is nonempty if and only if the obstruction class of the Schwarz system S
vanishes.

Proof. First, we verify assertion (i). Let ( fU)U∈O ∈ Γ(X,S) be a global object associated
to S — where O is a U-covering of X. Then it is immediate that, to verify assertion (i),
it suffices to show that the cohomology class determined by ( fU)U vanishes. On the other
hand, this follows from Remark 1.2.1, (ii). This completes the proof of assertion (i).

Next, we verify assertion (ii). The necessity follows from assertion (i). To verify the
sufficiency, suppose that the obstruction class of S vanishes. Let ( fU)U∈U be a collection
of local sections fU ∈  (U) of the sheaf  [cf. condition (1) of Definition 1.2]. Then
since [we have assumed that] the obstruction class of S vanishes, there exists a local section
aU ∈ (U) of the sheaf  for each U ∈ U such that, for each U, V ∈ U, the equality

θ(U ∩ V)( fU |U∩V , fV |U∩V) = aU |U∩V − aV |U∩V

holds [cf. condition (1) of Definition 1.2]. Now since [we have assumed that]S is a Schwarz
system, it follows from condition (4) of Definition 1.2 that there exist a U-covering O of X
and, for each U ∈ O, an element Ũ ∈ U and a local section gU ∈  (U) of the sheaf  such
that U ⊆ Ũ, and, moreover, −aŨ |U = θ(U)(gU , fŨ |U). Then it follows from condition (2) of
Definition 1.2 and Remark 1.2.1, (i), that, for each U, V ∈ O, the equalities

θ(U ∩ V)(gU |U∩V , gV |U∩V)

= θ(U ∩ V)(gU |U∩V , fŨ |U∩V) + θ(U ∩ V)( fŨ |U∩V , fṼ |U∩V) + θ(U ∩ V)( fṼ |U∩V , gV |U∩V)

= −aŨ |U∩V + (aŨ |Ũ∩Ṽ − aṼ |Ũ∩Ṽ)|U∩V + aṼ |U∩V = 0

hold. Thus, it follows from Remark 1.2.1, (ii), that gU |W ∼W gV |W for each W ∈ U with
W ⊆ U ∩ V , i.e., that the collection (gU)U∈O forms a global object associated to S. This
completes the proof of assertion (ii), hence also of Theorem 1.7. �

Corollary 1.8. Suppose that the quasi-Schwarz system S is a Schwarz system, and that
the first cohomology group H1(X,) vanishes. Then the set Γ(X,S) is nonempty.

Proof. This is a formal consequence of Theorem 1.7, (ii). �

Definition 1.9.

(i) We shall define an equivalence relation ∼S on the set Γ(X,S) as follows: Let ( fU)U∈O f ,
(gV)V∈Og ∈ Γ(X,S) be two global objects associated to S— where O f , Og are U-coverings
of X. Then we shall write ( fU)U ∼S (gV)V if fU |W ∼W gV |W for each U ∈ O f , V ∈ Og,
W ∈ U with W ⊆ U ∩ V .

(ii) We shall refer to an equivalence class with respect to the equivalence relation ∼S as
a global structure associated to S. We shall write

Γ/∼(X,S) def
= Γ(X,S)/ ∼S

for the set of global structures associated to S.
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Lemma 1.10. Let ( fU)U∈O f , (gV)V∈Og ∈ Γ(X,S) be two global objects associated to S—
where O f , Og are U-coverings of X — and O a refinement of both O f and Og that forms
a U-covering of X. Moreover, let τ f : O → O f , τg : O → Og be maps of sets such that
U ⊆ τ f (U), V ⊆ τg(V) for each U, V ∈ O. Then the following assertions hold:

(i) Let U be an element of O. Then the element θ(U)( fτ f (U)|U , gτg(U)|U) ∈ (U) does not
depend on the choices of the maps τ f , τg.

(ii) The collection
(
θ(U)( fτ f (U)|U , gτg(U)|U)

)
U∈O

of local sections θ(U)( fτ f (U)|U , gτg(U)|U) ∈ (U) of the sheaf  arises from a global section
of the sheaf .

(iii) The global section of the sheaf  of (ii) does not depend on the choices of the
refinement O and the maps τ f , τg.

Proof. First, we verify assertion (i). Let τ′f : O → O f , τ′g : O → Og be maps of sets
such that U ⊆ τ′f (U), V ⊆ τ′g(V) for each U, V ∈ O. Then since ( fU)U∈O f , (gV)V∈Og are
global objects associated to S, the equivalences fτ f (U)|U ∼U fτ′f (U)|U , gτg(U)|U ∼U gτ′g(U)|U
hold for each U ∈ O. Thus, assertion (i) follows from condition (3) of Definition 1.2 and
Remark 1.2.1, (i). This completes the proof of assertion (i).

Next, we verify assertion (ii). Let U, V be elements of O. Then it follows from condition
(2) of Definition 1.2 that the equality

θ(U)( fτ f (U)|U , gτg(U)|U)|U∩V − θ(V)( fτ f (V)|V , gτg(V)|V)|U∩V

= θ(U ∩ V)( fτ f (U)|U∩V , fτ f (V)|U∩V) + θ(U ∩ V)(gτg(V)|U∩V , gτg(U)|U∩V)

holds. On the other hand, since ( fU)U∈O f , (gV)V∈Og are global objects associated to S, the
equivalences fτ f (U)|W ∼W fτ f (V)|W , gτg(U)|W ∼W gτg(V)|W hold for each W ∈ Uwith W ⊆ U∩V .
Thus, it follows from Remark 1.2.1, (ii), that the equalities θ(U∩V)( fτ f (U)|U∩V , fτ f (V)|U∩V) =
θ(U ∩V)(gτg(V)|U∩V , gτg(U)|U∩V) = 0 hold. In particular, one may conclude that the collection
of local sections of the sheaf  under consideration arises from a global section of the sheaf
, as desired. This completes the proof of assertion (ii). Assertion (iii) follows immediately
from assertion (i), together with the various definitions involved. This completes the proof
of Lemma 1.10. �

Definition 1.11. Let f , g ∈ Γ(X,S) be two global objects associated toS. Then it follows
from Lemma 1.10, (i), (ii), (iii) [cf. also Remark 1.1.1], that the pair ( f , g) determines a
global section of the sheaf . We shall write θS( f , g) ∈ Γ(X,) for this global section of
the sheaf .

The second main result of the theory of Schwarz systems is as follows.

Theorem 1.12. Let X be a topological space and S = ( ,,U, {∼U}U∈U, θ) a quasi-
Schwarz system on X. Suppose that the set Γ(X,S) is nonempty [which thus implies that
the obstruction class of the quasi-Schwarz system S vanishes — cf. Theorem 1.7, (i)]. Let
f0 ∈ Γ(X,S) be a global object associated to S. Then the following assertions hold:
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(i) The assignment “( f , g) �→ θS( f , g)” determines a map

θS : Γ/∼(X,S) × Γ/∼(X,S) �� Γ(X,).

(ii) The assignment “ f �→ θS( f , f0)” determines an injective map

θS(−, f0) : Γ/∼(X,S) � � �� Γ(X,).

If, moreover, the quasi-Schwarz system S is a Schwarz system, then this injective map is
bijective:

θS(−, f0) : Γ/∼(X,S) ∼ �� Γ(X,).

(iii) Suppose that the quasi-Schwarz system S is a Schwarz system. Then the map

Γ/∼(X,S) × Γ(X,) �� Γ/∼(X,S)

defined by the assignment “( f , a) �→ ι f0 (θS( f , f0) + a)” — where we write ι f0 for the inverse
of the bijective map of the second display of (ii) — determines an action of the abelian group
Γ(X,) on the set Γ/∼(X,S).

(iv) Suppose that the quasi-Schwarz system S is a Schwarz system. Then the action of
(iii) determines a structure of Γ(X,)-torsor on the set Γ/∼(X,S).

Proof. Assertion (i) follows immediately from condition (3) of Definition 1.2 and Re-
mark 1.2.1, (i). Assertion (ii) follows immediately from conditions (3), (4) of Definition 1.2
[cf. also the fact that  is a sheaf on X]. Assertions (iii), (iv) follow immediately from the
various definitions involved. �

2. Schwarz Systems by Schwarzian Derivatives

2. Schwarz Systems by Schwarzian Derivatives
In the present §2, let us reorganize the proof of the existence of complex projective struc-

tures on compact hyperbolic Riemann surfaces given in [1, §9, (a), Corollary 2] in terms of
the notion of a Schwarz system. Let X be a connected Riemann surface. Write P1 for the
Riemann sphere and C ⊆ P1 for the complex plane.

Definition 2.1. We shall write UX for the set of open subspaces of X biholomorphic to the
complex upper half-plane. Note that it follows from the well-known classification of simply
connected Riemann surfaces that the set UX forms an open basis of X.

Definition 2.2.

(i) We shall write A
X for the sheaf of sets on X that assigns, to an open subspace U ⊆ X,

the set of locally biholomorphic maps U → C.

(ii) We shall write A
X for the invertible sheaf of holomorphic differentials on X.

(iii) Let U be an element of UX . Then we shall define an equivalence relation ∼A
U on

the set A
X (U) as follows: Let f1, f2 ∈ A

X (U) be local sections of the sheaf A
X . Then we

shall write f1 ∼A
U f2 if there exists an automorphism ι of the complex plane C such that the

diagram
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U
f1

����
��

��
� f2

���
��

��
��

C
ι
∼ �� C

is commutative.

(iv) We shall write θAX : A
X × A

X → A
X for the morphism defined as follows: Let U ⊆ X

be an open subspace of X and f1, f2 ∈ A
X (U) local sections of the sheaf A

X . Thus, there
exists an open covering O of U such that, for each V ∈ O, both f1|V and f2|V are injective,
which thus implies that the restrictions f1|V , f2|V determine biholomorphic maps V

∼→ f1(V),
V
∼→ f2(V), respectively. For each V ∈ O and each positive integer n, write f (n)

V : V → C
for the composite of the biholomorphic map f2|V : V

∼→ f2(V) and the n-th derivative of the

holomorphic function f2(V)
f2 |−1

V→ V
f1 |V→ C on f2(V) (⊆ C). Then θAX (U)( f1, f2) is defined to be

the element of A
X (U) determined by the collection of local sections

f (2)
V

f (1)
V

d f2|V ∈ A
X (V)

[cf. the differential operator θ1 of [1, p.164]].

Definition 2.3.

(i) We shall write P
X for the sheaf of sets on X that assigns, to an open subspace U ⊆ X,

the set of locally biholomorphic maps U → P1.

(ii) We shall write P
X

def
= A

X ⊗X A
X for the invertible sheaf of holomorphic quadratic

differentials on X.

(iii) Let U be an element of UX . Then we shall define an equivalence relation ∼P
U on the

set P
X(U) as follows: Let f1, f2 ∈ P

X(U) be local sections of the sheaf P
X . Then we shall

write f1 ∼P
U f2 if there exists an automorphism ι of the Riemann sphere P1 such that the

diagram

U
f1

����
��

��
� f2

���
��

��
��

P
1 ι

∼ ��
P

1

is commutative.

(iv) We shall write θPX : P
X × P

X → P
X for the morphism defined as follows: Let U ⊆ X

be an open subspace of X and f1, f2 ∈ P
X(U) local sections of the sheaf P

X . Thus, there
exists an open covering O of U such that, for each V ∈ O, both f1|V and f2|V are injective —
which thus implies that the restrictions f1|V , f2|V determine biholomorphic maps V

∼→ f1(V),
V
∼→ f2(V), respectively — and, moreover, neither {0,∞} ⊆ f1(V) nor {0,∞} ⊆ f2(V) holds.

For each i ∈ {1, 2} and V ∈ O, write Fi,V : V → P1 for the map obtained by forming fi|V
(respectively, f −1

i |V) if ∞ � f1(V) (respectively, ∞ ∈ f1(V)) — which thus implies that
the map Fi,V gives a biholomorphic map from V onto an open subspace of the complex
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plane C ⊆ P1. For each V ∈ O and each positive integer n, write F(n)
V : V → C for the

composite of the biholomorphic map F2,V : V
∼→ F2,V(V) and the n-th derivative of the

holomorphic function F2,V(V)
F−1

2,V→ V
F1,V→ C on F2,V(V) (⊆ C). Then θPX(U)( f1, f2) is defined

to be the element of P
X(U) determined [cf. the discussion of the paragraph that contains the

displayed equality (4) of [1, p.166] and the discussion surrounding the displayed equality
(6) of [1, p.169]] by the collection of local sections

2F(1)
V F(3)

V − 3(F(2)
V )2

2(F(1)
V )2

dF2,V ⊗ dF2,V ∈ P
X(V)

[cf. the Schwarzian derivative θ2 of [1, p.164] and [1, p.167]].

Theorem 2.4. Let X be a connected Riemann surface. Then, for each � ∈ {A, P}, the
collection of data

S�X
def
= (�X ,

�
X ,UX , {∼�U}U∈UX , θ

�
X)

[cf. Definition 2.1, Definition 2.2, Definition 2.3] forms a Schwarz system.

Proof. Let us first observe that one verifies immediately that S�X satisfies condition (1) of
Definition 1.2. Moreover, it follows from the discussion surrounding the displayed equality
(6) of [1, p.169] that S�X satisfies condition (2) of Definition 1.2. In particular, it follows
from the discussion of the paragraph that contains the displayed equality (4) of [1, p.166]
that S�X satisfies condition (3) of Definition 1.2. Finally, it follows from the discussion of
the first paragraph of the proof of [1, p.170, Theorem 19] that S�X satisfies condition (4) of
Definition 1.2. This completes the proof of Theorem 2.4. �

Remark 2.4.1. One verifies easily that a global structure associated to SA
X (respectively,

SP
X) [cf. Theorem 2.4] is essentially the same as a complex affine structure (respectively,

complex projective structure) on the Riemann surface X [cf., e.g., [1, p.167]].

Corollary 2.5. Suppose that the Riemann surface X is compact and hyperbolic. Then
there exists a complex projective structure on X. Moreover, the set of complex projective
structures on X has a structure of Γ(X,P

X)-torsor.

Proof. Since X is compact and hyperbolic, it follows that the invertible sheaf A
X of holo-

morphic differentials on X is of positive degree, which implies that deg(P
X) = 2 deg(A

X ) >
deg(A

X ). Thus, it follows from the Serre duality theorem that the first cohomology group
H1(X,P

X) vanishes. Thus, the conclusion of Corollary 2.5 is, in light of Theorem 2.4, a
formal consequence of Corollary 1.8 and Theorem 1.12, (iv). This completes the proof of
Corollary 2.5. �

Remark 2.5.1. Note that it is well-known [cf., e.g., [1, §9, (e)]] that one may omit the
assumption that X is compact and hyperbolic in the statement of Corollary 2.5. Put another
way, for an arbitrary connected Riemann surface, the set of complex projective structures
is nonempty and has a structure of torsor under the space of global holomorphic quadratic
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differentials.

3. Schwarz Systems by Sugiyama-Yasuda Locally Exact Differentials

3. Schwarz Systems by Sugiyama-Yasuda Locally Exact Differentials
In the present §3, let us reorganize the proof of the existence of Frobenius-projective

structures of level 2 on projective smooth curves in characteristic 2 given in [6, §3] [cf. also
[2, §2] and [2, §3]] in terms of the notion of a Schwarz system.

In the present §3, let p be a prime number, N a positive integer, k an algebraically closed
field of characteristic p, and X a projective smooth curve over k. Write KX for the function
field of X, P1

k for the projective line over k, and A1
k ⊆ P1

k for the affine line over k. Let us
fix a regular function t on A1

k that determines an isomorphism A1
k
∼→ Spec(k[t]) of schemes

over k. Thus, one verifies easily that, for each nonempty open subscheme U ⊆ X of X, this
fixed regular function t on A1

k determines, by considering the image of t in KX , a bijective
map between

• the set of dominant morphisms U → P1
k over k and

• the complement KX \ k of k in KX .

Let us identify these two sets by means of this bijective map. Now observe that one also
verifies easily that this bijective map restricts to a bijective map between

• the subset of generically étale morphisms U → P1
k over k and

• the complement KX \ K p
X of K p

X in KX .

Write 0 ∈ A1
k (⊆ P1

k) for the closed point of A1
k [and of P1

k] that forms the zero of the fixed
regular function t on A1

k , ∞ ∈ P1
k for the closed point of P1

k that forms the complement of
A

1
k in P1

k [or, equivalently, forms the pole of the meromorphic function t on P1
k], Ω1

X for the
X-module of differentials on X, Ω1

KX
for the sheaf on X of meromorphic differentials on X,

Φ for the absolute Frobenius endomorphism of X, and X
def
= Im(Φ∗d : Φ∗X → Φ∗Ω1

X) for
the X-module of locally exact differentials on X, i.e., the locally free coherent X-module
of rank p − 1 obtained by forming the image of the homomorphism Φ∗X → Φ∗Ω1

X of
X-modules determined by the exterior differentiation operator d : X → Ω1

X .

Definition 3.1. We shall write UX for the set of affine open subschemes U ⊆ X of X such
that there exists an étale morphism U → A1

k over k. Note that it follows from the smoothness
of X that the set UX forms an open basis of X.

Definition 3.2.

(i) We shall write  ét
X for the sheaf of sets on X that assigns, to an open subscheme

U ⊆ X, the set of étale morphisms U → P1
k over k.

(ii) Let U be an element of UX . Then we shall define an equivalence relation ∼p,N,P
U on

the set  ét
X (U) as follows: Let f1, f2 ∈  ét

X (U) be local sections of the sheaf  ét
X . Write F1,

F2 for the elements of KX \ K p
X that correspond to the étale morphisms f1, f2 : U → P1

k over
k, respectively. Then we shall write f1 ∼p,N,P

U f2 if there exist elements a1, a2, a3, a4 of KX

such that a1a4 � a2a3, and, moreover,
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F1 =
apN

1 F2 + apN

2

apN

3 F2 + apN

4

.

Remark 3.2.1. Let U ⊆ X be an open subscheme of X and f ∈  ét
X (U) a local section of

the sheaf  ét
X . Write F for the element of KX \ K p

X that corresponds to the étale morphism
f : U → P1

k over k. Then one verifies easily that 1, F, . . . , F pN−1 ∈ KX forms a basis of the

vector space KX over K pN

X .

Definition 3.3. Let U ⊆ X be an open subscheme of X and f ∈  ét
X (U) a local section of

the sheaf  ét
X . Then we shall write ∂ f : KX → KX for the endomorphism of the vector space

KX over K p
X given by “differentiating with respect to f ”, i.e., by the assignment

p−1∑
i=0

ap
i Fi �→

p−1∑
i=1

iap
i Fi−1

— where we write F for the element of KX \ K p
X that corresponds to the étale morphism

f : U → P1
k over k, and a0, a1, . . . , ap−1 are elements of KX [cf. Remark 3.2.1].

Next, let us recall the Sugiyama-Yasuda locally exact differentials defined in [6].

Definition 3.4. Suppose that (p,N) = (2, 2). Let U ⊆ X be an open subscheme of X and
f1, f2 ∈  ét

X (U) local sections of the sheaf  ét
X . Write F1, F2 for the elements of KX \K p

X that
correspond to the étale morphisms f1, f2 : U → P1

k over k, respectively. Write a0, a1, a2, a3

for the elements of KX such that F1 = a4
0+a4

1F2+a4
2F2

2 +a4
3F3

2 = A2
0+A2

1F2, where we write

A0
def
= a2

0 + a2
2F2 and A1

def
= a2

1 + a2
3F2 [cf. Remark 3.2.1]. Now let us recall that it follows

from [6, Theorem 2.10] that the meromorphic differential

a( f1, f2) def
=

a2
1a2

3 + a4
2

a4
3F2

2 + a4
1

dF2 =
(
∂ f2 (A0)2 + ∂ f2 (A1)2F2 + ∂ f2 (A1)A1

)
∂ f2 (F1)−1dF2 ∈ Ω1

KX
(U)

defined in [6, Definition 2.8] gives rise to an element of X(U). We shall write

θ2,2,PX (U) :  ét
X (U) ×  ét

X (U) �� X(U)

for the map given by sending ( f1, f2) to this element of X(U) and

θ2,2,PX :  ét
X ×  ét

X
�� X

for the morphism determined by the θ2,2,PX (U)’s.

Theorem 3.5. Let k be an algebraically closed field of characteristic 2 and X a projective
smooth curve over k. Then the collection of data

S2,2,P
X

def
= ( ét

X ,X ,UX , {∼2,2,P
U }U∈UX , θ

2,2,P
X )

[cf. Definition 3.1, Definition 3.2, Definition 3.4] forms a Schwarz system whose obstruction
class vanishes.
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Proof. Let us first observe that it is immediate that S2,2,P
X satisfies condition (1) of Defi-

nition 1.2. Let us also observe that it follows from [6, Proposition 2.11] that S2,2,P
X satisfies

condition (2) of Definition 1.2.
Next, to verify conditions (3), (4) of Definition 1.2, let U be an element of UX and

f0 ∈  ét
X (U) a local section of the sheaf  ét

X . Then it follows from [6, Proposition 2.9, (2),
(3)] that the map  ét

X (U) → X(U) of sets given by sending f ∈  ét
X (U) to θ2,2,PX (U)( f , f0) ∈

X(U) factors through the natural quotient map  ét
X (U) �  ét

X (U)/ ∼2,2,P
U . Moreover,

it follows from [6, Proposition 2.9, (1)] and [6, Proposition 2.11] that the resulting map
 ét

X (U)/ ∼2,2,P
U → X(U) is injective. In particular, it follows immediately, in light of [6,

Theorem 2.10], from [6, Lemma 3.4] that the resulting map  ét
X (U)/ ∼2,2,P

U → X(U) is bi-
jective. This completes the proof of the assertion that S2,2,P

X satisfies conditions (3), (4) of
Definition 1.2, hence also of the assertion that S2,2,P

X is a Schwarz system.
Finally, it follows from [6, Theorem 3.6] that the obstruction class of the Schwarz system

S2,2,P
X vanishes, as desired. [Note that one verifies easily that the cohomology class β(X)

defined in [6, Proposition 3.3] coincides with the obstruction class of the Schwarz system
S2,2,P

X in the sense of Definition 1.5 of the present paper.] This completes the proof of Theo-
rem 3.5. �

Remark 3.5.1. In the situation of Theorem 3.5:

(i) One verifies easily that the existence of a global object associated to S2,2,P
X [cf. Theo-

rem 3.5] is equivalent to the existence of a pseudo-tame rational function [cf. [6, Definition
2.2]] on the projective smooth curve X, or, equivalently [cf. [2, Remark 2.3.2]], a pseudo-
coordinate of level 2 [cf. [2, Definition 2.3]] on X.

(ii) One also verifies easily from [2, Lemma 3.5, (i)] and [2, Proposition 3.7] that a
global structure associated toS2,2,P

X [cf. Theorem 3.5] is essentially the same as a Frobenius-
projective structure of level 2 [cf. [2, Definition 3.1]] on the projective smooth curve X.

Corollary 3.6. Suppose that p = 2. Then the following assertions hold:

(i) There exists a pseudo-tame rational function [cf. [6, Definition 2.2]] on X, or, equiv-
alently [cf. [2, Remark 2.3.2]], a pseudo-coordinate of level 2 [cf. [2, Definition 2.3]] on
X.

(ii) There exists a Frobenius-projective structure of level 2 [cf. [2, Definition 3.1]] on
X. Moreover, the set of Frobenius-projective structures of level 2 on X has a structure of
Γ(X,X)-torsor.

Proof. These assertions are formal consequences of Theorem 1.7, (ii), and Theorem 1.12,
(iv), together with Theorem 3.5 and Remark 3.5.1. �

4. Quasi-Schwarz Systems for Frobenius-affine Structures: (p, N) = (2, 2)

4. Quasi-Schwarz Systems for Frobenius-affine Structures: (p, N) = (2, 2)
In the present §4, we construct a quasi-Schwarz system whose global structure is essen-

tially the same as a Frobenius-affine structure, studied in [3], of level 2 in characteristic 2.
We maintain the notational conventions introduced at the beginning of the preceding §3.
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Lemma 4.1. Let U ⊆ X be an open subscheme of X, x ∈ U a closed point of U, f ∈
 ét

X (U) a local section of the sheaf  ét
X such that f (x) = 0, and a0, a1, . . . , apN−1 elements

of KX such that (a0, a1, . . . , apN−1) � (0, . . . , 0). Write F for the element of KX \ K p
X that

corresponds to the étale morphism f : U → P1
k over k and vx : K×X → Z for the discrete

valuation on KX that corresponds to the closed point x and maps a uniformizer of X,x to
1 ∈ Z. Then the equality

vx(apN

0 + apN

1 F + · · · + apN

pN−1F pN−1)

= min{pNvx(a0), pNvx(a1) + 1, . . . , pNvx(apN−1) + pN − 1}
holds. In particular, if, moreover, vx(apN

0 + apN

1 F + · · · + apN

pN−1F pN−1) = 1, then

vx
(
∂ f (a

pN

0 + apN

1 F + · · · + apN

pN−1F pN−1)
)
= 0.

Proof. Since f ∈  ét
X (U), and f (x) = 0, it is immediate that vx(F) = 1. Thus, Lemma 4.1

is immediate. �

Definition 4.2.

(i) We shall write ét
X for the sheaf of sets on X that assigns, to an open subscheme

U ⊆ X, the set of étale morphisms U → A1
k over k. Let us regard ét

X as a subsheaf of  ét
X by

means of the injective map ét
X ↪→  ét

X induced by the natural open immersion A1
k ↪→ P1

k :

ét
X ⊆  ét

X .

(ii) Let U be an element of UX . Then we shall define an equivalence relation ∼p,N,A
U on

the set ét
X (U) as follows: Let f1, f2 ∈ ét

X (U) be local sections of the sheaf ét
X . Write F1,

F2 for the elements of KX \ K p
X that correspond to the étale morphisms f1, f2 : U → P1

k over
k, respectively. Then we shall write f1 ∼p,N,A

U f2 if there exist elements a1, a2 of KX such
that a1 � 0, and, moreover,

F1 = apN

1 F2 + apN

2 .

Definition 4.3. Suppose that (p,N) = (2, 2). Let U ⊆ X be an open subscheme of X and
f1, f2 ∈ ét

X (U) local sections of the sheaf ét
X . Write F1, F2 for the elements of KX \ K p

X
that correspond to the étale morphisms f1, f2 : U → P1

k over k, respectively. Write a0, a1,
a2, a3 for the elements of KX such that F1 = a4

0 + a4
1F2 + a4

2F2
2 + a4

3F3
2 = A2

0 + A2
1F2, where

we write A0
def
= a2

0 + a2
2F2 and A1

def
= a2

1 + a2
3F2 [cf. Remark 3.2.1]. Then we shall write

δ(U)( f1, f2) def
=

a2
3

a2
3F2 + a2

1

dF2 = ∂ f2 (A1)A1∂ f2 (F1)−1dF2 ∈ Ω1
KX

(U),

θ2,2,AX (U)( f1, f2) def
=

a4
3F2 + a4

2

a4
3F2

2 + a4
1

dF2 =
(
∂ f2 (A0)2 + ∂ f2 (A1)2F2

)
∂ f2 (F1)−1dF2

= θ2,2,PX (U)( f1, f2) + δ(U)( f1, f2) ∈ Ω1
KX

(U).
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Lemma 4.4. Suppose that we are in the situation of Definition 4.3. Write B1, B2 for the
elements of KX such that F2 = B2

0 + B2
1F1 [cf. Remark 3.2.1]. Then the following assertions

hold:

(i) The equality A1B1 = 1 holds.

(ii) The equalities ∂ f2 (F1) = A2
1 = B−2

1 = ∂ f1 (F2)−1 hold.

(iii) The equality δ(U)( f1, f2) = ∂ f2 (A1)A−1
1 dF2 holds.

Proof. These assertions follow immediately from straightforward computations. �

Lemma 4.5. Suppose that we are in the situation of Definition 4.3. Let f3 ∈ ét
X (U) be

a local section of the sheaf ét
X . Write F3 for the element of KX \ K p

X that corresponds to
the étale morphism f3 : U → P1

k over k. Write, moreover, C1, C2, D1, D2 for the elements of
KX such that F2 = C2

0 + C2
1F3 and F1 = D2

0 + D2
1F3 [cf. Remark 3.2.1]. Then the following

assertions hold:

(i) The equality D1 = A1C1 holds.

(ii) The equality δ(U)( f1, f3) = (∂ f3 (A1)A−1
1 + ∂ f3 (C1)C−1

1 )dF3 holds.

Proof. These assertions follow immediately from straightforward computations, together
with Lemma 4.4, (iii). �

Lemma 4.6. Suppose that we are in the situation of Definition 4.3. Let f3 ∈ ét
X (U) be a

local section of the sheaf ét
X . Then the following assertions hold:

(i) The equality δ(U)( f1, f2) = δ(U)( f2, f1) holds.

(ii) The cocycle condition

δ(U)( f1, f3) = δ(U)( f1, f2) + δ(U)( f2, f3)

is satisfied.

(iii) The cocycle condition

θ2,2,AX (U)( f1, f3) = θ2,2,AX (U)( f1, f2) + θ2,2,AX (U)( f2, f3)

is satisfied.

Proof. First, we verify assertion (i). Suppose that we are in the situation of Lemma 4.4.
Then it follows from Lemma 4.4 that

δ(U)( f2, f1) = ∂ f1 (B1) · B−1
1 · dF1 = ∂ f1 (F2)∂ f2 (A

−1
1 ) · A1 · ∂ f2 (F1)dF2

= A−2
1 ∂ f2 (A1)A−2

1 · A1 · A2
1dF2 = ∂ f2 (A1)A−1

1 dF2 = δ(U)( f1, f2).

This completes the proof of assertion (i).
Next, we verify assertion (ii). Suppose that we are in the situation of Lemma 4.5. Then it

follows from Lemma 4.4 and Lemma 4.5 that

δ(U)( f1, f2) + δ(U)( f2, f3) = ∂ f2 (A1) · A−1
1 · dF2 + ∂ f3 (C1)C−1

1 dF3

= ∂ f2 (F3)∂ f3 (A1) · A−1
1 · ∂ f3 (F2)dF3 + ∂ f3 (C1)C−1

1 dF3
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= ∂ f3 (A1)A−1
1 dF3 + ∂ f3 (C1)C−1

1 dF3 = δ(U)( f1, f3).

This completes the proof of assertion (ii).
Finally, since θ2,2,AX (U) = θ2,2,PX (U) + δ(U), assertion (iii) follows from assertion (ii),

together with a similar cocycle condition for θ2,2,PX [cf. [6, Proposition 2.11]]. This completes
the proof of Lemma 4.6. �

Lemma 4.7. Suppose that we are in the situation of Definition 4.3. Then the following
two conditions are equivalent:

(1) The equality θ2,2,AX (U)( f1, f2) = 0 holds.

(2) The equivalence f1 ∼2,2,A
U f2 holds.

Proof. Let us first observe that it is immediate that condition (1) is equivalent to the
condition that a2 = a3 = 0. In particular, it follows from the definition of the ai’s that
condition (1) is equivalent to the condition that there exist a0, a1 ∈ KX such that F1 =

a4
0 + a4

1F2, i.e., condition (2), as desired. This completes the proof of Lemma 4.7. �

Lemma 4.8. Suppose that we are in the situation of Definition 4.3. Then the meromorphic
differential θ2,2,AX (U)( f1, f2) ∈ Ω1

KX
(U) is contained in the submodule Ω1

X(U) ⊆ Ω1
KX

(U). In
particular, the assignment “θ2,2,AX (U)” determines a morphism of sheaves

θ2,2,AX : ét
X ×ét

X
�� Ω1

X .

Proof. Let x ∈ U be a closed point of U. Let us observe that it follows immediately
from Lemma 4.6, (iii), and Lemma 4.7 that, to verify the regularity of the meromorphic
differential θ2,2,AX (U)( f1, f2) ∈ Ω1

KX
(U) at x, we may assume without loss of generality — by

replacing f1, f2 by suitable elements of ét
X (U) equivalent, i.e., with respect to ∼2,2,A

U , to f1,
f2, respectively — that f1(x) = f2(x) = 0. Then it follows immediately from Lemma 4.1
that the meromorphic differential θ2,2,AX (U)( f1, f2) ∈ Ω1

KX
(U) is regular at x, as desired. This

completes the proof of Lemma 4.8. �

Theorem 4.9. Let k be an algebraically closed field of characteristic 2 and X a projective
smooth curve over k. Then the collection of data

S2,2,A
X

def
= (ét

X ,Ω
1
X,UX , {∼2,2,A

U }U∈UX , θ
2,2,A
X )

[cf. Definition 3.1, Definition 4.2, Definition 4.3, Lemma 4.8] forms a quasi-Schwarz system.

Proof. Let us first observe that it is immediate that S2,2,A
X satisfies condition (1) of Def-

inition 1.2. Let us also observe that it follows from Lemma 4.6, (iii), that S2,2,A
X satisfies

condition (2) of Definition 1.2. Moreover, it follows from Lemma 4.6, (iii), and Lemma 4.7
thatS2,2,A

X satisfies condition (3) of Definition 1.2. This completes the proof of Theorem 4.9.
�

Remark 4.9.1. In the situation of Theorem 4.9:

(i) One verifies easily that the existence of a global object associated toS2,2,A
X [cf. Theo-
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rem 4.9] is equivalent to the existence of a Tango function of level 2 [cf. [3, Definition 2.3]]
on the projective smooth curve X.

(ii) One also verifies easily from [3, Lemma 3.5, (i)] and [3, Proposition 3.7] that a global
structure associated to S2,2,A

X [cf. Theorem 4.9] is essentially the same as a Frobenius-affine
structure of level 2 [cf. [3, Definition 3.1]] on the projective smooth curve X.

(iii) It follows from (i), (ii) and [3, Theorem 2.9, (i)] that if X is of even genus, then there
is no global object associated to S2,2,A

X , hence also no global structure associated to S2,2,A
X .

5. Quasi-Schwarz Systems for Frobenius-affine Structures: N = 1

5. Quasi-Schwarz Systems for Frobenius-affine Structures: N = 1
In the present §5, we construct a quasi-Schwarz system whose global structure is essen-

tially the same as a Frobenius-affine structure, studied in [3], of level 1. We maintain the
notational conventions introduced at the beginning of §3.

Definition 5.1. Let U ⊆ X be an open subscheme of X and f1, f2 ∈ ét
X (U) local sections

of the sheaf ét
X . Write F1, F2 for the elements of KX \ K p

X that correspond to the étale
morphisms f1, f2 : U → P1

k over k, respectively. Then we shall write

θ
p,1,A
X (U)( f1, f2) def

=
∂ f2
(
∂ f2 (F1)

)
∂ f2 (F1)

dF2 ∈ Ω1
KX

(U)

[cf. also the morphism θAX of Definition 2.2, (iv)].

Lemma 5.2. Suppose that we are in the situation of Definition 5.1. Let f3 ∈ ét
X (U) be a

local section of the sheaf ét
X . Then the cocycle condition

θ
p,1,A
X (U)( f1, f3) = θp,1,A

X (U)( f1, f2) + θp,1,A
X (U)( f2, f3)

is satisfied.

Proof. Write F3 for the element of KX \ K p
X that corresponds to the étale morphism

f3 : U → P1
k over k. Then we obtain that

θ
p,1,A
X (U)( f1, f3) = ∂ f3

(
∂ f3 (F1)

) · ∂ f3 (F1)−1 · dF3

= ∂ f3
(
∂ f3 (F2)∂ f2 (F1)

) · ∂ f3 (F2)−1∂ f2 (F1)−1 · dF3

=
(
∂ f3
(
∂ f3 (F2)

)
∂ f2 (F1) + ∂ f3 (F2)∂ f3

(
∂ f2 (F1)

)) · ∂ f3 (F2)−1∂ f2 (F1)−1 · dF3

= ∂ f3
(
∂ f3 (F2)

) · ∂ f3 (F2)−1 · dF3 + ∂ f3
(
∂ f2 (F1)

) · ∂ f2 (F1)−1 · dF3

= θ
p,1,A
X (U)( f2, f3) + ∂ f3 (F2)∂ f2

(
∂ f2 (F1)

) · ∂ f2 (F1)−1 · ∂ f2 (F3)dF2

= θ
p,1,A
X (U)( f2, f3) + θp,1,A

X (U)( f1, f2).

This completes the proof of Lemma 5.2. �

Lemma 5.3. Suppose that we are in the situation of Definition 5.1. Then the following
two conditions are equivalent:

(1) The equality θp,1,A
X (U)( f1, f2) = 0 holds.
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(2) The equivalence f1 ∼p,1,A
U f2 holds.

Proof. Write a0, a1, . . . , ap−1 for the elements of KX such that F1 = ap
0 + ap

1 F2 + · · · +
ap

p−1F p−1
2 [cf. Remark 3.2.1]. Then let us observe that it is immediate that condition (1) is

equivalent to the condition that a2 = a3 = · · · = ap−1 = 0. In particular, it follows from
the definition of the ai’s that condition (1) is equivalent to the condition that there exist a0,
a1 ∈ KX such that F1 = ap

0 + ap
1 F2, i.e., condition (2), as desired. This completes the proof

of Lemma 5.3. �

Lemma 5.4. Suppose that we are in the situation of Definition 5.1. Then the meromorphic
differential θp,1,A

X (U)( f1, f2) ∈ Ω1
KX

(U) is contained in the submodule Ω1
X(U) ⊆ Ω1

KX
(U). In

particular, the assignment “θp,1,A
X (U)” determines a morphism of sheaves

θ
p,1,A
X : ét

X ×ét
X

�� Ω1
X .

Proof. This assertion follows immediately from a similar argument to the argument ap-
plied in the proof of Lemma 4.8, together with Lemma 5.2 and Lemma 5.3. �

Theorem 5.5. Let p be a prime number, k an algebraically closed field of characteristic
p, and X a projective smooth curve over k. Then the collection of data

S
p,1,A
X

def
= (ét

X ,Ω
1
X ,UX , {∼p,1,A

U }U∈UX , θ
p,1,A
X )

[cf. Definition 3.1, Definition 4.2, Definition 5.1, Lemma 5.4] forms a quasi-Schwarz system.

Proof. Let us first observe that it is immediate that Sp,1,A
X satisfies condition (1) of Defi-

nition 1.2. Let us also observe that it follows from Lemma 5.2 that Sp,1,A
X satisfies condition

(2) of Definition 1.2. Moreover, it follows from Lemma 5.2 and Lemma 5.3 that Sp,1,A
X sat-

isfies condition (3) of Definition 1.2. This completes the proof of Theorem 5.5. �

Remark 5.5.1. In the situation of Theorem 5.5:

(i) One verifies easily that the existence of a global object associated to Sp,1,A
X [cf.

Theorem 5.5] is equivalent to the existence of a Tango function of level 1 [cf. [3, Definition
2.3]] on the projective smooth curve X.

(ii) One also verifies easily from [3, Lemma 3.5, (i)] and [3, Proposition 3.7] that a global
structure associated to Sp,1,A

X [cf. Theorem 5.5] is essentially the same as a Frobenius-affine
structure of level 1 [cf. [3, Definition 3.1]] on the projective smooth curve X.

(iii) Let us recall from [3, Theorem 2.9, (ii)] that, for a generically étale morphism
X → P1

k over k, it holds that f is a Tango function of level 1 if and only if the value n( f )
defined in [7, Definition 9] coincides with (2g − 2)/p. In particular, it follows from (i), (ii)
that if 2g − 2 is not divisible by p, then there is no global object associated to Sp,1,A

X , hence
also no global structure associated to Sp,1,A

X .

Remark 5.5.2. Suppose that p = 2. Then one verifies easily that the morphism
θ

p,1,A
X : ét

X × ét
X → Ω1

X factors through the “zero subsheaf 0 ⊆ Ω1
X” of Ω1

X . Moreover,
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it follows from [3, Remark 2.7.1] that the collection of data

(ét
X , 0,UX , {∼p,1,A

U }U∈UX , θ
p,1,A
X )

forms a Schwarz system whose obstruction class vanishes.

Proposition 5.6. Suppose that X is a Tango curve [cf. [3, Definition 2.8, (ii)]]. Then the
obstruction class of the quasi-Schwarz system Sp,1,A

X [cf. Theorem 5.5] vanishes.

Proof. This assertion follows, in light of [3, Corollary 2.11], from Theorem 1.7, (i), and
Remark 5.5.1, (i). �

6. Quasi-Schwarz Systems for Frobenius-projective Structures: N = 1

6. Quasi-Schwarz Systems for Frobenius-projective Structures: N = 1
In the present §6, we construct a quasi-Schwarz system whose global structure is essen-

tially the same as a Frobenius-projective structure, studied in [2], of level 1. We maintain
the notational conventions introduced at the beginning of §3.

Definition 6.1. We shall write X
def
= Ω1

X⊗XΩ
1
X for the invertible sheaf on X of quadratic

differentials on X and KX for the sheaf on X of meromorphic quadratic differentials on X.

Definition 6.2. Let U ⊆ X be an open subscheme of X and f1, f2 ∈  ét
X (U) local sections

of the sheaf  ét
X . Write F1, F2 for the elements of KX \ K p

X that correspond to the étale
morphisms f1, f2 : U → P1

k over k, respectively. Then we shall write

θ
p,1,P
X (U)( f1, f2) def

=
2∂ f2 (F1)∂ f2

(
∂ f2
(
∂ f2 (F1)

)) − 3∂ f2
(
∂ f2 (F1)

)2
2∂ f2 (F1)2 dF2 ⊗ dF2 ∈ KX (U)

[cf. also the morphism θPX of Definition 2.3, (iv)] if p � 2. We shall also write

θ
p,1,P
X (U)( f1, f2) def

= 0 ∈ KX (U)

if p = 2.

Lemma 6.3. Suppose that we are in the situation of Definition 6.2. Then the meromorphic
quadratic differential θp,1,P

X (U)( f1, f2) ∈ KX (U) is contained in the submodule X(U) ⊆
KX (U). In particular, the assignment “θp,1,P

X (U)” determines a morphism of sheaves

θ
p,1,P
X :  ét

X ×  ét
X

�� X .

Proof. This assertion follows immediately from a similar argument to the argument ap-
plied in the proof of Lemma 4.8, together with [4, Proposition 1] and [4, Proposition 2, (i)].

�

Theorem 6.4. Let p be a prime number, k an algebraically closed field of characteristic
p, and X a projective smooth curve over k. Then the collection of data

S
p,1,P
X

def
= ( ét

X ,X ,UX , {∼p,1,P
U }U∈UX , θ

p,1,P
X )
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[cf. Definition 3.1, Definition 3.2, Definition 6.1, Definition 6.2, Lemma 6.3] forms a quasi-
Schwarz system.

Proof. Let us first observe that it is immediate that Sp,1,P
X satisfies condition (1) of Def-

inition 1.2. Let us also observe that it follows from [4, Proposition 1] that Sp,1,P
X satisfies

condition (2) of Definition 1.2. Moreover, it follows from [4, Proposition 1] and [4, Propo-
sition 2, (i)] that Sp,1,P

X satisfies condition (3) of Definition 1.2. This completes the proof of
Theorem 6.4. �

Remark 6.4.1. In the situation of Theorem 6.4:

(i) One verifies easily that the existence of a global object associated to Sp,1,P
X [cf. The-

orem 6.4] is equivalent to the existence of a pseudo-coordinate of level 1 [cf. [2, Definition
2.3]] on the projective smooth curve X.

(ii) If p � 2, then one also verifies easily from [2, Lemma 3.5, (i)] and [2, Proposition
3.7] that a global structure associated to Sp,1,P

X [cf. Theorem 6.4] is essentially the same as
a Frobenius-projective structure of level 1 [cf. [2, Definition 3.1]] on the projective smooth
curve X.

Remark 6.4.2. Suppose that p ≤ 3. Then one verifies easily that the morphism
θ

p,1,P
X :  ét

X ×  ét
X → X factors through the “zero subsheaf 0 ⊆ X” of X . Moreover, it

follows from [2, Proposition 2.8, (i)] that the collection of data

( ét
X , 0,UX, {∼p,1,P

U }U∈UX , θ
p,1,P
X )

forms a Schwarz system whose obstruction class vanishes.

Proposition 6.5. Suppose that p � 2, and that X is of genus ≥ 2. Then the following
assertions hold:

(i) There exists a global structure associated to the quasi-Schwarz system Sp,1,P
X [cf.

Theorem 6.4].

(ii) The obstruction class of the quasi-Schwarz system Sp,1,P
X vanishes.

(iii) The quasi-Schwarz system Sp,1,P
X is not a Schwarz system.

Proof. Assertion (i) follows from Remark 6.4.1, (ii), and [2, Corollary 5.9, (i)]. Assertion
(ii) follows from assertion (i) and Theorem 1.7, (i). Next, we verify assertion (iii). Assume
that the quasi-Schwarz system Sp,1,P

X is a Schwarz system. Then it follows, in light of the
Riemann-Roch theorem, from assertion (i) and Theorem 1.12, (iv), that X has infinitely many
Frobenius-projective structures of level 1. On the other hand, it follows from [2, Remark
4.4.1, (ii)] that this infiniteness contradicts the finiteness of the morphism  g,r → g,r

of the final display of [5, p.1030], i.e., derived from [5, Chapter II, Theorem 2.3]. This
completes the proof of assertion (iii), hence also of Proposition 6.5. �
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