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Abstract
This paper studies fine Selmer groups of elliptic curves in abelian p-adic Lie extensions. A

class of elliptic curves are provided where both the Selmer group and the fine Selmer group are
trivial in the cyclotomic Zp-extension. The fine Selmer groups of elliptic curves with complex
multiplication are shown to be pseudonull over the trivializing extension in some new cases.
Finally, a relationship between the structure of the fine Selmer group for some CM elliptic
curves and the Generalized Greenberg’s Conjecture is clarified.

1. Introduction

1. Introduction
The fine Selmer group (see §2.3) is a module over an Iwasawa algebra that is of interest in

the arithmetic of elliptic curves. It plays a key role in the formulation of the main conjecture
in Iwasawa theory. Moreover, it enables us to propose analogues of important conjectures in
classical Iwasawa theory to elliptic curves over certain p-adic Lie extensions of their field of
definition. J. Coates and the third named author initiated a systematic study of the structure
of fine Selmer groups and proposed two conjectures (see [11, Conjectures A and B]). While
Conjecture A is a generalization of the Iwasawa μ = 0 Conjecture to the context of elliptic
curves, Conjecture B is in the spirit of generalizing R. Greenberg’s pseudonullity conjec-
ture to elliptic curves. Recently, there has been a renewed interest in studying pseudonull
modules over Iwasawa algebras, [5, 36]. It is thus natural to investigate Conjecture B, and
this article makes progress in this direction. These conjectures have been generalized to
fine Selmer groups of ordinary Galois representations associated to modular forms in [28],
and their mod p-versions for supersingular elliptic curves have been studied by the second
and third author in [48]. This article restricts attention to the fine Selmer groups of elliptic
curves, with good reduction at a prime p, over abelian p-adic Lie extensions of the base
field.

We now outline the main results in the paper. Given a number field F and an odd prime
number p, let E/F be an elliptic curve, with good reduction at all the primes of F that lie
above p. Consider an admissible p-adic Lie extension  of F (see §2.2 for the precise
definition) with Galois group Gal(/F) =: G/F . The dual fine Selmer group of E at a
prime p over  is a finitely generated module over the associated Iwasawa algebra (see
§2.3). While Conjecture A asserts that the dual fine Selmer group over the cyclotomic Zp-
extension Fcyc/F is finitely generated as a Zp-module, Conjecture B is an assertion on the
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structure of the dual fine Selmer group over admissible p-adic Lie extensions of dimension at
least 2. This conjecture predicts that the dual fine Selmer group over any admissible p-adic
Lie extension is pseudonull as a module over the associated Iwasawa algebra. In this article,
both conjectures are established in previously unknown cases. Using a result of Greenberg,
we prove a general theorem that gives sufficient conditions for the dual fine Selmer group of
E over the cyclotomic Zp-extension Fcyc to be trivial. More precisely, we have the following
theorem (we refer the reader to Corollary 3.5 for finer estimates):

Theorem 3.1. Let E/F be the base-change of a rational elliptic curve E/Q. Suppose that
it has rank 0 over F and that the Shafarevich–Tate group of E/F is finite. When E has CM
by an order of an imaginary quadratic field K, assume further that the Galois closure of F,
denoted by Fc, contains K. Then, the Selmer group Sel

(
E/Fcyc

)
is trivial for a set of prime

numbers of density at least 1
[Fc:Q] . In particular, Conjecture A holds for E/F at all such

primes.

Denote by F(Ep∞) the field obtained by adjoining the coordinates of all p-power torsion
points. When p is a prime of good ordinary reduction, using a result of B. Perrin-Riou [52,
Lemme 1.1(i) and Lemme 1.3] we prove that Conjecture B holds for special classes of
admissible p-adic Lie extensions whenever the dual fine Selmer group over the cyclotomic
extension is finite for a CM elliptic curve. We obtain the following result:

Theorem 4.6. Let E/F be an elliptic curve defined over a number field F. Suppose that
F contains the imaginary quadratic field K and that E has CM by K. Assume further that
p ≥ 3 is a prime of good ordinary reduction that splits in K and that Gal(F(Ep∞)/F) � Z2

p.
If the fine Selmer group over the cyclotomic Zp-extension Fcyc/F is finite, then Conjecture B
holds for (E, F(Ep∞)).

Over the cyclotomic Zp-extension Fcyc of F, there is a connection between the Galois
group of the maximal abelian unramified pro-p extension of Fcyc and the fine Selmer groups
of elliptic curves defined over F, see [11, Theorem 3.4]. This phenomenon can be extended
to (both abelian and non-abelian) admissible p-adic Lie extensions of higher dimension. In
fact, Conjecture B can be viewed as an elliptic curve analogue of an old conjecture of Green-
berg on Galois modules associated with pro-p Hilbert class fields (see §2.4 for the precise
statement). This has been explored in [11, p. 827]. It is therefore pertinent to investigate the
precise connections between Conjecture B for admissible, abelian p-adic Lie extensions, and
Greenberg’s conjecture. For CM elliptic curves, the Generalized Greenberg’s Conjecture is
shown to be equivalent to Conjecture B for certain admissible pro-p, p-adic Lie extensions
in Theorem 4.10. This result provides a framework for proving new cases of the Generalized
Greenberg’s Conjecture. In particular, we prove the following result1.

Theorem 5.4 and Corollary 5.5. Let K/Q be an imaginary quadratic field. If there
exists one CM elliptic curve E/K such that the dual fine Selmer group is pseudonull over the
trivializing extension K(Ep∞), then the Generalized Greenberg’s Conjecture holds for K and
K(Ep).

1 The proof of Theorem 5.4 does not require E to be defined over K. This formulation is used in this
introduction, for simplicity.
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Little is known about Conjecture B and the Generalized Greenberg’s Conjecture in full
generality. We recall some cases where Conjecture B is proven in the literature. When there
is a unique prime above p in the p-adic Lie extension of interest Conjecture B is proven in
[49, Theorem 1.3] and [62, § 4]. Also, when the p-adic Lie extension has large dimension
there are explicit examples where Conjecture B is known, detailed in [4, Example 23]. Cer-
tain analogues of Conjecture B have also been considered in [27, 36]. For evidence towards
the Generalized Greenberg’s Conjecture (both theoretical and computational) see [63, Re-
mark 1.3], as well as [41, 38, 51, 47, 61, 16]. As per the knowledge of the authors, most
results in this latter direction require the crucial hypothesis that p does not divide the class
number of the number field. One exception is the result of R. Sharifi and W. McCallum,
where the conjecture for Q(μp) is proven under certain assumptions on a cup-product (see
[39, Corollary 10.5]); another is of Sharifi [61, Theorem 1.3], where computational evidence
for the Generalized Greenberg’s Conjecture is provided when F = Q(μp) and p < 1000 is an
irregular prime. Our approach suggests a new line of attack for the Generalized Greenberg’s
Conjecture even in the case when p divides the class number of the base field.

The paper consists of five sections. Section 2 is preliminary in nature, wherein we re-
call the precise assertions of Conjecture A, Conjecture B, and the Generalized Greenberg’s
Conjecture and we introduce the main objects of study. In Section 3, new evidence for
Conjecture A is provided by proving the triviality of the fine Selmer group over the cyclo-
tomic extension. Some simple cases of Conjecture B are proven in Section 4. In Section 5
the relation between Conjecture B for CM elliptic curves and the Generalized Greenberg’s
Conjecture is clarified.

2. Preliminaries

2. Preliminaries
Throughout this article, p denotes an odd prime number. For an abelian group M and a

positive integer n, write Mpn for the subgroup of elements of M annihilated by pn. Put

Mp∞ :=
⋃
n≥1

Mpn , Tp(M) := lim←−−Mpn

and, when M is a discrete p-primary (resp. compact pro-p) abelian group M, its Pontryagin
dual is defined as

M∨ = Homcont(M,Qp/Zp).

Given any p-adic analytic group G, its Iwasawa algebra is defined as

Λ(G) = lim←−−
U

Zp[G/U]

for U running through all open, normal subgroups of G. When G is compact and p-valued
in the sense of M. Lazard, Λ(G) is a noetherian Auslander regular ring (see [8, Proposi-
tion 6.2]). In the special case when G is abelian with no elements of order p, there is an
isomorphism

Λ(G) � Zp�T1, . . . , Td�

where d is the dimension of G as a p-adic analytic manifold. If M is a compact (resp. dis-
crete)Λ(G)-module then its Pontryagin dual is discrete (resp. compact). Given a finitely gen-
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erated Λ(G)-module M, its Krull dimension is defined as the Krull dimension of
Λ(G)/Ann(M) and it is denoted dim(M).

2.1.
2.1. Suppose that G is an abelian p-analytic group without elements of order p. A

finitely generated Λ(G)-module M is torsion (resp. pseudonull) if dim(M) ≤ dim
(
Λ(G)

)− 1
(resp. dim(M) ≤ dim

(
Λ(G)

) − 2). Equivalently (see [64, p. 273]), M is pseudonull if for
every prime ideal p such that

AnnΛ(G)(M) := {a ∈ Λ(G) : aM = 0} ⊆ p
we have ht(p) ≥ 2 (see [45, Definition 5.1.4]).

Let W (resp. M) be a discrete (resp. compact) G-module. The profinite cohomology
groups (resp. homology groups) of W (resp. M) are denoted Hi(G,W) (resp. Hi(G,M)). The
subgroup of elements of W fixed by G is denoted WG, and MG denotes the largest quotient
of M on which G acts trivially.

2.2.
2.2. For a number field F, denote by Fcyc its cyclotomic Zp-extension. Suppose that S =

S(F) is a finite set of primes of F containing the primes above p and the archimedean primes.
Let FS be the maximal extension of F unramified outside S and set GS(F) = Gal(FS/F). For
any (finite or infinite) extension /F contained in FS, denote by GS() the Galois group
Gal(FS/). Throughout the paper, the focus is on S-admissible p-adic Lie extensions /F,
in the following sense:

Definition 2.1. An S-admissible p-adic Lie extension is a Galois extension /F satisfy-
ing the following conditions:

• the group Gal (/F) is a pro-p, p-adic Lie group with no elements of order p;
• the field  contains the cyclotomic Zp-extension Fcyc;
• the field  is contained in FS.

Next, we record some conjectures pertaining to the modules associated with maximal
abelian unramified pro-p extension of admissible p-adic Lie extensions. The first conjecture
we mention was formulated by K. Iwasawa in [26, pp. 1–2] for the cyclotomic Zp-extension.

Iwasawa μ = 0 Conjecture. Let L(Fcyc) denote the maximal abelian unramified pro-p
extension of Fcyc and set

XFcyc
nr = Gal(L(Fcyc)/Fcyc).

Then, the μ-invariant associated with XFcyc
nr is trivial.

In [25, Theorem 5], Iwasawa proved that XFcyc
nr is a torsion Λ(Γ)-module; in view of this

result, the Iwasawa μ = 0 Conjecture is equivalent to saying that XFcyc
nr is finitely generated

over Zp. When F/Q is an abelian extension, the Iwasawa μ = 0 Conjecture is known to be
true by the work [14] by B. Ferrero and L. Washington.

Next, we mention a conjecture of Greenberg (see [20, Conjecture 3.5]) which is formu-
lated for certain abelian p-adic Lie extensions.

Generalized Greenberg’s Conjecture. Let F̃ denote the compositum of all Zp-
extensions of F and let L(F̃) denote the maximal abelian unramified pro-p extension of
F̃. Then Gal

(
L(F̃)/F̃

)
is a pseudonull module over the Iwasawa algebra Λ(Gal(F̃/F)) =
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Zp�Gal(F̃/F)�.

2.3.
2.3. Fix a number field F and an admissible extension /F. Write G/F for the compact,

pro-p, p-adic Lie group Gal(/F) and Λ(G/F) for the associated Iwasawa algebra. The
main objects of study will be modules over Λ(G/F) that arise in Iwasawa theory, such as
the Selmer group and the fine Selmer group. Let E be an elliptic curve defined over F.
Choose a set S = S(F) containing the primes above p, the primes of bad reduction of E/F,
and the archimedean primes. Write S ⊇ Sp ∪ Sbad ∪ S∞, where the notation Sp, Sbad, and S∞
are self-explanatory. For a finite extension L/F and a prime v of F, define

(1) Jv(L) =
⊕
w|v

H1 (Lw,E) (p), and Kv(L) =
⊕
w|v

H1
(
Lw,Ep∞

)
,

where the direct sum is taken over all primes w of L lying above v. Taking direct limits,
define

Jv() = lim−−→
L

Jv(L), and Kv() = lim−−→
L

Kv(L),

where L varies over finite sub-extensions of /F. Given any finite extension L/F contained
in , the p-primary Selmer group Sel (E/L) and the p-primary fine Selmer group R (E/L)
are defined by the exactness of the following sequences:

0 −→ Sel (E/L) −→ H1
(
GS(F),Ep∞

)
−→

⊕
v∈S(L)

Jv(L),

0 −→ R (E/L) −→ H1
(
GS (F) ,Ep∞

)
−→

⊕
v∈S(L)

Kv(L).

Moreover, by [11, Equation (58)] we can relate these groups as follows

(2) 0 −→ R (E/L) −→ Sel (E/L) −→
⊕
w∈Sp(L)

(
E (Lw) ⊗ Qp/Zp

)
.

Define Sel(E/) = lim−−→L
Sel(E/L) and R(E/) = lim−−→L

R(E/L). It can then be shown (see [9,
pp. 14–15] and [11, Equation (46)]) that

Sel (E/) � ker

⎛⎜⎜⎜⎜⎜⎜⎜⎝H1
(
GS () ,Ep∞

)
−→
⊕
v∈S

Jv()

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

R (E/) � ker

⎛⎜⎜⎜⎜⎜⎜⎜⎝H1
(
GS () ,Ep∞

)
−→
⊕
v∈S

Kv()

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Taking direct limits of (2), we obtain that

0 −→ R (E/) −→ Sel (E/) −→ lim−−→
L

⊕
w∈Sp(L)

(
E (Lw) ⊗ Qp/Zp

)
.

Finally, we set a notation for the Pontryagin dual of these groups:

(3) X(E/) := Sel (E/)∨ and Y(E/) := R (E/)∨ .
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These are compact Λ(G/F)-modules and it follows from (2) that Y(E/) is a quotient of
X(E/).

In this paper, we are interested in a certain class of S-admissible p-adic Lie extensions
generated by the p-primary torsion points of an elliptic curve. When the elliptic curve E/F
is clear from the context, we write

F∞ :=
⋃
n≥1

F(Epn).

It follows from the Weil pairing that F∞ contains Fcyc and the choice of S ensures that F∞ is
contained in FS. The Galois group Gal(F∞/F) has no p-torsion if p ≥ 5 (see, for example,
[22, Lemma 4.7]) and contains an open, normal, pro-p subgroup (see [13, Corollary 8.34]).
In fact, the extension F∞/F(Ep) is always pro-p and hence S-admissible. If E is an elliptic
curve with CM, and F contains the field of complex multiplication, then Gal(F∞/F) contains
an open subgroup which is abelian and isomorphic to Z2

p.

2.4.
2.4. Fix a number field F. In this section, we record the two conjectures formulated by

Coates and the third named author in [11] which will be studied in this paper.

Conjecture A ([11, Section 3]). Let E be an elliptic curve defined over F. ThenY(E/Fcyc)
is a finitely generated Zp-module.

This conjecture is closely related to the Iwasawa μ = 0 Conjecture. Their connection can
be made precise:

Theorem 2.2 ([11, Theorem 3.4]). Let E/F be an elliptic curve and suppose that
Gal(F∞/F) is pro-p. Then Conjecture A for E/F is equivalent to the Iwasawa μ = 0 Con-
jecture for F.

In [1, Theorems A,C], there are more examples for which Conjecture A holds.
The dimension theory for finitely generated modules over Iwasawa algebras allows fram-

ing an analogue of the Generalized Greenberg’s Conjecture in a more general setting. This
is Conjecture B and concerns the dual fine Selmer group over admissible p-adic Lie exten-
sions (not necessarily abelian) of dimension ≥ 2. It asserts that this module is smaller than
intuitively expected.

Conjecture B ([11, Section 4]). Let E/F be an elliptic curve and let /F be an S-
admissible p-adic Lie extension such that G/F = Gal(/F) has dimension strictly greater
than 1. Then Conjecture A holds for E/F and Y (E/) is a pseudonull Λ(G/F)-module.

2.5.
2.5. Fix a number field F and let T denote a finitely generated Zp-module, endowed with

a continuous action of GS(F), where S contains the primes above p, the archimedean primes,
and the primes v such that the inertia group of v does not act trivially on T . Note that if T
is the Tate module TpE of an elliptic curve E/F, then the inertia group of v acts trivially on
T for every prime v of good reduction. Fix an S-admissible extension /F. Define the i-th
Iwasawa cohomology group as the inverse limit

(4) 
i
S (T/) = lim←−−

L

Hi (GS(L), T
)
, for i = 0, 1, 2,

where L ranges over all finite extensions of F contained in  and the limit is taken with
respect to the corestriction maps. It is well-known that 0

S(T/) vanishes (see, for example,
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[11, Proposition 2.1]). In this article, we consider T = Zp(1) = lim←−− μpn or T = Tp(E) =
lim←−−n

Epn . Here Zp(1) denotes the Tate twist of Zp. We remark that the dual fine Selmer
group Zp(1) has also been studied under various guises in [57, 46]. The weak Leopoldt
conjecture is known to be true for the cyclotomic Zp-extension, see [45, Theorem 10.3.25].
In other words,

H2
(
GS(Fcyc),Qp/Zp

)
= 0.

Hence H2
(
GS(),Qp/Zp

)
vanishes (see [11, p. 815 (20)]). An argument identical to [11,

Lemma 3.1] but for the moduleQp/Zp, shows that this vanishing is equivalent to the fact that
2

S

(
Zp(1)/

)
is Λ(G/F)-torsion. Analogously, [11, Lemma 3.1] shows that

H2
(
GS(),Ep∞

)
= 0 if and only if 2

S

(
Tp(E)/

)
is Λ(G/F)-torsion, but the equivalent

of the weak Leopoldt conjecture is not known in the case of elliptic curves. When GS()
acts trivially on Ep∞ , then H2

(
GS(),Ep∞

)
= 0 (see for example [11, Lemma 2.4]).

The following notions will be useful in the reformulation of Conjecture B in Section 4.2.
For i ≥ 0 and T = Zp(1), choose S to be a finite set of places of F containing the primes
above p and the archimedean primes. For a finite extension L/F, let L[1/S] be the subring
of L consisting of elements that are integral at every finite place of L not lying over S, and
let Hi

ét denote étale cohomology. An equivalent definition of the i-th Iwasawa cohomology
group is the following (see [29, § 2.2 p. 552])

(5) 
i
S

(
Zp(1)/

)
= lim←−−

L

Hi
ét

(
L[1/S],Zp(1)

)
where L ranges over all finite extensions of F contained in  and the limit is taken with
respect to the corestriction maps. The dual fine Selmer group of Zp(1) was introduced in
[10] and is defined as Gal(M()/) where M() is the maximal abelian, pro-p unramified
extension of  such that all primes above p split completely. An equivalent definition has
been given in [29, §2.4, p. 554]. In particular,

(6) Y(Zp(1)/) = lim←−−
L

Pic (L[1/S])p∞ .

Moreover, there is an exact sequence (see for example, [10, p. 330 (2.6)])

0→ Y
(
Zp(1)/

)
→ 

2
S

(
Zp(1)/

)
→
⊕
v∈S()

Zp → Zp → 0

and an isomorphism (see [56, §I.6.1])

(7) R
(
Qp/Zp/

)
� Hom

(
Gal
(
M () /

)
,Qp/Zp

)
.

Since the dual fine Selmer group is independent of the choice of S, it is not included in the
notation.

3. Fine Selmer Groups in the Cyclotomic Extension

3. Fine Selmer Groups in the Cyclotomic Extension
The results in this section provide evidence for Conjecture A. First, we prove that for a

set of ordinary primes of positive density, the Selmer group is trivial over the cyclotomic
Zp-extension for rank 0 elliptic curves. Next, we provide evidence for Conjecture A for a
class of elliptic curves defined over p-rational number fields.
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3.1. Trivial Fine Selmer Groups in the Cyclotomic Tower. Throughout this section,
assume that E/Q is a rational elliptic curve. Fix a number field F and consider the base-
change E/F of the curve to F. Given a prime number p, by slight abuse of notation, we
denote by Fcyc/F the cyclotomic Zp-extension and by Γ = Gal

(
Fcyc/F

)
� Zp its Galois

group, without mention of the prime p, as it can be inferred by the context.
At a prime v in F, the reduction of E modulo v is denoted Ẽv; it is a curve over the residue

field κv. Following [37, Section 1(b)], a prime v | p is called anomalous if p divides
∣∣∣∣Ẽv(κv)∣∣∣∣.

In the remaining part of this section, we extend results of Greenberg [18, Proposition 5.1]
and C. Wuthrich [68, Section 9] to base fields other than Q. In Theorem 3.1 we provide
evidence for Conjecture A for elliptic curves over a general number field. We stress that
the prime p is not fixed in the remainder of this section and will vary over primes of good
reduction.

In the statement of the next theorem we denote by Fc the Galois closure of F/Q.

Theorem 3.1. Let E/F be the base-change of a rational elliptic curve E/Q. Suppose that
it has rank 0 over F and that the Shafarevich–Tate group of E/F is finite. When E has CM
by an order in an imaginary quadratic field K, assume further that Fc contains K. Then the
Selmer group Sel

(
E/Fcyc

)
is trivial for a set of prime numbers of density at least 1

[Fc:Q] . In
particular, Conjecture A holds for E/F at all such primes.

Proof. By assumption, the Selmer group over F is finite since both the Mordell–Weil and
the Shafarevich–Tate groups are finite. If we further know that p is a prime of good ordinary
reduction for E, it follows from Mazur’s Control Theorem that the cyclotomic p-primary
Selmer group Sel

(
E/Fcyc

)
is Λ(Γ)-cotorsion (see [19, Corollary 4.9]). In this setting, let

fE(T ) be a power series generating the characteristic ideal of X
(
E/Fcyc

)
. Since Sel(E/F)

is finite, fE(0) � 0. Denote by cv the local Tamagawa number at a prime v and by c(p)
v the

highest power of p dividing it. Then, [18, Theorem 4.1] asserts that

(8) fE(0) ∼
⎛⎜⎜⎜⎜⎜⎜⎜⎝∏
v bad

c(p)
v

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∏
v|p

∣∣∣∣Ẽv(κv)p

∣∣∣∣2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∣∣∣Sel(E/F)

∣∣∣ /∣∣∣E(F)p

∣∣∣2
where a ∼ b for a, b ∈ Q×p indicates that a, b have the same p-adic valuation.

For a prime number p, consider the following five properties:
(i) p is a prime of good ordinary reduction for E;

(ii) E has no non-trivial p-torsion points defined over F;
(iii) E/F has good ordinary reduction at all primes v | p and all these primes are non-

anomalous;
(iv) the p-primary part X(E/F)p∞ of the Shafarevich–Tate group is trivial;
(v) p does not divide the local Tamagawa number, i.e, c(p)

v = 1 for every prime v of bad
reduction.

Since E/F is assumed to have rank 0, the condition E(F)p = 0 implies that Sel(E/F) =
X(E/F)p∞ . It follows from (8) that for a prime number satisfying (i)–(v) above, fE(0) is a
unit.

When fE(0) is a unit, elementary properties of characteristic power series show that
X
(
E/Fcyc

)
(and hence Y

(
E/Fcyc

)
) is finite, (see notation introduced in (3)). Equivalently,
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both Sel
(
E/Fcyc

)
and R

(
E/Fcyc

)
are finite. When E(F)p = 0, [18, Proposition 4.14] im-

plies that X
(
E/Fcyc

)
has no non-trivial finite Λ(Γ)-submodules. In other words, X

(
E/Fcyc

)
is trivial, whenever it is finite. Thus, Y

(
E/Fcyc

)
is also trivial. Hence, Conjecture A holds

for E/F when E/F is an elliptic curve satisfying (i)–(v).
To complete the proof, we show that for E/F satisfying the assumptions of the theorem,

properties (i)–(v) hold for a set of prime numbers of density at least 1
[Fc:Q] .

When E/Q is an elliptic curve without CM, we know by [59, Théorème 20] that all primes
in Q outside a set of density 0 have good ordinary reduction. When E/F is an elliptic curve
with CM by an order in K, Deuring’s Criterion (see, for instance, [34, Chapter 13, §4, The-
orem 12]) asserts that the primes of ordinary reduction are those lying above rational primes
that split in K/Q and the density of such prime numbers equals 1/2 by the Chebotarev den-
sity theorem. Next, it follows from the celebrated result [40, Théorème] of L. Merel that for
all but finitely many prime numbers, we have E(F)p = 0. Assuming the finiteness of the
Shafarevich–Tate group, condition (iv) holds for all but finitely many prime numbers, and
the same is true for (v) since the local Tamagawa number cv is equal to 1 at the primes of
good reduction.

The analysis of (iii) requires more care. By definition, a prime v | p is anomalous when
av = 1+|κv|−

∣∣∣∣Ẽv(κv)∣∣∣∣ is congruent to 1 (mod p). Observe that by the Hasse bound,|av| ≤ 2
√|κv|.

Therefore, if v | p is a prime in F that splits completely, so that κv = Fp, then av ≡ 1 (mod p)
implies that av = 1 for p > 5. By the Chebotarev density theorem, the density of rational
primes that split completely in Fc is 1

[Fc:Q] . Therefore, at least 1
[Fc:Q] of the primes in Q

split in F, as well. By the previous discussion, the density of rational primes which split
completely in F and whose divisors are primes of good ordinary reduction for E/F is at
least 1

[Fc:Q] . Finally, since E is defined over Q, the Modularity Theorem guarantees that E
is associated with an eigencuspform of weight 2. This allows us to appeal to the work of
V. K. Murty [43]. We conclude from [43, pp. 288–289 or Theorem 5.1 and Remark 5.2]
that for E/Q, the set of prime numbers with the property that ap = 1 has density 0. Since
for all prime numbers p that split completely and for all v | p, we have av(E/F) = ap(E/Q),
we deduce that the set of prime numbers p such that av = 1 for at least one v | p is a set of
density 0. This completes the proof of the theorem. �

Remark 3.2.
(1) It should be clear from the proof that one can insist that at all primes dividing

the prime numbers in the set of positive density whose existence is stated in the
theorem, the reduction type is good and ordinary.

(2) The key difficulty in extending this result to elliptic curves defined over F is that we
rely on [43] to show that anomalous primes have density 0. Since these results are
proven for normalized weight 2 eigencuspforms, we need to invoke the Modularity
Theorem.

An analogous statement can be proven in the supersingular case as well.

Theorem 3.3. Let E/Q be an elliptic curve, and suppose that Sel(E/F) is finite. Then
Conjecture A holds for E/F for all but finitely many primes of supersingular reduction.
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Proof. For an elliptic curve E/F it is known that the Selmer group is notΛ(Γ)-cotorsion at
a prime p of supersingular reduction, see [9, p. 19]. However, there is a notion of ±-Selmer
groups2 when p > 3, denoted by Sel±

(
E/Fcyc

)
. In the setting of the theorem, and under the

additional hypothesis that p > 3 is an unramified prime in F, it is known that Sel±
(
E/Fcyc

)
are Λ(Γ)-cotorsion, see [30, first line of the proof of Corollary 3.15]. Therefore, in this
case, we can define a pair of signed characteristic power series f ±E (T ) for the Pontryagin
duals X(E/Fcyc)± of Sel±

(
E/Fcyc

)
. It follows from the definitions that the fine Selmer group

is a subgroup of the signed Selmer groups. To prove the theorem it thus suffices to show
that either of the signed Selmer groups is finite for all but finitely many primes of good
supersingular reduction as this will ensure that the fine Selmer group is also finite and its
corresponding μ and λ invariants vanish.

When Sel (E/F) is finite and p > 3 is an unramified prime in F, we know from [30,
Theorem 1.2] that

(9) f ±E (0) ∼ ∣∣∣Sel(E/F)
∣∣∣∏
v bad

c(p)
v .

If f ±E (0) ∼ 1, then it follows from the Structure Theorem that Sel±
(
E/Fcyc

)
are finite. To

complete the proof we show that f ±E (0) ∼ 1 for all but finitely many primes of good super-
singular reduction.

(i) Since F is fixed, there are only finitely many primes which can ramify in F. In
other words, (9) holds for all but finitely many primes.

(ii) By assumption, Sel(E/F) is finite. There are only finitely many primes which can
divide its order.

(iii) The local Tamagawa number cv is equal to 1 at the primes of good reduction. There-
fore, there are only finitely many primes which can divide

∏
v bad cv.

Therefore, as p varies over all supersingular primes of E, both signed Selmer groups
Sel±
(
E/Fcyc

)
are finite for all but finitely many such primes. Hence, R

(
E/Fcyc

)
is also

finite for such p. �

Remark 3.4. In fact, more is true. [30, Theorem 1.1 (or Theorem 3.14)] applies in the
setting of Theorem 3.3 and ensures that the X−(E/Fcyc) does not contain any non-trivial finite
index submodules. Therefore, if Sel−

(
E/Fcyc

)
is finite, it must be trivial. Since R

(
E/Fcyc

)
is a subgroup of Sel−

(
E/Fcyc

)
, it must be trivial as well. For the assertion that X(E/Fcyc)+

has no non-trivial finite index submodules, the additional hypothesis that p is completely
split in F is required.

Combining Theorems 3.1 and 3.3, the next result is immediate.

Corollary 3.5. Let E be CM rational elliptic curve and let E/F be its base-change to F.
Suppose that E/F has rank 0, that the Shafarevich–Tate group of E/F is finite, and that the
Galois closure Fc of F contains K. Then Conjecture A holds for E/F for a set of prime
numbers of density 1

2 +
1

[Fc:Q] .

2We avoid giving the precise definition of these Selmer groups because their definition is intricate and also
not relevant for the remainder of this paper. For a precise definition, we refer the reader to [32] or [30].
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Proof. By Deuring’s Criterion we know that 1/2 of the primes are supersingular and The-
orem 3.3 asserts that there is a contribution of density 1/2. But, there is also a contribution
from the primes of good ordinary reduction by Theorem 3.1. The corollary follows. �

Let us now turn to a special class of number fields, called p-rational number fields.

3.2. Conjecture A over p-Rational Number Fields. For the number field F and a fixed
prime p, choose S to be a finite set of primes of F containing the primes above p and the
archimedean primes. The weak Leopoldt conjecture for /F is the following assertion (see
for example [45, Theorem 10.3.22])

(10) H2
(
Gal (FS/) ,Qp/Zp

)
= 0.

It is known to hold for the cyclotomic Zp-extension Fcyc/F (see [45, Theorem 10.3.25]). If
(10) holds for a finite set S as above, it also holds for the set Σ = Sp ∪ S∞ (see [45, Theo-
rem 11.3.2]). Therefore, the weak Leopoldt Conjecture is independent of the choice of S,
when S contains Σ. Henceforth, fix S = Σ. An equivalent formulation of the Iwasawa μ = 0
Conjecture for F is the assertion that Σ

(
Fcyc

)
= Gal

(
FΣ(p)/Fcyc

)
is a free pro-p group (see

[45, Theorem 11.3.7]). Moreover, a pro-p group G is free if and only if its p-cohomological
dimension cdp(G) is less or equal to 1 (see [45, Corollary 3.5.17]). Combining these re-
sults with [60, Chapter I, Section 4, Proposition 21], one obtains the following equivalent
formulation:

(11) the Iwasawa μ = 0 Conjecture for F is true ⇐⇒ H2
(
Σ

(
Fcyc

)
,Z/pZ

)
= 0.

To state the results in this section, we recall the notion of a special class of number fields,
called p-rational, which were introduced in [42]. We refer the reader to [17, Theorem IV.3.5
and Definition IV.3.4.4] for a detailed discussion.

Definition 3.6. Denote by FSp the maximal extension of F unramified outside Sp and let
FSp(p)/F be its maximal pro-p sub-extension. Set Sp(F) = Gal

(
FSp(p)/F

)
. If Sp(F) is

free pro-p, then F is called p-rational.

Some examples of p-rational fields include:
(i) the field Q of rational numbers;

(ii) imaginary quadratic fields such that p does not divide the class number (see [21,
Proposition 4.1.1]);

(iii) cyclotomic fields Q(μpn), where p is a regular prime and n ≥ 1 (combine [17,
Example II.7.8.1.1] with [67, Proposition 13.22]);

(iv) more generally, number fields F containing μp with the property that #Sp(F) = 1
and such that p does not divide the class number of F (see [17, Theorem 3.5-(iii)]).

p-rational number fields have been studied by Greenberg in [21], where he explains heuristic
reasons to believe that a number field F should be p-rational for all primes outside a set of
density 0 (see [21, §7.4.4]). In [3, Table 4.1], R. Barbulescu and J. Ray provide examples of
non-abelian p-rational number fields.

The following result is easily deduced from the aforementioned results in Galois coho-
mology. A proof is included for the sake of completeness.
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Theorem 3.7. Let F be a p-rational number field. Then the following assertions hold.

(i) The Iwasawa μ = 0 Conjecture holds for F.
(ii) Suppose that F contains μp and that E/F is an elliptic curve such that E(F)p � 0.

Then Conjecture A holds for E/F.

Proof.
(i) Since p � 2, we can replace Sp by Σ in the definition of p-rational fields. This is

because the archimedean primes are unramified in FSp(p)/F when p is odd. By def-
inition, if F is p-rational, Σ(F) = Gal

(
FΣ(p)/F

)
has p-cohomological dimension

at most 1. Hence

H2 (
Σ(F),Z/pZ

)
= 0.

Since Σ(Fcyc) = Gal(FΣ(p)/Fcyc) is a closed normal subgroup of Σ(F), it follows
from [45, Proposition 3.3.5] that

cdp

(
Σ(Fcyc)

)
≤ cdp

(
Σ(F)

) ≤ 1.

Thus H2(Σ(Fcyc),Z/pZ) = 0, and the result follows from (11).
(ii) Since F ⊇ μp and E(F)p � 0 by assumption, the Weil pairing ensures that F(Ep)/F

is either trivial or of degree p. Thus, F(Ep∞)/F is pro-p. The theorem follows from
the first point together with Theorem 2.2. �

4. Conjecture B for Elliptic Curves with CM: Special Cases

4. Conjecture B for Elliptic Curves with CM: Special Cases
In this section, we provide evidence for Conjecture B. First, in Section 4.1 we provide

sufficient conditions for Conjecture B to hold when p is a prime of good ordinary reduction,
see Theorem 4.6. In Section 4.2 we give a different formulation of Conjecture B for CM
elliptic curves and prove cases of the conjecture when p is a prime of good supersingular
reduction. We start with a lemma about good reduction of CM elliptic curves that can be
found extracted from [55, proof of Theorem 5.7-(i)].

Lemma 4.1. Let F be a number field and let E/F be an elliptic curve with CM by an
order inside the ring of integers K of an imaginary quadratic field K. Let p be an odd
prime number and suppose that the following hypotheses hold:

(i) E has good reduction at all primes above p.
(ii) The Galois group G = Gal(F∞/F) is isomorphic to Z2

p, where F∞ denotes F(Ep∞).
Then E has good reduction everywhere over F.

Proof. It follows from the theory of complex multiplication that F contains the Hilbert
class field K′ of K. Since the extension F∞/F is a p-extension and [F(Ep) : F] is prime-to-p,
it follows that F = F(Ep). Therefore, K′(Ep) ⊆ F.

Since all primes above p are of good reduction, we only need to check that at primes
away from p, the curve E has good reduction. This follows from the criterion of Néron–
Ogg–Shafarevich, because every such prime is unramified in the Z2

p-extension F∞/F. �
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4.1.
4.1. Fix a number field F. We will work in the following setting.

Ass 1

(i) p � 2, 3 is a fixed prime which splits in an imaginary quadratic field K;
(ii) E is an elliptic curve defined over F with CM by K , and K is contained

in F;
(iii) E has good reduction at primes above p;
(iv) the Galois group G = Gal(F∞/F) is isomorphic to Z2

p, where F∞ denotes
F(Ep∞).

In the setting of Ass 1, write H = Gal(F∞/Fcyc), and fix a finite set S containing Sp ∪ S∞.
Note that Ass 1 ensures that E has good ordinary reduction at p, see [34, Chapter 13

Theorem 12 (Deuring’s Criterion)]. Observe that given any p-adic Lie group  and a finitely
generated Λ()-module M, the group M := H0 (,M) is finitely generated as a Zp-module.

Lemma 4.2. Suppose that Ass 1 holds. Then, the following map of Λ(H)-modules is a
pseudo-isomorphism, i. e. it has a finite kernel and cokernel,

Y (E/F∞)H → Y
(
E/Fcyc

)
.

Proof. Let L be a finite extension of F contained in FS. For each v ∈ S, write Wv(L) =⊕
w|vE(Lw) ⊗ Qp/Zp. We have the maps

rcyc : Sel(E/Fcyc) −→
⊕
v|p

Wv(Fcyc)

and

r∞ : Sel(E/F∞) −→
⊕
v|p

Wv(F∞)

where Wv(Fcyc) (resp. Wv(F∞)) is the direct limit of Wv(L) with respect to the restriction
map as L ranges over all finite extensions of F contained in Fcyc (resp. F∞). Write C(Fcyc)
(resp. C(F∞)) for the image of rcyc (resp. r∞). Consider the following diagram

Note that β is an isomorphism (see [52, Lemme 1.1(i) and Lemme 1.3]). Therefore ker(β)
and coker(β) are trivial; hence ker(α) = 0. Further, observe that there is an inclusion

ker γ ⊆ ker

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⊕
v|p

Kv
(
Fcyc

) δv−→ Kv (F∞)H

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Now, observe that ⊕

v|p
ker(δv) =

⊕
v|p

H1
(
Hv,E(F∞,v)p∞

)
.

This latter object is known to be finite by using an argument identical to [11, proof of
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Lemma 4.2]. Therefore, by the snake lemma, coker(α) must be finite. �

Remark 4.3. Another way to prove this lemma was pointed out to us by the referee.
Consider the fundamental diagram

The map β is the restriction map; it is surjective and ker(β) = H1
(
H,E(F∞)p∞

)
. Similarly,

ker(γ) =
⊕
v∈Sp

H1
(
Hv,E(F∞,v)p∞

)
. To show that ker(γ) is finite, we use an argument similar

to [11, proof of Lemma 4.2]. First, recall a result of H. Imai [24, Theorem] which asserts
that E(Fcyc,v)p∞ is finite. Note that Hv � Zp and E(F∞,v)∨p∞ is a torsion Λ(Hv)-module (since
it is in fact finitely generated over Zp). It follows that H1

(
Hv,E(F∞,v)p∞

)
is also finite. In

fact, H1
(
Hv,E(F∞,v)p∞

)
= 0 which can be proven in the same way as [12, Lemma 5.4] using

the fact that Hv has p-cohomological dimension 1. Furthermore, since E(Fcyc)p∞ is finite
by a result of K. Ribet [54, Theorem 1], the global version of the above argument ensures
that ker(β) is also finite, see also [11, pp. 834–835]. Applying the snake lemma, the lemma
follows.

Since E is an elliptic curve with CM, both G and H are abelian. Under the assumption
that G � Z2

p, we further know that Λ(H) � Zp�T�. We now state an equivalent condition for
a Λ(G)-module to be pseudonull.

Proposition 4.4. Let M be a finitely generated Λ(G)-module which is also finitely gener-
ated as a Λ(H)-module. Then the module M is Λ(G)-torsion. Further, M is Λ(H)-torsion if
and only if it is Λ(G)-pseudonull.

Proof. Note that G � H × Γ where Γ � Zp. The first assertion follows from the fact
that Λ(G) is not finitely generated over Λ(H). The second assertion is a special case of [65,
Proposition 5.4]. �

Lemma 4.5. Let M be a finitely generated Λ(G)-module which is also finitely generated
over Λ(H). If MH is finite, then M is a pseudonull Λ(G)-module.

Proof. We are grateful to the referee for suggesting the following proof, which is simpler
than the one we had in a first version of our manuscript. Since H � Zp, it follows from the
structure theory of Λ(H)-modules that whenever MH is finite, then M is torsion over Λ(H).
The conclusion of the lemma is now immediate from Proposition 4.4. �

The main theorem of this section is the following.

Theorem 4.6. Suppose that Ass 1 holds. If Y(E/Fcyc) is finite, then Conjecture B holds
for (E, F∞).

Proof. By Lemma 4.2, if Y(E/Fcyc) is finite, then so is Y (E/F∞)H . The theorem follows
from Lemma 4.5. �
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Remark 4.7. We point out that for a given prime p, we cannot conclude that Conjecture B
holds for (E, F∞) for a rank 0 elliptic curve E/F with CM by combining Theorems 3.1 and
4.6. This is because, in the proof of Theorem 3.1 it was required that the elliptic curve does
not admit any non-trivial p-torsion point over F. However, in proving Theorem 4.6, we
assume that F∞/F is a pro-p extension; hence F must contain non-trivial p-torsion points.

Another case where we can show Conjecture B is the following.

Proposition 4.8. Suppose that Ass 1 holds. Further assume that X(E/Fcyc) is a finitely
generated Zp-module of Zp-rank 2 and that E(F∞) has a point of infinite order. Then Con-
jecture B holds for (E, F∞).

Proof. By Ass 1, we know that E/F has good reduction everywhere. Next, it follows
from [23, Theorem 2.8] that

rankΛ(H) X(E/F∞) = rankZp X(E/Fcyc).

We explain this briefly. To apply [23, Theorem 2.8] one must assume that Conjecture 2.5
ibid. holds. As mentioned on p. 649 ibid., this conjecture is equivalent to Conjecture 2.6 ibid.
when all primes above p have good ordinary reduction. This conjecture predicts that
X(E/Fcyc) is Λ(Γ)-torsion and our hypothesis that X(E/Fcyc) is a finitely generated Zp-
module accounts for it. For the final assumption in Theorem 2.8 ibid, the inclusion μp ⊆ F
is ensured by the Weil pairing.

It is shown in [11, Theorem 4.5-(ii)] that

rankΛ(H)Y(E/F∞) ≤ rankΛ(H) X(E/F∞) − 2,

and our assumption, combined with (4.1), implies that rankΛ(H)Y(E/F∞) = 0, showing that
Y(E/F∞) is Λ(GF∞/F)-pseudonull. �

Remark 4.9. We are grateful to the referee for the following observation. In [11, Theo-
rem 4.5-(i)] it is shown that if rankΛ(H) X(E/F∞) is odd, then

rankΛ(H)Y(E/F∞) ≤ rankΛ(H) X(E/F∞) − 1.

Since X(E/Fcyc) is a finitely generated Zp-module, if rankZp X(E/Fcyc) = 1, it would follow
that Y(E/F∞) is Λ(GF∞/F)-pseudonull. Unfortunately, though, one can show that under our
assumptions rankΛ(H) X(E/F∞) is always even, and therefore the above argument cannot be
used to show Conjecture B in more cases. The argument forcing rankΛ(H) X(E/F∞) to be
even comes from CM theory: indeed, by functoriality, the Λ(H)-module X(E/F∞) comes
endowed with a structure of an K-module, and therefore it is ultimately a Λ(H) ⊗ K-
module. For brevity, denote Λ(H) ⊗ K by Λ̃(H), and set (H) = Frac(Λ(H)), ̃(H) =
Frac(Λ̃(H)). Clearly, Λ̃(H) is a finite extension of Λ(H) of rank 2: in particular, it is integral
so that ̃(H) = Λ̃(H) ⊗Λ(H) (H) and dim(H) ̃(H) = 2. Now, by definition,

2 · rankΛ̃(H) X(E/F∞) = 2 · dim
̃(H)

(
X(E/F∞) ⊗Λ̃(H) ̃(H)

)
= 2 · dim

̃(H)

(
X(E/F∞) ⊗Λ̃(H) Λ̃(H) ⊗Λ(H) (H)

)
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= 2 · dim
̃(H)

(
X(E/F∞) ⊗Λ(H) (H)

)
= dim(H)

(
X(E/F∞) ⊗Λ(H) (H)

)
= rankΛ(H) X(E/F∞),

showing that rankΛ(H) X(E/F∞) is indeed even.

4.2. Reformulation of Conjecture B. Let E/F be an elliptic curve, and let  be an S-
admissible p-adic Lie extension containing the trivializing extension F∞. Throughout this
section we suppose that Conjecture A holds for E/F. Since GS() acts trivially on Ep∞ ,
Conjecture B for (E,) has an equivalent formulation in terms of the pseudonullity of the
Galois group Gal(M()/), where M() is the maximal unramified abelian pro-p extension
of  such that all primes above p in  split completely.

Reformulation (see [11, p. 827]). Let E/F be an elliptic curve, and let  be an S-
admissible, p-adic Lie extension over F such that GS () acts trivially on Ep∞ . Then
Y
(
Zp(1)/

)
is Λ(G/F)-pseudonull.

The next result asserts that for an S-admissible p-adic Lie extension /F containing F∞,
the Λ(G/F)-pseudonullity of the Iwasawa module X

nr is equivalent to the pseudonullity of a
certain quotient module. (The notation X

nr was introduced at the beginning of this section).
This result is well-known to experts and follows from results available in the literature, see
for example [66, Theorem 4.9]. For the convenience of the reader, a proof is provided here
purely relying on techniques that are more germane to our paper.

Theorem 4.10. Let E/F be an elliptic curve with CM by an order in an imaginary qua-
dratic field K such that K ⊆ F and suppose that Gal(F∞/F) � Z2

p. Let /F be an abelian
S-admissible p-adic Lie extension containing F∞. Then, the following statements are equiv-
alent

(a) The Iwasawa μ = 0 Conjecture is true for F and X
nr is Λ(G/F)-pseudonull.

(b) Conjecture B holds for (E,).
(c) The Iwasawa μ = 0 Conjecture is true for F andY(Zp(1)/) isΛ(G/F)-pseudonull.

Proof. Since E/F has CM by the imaginary quadratic field K contained in F and F∞/F is
a Z2

p-extension, it follows that F contains K′(Ep) where K′ is the Hilbert class field of K (see
Lemma 4.1). Moreover, since /F is an abelian extension containing F∞ and, by definition
of being admissible, it contains no element of order p, it must be a Zd

p-extension for some
d ≥ 2. It follows that the only primes that can ramify in this extension are the primes above
p and therefore we can assume that S = Sp ∪ S∞.

Equivalence of (a) and of (c): We need to show that

Y
(
Zp(1)/

)
is Λ(G/F)-pseudonull ⇐⇒ X

nr is Λ(G/F)-pseudonull.

Write X
cs to denote the Galois group Gal

(
M()/

)
. It is known by the work of U. Jannsen

(see for example [66, Proposition 4.7-(ii)]) that there is an exact sequence⊕
v∈Scs∪Sram

IndG/F,v

G/F

(
Zp

)
−→ X

nr −→ X
cs −→ 0.
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Here, Scs denotes the set of non-archimedean primes in S which are completely split in /F
and Sram denotes the set of non-archimedean primes in S which are ramified in /F. Note
that in our setting Scs = ∅ because every prime above p is finitely decomposed in Fcyc/F,
and Sram = Sp. Since the base field F contains μp it follows from (7) that

X
cs = Gal

(
M()/

) � Y (Zp(1)/
)
.

Therefore, to complete the proof of the equivalence it is enough to show that X
nr and X

cs are
pseudo-isomorphic. In other words, it suffices to prove that⊕

v∈Sp

Zp�G/F� ⊗Zp�G/F,v� Zp =
⊕
v∈Sp

IndG/F,v

G/F

(
Zp

)
is a Λ(G/F)-pseudonull module. We know from [35, Théorème 3.2] (observe that since
F contains K′(Ep), condition (i) ibid. is satisfied, by the Weil pairing) that for all v | p,
the decomposition group at v inside G/F has dimension at least 2. It follows that⊕
v∈Sp

IndG/F,v

G/F

(
Zp

)
is Λ(G/F,v)-pseudonull. This completes the proof of the equivalence.

Equivalence of (b) and (c): It follows from the discussion in [11, p. 825] that

(12) Y (E/) �
(
Y(Zp(1)/) ⊗ E∨p∞

)
.

Here G/F acts diagonally on the tensor product and E∨p∞ is a Zp-module with a G/F-action
induced by the GS(F)-action. This latter action makes sense because F∞ is the trivializing
extension of Ep∞ . In this setting, Conjecture A for E/F is equivalent to the Iwasawa μ = 0
Conjecture for F (see Theorem 2.2). Therefore, using [66, Proposition 2.12] and [50, Propo-
sition 3.4], the isomorphism in (12) yields that Y (E/) is Λ(G/F)-pseudonull if and only
if Y
(
Zp(1)/

)
is Λ(G/F)-pseudonull. �

Remark 4.11. In the above proof, the assumption that E has CM is not really used. We
detail in §4.3 the proof in the general case.

We now prove a special case of Conjecture B in the supersingular reduction setting and
provide applications pertaining to universal norms. For the remainder of this section, we
work in the following setting:

Ass 2

(i) K is an imaginary quadratic field of class number 1;
(ii) E is an elliptic curve defined over K, and with CM by K;

(iii) p is an odd prime of good supersingular reduction for E;
(iv) p does not divide the order of the Sp-class group of F = K(Ep);

Remark 4.12. It follows from Ass 2-(ii) that the Galois group G = Gal(F∞/F) is isomor-
phic to Z2

p and we write H = Gal(F∞/Fcyc).

Recall that the i-th Iwasawa cohomology group over F∞ is defined, when S = Sp, as


i
Sp

(
Zp(1)/F∞

)
= lim←−−

L

Hi
ét

(
L[1/p],Zp(1)

)
,

where L ranges over all finite extensions of F contained in F∞.
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Proposition 4.13. Suppose that Ass 2 holds. Then 2
Sp

(
Zp(1)/F∞

)
= 0. In particular,

Conjecture B holds for (E, F∞) and μp∞(F) is a universal norm from F∞.

Proof. We are grateful to the referee for suggesting the following proof, which is simpler
than the one we had in a first version of our manuscript. Using the Poitou–Tate sequence
over F as in [29, p. 553 §2.4-(1)], we have that

(13) 0 −→ ClSp(F)p∞ −→ 
2
Sp

(
Zp(1)/F

)
−→

⊕
v∈Sp(F)

Zp −→ Zp −→ 0.

Since p is a prime of supersingular reduction for E/K, we know that there exists a unique
prime above p in K. Moreover, p is totally ramified in the extension Gal(F∞/K), see for
example [53, Section 1]. In particular, there is a unique prime above p in F, i. e.

∣∣∣Sp

∣∣∣ = 1.
Combining this with the assumption that the p-Sylow subgroup of the Sp-class group is triv-
ial yields, through (13), that 2

Sp

(
Zp(1)/F

)
= 0. By Nekovar’s spectral sequence (see [44,

Corollary 8.4.8.4-(ii)]), we obtain that


2
Sp

(
Zp(1)/F∞

)
G
� 

2
Sp

(
Zp(1)/F

)
= 0.

Now, employing Nakayama’s Lemma we conclude that 2
Sp

(
Zp(1)/F∞

)
= 0.

Next, consider the exact sequence (see, for example, [10, p. 330 (2.6)])

0 −→ Y
(
Zp(1)/F∞

)
−→ 

2
Sp

(
Zp(1)/F∞

)
−→

⊕
v∈Sp(F∞)

Zp −→ Zp −→ 0.

It follows from the first part of the proof thatY
(
Zp(1)/F∞

)
= 0. Moreover, the same descent

argument as above using Nekovar’s spectral sequence shows that Y
(
Zp(1)/Fcyc

)
= XFcyc

cs =

0: in particular, μ(XFcyc
cs ) = 0. By [45, Corollary 11.3.16], we know that μ(XFcyc

cs ) = μ(XFcyc
nr ) =

0. Therefore, we obtain that the Iwasawa μ = 0 Conjecture holds for F, and we can apply
Theorem 4.10, showing that Conjecture B holds.

To prove the final assertion, consider the exact sequence (see [10, p. 335 (3.26)])

0 −→ H2

(
G,2

Sp

(
Zp(1)/F∞

))
−→ 

1
Sp

(
Zp(1)/F∞

)
G

τF∞/F−−−−→ 
1
Sp

(
Zp(1)/F

)
−→ H1

(
G,2

Sp

(
Zp(1)/F∞

))
−→ 0.

We have shown above that 2
Sp

(
Zp(1)/F∞

)
= 0; hence, τF∞/F is an isomorphism. It follows

that μp∞(F) is a universal norm from F∞ (see [10, Corollary 3.27] for details). �

The following corollary provides asymptotics for the growth of the p-primary torsion of
the fine Selmer group at each layer of the Z2

p-extension.

Corollary 4.14. Suppose that Ass 1 holds and that either

(i) Y(E/Fcyc) is finite; or
(ii) X(E/Fcyc) is a finitely generated Zp-module of Zp-rank equal to 2 and E(F∞) has a

point of infinite order.

Then

ordp

(
R
(
E/F(Epn)

)∨
[p∞]
)
= O
(
pn) .
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If, moreover, Ass 2 holds, then ordp

(
R
(
E/F(Epn)

)∨
[p∞]
)
= 0.

Proof. Conjecture A holds by assumption in each case and Conjecture B holds by The-
orem 4.6 in case (i) and by Proposition 4.8 in case (ii) The first claim follows from [33,
Corollary 6.14].

When Ass 2 holds, a better estimate can be obtained, and we thank the referee for this
observation. Since F∞ is the trivializing extension, we have


2
Sp

(TpE/F∞) � 
2
Sp

(Zp(1)/F∞) ⊗ TpE

and thus Proposition 4.13 implies that 2
Sp

(TpE/F∞) = 0. By Nekovar’s spectral sequence,
we also know that


2
Sp

(
TpE/F(Epn)

)
� 

2
Sp

(TpE/F∞)Gn = 0.

Since Y
(
E/F(Epn)

)
is contained in 2

Sp

(
TpE/F(Epn)

)
, the result follows. �

4.3. The noncommutative setting. Even though this paper largely treats the commuta-
tive case, an analogue of Theorem 4.10 is valid even in the noncommutative setting. We
would like to thank the referee for pointing this out, and for insisting that the general case be
included. Let S be a finite set of primes of F containing the primes above p , the archimedean
primes and the primes of bad reduction for E.

Theorem 4.15. Let E/F be an elliptic curve without complex multiplication and p ≥ 5 be
a rational prime. Assume that F contains the p-torsion points of E. Suppose that the elliptic
curve has either potential ordinary or potential multiplicative reduction at all the primes
v | p, that F contains the p-torsion points of E, and let F∞ = F(Ep∞)/F be the trivializing
extension. Write S = Sp ∪ Sbad ∪ S∞ and set G = Gal(F∞/F),H = Gal(F∞/Fcyc). Then the
following assertions are equivalent:

(a) The Iwasawa μ = 0 Conjecture is true for F and XF∞
nr is Λ(G)-pseudonull.

(b) Conjecture B holds for (E, F∞).
(c) The Iwasawa μ = 0 Conjecture is true for F and Y(Zp(1)/F∞) is Λ(G)-pseudonull.

Proof. As in the proof of Theorem 4.10, the equivalence between (a) and of (c) will follow
once we prove that XF∞

nr and XF∞
cs are pseudo-isomorphic. We know from [7, Lemma 2.8]

that GF∞/F,v has dimension at least 2 at primes v ∈ S; here we have used the fact that when v
does not divide p, it is not possible in our setting that E has bad but potential good reduction
(see for example, [50, the paragraph after Theorem 5.2]). It follows that

⊕
v∈S IndGF∞/F,v

GF∞/F

(
Zp

)
is Λ(GF∞/F,v)-pseudonull.

We next prove the implication (c)⇒ (b): assume that assertion (c) holds. Then, by [11,
Lemma 3.8, p. 825], there is an isomorphism

Y(E/F∞) � Y
(
Zp(1)/F∞

)
⊗ E∨p∞ ,

where the tensor product is over Zp, and the action of Gal(F(Ep∞)/F) on the right hand-
side is the diagonal action. The hypothesis that the Iwasawa μ = 0 Conjecture holds for F
assures us of the finite generation of Y

(
Zp(1)/F∞

)
as a Λ(H)-module. Hence, to show that

assertion (b) holds, it suffices to prove that Y(E/F∞) is a torsion Λ(H)-module.
The pseudonullity of Y(E/F∞) as a Λ(G)-module is equivalent to Y(E/F∞) being torsion
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as a Λ(H)-module. By our hypothesis that Y
(
Zp(1)/F∞

)
is pseudonull, it follows that it

is also finitely generated and torsion as a Λ(H)-module. Thus there exists a finite, free
Λ(H)-resolution of Y

(
Zp(1)/F∞

)
such that the alternating sum of the Λ(H)-ranks of the

free modules in the resolution is 0. Tensoring such a resolution over Zp with E∨p∞ preserves
the exactness and gives a finite, free Λ(H)-resolution of Y

(
Zp(1)/F∞

)
⊗ E∨p∞ . Further, the

alternating sum of the Λ(H)-ranks of the free modules is still 0, whence Y
(
Zp(1)/F∞

)
⊗E∨p∞

is Λ(H)-torsion. This proves assertion (b). Note that this argument also proves the equality
of the Λ(H)-ranks of Y(Zp(1)/F∞) and Y(E/F∞).

It remains to prove the implication (b) ⇒ (c). Suppose that Conjecture B is true for
(E, F∞). Then Conjecture A is true and the dual fine Selmer group Y(E/Fcyc) of E over the
cyclotomic Zp-extension is a finitely generated Zp-module. The vanishing of the Iwasawa
μ-invariant for Fcyc is a consequence of [11, Theorem 3.4]. Now suppose that Y(Zp(1)/F∞)
is not Λ(H)-torsion, and hence has positive rank as a Λ(H)-module. By the remark above
on the equality of Λ(H)-ranks, this implies that Y(E/F∞) also has positive Λ(H)-rank, con-
tradicting the hypothesis. This completes the proof of the equivalence. �

5. Conjecture B and the Generalized Greenberg’s Conjecture

5. Conjecture B and the Generalized Greenberg’s Conjecture
The aim of this section is to clarify the connection between the Generalized Greenberg’s

Conjecture and Conjecture B for CM elliptic curves. For the sake of brevity, we henceforth
refer to the Generalized Greenberg’s Conjecture as GGC.

Both conjectures pertain to the pseudonullity of certain Iwasawa modules. Even though
Conjecture B was proposed as a generalization of GGC, the precise formulation of this
connection is rather intricate. Using Theorem 4.10, we make precise in which sense Con-
jecture B for CM elliptic curves is a generalization of GGC (see Theorem 5.4).

Fix an imaginary quadratic field K and denote its Hilbert class field by K′. Given an
elliptic curve E/K′ with CM by an order in K, set

F = K′(Ep), F∞ = K′(Ep∞) = F(Ep∞),

G = Gal(F∞/F), ∞ = Gal(F∞/K), 
′
∞ = Gal(F∞/K′).

Note that G � Z2
p. Set K̃ (resp. K̃′, F̃) to be the compositum of all Zp-extensions of K

(resp. of K′, of F). Since the Leopoldt conjecture is true for imaginary quadratic fields,
K̃ is the unique Z2

p-extension of K. For the rest of this section, we make the following
assumption.

Ass 3
(i) p is an odd prime that is unramified in K;

(ii) the prime p is such that K′ ∩ K̃ = K.

By the theory of complex multiplication, ∞ = G×Δ and ′∞ = G×Δ′ where Δ � Gal(F/K)
(resp. Δ′ � Gal(F/K′)) is a finite abelian group. Recall from [58, Remark on p. IV-13] that
Δ′ is a Cartan subgroup of GL2(Fp) and hence it either has order p2 − 1 or (p − 1)2: in any
case, p �

∣∣∣Δ′∣∣∣.
Remark 5.1.

(1) In fact, it is forced by Ass 3-(i) that μp � K. This can be seen as follows: the
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only pair (p,K) for which μp ⊂ K is when p = 3 and K = Q(
√−3); but this

contradicts Ass 3-(i).
(2) We now discuss Ass 3-(ii) in a little more detail. This assumption is trivially sat-

isfied when p does not divide the class number of K. But observe that, in general,
K′ ∩ K̃ is contained in the anti-cyclotomic Zp-extension of K, denoted by Kac. For
a proof of this fact, see [15, Lemma 2.2]. Therefore, Ass 3-(ii) is equivalent to the
following condition:

(ii′) The prime p is such that K′ ∩ Kac = K.

To know more about non-trivial examples where this condition is satisfied, we refer
the reader to [6]. For a specific example, see Example 4 ibid. Moreover, Ass 3-(ii)
is closely related to the notion of p-rationality (see [6, p. 2133]) but we will not
discuss this point any further.

Set the notation K′∞ to denote the composite of the fields K′ and K̃. The theory of com-
plex multiplication guarantees that F∞ = FK̃ = FK′∞. Recall that F∞ is the trivializing
extension for the Galois representation associated to TpE and it is an S-admissible p-adic
Lie extension. We note that F∞ ⊆ F̃.

Denote by L(F̃) (resp. L(F∞)) the maximal abelian unramified pro-p-extension of F̃
(resp. of F∞). Denote by FS the maximal abelian pro-p extension of F̃ unramified out-
side S. Set the notation

(14) XF̃
nr = Gal

(
L(F̃)/F̃

)
, XF∞

nr = Gal
(
L(F∞)/F∞

)
, XF̃

S = Gal
(
FS/F̃

)
.

As in the previous sections, given any extension /F, we denote by M() the maximal
unramified abelian p-extension of  where all primes above p in  split completely; this
group is related to the fine Selmer group (see (7)). For most of the discussion,  will either
be F∞ or F̃. For convenience, the diagram of fields is drawn in Figure 1.

Recall the statement of GGC for F (the statement for K is analogous, by replacing
F, F̃,Λ(GF̃/F) by K, K̃,Λ(GK̃/K), respectively).

GGC. With notation as above, XF̃
nr is a pseudonull Λ(GF̃/F)-module.

The following results are required to relate GGC to the pseudonullity of the fine Selmer
group. The first lemma assures pseudonullity over a larger tower, once it holds for a proper
subextension.

Lemma 5.2 (Pseudonullity Lifting Lemma). Let n ≥ 3, let /Q be a finite Galois exten-
sion containing μp, and denote by ̃ the compositum of all Zp-extensions of  . Suppose that
Gal(̃/ ) � Zn

p and let  (d) � ̃ be such that Gal( (d)/ ) � Zd
p for some 2 ≤ d < n. If

X (d)

nr is Λ(G (d)/ )-pseudonull then GGC holds for ̃/ .

Proof. This lemma is a special case of [2, Theorem 12]. Since  contains μp, the technical
conditions in the mentioned theorem are satisfied by [35, Theorem 3.2] or [2, Remark 15].

�

The next result studies pseudonullity of Galois modules under base change.
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Fig. 1. The diagram of fields occurring in Theorem 5.4

Lemma 5.3 (Pseudonullity Shifting Down Lemma). Let  be a number field and let
 (d)/ be a Zd

p-extension. Suppose that 1/ is a finite extension and set  = 1 ·  (d). If
X

nr is a Λ(G/1 )-pseudonull module, then X (d)

nr is a Λ(G (d)/ )-pseudonull module.

Proof. For a proof, see [31, Theorem 3.1-(i)]. �

The purpose of the next result is to show that Conjecture B is indeed a generalization of
GGC. We resume the notation introduced at the beginning of this section.

Theorem 5.4. In the setting of Ass 3, suppose that there exists an elliptic curve E/K′

with CM by an order in K such that Conjecture B holds for (E, F∞). Then GGC holds for K.

Proof. Let E/K′ be an elliptic curve with CM by an order in K such that Conjecture B
holds for (E, F∞). Regarding it as being defined over F = K′(Ep), Theorem 4.10 shows that
XF∞

nr is Λ(GF∞/F)-pseudonull.
Applying Lemma 5.3 with  = K′, 1 = F,  (2) = K′∞, and  = F∞ = FK′∞, the

Λ(GF∞/F)-pseudonullity of XF∞
nr can be shifted down to Λ(GK′∞/K′)-pseudonullity of XK′∞

nr .
Therefore, we have shown that

Conjecture B for (E, F∞) =⇒ XK′∞
nr is Λ(GK′∞/K′)-pseudonull.

Another application of Lemma 5.3 with  = K, 1 = K′,  (2) = K̃, and  = K′∞ = K′K̃,
shows that Λ(GK′∞/K′)-pseudonullity of XK′∞

nr can be shifted down to Λ(GK̃/K)-pseudonullity

of XK̃
nr. This is GGC for K. �
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Corollary 5.5. With the same hypotheses of Theorem 5.4, GGC holds also for any num-
ber field L such that K′(μp) ⊆ L ⊆ F.

Proof. Applying Lemma 5.3 with  = L, 1 = F,  (2) = LK′∞, and  = F∞ = F (2), the
Λ(GF∞/F)-pseudonullity of XF∞

nr obtained in Theorem 4.10 can be shifted down toΛ(G (2)/ )-
pseudonullity of X (2)

nr . Therefore, we have shown that

Conjecture B for (E, F∞) =⇒ X (2)

nr is Λ(G (2)/L)-pseudonull.

As discussed in Remark 5.1-(1), μp � K, hence L � K and L admits at least two complex
embeddings. Letting L̃ denote the compositum of all Zp-extensions of L, [67, Theorem 13.4]
implies that Gal(L̃/L) � Zn

p for some n ≥ 3. Using Lemma 5.2 with  = L, pseudonullity of
X (2)

nr as a Λ(G (2)/L)-module implies GGC for L. �
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