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Abstract
We generalize Murai’s conjecture on an upper bound for the number of irreducible p-Brauer
characters in the principal block to an arbitrary block. We prove that the new conjecture has
an affirmative answer for tame blocks and blocks with cyclic defect groups. In addition we
confirm Murai’s conjecture for symmetric and alternating groups.

1. Introduction

Throughout the paper p is always a prime and G a finite group. Let |G|, denote the p’-part
of |G| and

Gy =1{919¢€G, gisa p'-element}

the set of p-regular elements in G. By IBr,(G) and IBr,(B) we denote the set of irreducible

p-Brauer characters of G, resp. of a p-block B of G with respect to a sufficiently large field

K of characteristic p. Moreover, by Cp we always denote the Cartan matrix of a p-block B.
Let [(B) = | IBr,(B)|, k(B) = |Irrc(B)| and let By be the principal p-block of G.

Gyl

In [14], Murai conjectured that always [(Bj) < T

As Maurai carried out in his paper, an affirmative answer has many interesting conse-
quences. For instance, Brauer’s conjecture k(B) < |D|, where D is the defect group of B,
holds for principal p-blocks ([14], Proposition 1.2). In particular, Brauer’s conjecture holds
true for any p-block of a p-solvable group ([14], Proposition 1.3).

Gyl

To be brief we put m(G) = m,(G) = e

. Note that p + m,(G), by ([6], Lemma 15.14).
Proposition 1.1. If P € Syl (G), then
m(G) = m(Ng(P)) £ 0 mod p.

Proof. We may assume that N = Ng(P) < G and proceed by induction on the order |G| of
G. Suppose that Z < Z(G) is a p-group. By ([14], Lemma 2.1), we have m(G) > m(G/Z).
On the other hand, a direct calculation shows that m(G/Z) > m(G). Hence m(G/Z) = m(G).
So we may assume that Z(G) is a p’-group.

Let {x; | i€ I} € P be a complete set of representatives of the conjugacy classes in G
consisting of p-elements. Then, by ([14], Formula (1.2.2)), we have
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0=Gl, = Yimgusm(Co ()

= m(G)+ Zlix;eZ(P) m(Cg (x;)) mod p.

Similarly, let {y iljelJ } C P be a complete set of representatives of the conjugacy classes
in N consisting of p-elements. Then

0= NI, = m(N) + S 1,70 m (Cv (y)) mod p.

An application of Burnside’s Lemma ([19], Lemma 10.20) shows that Z(N) is a p’-group
and that those x; and y; in Z(P) can actually be chosen to be the same. Thus

mG+ Y. m(CoGi)=mN)+ > m(Cy(x))mod p.

1£x,€Z(P) 1£x,€Z(P)

Note that
P < Cn(xi)) = NN Cg(xi) = Neg)(P)
Hence, by induction, we get
m(Cn(x;)) = m(Ncgx)(P)) = m(Cg(x;)) mod p,

from which the assertion follows. O

2. A generalization of Murai’s conjecture.
Let B be a p-block of G. For {81, p,, ..., 6} = IBr,(B) we put

1
Yij = Bi.Bj)° = Gl Z Bi(x0)B;(x7h.

xEGI,/

Note that I'g = (y;) is the inverse of the Cartan matrix Cp of B ([4], Chap. IV, Lemma 3.7).
If B = By is the principal block, then 8; = 15 will always denote the trivial Brauer character.

Lemma 2.1. We have y11|G|, = m(G).

Proof. This follows immediately by

1 Gl
=(lg,16)°" = —= lg(x) = —~.
Y11 G, 1l |G|x;p, G G|

ExawmpLE 2.2. Now let G = SL(2,5) and p = 2. Then the principal 2-block By of G has 3
irreducible Brauer characters, and

(see for instance ([6], Example 13.9)). For its inverse one easily computes
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O LI— Bl

o Bl—

-1 _
Cg, =| —

Hl—= = o0l

D=

Thus, by Lemma 2.1, we have
3
I(By) =3 = 3 8= Y1lGl = ma(G) = m(G).

Let p“® denote the Hilbert divisor of B € IBr,(G) (for the definition and facts on Hilbert

divisors we refer to [11]). If IBro(G) = {1 = B1,52,53}, then a(B;) = 3 and a(B;) = 2 for
i =2,3. Thus

1
72" = 5 4=2<Bo)

for i = 2,3. However, in general ygs - p*® < I(B) for a(B) < d, where d is the defect of B,
does not always hold true.

Note that, by the proof of ([11], Theorem 2.1 a)), we always have p®@yzs € N for
B € IBr,(G). Based on many examples we conjecture the following.

Conjecture 2.3. Let B be a p-block of defect d. Then
I(B) < pygs
for all B € 1Br,(B).
Conjecture 2.3 means that if By is the principal p-block, then
l[(Bo) < |Glpyn = my(G)

by Lemma 2.1. So this is Murai’s conjecture. Furthermore, by Example 2.2, we have
IGlay22 = 1Glyss =20 - 3 =4 > I(By) = 3.

QuEsTion 2.4. We may ask here the question: Is there always a 8 € IBr,(B) with ygg < 1?7
Suppose that 8 € IBr,(B) is liftable to y € Irr(B). Then

1 -
1=00x) =+ €] Z x(@x(9).

Since both parts are real and non-negative, we get ygg < 1. Thus, in this case (in particular,
if G is p-solvable or if B is principal), Conjecture 2.3 implies I(B) < |D|.

g p-singular

Remark 2.5. In general, the smallest value p?ygg is not always reached by a height zero
character 5. As an example the non-principal 2-block of Ag of defect 3 may serve. It has 3
irreducible Brauer characters, say 3; of degree 8,48 and 160 and of height 0, 1 resp. 2. The
corresponding Hilbert divisors are 8,4,2. One easily computes that 23)//;,.5,. =5,4,8.

We would like to mention here that Malle and Robinson conjectured in [12] the upper
bound

I(B) < p*®,
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where s(B) denotes the sectional p-rank of a defect group of B.

For lower bound of /(B), in [8] Holm and the second author asked the question whether
I(B) > "pch always holds true, where tr stands for the trace. In [16] Navarro and Sambale
presented as counterexamples the principal 2-block of Sz(32).5 and PSp,(4).4. However, for
p-solvable groups, we have indeed /(B) > trp#, since cgg < p? for e IBr,(B), by [7].

Proposition 2.6. Let G be a p-solvable group and let B be a p-block of G with defect d.
Then tr Cg = [(B)p? if and only if [(B) = 1.

Proof. The assertion is clear if /(B) = 1. Now suppose that /(B) > 1 and

Z Cpp = l(B)pd.

BeEIBr,(B)

This forces cgg = p¢ for all B, since cpg < p?. By ([11], Lemma 2.8), there exists 3 € IBr,(B)
such that ¢z < p® < p?, a contradiction. o

For the reader’s convenience we recall a result on positive definite symmetric matrices
which seems to be well known.

Lemma 2.7. Let A = (a;j)i<i,j<i be a positive definite symmetric matrix over the real
numbers of type (1,1). Then

detA < ﬁ a;;.

i=1

Proof. We may assume that / > 2. Let

A:(Atl U)
vooa

where v = (ay, az, . .., ag-1y)" and A; is of type (I — 1,/ — 1). Since A is positive definite,
A as a principal minor of A is positive definite as well. In particular, detA; > 0 and A; is
invertible. Hence

detA

-1
detA,; -det( E-Arv )

l)t a

E A7l
detA; - det !
et e(0 azz—v’Al‘lv)

(detAy)(ay — U[AIIU).

Now vtAl‘lv > 0, since A is positive definite. Thus detA < (det A;)ay and by an inductive

argument we obtain the assertion. |
Corollary 2.8. Let B be a p-block of G with Cartan matrix Cg = (c.p), where a,3 €

IBI'p(B) Then det CB < I—[ﬁEIBrI,(B) Cpp-

Proof. Since Cj is positive definite ([10], Lemma 2.3), we may apply Lemma 2.7. O
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Theorem 2.9. Let B be a p-block of defect d. Then tr Cgl > Z% with equality if and only

if (B) = 1.
Proof. Let C = Cp. The first statement follows by

pluct= > plyg> > 1=iB),

BeIBr,(B) BEIBr,(B)

since pdyﬁﬁ € N.
Clearly, if (B) = 1, then tr C~! = l%. For the converse, we write [ = [(B) and denote by

ph, ..., phthe elementary divisors of C, where d; < --- < d;_1 < d; (for the last inequality,
see ([4], Chap. IV, Theorem 4.16)). Thus det(C) = p® --- p%. As already mentioned, we

furthermore have pdy,gﬁ e N.
Suppose that tr C~! = %. Thus ygs = 1% forall 1 <i <L Note that C~! is also positive

definite. Thus, by Lemma 2.7, we get det(C~!) < (ﬁ)l . However, this is not possible unless
I =1, since det(C™') = ﬁ:l p% This finishes the proof. O

Observe that an affirmative answer of Conjecture 2.3 will provide a new lower bound for
-1
trCy.
Remark 2.10. If Conjecture 2.3 holds true, then tr Cz_;l > 1%)2, since pdyﬁﬁ € N for all
B € 1Br,(B).

Clearly, tr C;' > p(C3") where p(C5') denotes the Frobenius eigenvalue of C;'. Thus we
may ask whether
_ I(B)
p(Cgh) > —
B pd
which is equivalent to

u(CpIB) < p,

where u(Cp) is the smallest eigenvalue of Cz. Note that there are examples in which p(Cp) £
I(B)p? as shown in [16].

Exampies 2.11. a) Let p = 2 and G = PSL(2, 8) so that the inverse of the Cartan matrix
of the principal 2-block is

78 —1/4 —1/4 —1/4 —-1/2 -1/2 -1)2
~1/4 3/2 -1/2 -1/2 1 -1 0
~1/4 -1/2 3/2 -1/2 0 1 -1
—“1/4 —1/2 -1/2 3/2 -1 0 1
12 1 0o -1 2 0 0
12 -1 1 0 0 2 0
12 0 -1 1 0 0 2

Conjecture 2.3 leads to /(By) < 7 since y;; = %, 3/2 or 2. According to the Malle-Robinson
conjecture we only get [(By) < 8. Actually /(By) = 7.
b) Let G = A4 and p = 2. For the principal 2-block we have
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3
I(By) = 3 and py;; = 4 - =3

for all i. Thus the bound in Conjecture 2.3 is reached for all i. Note that the Malle-Robinson
conjecture only leads to I(By) < 4.

c) Let B be a p-block of defect d > 2 with cyclic defect group and suppose that the Brauer
tree is a star with exceptional vertex in the center. Let e = /(B) > 2 and m = #. For all i
we have in this case

P+ —>
e e e

d
p
yir® =(e—Dm+1=p’—m= Pz p,

since e,d > 2. Note that the sectional p-rank of a cyclic p-group is one. Thus the Malle-
Robinson conjecture is stronger than our Conjecture 2.3.

3. Relations between the Cartan matrix and its inverse

Recall that the Schur product of matrices, denoted by *, is defined as the componen-
twise multiplication, i.e., if A = (a;;) and B = (b;;), then A x B = (a;;b;;). Now let
Cp = (Cap)apeBr,(B) be the Cartan matrix of a p-block B with [ = [(B). To be brief we
put C = Cj in this section. Since C and C~! are positive definite, we get that C * C~! is
positive definite as well by the Schur product theorem ([9], Theorem 5.2.1). If /; denotes the
identity matrix of degree /, then we have the following.

Theorem 3.1. C = C~! — I, is positive semidefinite; i.e., C * C™' > I, in the positive
semidefinite partial order.

Proof. By ([9], Theorem 5.4.3), the smallest eigenvalue of C + C~! is 1. Since C * C~! is
positive definite, the assertion follows. O

Corollary 3.2. For any € IBr,(B) we have cggyps > 1 with equality if and only if
I(B) = 1. In particular, tr (C + C™") > I(B).

Proof. Let x = (0,...,0,1,0,...,0) where the 1 is at position 8. By Theorem 3.1, we get
copyps = X(C* C™Hx' > xIix' = (x,x) = 1.

Suppose that cggygs = 1. Since p®Pygs € N, we get p® = ncgg for some n € N.
Clearly, if I[(B) = 1, then cggyps = 1. To see the converse, suppose that [ := I(B) > 2.
In the following we use C and C; in Lemma 2.7 instead of A and A;. Since y; = detC and

detC
detC = det Cy(cy — v'C;'v), we have

det C, Cit
cuyn=cu- = > 1.

detC; (c” - v’Cl‘lv) cu —v'Clv

(Note that in the proof of Lemma 2.7, we have v # 0 by the indecomposability of C which
follows from the fact that B is a p-block of G. Since Cj is positive definite, v'Civ > 0.) O

Clearly, if m(G) > tr(C * C~') for the principal block of G, then Murai’s conjecture
holds true for G. Unfortunately, there are examples, even with a cyclic defect group, with
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m(G) < tr (C «C™"). As an example the group S, for p = 3 may serve. Actually, m3(S;) = 2
and tr(C«C™") = %,

Corollary 3.3. If 1 = 1 is the trivial character, then

(& Gl
Cl1 2 77— =
Gyl m(G)
with equality if and only if G is p-nilpotent.
Proof. By Corollary 3.2, we have ¢} > y% Lemma 2.1 shows that y;; = IGlli;#llp = %
Thus ¢y > %
P
Suppose that ¢} = % Since ci1y11 = 1, [(By) = 1 by Corollary 3.2. Hence G is
P
p-nilpotent, by ([15], Chap. V, Theorem 8.3). Since the converse is obvious, we are done.
O

4. Some evidence for Conjecture 2.3

In this section we show some evidence for the conjecture.

Remark 4.1. Conjecture 2.3 has an affirmative answer if /[(B) = 1. In this case the Cartan
matrix of B is Cp = p? where d is the defect of B, since det Cp is the product of elementary
divisors. Thus ygg - p? =1 for IBr,(B) = {B}, and Conjecture 2.3 holds.

Proposition 4.2. Let B be a p-block with a cyclic defect group. Then Conjecture 2.3
holds true.

Proof. By ([4], Chap. VII, Lemma 10.11) we immediately get

I(B) = min zp?C™'Z' < z;p'C "2l = pyi,

2€Z/®)
where C is the Cartan matrix of B, d is the defect of B and z; = (0,...,0,1,0,...,0) with
the i-th position 1 and 0 elsewhere. |

Note that the proof of Proposition 4.2 also shows that Murai’s conjecture has an affirma-
tive answer if the Sylow p-subgroup is cyclic.

Proposition 4.3. If B is a 2-block of G having a dihedral, a semidihedral or a generalized
quaternion group as defect group D, then Conjecture 2.3 holds true.

Proof. Note that B is a block of tame representation type, and the Cartan matrices of such
blocks are known by the classification of Erdmann [2]. In particular /(B) < 3. According to
Remark 4.1 we may assume that /[(B) > 2. Then the occurring matrices are listed in [8]. If
[(B) = 2, then B has a Cartan matrix C of the form

4k 2k

2k k+r
with natural numbers k and r, where {k, r} = {1, @} or {k,r} = {2, '%}. Note that |[D| > 8,
since a block with Klein four defect group cannot have two simple modules. We have
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det C = 4kr. One easily computes y|; = %, Yo = } Then in the first case, we have

D 1
711|D| =k+r=1+ % >3 andy22|D| = —|D| > 4,
r
and in the second case we have
k + D 1
1+ 2V o and yipl = D) 5 4.
2 8 r
Hence we are done for Cartan matrices of blocks B with I(B) = 2.
One of the Cartan matrices for [(B) = 3 is

yulD| =

4k 2k 2k
C=|2k k+a k )
2k k  k+a

where k = 2l and a € {1,2}. Then det C = a?|D| and y11|D| = Z54, y5,|D| = y33|D| = 2. If

a a ’

a = 1 then

yulDl = 2k + 1 = 5 and y»ID| = y33ID| = 4k = D] > 8,

and if a = 2 then
D
v11|1D| = k+ 1 > 3 and yy|D| = y33|D| = 2k = |—2| >4,

The remaining cases listed in [8] can be handled in the same way. m|

ReMARK 4.4. We do not intend to prove Conjecture 2.3 or Murai’s conjecture for p-blocks
of p-solvable groups, since both of their proofs seem more difficult than that of the famous
k(GV)-problem (which consists of the work of a series of authors, and was verified affirma-
tively, but needed a period of more than forty years (see [5])).

5. Murai’s conjecture for S, and A,

In this section, we prove that Murai’s conjecture holds true for symmetric and alternating
groups. We start with a result of Babai, Palfy and Saxl on the proportion of p-regular
elements in the alternating group A,,.

Theorem 5.1. Let p be a prime number, n > 3 an integer and w = |n/p). Then the pro-
portion of p-regular elements in the alternating group A,, is given by the following formulas:

(@ ifp=2
1 1 1
201 -=)[1-=—)--[1-—];
( p)( ZP) ( wp)

) if p>2andn=0orl (mod p):

P
(14 @)

wp
©) ifp>2andn #0or1 (mod p):

p
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(-2}

Proof. This is ([1], Theorem 2.1). a

For integers s, > 1 let k(s, t) be the number of s-tuples (14, ..., ) of partitions A; such
that 3} | |4;| = ¢. In particular, k(1, 7) is the number of partitions of ¢.

Lemma 5.2 (Olsson). Let s,t > 1. Then k(s,t) < (s + 1).. If moreover s > 2, then
k(s,t) < s unless s =2 and t < 6.

Proof. This is ([12], Lemma 5.1). a

Lemma 5.3. Let p be an odd prime number and w' > 2. Then p*'~' > 6w’ unless
) p=57,11andw =2, or
() p=3andw =2,3.

Proof. Suppose that p > 13. For w’ = 2, it is clear that p*"~! = 13 > 12 = 6w’. By
induction on w’, we have

w

D '—1 - p.pw’_Q > p- 6(w/ _ 1) > 6w,,

and so the lemma holds for p > 13 and w’ > 2. For either p = 5,7, 11 andw’ > 3,0r p = 3

and w’ > 4, the lemma similarly holds by induction on w’, which finishes the proof. |
Proposition 5.4. Let G be the symmetric group S, or the alternating group A,. Then G

satisfies Murai’s conjecture for any prime p.

Proof. Denote by B, the principal p-block of G. Write n = wp + r with 0 < r < p. We
may assume that n > 5, since for n < 4 the assertion is well known to be true, and can be
verified easily.

We first let G = S,,. In this case, by ([18], Proposition 11.14) we have £(By) = k(p — 1, w).
Note that the proportion of p-regular elements in G has been obtained by Erd6s and Turan

([3], LemmaI) as
Eﬂ%biw_i%b_L)
G| p 2p wp

2]+

Hence, for p > 3 or p = 3 and w > 6, we have

Furthermore we have

61, < ka5 o bl

i@ =561, 2 (1= %)
= (-D(p-1)(p-3)
>z (p-D"
> k(p-1,w) (by Lemma 5.2)
= I(By).

Similarly, for p = 2 and w > 4, we have
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(1 __1%)(1 S (1= ) 20] 2kl
(é) .5+l

my(G)

2
20 > k(1,w) = I(By).

vV IV IV

The small cases where either p = 2 and w < 3 or p = 3 and w < 6 can be checked directly
with MOC [13] and the formula (x)

1 1 1
s =(1=2)(1-35) (1= 25

Doing this, note that m,(S,) and /(By) do not depend on the rest » = n — pw. Consequently
we only have to check the cases
(Hp=2,w<3andn =6and
2)p=3,w<6andn =16,9,12,15 and 18.

In the case (1) we have I(By) = 3 < my(Se) = 5.
In the cases (2) we obtain for

n=06: l(By) =5 =m3(Se),

n=9:  I(By) =10 < 40 = m3(So),

n=12: 1(By) =20 < 110 = m3(S12),

n=15: l(B()) =36 <308 = ms3(S1s),

n=18: l(BO) =65 <2618 = m3(Sig).

We now let G = A,. It is well known that any p-block of S, is parameterized by its p-core
(i.e., the p-core of a partition of n corresponding to an irreducible character of the block) and
its weight (see [18]). We write Eo for the principal p-block of S, and ,u(Eo) for the p-core of
Bo.

Suppose that p = 2. By Theorem 5.1, we get m»(A,,)) = m»(S,). If we assume that n > 16,
then by adding the factor | 37 | in the above formula (x) we get

my(A,) = 2" > 2(k(1, w)) > I(By),

since by [18, Proposition 12.9], we have

k(1,w) if wis odd
l(Bo) = .
k(l,w)+k(1,w) ifw=2w.

It remains to check seperately the cases n = 6,8,10,12 and 14. Note that /(By(Az,)) =
I(Bo(Agm+1)) and mo(Azy,) = my(Agu+1). Here we get for

n=6: I(By) =3and my(Ag) =5,

n=2_8: l(Bo) =7 and M2(Ag) = 35,

n=10: [(By) =7 and my(Ay) = 63,

n=12: l(B()): 14 andmz(A12)=231,

n=14: [(By) =15 and my(A4) = 429.

Finally, we suppose that p is odd. If ,u(Eo) is not self-conjugate, then n # 0 or 1 (mod p)
and [(By) = I(EO) = k(p — 1, w) by ([18], Proposition 12.8 (i)). Furthermore, the proportion
of p-regular elements is the same as for the corresponding symmetric group, by Theorem
5.1 (c¢). Thus the result follows as for S,,.

So we may assume that M(Eo) is self-conjugate and the weight w of By is positive. In
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particular, n = 0 or 1 (mod p). By ([17], Proposition 2.13) or ([18], Proposition 12.8 (ii)),
we get

%k(p_l,w) if wis Odd,
Z(BO) = 1 1 ’ . ’
Yk(p = 1wy + 3k (3(p = Do) ifw = 2w

We first suppose that w is odd. Since (p—1)2p—1)---(wp—-1) > 2(p+1)2p+1)--- (w—
1)p + 1), we have

(=) -z ) )
—f1-=)(1-—)>—(1+—] |1+ )
2 p wp)  wp p (w-1)p

Hence, by Theorem 5.1 (b), we get similar as for S,

1 1 1\
I

—k(p —1,w) =I(By) (by the latter part of Lemma 5.2)

except possibly p = 3 and w = 3, 5. For these cases we have
n=9,10: [I(By) =5 and m3(Ag) = m3(A19) = 26,
n=15,16: I(By) = 18 and m3(A;5) = m3(Ai6) = 217.

Thus we are left with the case that w is even. If w = 2, then by Theorem 5.1 (b),

1 1 1 1
w325

1\ 1
=(p—1)(p——)+§(p+1)=p2—p+1

.pz

2
and
IBy) = ~ [k(p - 1.2) + 3 (2= 1
( 0) ) (P_ )+ 2
1 (p-Dp-2)| 3
5[ . +2(p=1) by [18,G.1DD
_p_ _2
-2 4.

Hence we obtain m,(G) > I(By).

So we may finally assume that w = 2w’ > 4. By Theorem 5.1 (b), the proportion ( i X) A 1 of
p-regular elements in the alternating group A, is

G (e e ) e R e

Since |A,l, = 1Sal, > p®, we get as for S,

1 1
mp(An)Zk(p—l,w)+—(p+1)(p+—)---(p+ )
w 2 w

-1
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So we are done if
1
w-—1

1 1 -1
—(p+D(p+=)--(p+ ) > 3k(E=—, w).
w 2 2

According to Lemma 5.2 we have (”—;])w > k(pz;l, w’). Also, by Lemma 5.3, we have

P! > 6w and so

1
w-—1

1 1, +1\” -1
S+ (pr——) 2 —p* 232 2 sk )
w 2w’ 2 2
unless i) p=5,7,11and w’ = 2;0or (ii) p =3 and w’ = 2, 3.

For the possible exception (i) p =5,7,11 and w’ = 2, we also have

Lp+ D (p+) = i+ D-(p+3)-(p+ D)
> 3(p tll)_l_ 3(P—1§(P—3)
= 3k(p71,2)
= 3k w),

and so we are done in this case. For (ii) p = 3 and w’ = 2,3, i.e.,n = 12,13, 18 and 19, we
get

n=12,13: [(By) = 13 and m3(A») = m3(A3) = 145

n=18,19: [(By) =37 and m3(A3) = m3(A19) = 3346,

which completes the proof. O

Remark 5.5. In ([12], Proposition 5.2) Malle and Robinson proved /(B) < p* in the case
that B is a p-block of a symmetric group, an alternating group or their covering groups and
w is the weight of B. If By is the principal 2-block of S, (n < 7), then my(S,) < p”. But
my(Sg) = 35 > p¥ = 2% = 16. If By is the principal 3-block of S, (n < 8), then m5(S,) < p¥,
but m3(Se) = 40 > p* = 33 =27.
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