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Abstract
We can run the MMP for any divisor on any Q-factorial projective toric variety. We show that

two Mori fiber spaces, which are outputs of the above MMP, are connected by finitely many
elementary transforms.
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1. Introduction

1. Introduction
The minimal model program works for Q-factorial projective toric varieties. Namely, for

anyQ-factorial projective toric variety X and any R-divisor D on X, one can run the D-MMP
and it ends up with either a minimal model or a Mori fiber space. For details, see [5].

The purpose of this paper is to establish the following theorem.

Theorem 1.1. Let Z be a Q-factorial projective toric variety and let DZ be an R-divisor
on Z. Let φ : X → S and ψ : Y → T be two Mori fiber spaces, which are outputs of the
DZ-MMP.

Then the induced birational map σ : X � Y is a composition of finitely many Sarkisov
links (cf. Definition 1.6).

Theorem 1.1 is known as the log Sarkisov program (cf. [2]). By combining Theorem 1.1
and the following easy lemma, we obtain Theorem 1.3 called the Sarkisov program for toric
varieties.

Lemma 1.2 (cf. [2]). Let φ : X → S and ψ : X → Y be two Mori fiber spaces with Q-
factorial terminal singularities. If X and Y are birational, then there is a smooth projective
variety Z such that φ and ψ are outputs of the KZ-MMP.
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Theorem 1.3 (Sarkisov program for toric varieties, [10]). Let φ : X → S and ψ : Y →
T be two toric Mori fiber spaces with Q-factorial terminal singularities. If X and Y are
birational, then the induced birational map σ : X � Y is a composition of finitely many
Sarkisov links.

Let X be a Q-factorial projective toric variety and let D be a Weil divisor on X. Then
there exists a positive integer r such that rD is linearly equivalent to a torus-invariant Cartier
divisor on X. Hence, any R-divisor on X is R-linearly equivalent to a torus-invariant R-
Cartier divisor. Therefore, it is sufficient to prove the following theorem for Theorem 1.1.

Theorem 1.4. Let Z be a Q-factorial projective toric variety and let DZ be a torus-
invariant R-divisor on Z. Let φ : X → S and ψ : Y → T be two Mori fiber spaces,
which are outputs of the DZ-MMP.

Then the induced birational map σ : X � Y is a composition of finitely many Sarkisov
links.

The following corollary immediately follows from Proposition 2.7.

Corollary 1.5 (Log Sarkisov program for toric lc pairs). Let (Z, B) be a Q-factorial pro-
jective toric lc pair. Let φ : X → S and ψ : Y → T be two Mori fiber spaces, which are
outputs of the (KZ + B)-MMP.

Then the induced birational map σ : X � Y is a composition of finitely many Sarkisov
links.

We note that toric lc pairs defined in Definition 2.4. Corollary 1.5 was first established by
Matsuki and Sharmov (cf. [10, Chapter 14] and [13]). This proof is based on the original idea
by Sarkisov (cf. [3]). In their proof, we keep track of three invariants, called the Sarkisov
degree, associated with the singularities and we need to check that the Sarkisov degree
satisfies the ascending chain condition. Thus, this method heavily depends on a detailed
study of the singularities. On the other hand, our approach is quite different from this. We
use “the geography of models” instead of the Sarkisov degree. We remark that we can not
use the traditional approach by Corti and Matsuki as we treat (not necessarily effective)
divisors in this paper. We note that this idea is based on [6] and [11].

At first, we introduce the notation of Sarkisov links for toric varieties.

Definition 1.6 (Sarkisov links). Let Z be a Q-factorial projective toric variety and let DZ

be an R-divisor on Z. Let φ : X → S and ψ : Y → T be two Mori fiber spaces, which are
outputs of the DZ-MMP.

The induced birational map σ : X � Y between φ and ψ is called a Sarkisov link if it is
one of the following four types:

In the above commutative diagram, the vertical arrows p and q are divisorial contractions,
and the horizontal dotted arrows are compositions of finitely many flops for the D′Z-MMP,
where D′Z is an R-divisor on the top left space, that is, X′ or X. The spaces X′, Y ′ and R are
realized as the ample models of R-divisors on Z (cf. Definition 2.8 for definition of ample
models). Moreover, these spaces are the results of running the DZ-MMP (see Definition
2.11 and Lemma 3.8). Links of Type (IV) are separated into two types: (IVm) and (IVs). In
a link of Type (IVm), s and t have both Mori fiber structures and R is Q-factorial. In a link of
Type (IVs), s and t are small birational contractions and R is not Q-factorial. We note that
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links of Type (IVs) do not appear for dim Z ≤ 3.

Example 1.7. For toric 3-folds with terminal singularities, links of Type (I), (II), (III) and
(IVm) are completely classified and we can find various examples (e.g., [12]).

Next, we construct an easy example of links of Type (IVs). Let S → R← T be a flop for
a divisor and we put X = S × P1 and Y = T × P1. Then here is a link of Type (IVs).

The contents of this paper are as follows: In Section 2, we quickly recall some basic
definitions and properties of the minimal model theory. In Section 3, we prove Theorem 1.4.
In this paper, we will work over an arbitrary algebraically closed field of any characteristic.

2. Preliminaries

2. PreliminariesNotation and Conventions. A contraction morphism is a proper morphism g : X → Y
between varieties with g∗X = Y . If X and Y are both normal, the condition above is
equivalent to the one that g is a surjective morphism with connected fibers. A rational map
g′ : X � Y ′ to a variety is a rational contraction if there is a common resolution p : W → X
and q : W → Y ′ which are contraction morphisms.

A birational map f : X � Z between normal varieties is a birational contraction if f is
proper and f −1 does not contract any divisors. We say that f is small if f and f −1 are both
birational contractions.

Let  be a polytope in a finite-dimensional real vector space. The span of  is the span
of  as an affine subspace. The relative interior of  is the interior of  in the affine space
spanned by .

We say that a real vector space 0 is defined over Q if there is a rational vector space  ′

such that 0 =  ′ ⊗Q R. We say that an affine subspace  of a real vector space 0, which
is defined over Q, is defined over Q if  is spanned by rational vectors of 0.
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Definition 2.1 (Divisors). Let π : X → U be a projective morphism from a normal
variety to a variety. Two R-Divisors D1 and D2 on X are R-linearly equivalent over U
(denoted by D1 ∼R,U D2) if there is an R-Cartier divisor B on U such that D1 − D2 ∼R π∗B.
Two R-Cartier divisors D1 and D2 on X are numerically equivalent over U (denoted by
D1 ≡U D2) if D1 − D2 ·C = 0 for any curve C ⊂ X contained in a fiber of π. The real linear
system of an R-divisor D on X over U is defined as

|D/U |R = {D′ ≥ 0 | D′ ∼R,U D}.
Moreover, the stable base locus of D over U is defined as

B(D/U) =
⋂

D′∈|D/U |R
D′.

We consider B(D/U) with the reduced scheme structure. When U is a point, we drop U from
the notation, e.g., we simply write ≡ and B(D) instead of ≡U and B(D/U), respectively.

For an R-divisor on X and its prime decomposition D =
∑

aiDi, we define

||D|| = max{|ai|}.
Moreover, for a subset S ⊂ R, we denote D ∈ S if ai ∈ S.

Definition 2.2. Let N 
 Zn be a lattice of rank n. A toric variety X(Δ) is associated to a
fan Δ, a finite collection of convex cones σ ⊂ NR = N ⊗Z R satisfying:

(i) Each convex cone σ is rational polyhedral in the sense that there are finitely many
v1, . . . , vk ∈ N ⊂ NR such that

σ = {r1v1 + · · · + rkvk|ri ∈ R≥0 for all i}
and it is strongly convex in the sense

σ ∩ −σ = {0}.
(ii) Each face τ of a convex cone σ ∈ Δ is again contained in Δ.

(iii) The intersection of two cones in Δ is a face of each.

Definition 2.3 (Relative Picard numbers). Let f : X → Y be a proper morphism between
normal varieties. We define

N1(X/Y) = {Pic(X)/ ≡Y } ⊗Z R
and

N1(X/Y) = {Z1(X/Y)/ ≡Y } ⊗Z R,
where Z1(X/Y) is the free abelian group of 1-cycles of X over Y . These are inducing the
following non-degenerate bilinear pairing:

N1(X/Y) × N1(X/Y)→ R.
It is well-known that N1(X/Y) and N1(X/Y) are finite-dimensional real vector spaces. We
write

ρ(X/Y) = dimR N1(X/Y) = dimR N1(X/Y)
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and call it the relative Picard number of X over Y . We write ρ(X) = ρ(X/Y) and N1(X) =
N1(X/Y) when Y is a point. We simply call ρ(X) the Picard number of X.

If f is a surjective morphism of projective toric varieties with connected fibers, then

ρ(X/Y) = ρ(X) − ρ(Y)

by [4, Theorem 6.3.12]. For details, see [7, Lemma 3-2-5 (3)].

Definition 2.4 (Singularities of pairs). Let X be a normal variety and D ≥ 0 be an R-
divisor on X. We say that (X,D) is a pair if KX + D is R-Cartier. In addition, we say that a
pair (X,D) is toric if X is toric and D is consisting of torus-invariant divisors.

Let (X,D) be a pair and let f : Y → X be a proper birational morphism from a normal
variety Y . Then we can write

KY = f ∗(KX + D) +
∑

aiEi.

We say that (X,D) is klt (resp. lc) if ai > −1 (resp. ai ≥ −1) for any f and i. We say that X
is Q-factorial if every Weil divisor on X is Q-Cartier. In addition, we say that a pair (X,D)
is Q-factorial if so is X.

Remark 2.5. For any normal toric variety X and any torus-invariant R-divisor D on X,
there exists a log resolution f : Y → X of D. More precisely, f is a projective birational mor-
phism from a smooth toric variety Y such that Exc( f ) is a divisor and Exc( f )∪ f −1(Supp D)
is an SNC divisor. For details, see [4, Chapter 11].

The following lemma is the combinatorial characterization of Q-factoriality in toric ge-
ometry.

Lemma 2.6 ([4, Proposition 4.2.7]). Let X = X(Δ) be a toric variety. Then X is Q-
factorial if and only if each of σ ∈ Δ is simplicial.

The following proposition is the well-known characterization of toric lc pairs.

Proposition 2.7 ([4, Proposition 11.4.24]). Let (X,D) be a toric pair. If D ∈ [0, 1], then
(X,D) is lc. In addition, if D ∈ [0, 1), then it is klt.

Definition 2.8 (Ample models). Let X be a normal projective variety and let D be an
R-Cartier divisor on X. Then a rational contraction g : X � Y is the ample model of D if

• Y is normal and projective, and
• there is an ample R-Cartier divisor H on Y such that if p : W → X and q : W → Y

are a common resolution, and we write p∗D ∼R q∗H + E, where E ≥ 0, then B ≥ E
for any B ∈ |p∗D|R.

For the basic properties of ample models, see [1, Lemma 3.6.6].

Remark 2.9. If g is birational, then E is q-exceptional. If X is toric and D is pseudo-
effective, then we can construct the ample model of D in toric geometry. By the uniqueness
of ample models (cf. [1, Lemma 3.6.6 (1)]), Y is always toric. We remark that in Section 3,
we always assume that D is pseudo-effective when we treat ample models.
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Definition 2.10. Let f : X � Y be a proper birational contraction of normal varieties and
let D be an R-Cartier divisor on X such that f∗D is also R-Cartier. Then we say that f is D-
non-positive (resp. D-negative) if there is a common resolution p : W → X and q : W → Y
such that

p∗D = q∗ f∗D + E,

where E ≥ 0 is q-exceptional (resp. E ≥ 0 is q-exceptional and whose support contains the
strict transform of the f -exceptional divisors).

We close this section with definition of minimal models and Mori fiber spaces.

Definition 2.11. Let f : X � Y be a birational contraction of normal projective varieties
and let D be an R-Cartier divisor on X such that f∗D is also R-Cartier.

We say that f is a weak log canonical model of D if
• f is D-non-positive and
• f∗D is nef.

We say that f is a minimal model of D if
• Y is Q-factorial,
• f is D-negative and
• f∗D is nef.

Let φ : X → S be a contraction morphism to a normal projective variety. We say that φ is
a Mori fiber space of D if

• X is Q-factorial,
• −D is φ-ample,
• ρ(X/S) = ρ(X) − ρ(S) = 1 and
• dim S < dim X.

We say that φ has a Mori fiber structure if φ is a Mori fiber space of some R-Cartier divisor.
We say that f is the output of the D-MMP if f is a minimal model of D or a Mori fiber

space of D. On the other hand, we say that f is the result of running the D-MMP if f is any
sequence of divisorial contractions and flips for the D-MMP. We emphasize that the result
of running the D-MMP is not necessarily a minimal model of D or a Mori fiber space of D.

3. Proof of Theorem 1.4

3. Proof of Theorem 1.4
In this section, we will closely follow [6, Section 3, 4].

Symbols 3.1. Let Z be a Q-factorial projective toric variety.
• (Z) is the real vector space generated by all torus-invariant prime divisors on Z.

Let  be a convex polytope in (Z). Let f : Z � X be a birational contraction to a normal
projective variety X and let g : Z � Y be a rational contraction to a normal projective variety
Y . Then we define

() = {DZ ∈  | DZ is pseudo-effective},
 f () = {DZ ∈ () | f is a minimal model of DZ},
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g() = {DZ ∈ () | g is the ample model of DZ},
 () = {DZ ∈ () | DZ is nef}

and we denote the closure of g() by g(). We simply write g to denote g() if there
is no risk of confusion.

In this section, we fix the following notation unless otherwise mentioned:
• Z is a Q-factorial projective toric variety and
•  is a convex polytope of (Z), which is defined over Q.

Proposition 3.2. There are only finitely many rational contractions gi : Z � Xi (1 ≤ i ≤
l) such that

() =
l⋃

i=1

gi ,

where gi � g j for i � j.

Proof. It follows from the finiteness of minimal models (see [4, Theorem 15.5.15]) and
the property of ample models (cf. [1, Lemma 3.6.6]). �

The following two statements come from [6, Theorem 3.3] and these are easy conse-
quences of the minimal model theory. Thus, we sketch the idea of the proofs. For the
details, see [6, Theorem 3.3 (2), (3)].

Proposition 3.3. With notation as in Proposition 3.2. If g j ∩ gi � ∅ for 1 ≤ i, j ≤ l,
then there is a contraction morphism gi, j : Xi → Xj such that g j = gi, j ◦ gi.

Sketch of Proof. We take DZ ∈ gi . Running the DZ-MMP, we end up with a minimal
model f : Z � X of DZ . Then there is a contraction morphism g : X → Xi such that
gi = g◦ f . Using this morphism g, we can construct a semi-ample R-divisor on Xi associated
to the contraction morphism satisfying the desired property. �

Proposition 3.4. With notation as in Proposition 3.2. Assume that  spans N1(Z). For
any 1 ≤ i ≤ l, the following are equivalent:

• there is a rational polytope  contained in gi which intersects the interior of  and
spans .
• gi is birational and Xi is Q-factorial.

Sketch of Proof. Suppose that  spans . We take DZ belonging to the relative interior
of  ∩ gi and belonging to the interior of . Running the DZ-MMP, we end up with a
minimal model f : Z � X of DZ . Then there is the index 1 ≤ j ≤ l such that f = g j. Since
DZ belongs to the relative interior of gi , we see that i = j. Thus, gi = f is birational and
Xi = X is Q-factorial. It is easy to see the converse. �

The following proposition is the key ingredient of this paper.

Proposition 3.5 (cf. [6, Theorem 3.3 (4)]). With notation as in Proposition 3.2. Assume
that  spans N1(Z). If gi spans  and DZ is a general point of g j ∩ gi , which is also a
point of the interior of  for 1 ≤ i, j ≤ l, then ρ(Xi/Xj) = dimgi − dimg j ∩ gi .
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Proof. Putting X = Xi and f = gi, by Proposition 3.4, X is Q-factorial and f is birational.
Let E1, . . . , Ek be all f -exeptional prime divisors. Since  spans N1(Z), we can take Bi ∈
(Z), which are linear combinations of the elements of , such that Bi ≡ Ei, and we put
B0 =

∑
Bi and E0 =

∑
Ei. Since DZ is contained in the interior of , there is a sufficiently

small rational number δ > 0 such that DZ + δB0 ∈ . Then f is (DZ + δE0)-negative
and so it is a minimal model of DZ + δE0 and g j is the ample model of DZ + δE0. Thus,
DZ + δB0 ∈ f () and DZ + δB0 ∈ g j . In particular, DZ + δB0 ∈ g j ∩  f . Since we have
DZ ∈ g j ∩  f in general, DZ ∈ f () and so f is DZ-negative.

We fix a sufficiently small rational number ε > 0 such that if D′Z ∈  with ||D′Z −DZ || < ε,
then D′Z ∈  and f is DZ-negative. Then D′Z ∈  f if and only if D′X = f∗D′Z is nef.

For any (a1, . . . , ak) ∈ Rk, we put E =
∑

aiEi and B =
∑

aiBi. We put X = {D′X =
f∗D′Z | D′Z ∈ } ⊂ (X). Then D′X ∈ (X) if and only if D′X + f∗B ∈ (X) as D′Z + B is
numerically equivalent to D′Z + E. This means that

 f 
 (X) × Rk

in a neighbourhood of DZ .
By the above argument and [1, Lemma 3.6.6], D′Z ∈ g j ∩  f if and only if it holds

that D′X = f∗D′Z ∈  (X), and there is an ample R-Cartier divisor H on Xj such that
f∗D′Z = (gi, j)∗H, where gi, j : X → Xj is a contraction morphism. Since DZ ∈ g j ∩ f , there
is an ample R-Cartier divisor H0 on Xj such that f∗DZ = (gi, j)∗H0 and so there are ample
R-Cartier divisors H1, . . . ,Hρ(Xj), whose images on N1(Xj) are linearly independent, such
that f∗D′Z = (gi, j)∗(H0 +

∑
biHi) for any (b1, . . . , bρ(Xj)) ∈ Rρ(Xj) with H0 +

∑
biHi is ample.

Thus

dimg j ∩  f = k + ρ(Xj).

Therefore, we obtain

ρ(Xi/Xj) = ρ(Xi) − ρ(Xj)

= dim (X) − ρ(Xj)

= dim f − dimg j ∩  f .

�

We recall the following Bertini-type statement for the reader’s convenience.

Lemma 3.6 (cf. [6, Corollary 3.4]). Let  be a convex polytope in (Z) which spans
N 1(Z). Then for any general affine subspace  ⊂ (Z), the intersection  ∩ of  and 

satisfies the conclusions of Proposition 3.4 and 3.5.

Lemma 3.7. Assume that  satisfies the conclusion of Propositions 3.4 and 3.5, and that
dim = 2. Let f : Z � X and g : Z � Y be two rational contractions such that dim f = 2
and dim = 1, where  =  f ∩ g. Assume that ρ(X) ≥ ρ(Y) and that  is not contained in
the boundary of . Let DZ be a point in the relative interior of  and DX = f∗DZ.

Then there is a rational map π : X � Y with g = π ◦ f such that

(I) ρ(X) = ρ(Y) + 1, π is DX-trivial and one of the following properties holds.
(I. i) π is birational and  is not contained in the boundary of (), and either
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(I. i. a) π is divisorial and  � g, or
(I. i. b) π is small and  = g,

(I. ii) π has a Mori fiber structure and  = g is contained in the boundary of (),
(II) ρ(X) = ρ(Y), π is a DX-flop and  � g is not contained in the boundary of ().

Proof. By Proposition 3.4, f is birational and X is Q-factorial.
If  is contained in the boundary of (), then dimg = 1 and  = g. By Proposition

3.5, there is a contraction π : X → Y which has a Mori fiber structure. This is (I. ii).
In the rest of proof, we may assume that  is not contained in the boundary of ().

If dimg = 1, then  = g. By Proposition 3.5, there is a contraction π : X → Y with
ρ(X/Y) = 1. Since DZ is not contained in the boundary of (), DZ is big and so π is
birational. Thus, by Proposition 3.4, Y is not Q-factorial and so π is small. This is (I. i. b).

We assume that dimg = 2. Then g is birational and Y is Q-factorial. Let h : Z � W
be the ample model of DZ . By Proposition 3.5, there are two contractions p : X → W and
q : Y → W with ρ(X/W), ρ(Y/W) ≤ 1. Then we can explicitly calculate the Picard numbers
of X and Y and there are only two cases below:

(1) ρ(X) = ρ(Y) + 1, or
(2) ρ(X) = ρ(Y).

In (1), h = g and we put π = p. Then π is divisorial and this is (I. i. a).
In (2), ρ(X/W) = ρ(Y/W) = 1. Then dimh = 1 since dim = 1. By Theorem 3.4, W is

not Q-factorial. Thus, p and q are small and so π is DX-flop. This is (II). �

Lemma 3.8 (cf. [6, Lemma 3.6]). Let f : Z � X be a birational contraction between
Q-factorial projective toric varieties. Let DZ and D′Z be two torus-invariant R-divisors on
Z. If f is the ample model of D′Z and D′Z − DZ is ample, then f is the result of running the
DZ-MMP.

Before we will see that a certain point contained in the boundary of (V) corresponds to
a Sarkisov link, we introduce the following additional notation.

Notation 3.9. Assume that  satisfies the conclusion of Propositions 3.4 and 3.5, and
that dim = 2. Let D†Z be a point contained in the boundary of () and the interior of .
If D†Z is contained in only one polytope of the form • of two-dimensional, then we assume
that it is a vertex of ().

Let  f1 , . . . , fk be all two-dimensional rational polytopes containing D†Z , where fi : Z �
Xi are rational contractions. Note that fi is birational and Xi is Q-factorial by Proposition
3.4. Renumbering  fi to i, let 0 (resp. k) be the intersection of 1 (resp. k) with the
boundary of (), and let i � i ∩ i+1 (1 ≤ i ≤ k − 1). Then we may assume that i

is one-dimensional for any i. Let gi : Z � Si be the rational contractions associated to i.
We put f = f1 : Z � X = X1, g = fk : Z � Y = Xk, X′ = X2 and Y ′ = Xk−1. Then, by
Proposition 3.3, there are contraction morphisms φ : X → S = S0 and ψ : Y → T = Sk. Let
h : Z � R be the ample model of D†Z .

Theorem 3.10. Let  and D†Z be notation as above. Let DZ be an R-divisor on Z with
D†Z − DZ is ample.

Then φ and ψ are Mori fiber spaces, which are outputs of the DZ-MMP, and fi are the
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result of running the DZ-MMP. Moreover, if D†Z is contained in more than two polytopes,
then φ and ψ are connected by a Sarkisov link.

Proof. By Lemma 3.7, we have the following commutative diagram:

where p, q and the horizontal arrow X′ � Y ′ are birational, and φ and ψ have Mori fiber
structures. Since D†Z − DZ is ample, for any i we can take Di ∈ i such that Di − DZ is
ample. By Lemma 3.8, fi is the result of running the DZ-MMP. By Proposition 3.5, there
is a contraction Xi → R with ρ(Xi/R) ≤ 2. If ρ(Xi/R) = 0, then fi = h and this case does
not happen. If ρ(Xi/R) = 1, then Xi → R gives a Mori fiber structure. By Lemma 3.7,
dimh = 1 and there is a facet of i contained in the boundary of (V) and so i = 1 or k.
Therefore, if k ≥ 3, then ρ(Xi/R) = 2 for any 1 < i < k. Thus, by Lemma 3.7 again, X′ � Y ′

is connected by flops. Moreover, since ρ(X′/R) = 2, p is divisorial and s is the identity, or
p is flop and s is not the identity. For q and t, similar conditions follow and there are only 7
possibilities below:

(1) k = 1.
(2) k = 2, ρ(X/R) = 1 and ρ(Y/R) = 2.
(3) k = 2, ρ(X/R) = 2 and ρ(Y/R) = 1.
(4) k ≥ 3, p and q are divisorial, and s and t are the identities.
(5) k ≥ 3, p divisorial, q is flop, s is the identity and t is not the identity.
(6) k ≥ 3, p is flop, q is divisorial, s is not the identity and t is the identity.
(7) k ≥ 3, p and q are flops, and s and t are not the identities.

In (1), X = Y and so this is a link of Type (IV). In (2), s is the identity and ρ(Y) ≥ ρ(X).
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By Lemma 3.7, there is a divisorial contraction X′ = Y → X. Thus, this is a special case of
a link of Type (I). In (3), this is similar to (2) and we obtain a special case of a link of Type
(III). In (4), this is a link of Type (II). In (5), this is a link of Type (I). In (6), this is a link of
Type (III). In (7), this is a link of Type (IV).

The rest of the proof is that a link of Type (IV) is splitting into two types (IVm) and (IVs)
in (1) and (7). We assume that s is a divisorial contraction. Then there is a prime divisor F
on S which is contracted by s. Since ρ(X/S) = 1, there is a prime divisor E on X such that
mE = φ∗F for some non-negative integer m. Since D†X = f∗D†Z is numerically trivial over
R, B(D†X + E/R) = E. Since ρ(X/R) = 2, by the 2-ray game (cf. [9, Chapter 6]), there are

birational contractions X � V
f ′−→ W

g−→ U such that f ′ is a divisorial contraction and g has
a Mori fiber space. In (1), this is a contradiction since X = Y , φ and ψ are Mori fiber spaces,
and ρ(X/R) = 2. In (7), we have W = Y and U = T . Hence, we obtain a link of Type (III)
and this is a contradiction. Similarly, t is not divisorial. Thus, s and t are not divisorial. If
s has a Mori fiber structure, then R is Q-factorial and so t has also a Mori fiber structure.
Hence, this is a link of Type (IVm). If s is a small contraction, then R is not Q-factorial and
so t is also small. Thus, this is a link of Type (IVs). �

Lemma 3.11. Let DZ be a torus-invariant R-divisor on Z. Let f : Z � X and g : Z � Y
be the results of the DZ-MMP. Let φ : X → S and ψ : Y → T be two Mori fiber spaces,
which are outputs of the DZ-MMP.

Then we can find a two-dimensional convex polytope  ⊂ (Z), which is defined over Q,
with the following properties:

(1) D′Z − DZ is ample for any D′Z ∈ (),
(2) φ◦ f and ψ◦g are not contained in the boundary of ,
(3)  f and g are two-dimensional,
(4) φ◦ f and ψ◦g are one-dimensional, and
(5) L � {D′Z ∈ () | D′Z is not big} is connected.

Proof. We take ample torus-invariant divisors H1, . . . ,Hr ≥ 0, which generate N1(Z), and
we put H = H1 + · · · + Hr. By assumption, there are ample divisors C on S and D on T ,
respectively, such that

− f∗DZ + φ
∗C and − g∗DZ + ψ

∗D

are both ample. Let ε > 0 be a sufficiently small rational number. Then

− f∗DZ + ε f∗H + φ∗C and − g∗DZ + εg∗H + ψ∗D

are both ample, and f and g are both (DZ + εH)-negative. Replacing H by εH, we may
assume that ε = 1. We take a torus-invariant Q-divisor D̃Z on X sufficiently close to DZ .
Then

− f∗D̃Z + f∗H + φ∗C and − g∗D̃Z + g∗H + ψ∗D

are both ample and f and g are both (D̃Z + H)-negative. We take torus-invariant Q-divisors
H′r+1 on X and H′r+2 on Y , respectively, such that

H′r+1 ∈ | − f∗D̃Z + f∗H + φ∗C|Q and H′r+2 ∈ | − g∗D̃Z + g∗H + φ∗D|Q.
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There exist torus-invariant Q-divisors Hr+1 and Hr+2 on Z such that

Hr+1 ∼Q f ∗H′r+1 and Hr+2 ∼Q g∗H′r+2.

Let a > 0 be a sufficiently large rational number and we put a rational convex polytope

0 =

⎧⎪⎪⎨⎪⎪⎩D̃Z + a
r+2∑
i=1

tiHi

∣∣∣∣∣∣
r+2∑
i=1

ti ≤ 1, ti ≥ 0

⎫⎪⎪⎬⎪⎪⎭ .
Possibly replacing Hi by suitable ones, we may assume that (2) holds for 0.

On the other hand, since f is (D̃Z + H + Hr+1)-negative and (φ ◦ f )∗(D̃Z + H + Hr+1)
is ample, D̃Z + H + Hr+1 ∈ φ◦ f (0). Similarly, D̃Z + H + Hr+2 ∈ ψ◦g(0). Since f
is a weak log canonical model of D̃Z + H + Hr+1, D̃Z + H + Hr+1 ∈  f (0). Similarly,
D̃Z + H + Hr+2 ∈ g(0).

Let 0 be the translation by D̃Z of the affine subspace generated by H+Hr+1 and H+Hr+2

and let  be a small perturbation of 0, which is defined over Q. Putting  = 0 ∩, 
satisfies (1) and (2). Since 0 spans N1(Z), φ◦ f (0) spans 0. Thus, by Lemma 3.6, 
satisfies (3). By Proposition 3.5, dimφ◦ f () = dimψ◦g() = 1 and so  satisfies (4).

Finally, we see that we can take  satisfying (5). Since φ and ψ are Mori fiber spaces, we
may assume that ρ(Z) ≥ 2. There is a surjective linear map from (Z) to N1(Z). Then the
pullback of the pseudo-effective cone Eff(Z) ⊂ N1(Z) via this map is the convex polyhedron
 containing a (dim Z)-dimensional vector subspace V since dim(Z) = ρ(Z) + dim Z.
Then possibly replacing Hi by suitable ones, we can take a two-dimensional rational convex
polytope , which does not contan V , since codim V = ρ(Z) ≥ 2. Thus,  satisfies (5) as
() =  ∩  . �

Proof of Theorem 1.4. We take a two-dimensional rational convex polytope  ⊂ (Z)
given by Lemma 3.11. We take D0 ∈ φ◦ f and D1 ∈ ψ◦g belonging to the interior of . As
 is two-dimensional, removing two points D0 and D1, the boundary of () separates into
two parts. Then one of the two parts of the boundary of () is contained in L by Lemma
3.11 (5). Tracing this part from D0 to D1, we obtain finitely many points Di (2 ≤ i ≤ k),
which are contained in rational polytopes of two-dimensional. By Theorem 3.10, each of Di

gives a Sarkisov link and σ is connected by these links. �
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