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Abstract

We study variational problems for integral invariants, which are defined as integrations of in-
variant functions of the second fundamental form, of a smooth map between pseudo-
Riemannian manifolds. We derive the first variational formulae for integral invariants defined
from invariant homogeneous polynomials of degree two. Among these integral invariants, we
show that the Euler—Lagrange equation of the Chern—Federer energy functional is reduced to a
second order PDE. Then we give some examples of Chern—Federer submanifolds in Riemann-
ian space forms.

1. Introduction

The theory of harmonic maps and biharmonic maps is one of the important fields in
differential geometry. Recall that a smooth map ¢ : (M, gy) — (IV, gn) between Riemannian
manifolds is said to be harmonic if it is a critical point of the energy functional

1
B@) =5 [ el
M
By the first variational formula, then ¢ is a harmonic map if and only if
(1.1) 1(¢) = tr,, (Vdy) = 0,

where €d¢ is the second fundamental form and 7(¢p) is the tension field of ¢. The Euler—
Lagrange equation (1.1) is a second order nonlinear PDE, therefore the theory of harmonic
maps has been developed in geometric analysis, furthermore it is investigated applying meth-
ods of integrable systems. As a generalization of harmonic maps, Eells and Lemaire [8]
introduced the notion of biharmonic map, which is a critical point of the bienergy functional

1
Ex0) =5 [ 1 d.
M
Jiang [11] showed that ¢ is a biharmonic map if and only if
72(¢) = =V Vr(g) - try, RY (dip(), () di () = 0,

where —V V is the rough Laplacian and R is the Riemannian curvature tensor of (N, gy).
By definition, it is clear that a harmonic map is biharmonic. One of the important prob-

2020 Mathematics Subject Classification. Primary 58E20; Secondary 53C43.



874 R. Akryama, T. SAkAI anD Y. Sato

lems in the study of biharmonic maps is Chen’s conjecture, that is, an arbitrary biharmonic
submanifold of a Euclidean space must be minimal.

On the other hand, in integral geometry, Howard [9] provided integral invariants of sub-
manifolds by using invariant polynomials of the second fundamental form, and then he
formulated the kinematic formula in Riemannian homogeneous spaces (see also [12]). In
his formulation, there are some notable integral invariants of submanifolds. One is integral
invariants in the Chern—Federer kinematic formula. These integral invariants played signifi-
cant roles in differential geometry. For example, Weyl [17] showed that the volume of a tube
around a compact submanifold in a Euclidean space can be represented as a polynomial of
the radius of the tube, where the coefficients are integral invariants of the second fundamen-
tal form of the submanifold. Also, Allendoerfer and Weil [1] used these integral invariants
to describe the extended Gauss—Bonnet theorem, and this leads to the development of the
theory of characteristic classes. Another notable one is the integral invariant defined from
a certain invariant homogeneous polynomial of degree two. This invariant polynomial also
appears in the definition of the Willmore-Chen invariant, which is a conformal invariant of
submanifolds ([4, 5]).

In Section 2, with an idea of integral geometry, we introduce integral invariants of a
smooth map ¢ : (M,gy) — (N, gy) between pseudo-Riemannian manifolds by using in-
variant functions of the second fundamental form of ¢. In particular, we focus on integral
invariants of ¢ defined from invariant homogeneous polynomials of degree two. The space
of those polynomials is spanned by the square norm of the second fundamental form and the
square norm of the tension field, which are denoted by Q; and O, respectively. Hence, here
the family of integral invariants includes the bienergy functional. In this paper, we study
variational problems for these integral invariants of ¢. In Section 3, we derive the first vari-
ational formulae for Q- and Q,-energy functionals. By the linearity, then we have the first
variational formulae for all integral invariants of degree two. Note that it implies an alter-
native expression of the Euler—Lagrange equation of the bienergy functional. As mentioned
above, from the viewpoint of integral geometry, there are two notable polynomials, called
the Chern—Federer polynomial and the Willmore—Chen polynomial, in the space of invariant
homogeneous polynomials of degree two. In Section 4, we discuss some properties of the
Chern—Federer energy functional from the viewpoint of variational problems. The Euler—
Lagrange equation of an integral invariant of degree two is a fourth order PDE in general,
however, we show that the Euler—Lagrange equation of the Chern—Federer energy functional
is reduced to a second order PDE. In Section 4.2, we describe a symmetry of the Euler—
Lagrange equation of the Chern—Federer energy functional comparing with a symmetry of
the Chern—Federer polynomial. In Section 5, we give some examples of Chern—Federer
submanifolds in Riemannian space forms. Here, a Chern—Federer submanifold is the image
of an isometric immersion which is a Chern—Federer map. For an isometric immersion into
a Riemannian space form, a necessary and sufficient condition to be a Chern—Federer map
is described in Theorem 5.1. Considering this condition, there is an obstruction for the do-
main manifold. In addition, as a trivial example, we can see that any isometric immersion
of a Ricci-flat manifold into a Euclidean space is a Chern—Federer map. Finally, we dis-
cuss isometric immersions of flat tori into the 3-sphere and isoparametric hypersurfaces in
Riemannian space forms.
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2. Integral invariants of a map between pseudo-Riemannian manifolds

In this section, we define integral invariants of the second fundamental form of a map
between pseudo-Riemannian (or semi-Riemannian) manifolds. An m-dimensional pseudo-
Euclidean space with index p is denoted by Ey = R™ (G with (x,y) = — Zf:l Xiy;i +
X Xy (x,y € R™). Define I(E}, E) to be

II(E’",E’;) = {H : EZ’ X EZ’ — E’; ; symmetric bilinear map},
which is a %nm(m + 1)-dimensional vector space. Let G be the direct product group of
pseudo-orthogonal groups defined by

G :=0(p,m—p)xO0(q,n—q).

The group G acts on II(E”, EZ), that is for g = (a,b) € G and H € II(Em,Eg) then gH is
given by

(gH)w,v) = b(H(@ 'u.a™'v)) (v € E).

Then a function P on II(E", E’;) is said to be G-invariant if P(gH) = P(H) for all g € G and
H € II(E}, Ep).

Let (M[’;’, gm) and (N, gy) be pseudo-Riemannian manifolds, and ¢ : M — N a C*-map.
Thoughout this paper, a fiber metric on a vector bundle is also denoted by (, ). The second
fundamental form of the map ¢ is the symmetric bilinear map FVVdgo cT(TM)yxT(TM) -
['(¢~'TN) defined by

(Vdg)(X,Y) := Vx (dp(Y)) — dg (VxY)

for any vector fields X, Y € I'(T'M), which is a section of @2 T*M®¢ 'TN. Here (©) is the
symmetric tensor product. And V is the Levi—Civita connection on the tangent bundle 7M
of (M}, gm). V and V are the induced connections on the bundles ¢ 'TNand T*M®¢~'TN.
If ¢ is an isometric immersion, then we have

(Vdp)(X.Y) = Viode(Y) = dp (VxY) = Vi Y = VxY,

where V’ is the Levi—Civita connection on the tangent bundle TN of (N, gn), i.e. the second
fundamental form of the isometric immersion ¢ agrees with the second fundamental form
of the submanifold.

For each x € M, we can write

(Vdg), : TeM X TeM — TN,
which is a symmetric bilinear map. Let {e;}!" | be a pseudo-orthonormal basis of T, M, {é! 1y
the dual basis of {e;}, and {&,}"_, a pseudo-orthonormal basis of T,,)N. Hence we identify
T'+M and Ty N with E}Y and Ey, respectively. Then (Vdg), can be expressed as
(Vdg). = ) €, ) e 0/ @&,
Lj

2

where h;’;. is defined by

K, = (Vdg).(er e)), &),
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and
, -1 @=1.0
g, =
1 (@=qg+1,---,n).

Thus we have a linear isomorphism between TiM © TyM ® Ty)N and II(E7), EY). That
is, (AVdd(p)X € T'M O TiM ® TyN corresponds to H, := (hlf'j) € II(Em,EZ). Therefore,
for a G-invariant function 7 on II(EZ’, E"), we define an invariant function of the second
fundamental form of ¢ as follows:

P((Vdg),) := P(H,).

This definition does not depend on the choices of {¢;}!", and {£,},_, since P is G-invariant

and a change of a basis is the action of the pseudo-orthogonal group. Also, P((Vdcp)x) isa
smooth function on M.

DermNitioN 2.1. Let (M}, gy) be an m-dimensional compact pseudo-Riemannian mani-
fold with index p, (N7, gy) an n-dimensional pseudo-Riemannian manifold with index ¢,
and P a G-invariant function on II(E"”, ]EZ). Then for a smooth map ¢ : M — N, we define

1I"(¢) := f P((Vdg),)dg, -
M
We call I”(¢) the integral invariant of ¢ with respect to P.

By definition, I”(p) is an invariant of a map ¢ between pseudo-Riemannian manifolds,
that is, I”(g o ¢ o f~1) = I”(¢) holds for any f € Isom(M) and g € Isom(N).

We consider the following G-invariant polynomials on II(E},Ep). For H = (h?j) €
I(E”, E"), define

P> g7
2
Q)= ) ) ey’ and QalHD) r:Ze;(Zahz]

@ i

with

1 (i=p+1,---,m).

Q1(H) and Q>(H) are G-invariant homogeneous polynomials of degree two on II(E}), Ef).

DerNTION 2.2. For ¢ € C®(M, N), the Q;-energy functional 12 (¢) and the Q,-energy
functional 19(p) are defined by

@1 ) = [ 0(Fdoduy, = [ (Tao.Tdg)duy,
M M
and
2.2) 19(¢) = fM 02 ((Vdy),)d,, = fM (try, (Vdep), try,, (V) dp,,.

Then ¢ is called a Q,-map if it is a critical point of I9'(¢). Also, then ¢ is called a Q,-map
if it is a critical point of 192(¢).
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ReMARK 2.3. The Q;-energy functional /% (¢) is equal to two times of the bienergy func-
tional E>(¢). Indeed, when ¢ is a smooth map between Riemannian manifolds, it holds
that

—_ —_ —~ 2
1%(p) = fM (trgM(Vdcp),trgM(Vdcp)>dﬂgM = fM 'trgM(Vds0)| dug,, = 2E(p).

Remark 2.4. When dim M = 4, the Q;-energy functional and Q,-energy functional are
invariant under homothetic changes of the metric on the domain M.

3. The first variational formulae of Q,-energy and Q,-energy

3.1. Preliminaries. Let (M}, gy) be an m-dimensional compact pseudo-Riemannian
manifold with index p, (N, gn) an n-dimensional pseudo-Riemannian manifold with index
qg,and ¢ : M — N a C*-map. In this section, we use the following notation.

A local pseudo-orthonormal frame field of (M, gm) is a set of m-local vector fields {e;} |
such that gy(e;, e;) = g;0;j witheg; =--- =g, = -1, 6,11 =+ =g, = L.

V2dy and V3dyp are defined by

(Vdg)(X. Y.Z) := Vx((Vde)(Y, 2)) = (Vdg) (VxY.Z) = (Vdg) (Y. VxZ)

and

(Vdo)(X. Y. Z W) := Vx(V:dg)(Y.Z, W) = (Vde)(Vx Y. Z. W)

— (Vid@)(Y,VxZ, W) = (V?dg) (Y, Z, Vx W)
for any vector fields X, Y, Z, W € [(T M). V2d and V3dy are sections of (R’ T*M ® "' TN
and ®4 T*M ® ¢~ ' TN, respectively. By definition, gzdgo has the following symmetry
(V2d)(X, Y,Z) = (Vdg)(X, Z, ).
The tension field 7(¢) of ¢ is defined by
7(p) = try, (V) = ) &i(Vdp)(eie)) = ) (Ve dg)(en).

l l

If ¢ is an isometric immersion, then its tension field is equal to m times of the mean curvature
vector field.

In general, the curvature tensor field RF of a connection V¥ on the bundle E over M is
defined by

RE(X,Y) = VRVE = ViVE = Vi (XY e (TM)).

In particular, for the curvature tensor field R of the induced connection V on the bundle
T*M ® ¢~ 'TN, we have

(R(X,Y)de)(Z) = R ' ™N(X, Y)dp(Z) — dy (R™(x,1)z)
= RY (dp(X), dg(Y)) dp(Z) - dp (RM(X, V)Z) (X, Y,Z € I(TM),

where RM, RV and R¢'TN are the curvature tensor fields on TM , TN and go‘lTN, respec-
tively.
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Then we derive the first variational formulae of the Q,-energy and Q,-energy separately.

3.2. The first variational formula of O;-energy. We consider a smooth variation
{@i}er (I := (—¢, €)) of ¢, that is we consider a smooth map @ given by

O:MXI—->N, (xt)— D(x,1)=:¢(x)

such that ¢y(x) = ¢(x) for all x € M, and denote by V its variational vector field, that is

0
o

) eT(¢"'TN).
t=0

We denote by V, V and V the induced connections on TMxI),d 'TNand T"(M x ) ®
O~ 'TN, respectively. Let {e:}I2, be a local pseudo-orthonormal frame field on a neighbor-

hood U of x € M, then {e,-, %} is a pseudo-orthonormal frame field on the neighborhood
U X Iof (x,t) e M x I, and it holds that

0 .
V%E:O’ Vgei:V.—zo (I1<i<m).

First, we can write the formula (2.1) as
1%(p) = fM (Vde, V) duy, = fM > eiej ((Vdp)eire)), (Vdg)er e))) dg, -
ij
For a variation {¢,},c; of ¢, it holds that
(3.1) % 12(p,) = % fM Z;‘ gie; (Vd®)(ei, e)), (VdD)(ei, e))) dyg,
=2 jﬁ; D28 (Vo (VdD)(eire)), (VdD)(ei, €)) di,
Lj

Then we have
(32)  V4((VdD)(eie)) = (V2 VedD)(e))
— = - —( 8
- (VeiV%dGD) (ej) — (V[ei,%]c@) (ej) — (R (el-, E)dd)) ()
_ P 0
= (V2d®) (e,-, ej, E) - RN (dcb(e,-), do (E)) dd(e)).
By substituting (3.2) into (3.1), we have
d — o\ ~
(3.3) EIQ‘(%) =2 fﬁ; ZZ]: &€ <(V2d‘b) (6’:‘, €js E) ; (qu))(ei’ej)> dug,
0 —
-2 fM izj"gigj <RN (dCD(el»),d(D(E)) d(D(e,-),(Vd(D)(e,-,ej)>dugM.

We need the following lemma to calculate the first variation of 79 ().



'VARIATIONAL PROBLEMS FOR INTEGRAL INVARIANTS 879

Lemma 3.1. Under the setting above, for any variation {¢,}c; of ¢, it holds

(3.4) f Zg,g/ <(V2dq>) (e,,ej, —) (Vd‘l))(e,,ej)>d/,th

stls]<dCD( )(V3dd))(e,,e],e,,ej)>d/1w

Proof. We define vector fields on M depending on ¢ € I by
)~(, = Z gigj <(Vd<l>) (e/, 0 ) (Vd(D) (el, ej)> e
Lj
and
Y, := Z EiE; <d<1> (%) , (edeD) (ej, e, ej)> ei,
ij
where {e;}1" | is a local pseudo-orthonormal frame field on a neighborhood U of M. Xt and
Yt are well- deﬁned because of the independence of the choice of {e;}. Hence X, and Y, are

global vector fields on M.
The divergence of X, is given by

divX,

= Z Sk <Vek§t’ ek>
k

= Z {8[81 < ((qu)) (el, a )) (qu))(en ej)>
bJ

+EEj <(Vd(D) (e], 5 ) Ve,((Vdd))(e,, e]))>}

— o _
- e <(qu>) (e.,», E) (VD) e, e.,.)>
ik
= Z EiEj {<(§2d®) (ffi, e, %) ,(VdD)(e;, ej)>
bJ

<(Vdd)) (the], 0 ) (Vdd)(e;, e])> <(Vdd>) (e], (;9 ) (V2dD)(e;, e;, e])>

<(Vd<I>) (e,, 0 ) (Vd®D)(e;. V. e,)>}

At the second equality, we use the following

> asie; <(Vd<1>) (e,, a) (VdD)(e;, e ,)>(qu,,ek)

i,j,k

== asis <(VdCD) (e/, 0 ) (VdD)(e;, ej)> (ei,Veer)

i,j.k
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== > zje <(6dc1>) (e i g) L(Vd®) (Vo,er, e ,)> .
Jik

Now, take a neighborhood U of x € M such that the exponential map at x is injective
onto U, which is called a normal neighborhood. And we construct a pseudo-orthonormal
frame field {e;}!" | by parallel transporting a pseudo-orthonormal basis at x along a geodesic
v : [0,1] - M from y(0) = x to y(1) = y for every y € U. The pseudo-orthonormal
frame field {e;}}", is called a geodesic frame field. We note that a geodesic frame field {e;}" |
around a point x € M satisfies

(Vee)) =0, |ee] =0 (1<ij<m)

at x. Since (Veie j)(x,t) = (Veie j)x =0forall r € I, we have

(3.5) (divX;),

—~ 0
= Z EiEj {<(V2dq))(x,t) ((ei)(x,t)’ (€)x)s (E)

i,j

_ 9 _
H{(VdD) o) | (€)xn)s | = L, (V2dD) () () (€D (€ ) ) § -
ot )

] , (%dcb)(x,,) ((e[)(x,t)’ (ej)(x,t))>
(x.0)

Each term of the last formula of (3.5) is a tensor, so we have
.= = 0\ =
(3.6) divX, = Zj“ &i€; {<(v2dq>) (ei, ¢, E) L (VdD)(e;, e j)>
— 3\ =,
+{((VdD)|e;, 2 (V7dD)(ei, eie))) ¢,

where {e;}?" | is an arbitrary local pseudo-orthonormal frame field.

1 —~—
In a similar way, we calculate the divergence of ¥;. We have

divy,
= Z &k <Vek7z, €k>
k
- Z {g,-g : <Ve,. (dd) (%)) L(V2dD)(e;, e, e j)>
i.J
I V.. (V2dD)(ej, e ¢)))
J ot J J
- Z ELE| <dd) (ﬁ) , (620,’(1)) (ej, Vel ej)>
= ot
=) &e; {<(€dq>) (e,-, %) L(V2dD) (e, e, j)> + <d(1) ( 0 ) L(V3dD) e e, ei,e j)>
i,J

or

0\ < 0\ <
+ <dq) (E) . (V2d®) (Vel.ej, e;, ej)> + <d(I) (E) s (VdeD) (ej, e;, Vel.ej)>} .
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Then, assuming that {e;} is a geodesic frame field around a point x € M, we have

(3.7) (divY)),

— 0 —
=) & {<(Vdcb>(x,t> ((e,-)u,», (E) ),(vzdd))(x,,) (e (i) (ej)<x,t>)>
ij (x,1)

9 _
+ <(dq))(x,t) ((E)( )) ,(V3dd)(, ((ei)(x,t)v (€))xns (e (e j)(x,t))>} .

Each term of the right hand side of (3.7) is a tensor, so we have

(3.8) divy, = Z sig {<(€ch) (e,-, %) (V2dD)(e; er,e j)>

i,J
+ <d(1> (%) L(V3dD) (e, e, e e ,)>} :

where {e;}" | is an arbitrary local pseudo-orthonormal frame field.
By Green’s theorem, we have

f divX, du,, =0 = f divY, du,,,
M M

and together with (3.6) and (3.8), we have

f Zs,s, <(V2dq>) (el,e], ) (Vdd))(el,e])>dug,w
f Zs,sj <d¢)( ) (V3d<I>) (e,,ej,el,e1)> dug,,.

Here we use the symmetry of V2dp. o
Substituting (3.4) into (3.3), we have

d
_IQl
di (1)

=2 f Zg,g, <(V dD)(er, e, ei,e) — R (dD(e;), (VdD)(e;, e)) dDey), d@(s»dugM

Therefore we obtain the following theorem.

Theorem 3.2. Let (M}, gm) be a compact pseudo-Riemannian manifold, (Ny,gn) a
pseudo-Riemannian manifold and ¢ : M — N a C*-map. Consider a C™-variation {¢;}.c;
of ¢ with variational vector field V. Then the following formula holds

d
_IQ]
di (1)

=0
=2 jﬁ; <Z EiEj {(53#) (e,-, ej, e, €j) + RN((Vdy)(ej, e)), do(e;))dg(e j)} , V> dig,,
i.J

m

where {e;}", is a local pseudo-orthonormal frame field of (MZ’, gm) with gy(e;i, e;) = &0;j,

1
g =-=g,=-l g =-=¢g,=1
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For a map ¢ € C®(M, N), we define W;(¢) € I'(¢~'TN) by

Wilp) = ) &ie; {(V2dg)(er ejreie)) + RN (Vdg)(eire)), dgplen)die))}
bJj
Hence ¢ is a Q;-map if and only if W;(¢) = 0. We can adopt the Euler—Lagrange equation
Wi(p) = 0 as the definition of a Q;-map. Then the domain M of ¢ is not nesessarily compact.

Remark 3.3. In an analytical sqgting, Moser [16] studied a variational problem for the
Q-energy functional 9! (¢) = fM IVdgalzd,ugM.

3.3. The first variational formula of O,-energy. In a similar way, we show the first
variational formula of the Q,-energy. Let {¢};c; be a C*-variation of ¢ with variational
vector field V and {e;} a local pseudo-orthonormal frame field on a neighborhood U.

First, we can write (2.2) as

120 = [ (10,1, Fa) s,
= fM D &g ((Vdg)ei, e, (Vdg)(ej, e)) ditg,,-
ij
For a variation {¢,},c; of ¢, it holds that
(3.9) % 12(p,) = % fM Z]" £ie; (Vd®) (e, e), (VdD)(ej. e))) dg,
=2 fM > 26 (Vo (VD) (eire), (VdD)(e)y e))) dug,,.
bj

Then we have

(3.10) Vi ((VdD)(e;,e) = (ﬁgﬁﬁd@) (e;)
— = - —( @
= (V. V2d®) () = (Vy,, 21dP) (e) - (R (e,-, E) d@) )
_ o2 U WY 9
=(V dcb)(e,,e,, 8t) R (a'(D(e) d@(a ))dd)(e)
By substituting (3.10) into (3.9), we have

d — o\ ~
3.11) 5192(%) =2 ‘[M ,ZJ: EiEj <(V2d(l)) (el-, e, E) ,(VdD)(e;j, ej)> duy,,

0
-2 L lzj: EiEj < (d(D(e ), dD ((9 )) dd(e;), (qu))(ej, ej)> dug,, -

Lemma 3.4. Under the setting above, for any variation {¢;}c; of @, it holds

(3.12) f Za,e] <(V dD) (e,,e,,—) (Vd@)(e],e])>dqu

st,8]<dCD( )(V%dCD)(e,,el,e],e])>dng
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Proof. For each ¢ € I, we define vector fields on M by
— — 9\ ~
X, = Zj] &igj <(qu>) (e,-, E) L(Vd®) (ej. e ])> e
and
YV - 4 o2
Y, = lzj: Ei&j dd a s (V d(D) (e,-,ej, ej) e,
where {e;}!" | is a pseudo-orthonormal frame field on a neighborhood U of M. Note that )’Z,

and Y, are globally defined vector fields on M.
The divergence of X, is given by

divk, = e (Ve X er)
k

=) & {<(€2d®) (e,-, e, %) ,(VdD)(e;, e j)>
L.j
<(qu>) (el, 0 ) (V2dD)(e;, e;, e,)>

0
+2 <(Vd<I>) (e,, ) (Vd®) (V,e), e,)>}
Then, assuming that {e;} is a geodesic frame field around a point x € M, we have

(3.13) (divX,),

— 0 —
=) s {<(V2d<1>) ((e»(x,,), (€)ixns (5) ),(Vdd» (e)cns (e j)(m)>
i,j (x,0)

— 0
+ <(qu>) ((ei)(x,t), (E)

Each term of the right hand side of (3.13) is a tensor, so we have

) , (equ))(x,t) ((ei)(x,t)’ (€)x)s (e j)(x,t))>} .
(x,0)

(3.14) divX, = > &g {<(€2qu) (e,-, e, %) L(VdD)(ej, e j)>

i,J
+ <(ed<l>) (ei, %) ,(V2dD)(e;, ej, €j)>} ,

where {e;}", is an arbitrary local pseudo-orthonormal frame field.
In a similar way, we calculate the divergence of Y,. We have

divY, = )" & (Ve Yoer)

k

= Z gigj {<(Vdd)) (e,, ) (V2d®)(e,, ej, e,)>

<d(D ( 0 ) (V3d(l))(€l, €, €, €])>
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o\ ~
+2 <ch (E) L(V2dD) (i, Vee)re ,)>} :
Then, assuming that {e;} is a geodesic frame field around a point x € M, we have

(3.15)  (divY)),

— 0 —
=) &g {<<Vd<1>)<x,t> [(e»(x,,), (E)( )] L (V2dD) ) ((€)xn» (€ (e,»><x,,))>

L]
d <3
+{ (dD)(x) E ,(V7dD) .y ((ei)(x,t)’ (€)xn)s (€))xn (e j)(x,t)) .
(x,0)
Each term of the right hand side of (3.15) is a tensor, so we have

(3.16) divy, = Z & {<(€ch) (e,-, g) (V2dD)(ei e, e j)>

iJj
+ <d(D (%) ,(V3dD)(e;, e;, €j, 6’/)>} )

where {e;}" | is an arbitrary local pseudo-orthonormal frame field.
By Green’s theorem, we have

f divX, du,, =0 = f divY, du,,,,
M M

and together with (3.14) and (3.16), we have
— o\ ~
f > e <(v2d<1>> (ei, ei —) L(Vdd)(e;, e,->> dug,
M 4= ot

P _
:fZs,-gj<d¢)(—),(V3d(I>)(el-,e,~,ej,ej)>d,ugM.
My ot

O
Substituting (3.12) into (3.11), we have
d
_IQZ
di (¢r)
3 N o 9
=2 f Zeig,-<(v dD) (e, ei.ejej) = RN (dD(e;), (VdD)(ej,e;)) dCD(el-),dd)(—)> dyy,,-
M4 ot

Therefore we obtain the following theorem.

Theorem 3.5. Let (M)}, gu) be a compact pseudo-Riemannian manifold, (Ny,gn) a
pseudo-Riemannian manifold and ¢ : M — N a C*-map. Consider a C*-variation {¢;}e;
of ¢ with variational vector field V. Then the following formula holds

d
_IQZ
di (¢r)

=0

=2 fM <Z gi&){(Vdg) (e eirejo e)) + R (Vdg)e, ), dgple)dp(e )] V> g,

L.j



'VARIATIONAL PROBLEMS FOR INTEGRAL INVARIANTS 885

where {e;}”, is a local pseudo-orthonormal frame field of (M}, gu) with gu(ei, e;) = €6ij,
gr=-=g,=-lLegy==¢g,=1

For a map ¢ € C®(M, N), we define W,(¢) € I'(¢~'TN) by
Walp) := ) &ie; {(V'dg) (er e e e;) + R¥(Vdg)(er, ei), di(e ))dile )}
W

Hence ¢ is a Q,-map if and only if W,(¢) = 0.

Remark 3.6. For a pseudo-Riemannian manifold (M}, gu), if the index p = 0 then
(M, gy) is a Riemannian manifold. Therefore a map ¢ : (M;”, gu) — (N, gn) between
Riemannian manifolds is a Q;-map if and only if

D {(Fdp) (ei.eg. einej) + R (Vdg)(eie)). deen). (e} =0,

L]
where {e;}!" | is a local orthonormal frame field of (M™, gy). Similarly, we have that a map
@ (Ml’j’, gm) — (N, gn) between Riemannian manifolds is a Q,-map if and only if

D {Fdg) (i e ejrej) + RN (Vdg)er, e, die)), Ydge )} = 0.
ij
By Theorem 3.2 and Theorem 3.5, we obtain all the first variational formulae of the
integral invariants which belong to the space spanned by the Q-energy and Q,-energy.

By comparing the first variational formula of the bienergy (c.f. [11]) and that of O;-
energy (Theorem 3.5), we have the following proposition.

Proposition 3.7. Let ¢ : M — N be a C*-map between pseudo-Riemannian manifolds
(M}, gm) and (N, gn). Then the following formula holds

—V'Vip) = ) i i(Vidp)eieiej e,
ij

where V'V is the rough Laplacian and {e;}" | is a local pseudo-orthonormal frame field of
(M™, gar).
Proof. For any V € I'(¢~! T N), we define vector fields on M by

W= Z g€ <V, ﬁe,-((FVVa’(P)(ej, ej))> e
i,J
and

W= Z EiEj <V, (V2dy)(e;, ej, ej)> e,
L]
where {e;}", is a local pseudo-orthonormal frame field of (MZ’, gm)- Then, assuming that

{e;} is a geodesic frame field around a point x € M, we have

W= &g (Ve, (Ve (Vdg)(ej, €)= 2A(Vdp)(Vee, ), ) (e
iJ

= &ig; (Vi (Ve (Vdg)ejr ), ) (i) = Wi
i.j
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Therefore W = W’. Thus,
0 = div(W — W),
= > e {{(Ve V) (Ve (Vdg)ej,e),) + (Ve (Ve (Ve (Vdp)eje))), )}
i.J

= > &g {{(VeaV),. (Vdg)eieje).) + (Vi (Vo (Vidp)ei e ), )}
ij

= <vx, (- V V), - ) sis(Vdp)eseive;, e,»))x> :
i.j

where {e;}", is a geodesic frame field around a point x € M. So we have

“V'Vilp) = ) i i(Vidp)eieiej e,

Lj

1

where {e;}", is an arbitrary local pseudo-orthonormal frame field. O

1

4. The Euler-Lagrange equation of the Chern-Federer energy

We inherit the settings in the previous section. In this section, we introduce the Chern—
Federer energy functional for a map ¢ : (M}, gu) — (Ny, gn) between pseudo-Riemannian
manifolds, which is an integral invariant defined by a homogeneous polynomial of degree
two on II(E}, E) called the Chern-Federer polynomial. Then we verify the Euler-Lagrange
equation of the Chern—Federer energy functional.

For H = (h?j) € II(Ey, EZ), the Chern—Federer polynomial CF(H) is defined by

4.1 CE(H) := Qx2(H) - Qi(H).

From Theorems 3.2 and 3.5, the Euler-Lagrange equation of the Chern—Federer energy
functional I°F(¢) is

4.2) 0 = Wa(p) — Wi(e)
= Z e {(Vdg)eieieje)) = (Vdg)eiej eire))

Lj
+R"((Vdg)(ei, e:), dgle)dp(e;) — RY (V) (ei, e)), dgplei)dgple )

where {e;}!" | is a local pseudo-orthonormal frame field of (M}, gm). In this section, we
give alternative expressions of the Euler—Lagrange equation of the Chern—Federer energy
functional. In particular, the Euler-Lagrange equation of IF(¢) is a second-order partial
differential equation for ¢. Moreover, we describe the symmetry of the Euler—Lagrange
equation of the Chern—Federer energy functional and that of the Chern—Federer polynomial.

We also introduce the Willmore—Chen energy functional, which is an integral invariant
defined by the homogeneous polynomial of degree two called the Willmore—Chen polyno-

mial. For H = (h?j) € II(E}, By), the Willmore—Chen polynomial WC(H) is defined by
WC(H) := mQ(H) — Qa2(H).

Let a and 8 be constant numbers such that o + 2 # 0. A C®-map ¢ : M — N is called
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an (@Q; + BQ,)-map if it satisfies
aWi(e) + BWa(p) = 0.

By definition, an (@Q; + BQ,)-map ¢ is

a Q1-map when (a,8) = (1,0);

a Qp-map, that is, a biharmonic map, when (a, 8) = (0, 1);
a Chern—Federer map when (a,8) = (-1, 1);

a Willmore—Chen map when (a,8) = (m, —1).

In Section 5, we construct some examples of these maps.

4.1. Alternative expression of the Euler-Lagrange equation of the Chern-Federer
energy functional 1. First, we prepare the following lemmas.

Lemma 4.1. For a smoothmap ¢ : M — N and X, Y,Z € I'(T M), the following equation
holds:

(V2d)(X. Y,Z) = (V2dg)(Y, X, Z) = R (dg(X), dp(Y)) dp(2) - dgp (R" (X, Y)Z).
Proof. Let {¢;}1" | be a geodesic frame field of (M[’;’, gm) around x € M. At x, we have

(V2do)(er e, ex) — (V2dg)(ej. i €x)

= Ve, (Ve, (dpe) = de(Ve,e0) = Ve, (Ve (dgler) — dp(Ve,er)

= (ﬁeiﬁe_,- - ﬁejﬁe,- - g[e,-,ej]) dy(er)
—{(Vdg) (ei. Verex) + dip (Ve Ve i)} + [(Vdg)e, Veer) + dp Ve, Verex))

= R ™ (e, e))dp(er) — dp (Ve Veer — Ve, Verer — Viee 1ek)

= R (dg(ei). dgle)) deler) — dio (R (ei. e )er).

Since all terms of the first and last formulae are tensors, we have the lemma. O

Lemma 4.2. For a smooth map ¢ : M — N and X,Y,Z,W € I'(TM), the following
equation holds:

(V’dg)(X. Y, Z.W) - (Vde)(X.Z. Y, W)
= (VRY) (dp(X), dg(Y), dp(2)) dp(W) + RN (Vd)(X, Y), dp(Z))dp(W)

+ RV (dg(Y), (Vdg)(X, 2))dp(W) + RN (dg(Y), dp(Z)) (Vde)(X, W)

— (Vdg) (X. RM(Y, )W) - dg ((VR™) (X, Y, Z)W)..

Proof. First, we show that the following equation:
(4.3) (V3dg)(X,Y,Z, W) — (V' de)(X.Z, Y, W)
= (VR* V)X, Y. Z)de(W) + R* TV (Y, Z)(Vdyg)(X, W)
— (Vdg)(X, RM(Y, Z)W) — d ((VR) (X, Y, )W),

where X, Y,Z, W € I'(TM). Let {¢;}1" | be a geodesic frame field of (Ml’;’, gy) around x € M.
At x, we have
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(Vdg) e e, er.e)) — (Vdg)(er ex, e, e))
= V., (RY (de(e)). de(er)) de(e)) — (Vdg) (er, R (e}, ex)er) — dp (Ve, (R (e, e)er))
= (VR ™) (er e, ex)dgpler) + RS ™ (e, ex)(Vdp)er,er) — (Vdg) (er, RM (e, er)er)
— do((VR™)(er e, ex)er).

Here, the first equality holds because of Lemma 4.1. Since all terms of the first and last
formulae are tensors, we have (4.3). Then, on Endp~' TN, we have

(4.4) RE TN, Z)((Vdy)(X, W) = RN (d(Y), dp(Z))(Vdp)(X, W)),
where X, Y, Z, W € I'(T M), since the following equation holds:
RV, Y) = (7' RM(X, Y) = RV (dgp(X), dg(Y)).
Also, we can verify the following equation:
(4.5) (VR ™)(X,Y,Z) = (VRY)(dgp(X), d(Y), dp(Z))
+ R¥(dg(Y), (Vdg)(X, Z)) + RN (Vdg)(X, Y), dp(Z)).
Thus we have
(VR ™)X, Y, 2)
= VxR ™N(Y,2)) - R TN(VxY, 2) - R* TV(Y,VxZ)
= Vx(RV(de(Y), de(2))) — R¥(dp(VxY),dp(Z)) — RV (de(Y), dp(VxZ))
= Vx(RN(dg(Y), dp(2))) + RV (Vdp)(X, Y),dp(Z)) + R (dg(Y), (Vde)(X. Z))
- RV (Vx(d(Y)),de(Z)) — R" (de(Y), Vx(de(Z)))
= RV((Vde)(X.Y),de(2)) + R (de(Y), (Vde)(X. Z)) + (VRV)(de(X). de(Y), dp(Z)).

Here, by taking local frame fields of (M, g) and (N, gy) and calculating locally, we verify
the last equality. Therefore the assertion holds from (4.3), (4.4) and (4.5). m|

Remark 4.3. Recall that VR 7V is the derivative of the curvature tensor field R TV,
defined by
(VR ™)X, Y, Z)s := Vx(R* ™N(Y,Z2)s) = R¢ ™V (VxY, Z) s
— RN (Y, Vx2) s — RS TNV, 2) Vs,
where X,Y,Z € T(TM) and s € T'(¢"'TN).
Using Lemma 4.2, we obtain the following proposition.
Proposition 4.4. A smooth map ¢ : M — N is a Chern—Federer map if and only if

46) 0= > ze;i{(VRY)(dete), dglen, dgle)) dele;) - (Vdg) (ei, R (er, e )e;)
Lj

—dy ((VRM) (e;, ei, ej)ej) + 2RN((FVVd<P)(€i, e;),dy(e;))dp(e;)
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+2R"(dg(e;). (Vdp)(er, e))di(e))]} .
where {e;}i | is a local pseudo-orthonormal frame field of (M}, gu).

By the equation (4.6), it can be seen that the Euler—Lagrange equation of the Chern—
Federer energy functional for a map ¢ is a second-order partial differential equation for ¢.

4.2. Alternative expression of the Euler-Lagrange equation of the Chern-Federer
energy functional II. Here, we express the Chern—Federer energy functional as follows:

IF(p) = 1%7%(p)

2
= ‘fﬁ; {Z el (Z 8ih?§] - Z &), Z gl.gj(h?;)z] duy,,
a =~ Py

i
he  he
= f Zg;Zsisjdet(hg hfj]d,ugM.
M=y ij ij "jj
Then we have the following alternative expression of the Euler—Lagrange equation of the

Chern—Federer energy functional.

Theorem 4.5. Let ¢ : M — N be a C™-map between pseudo-Riemannian manifolds. We
define (0,4)-type tensor fields i and v valued on ¢"'TN by

(X1, X2, X3, Xa) 1= (V3d@)(X1, X2, X3, X4)
and
v(X1, X2, X3, X4) 1= RN((€d¢)(X3, X4), dp(X,))de(X,),

where X1, X2, X3, X4 € [(TM). Then ¢ is a Chern—Federer map if and only if

4.7) C(u+v)=0.
Here C is the contraction of a (0, 4)-tensor field on M defined by
Ci C13)
C :=det ,
(C24 Csy

where C;; is the contraction of the i-th and j-th variables.
Proof. From the definition of u and v, we have u,v e I(T"M @ T*"M @ (T"M 0 T*M) ®
¢~ 'TN). For simplicity, we set
Mijt = plei, e, ek, ep)
and
Vijki -= v(ei, ej, e, ep),

where {e;}?" | is a local pseudo-orthonormal frame field of M. Note that, by the pseudo-
Riemannian metric gy, there is a natural correspondence between a covariant tensor and a
contravariant tensor on M. Hence we can consider a contraction of (0, 4)-tensor field on M.
Then we have
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ei{(Vdp)er eiejep) — (Vdp)er e ere))

e
i.j

= Zgigj (lliijj —llijij> = Z (,Ui i J / — Hij ij)
ij iJ

C C
= CCagp — C13Copu = det( 2 13) .

Cy Cyy K

In a similar way, we have
> i [RY(Vdg)(ei, e, dple)dgle) = RN (Vdp) (e, e), dgplen)dgple)))
i.j

Cin C13)
= det .
(C24 Csy

Therefore the Euler-Lagrange equation (4.2) of the Chern—Federer energy functional can be
expressed as the following equation:

Ci C13)

det +v)=0.
(C24 Ca w+v)

]

In addition, we observe symmetry of the equation (4.7) and the Chern-Federer poly-
nomial (4.1). Let U be the space of O(p,m — p) X O(g,n — g)-invariant homogeneous
polynomials of degree two on II(E}}, E7), which is spanned by Q, and Q»:

U := spang {Q;, Qs}.

Also we denote by V the space of sections of ¢! TN spanned by v := Cj3C4(u + v) and
Uy = C12C34(/l + V)I

VY = spang {v1, 02} .

Then, by the first variational formula of the (aQ; + 59Q;)-energy functional, we have a linear
isomorphism between U” and V. From the first variational formula (4.7) of the Chern—
Federer energy functional, we observe the invariance of v, — v; under the symmetric group
S, of degree four acting on V as the permutation of the variables. The symmetric group S4
is generated by transpositions (1 2), (1 3) and (1 4). Here, we set

(123 4 (123 4 (123 4
TP=l 134 273 21 4) T4 o2 3 1)

By the symmetry of the third and fourth variables of i and v, we have the following relations:
o) =v1, o) =0, o) =01, 022) =vi, 03(01) =02, 03(02) =01

From these, it can be seen that v; and v, are symmetric by the transposition (1 2) = o,
and v, — v is antisymmetric by the permutation o3. There are totally 24 elements in Sy,
however, due to the invariance by the permutation o; and the symmetry for the third and
fourth variables of i and v, the action of S4 on V is reduced to the following six permutations:
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(1 2 3 4 (1 2 3 4 (1 2 3 4
0'1,0'2,0'3,0'4-—3 4 1 2,0‘5._1 4 3 2,0-6,_1 3 0 4

Then we can verify that v, —v) is antisymmetric by the permutations o3 and 0. Furthermore,
an element of V is antisymmetric by o3 and o7 if and only if it is a scalar multiple of v, —v;.

In a similar way, we observe the invariance of the Chern—Federer polynomial under the
symmetric group S4. First, we rewrite the Chern—Federer polynomial as follows. For H =
(h?j) € I(E},, Ep), we define p € ®4(EZ1)* as follows

p = Zpiﬂ‘l ei®ej®ek®el,
ijkil
where p; jx; 1s defined by
Pt 1= ) i,

a

and {¢’ {7, is the dual basis of the standard basis of EZ’. Then we have

Qi(H) = ZSQ Zgigjh?}hidj = Zgigjpijij = Zpij V= C13Cup
PR i i

L]

and

Qx(H) = Z £, Z &igjhyh§; = Z gigpiijj = C12C34p.
a i,j

bj
Therefore we can rewrite the Chern—Federer polynomial CF(H) as follows:

CE(H) = Qy(H) — Q,(H) = det (C” C”)p.
Cay Cyy

As in the case of V, the action of S4 on U is reduced to six elements o; (i = 1,2,---,6).
Then we can verify that an element of U” is antisymmetric by o3 and o if and only if it is a
scalar multiple of the Chern—Federer polynomial CF(H). Consequently, we find that CF(H)
and v, — v; have the same symmetry via the first variational formula and the actions of S on
U and V.

5. Chern-Federer submanifolds in Riemannian space forms

Let (M™, gux), (N", gn) be two Riemannian manifolds. From now on, we deal with iso-
metric immersions ¢ : (M",gy) — (N",gy). In this section, we firstly derive the Euler—
Lagrange equation for an isometric immersion from a Riemannian manifold into a Riemann-
ian space form. Secondly, we construct examples in the case of curves or surfaces. Finally,
we consider Chern—Federer isoparametric hypersurfaces in Riemannian space forms.

5.1. Euler-Lagrange equations for isometric immersions. For an isometric immersion
©: (M, gy) — (N",gn), we denote the shape operator and the mean curvature vector field
by A and H, respectively. Namely, they are defined by

— 1 _ 1
<A§(X), Y) =((Vdp)(X,Y),&), H = EtrgM(Vd(p) = ET("D)
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for any X,Y € I(TM), ¢ € T(T+M), where T+M is the normal bundle over M of ¢. In
addition, we simply denote by 4 the second fundamental form AVﬂgo in this section.

We denote a Riemannian space form of constant curvature ¢ € R by N"(c). Namely,
it is locally isometric to one of a Euclidean space (¢ = 0), a round sphere (¢ > 0) and a
hyperbolic space (¢ < 0).

When we denote the Ricci operator of (M™, gy ) by O, we obtain the Euler-Lagrange
equation for an isometric immersion into a Riemannian space form.

Theorem 5.1. Let ¢ : (M™, gp) — N"(c) be an isometric immersion. Then ¢ is a Chern—
Federer map if and only if it satisfies that

(5.1) CF(p) = —dy(tr,, (VQ)) + 2cm(m — 1)H — try, h(QO(-),-) = 0,
equivalently,
(5.2) (T) 1 try,,(VOQ) =0, (1):2cm(m—1)H —try, h(Q(-),-) = 0,

where (T) and (L) denote the tangent component and the normal component of (5.1), re-
spectively.

REMARK 5.2. We define two (1, 1)-type tensor fields AC and Z on M™ as

k
AC(X) = Y AL, EX) 1= Ary(X) = ACX) = mAy(X) - A°(X),

a=1

where k = n—m and {fa}’; _, is alocal orthonormal frame of T L M. The operator A€ is called
the Casorati operator (cf. [6, T]). Then, from the Gauss equation, we have

OX) = c(m - DX + E(X).
From this, we can also describe the formula (5.2) as

(5.3) (T):try, (VE) =0, (L):cm(im—1H — try, h(E(-),-) =0.

Proof of Theorem 5.1. Since the target space N" is of constant curvature ¢ and ¢*gy =
gum, by using Lemma 4.4, we compute
> {(VRY) dgten, deten), dete ), dgle ) - dp(TRM Yer, eir e )
i,j=1
—h(ei, RY (i, ¢))e) + 2RN (hey, e1), dep(e))dp(e ) + 2RN (de(er), heis e)dgp(e j)}
= —dy(try, (VQ)) — trg, A(Q(-),-) + 2c(m — D1(p).

Therefore, the proof is completed since 7(¢) = mH. |

5.2. Examples of Chern-Federer submanifolds. Here, we construct some examples of
Chern—Federer maps in the case of isometric immersions. When an isometric immersion
@ (M" gy) = (N",gn) is a Chern—Federer map, we call the image a Chern—Federer
submanifold in (N", gy), and the map ¢ to be Chern—Federer.

Let I c R be an open interval. Then an arbitrary curve y : I — (N”,gy) is a Chern—
Federer map. Actually, we have W (y) = W;(y) from Theorem 3.2 and 3.5. Therefore, it is
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trivial that

CE(y) = Wa(y) — Wi(y) = 0.

There are other obvious examples in the following way. We consider a Euclidean n-space
E" as a target space (N", gy ), which is a flat Riemannian space form. If (M™, gy) is a
Ricci-flat Riemannian manifold, then an arbitrary isometric immersion ¢ : (M™, gy) — E"
is Chern—Federer. For example, Calabi—Yau manifolds, Hyperkdhler manifolds and G-
manifolds are all Ricci-flat. Moreover, for any Riemannian manifold (M™, g,), there exists
an isometric immersion into a Euclidean space by Nash’s theorem.

Next, we consider the two-dimensional case (m = 2).

Proposition 5.3. Let ¢ : (M?,gy) — N"(c) be an isometric immersion and K the sec-
tional curvature of (M2, gy). Then ¢ is Chern—Federer if and only if

(i) K is constant and ¢ is minimal, or
(1) K = 2c and ¢ is arbitrary, that is, unconditional on ¢.
Proof. In the two-dimensional case, we have, for any X € ['(T'M),
0(X) = KX.
Thus, since ¢ is Chern—Federer if and only if

(T) @ try,(VQ) =grad K =0,
(L) @ 4cH — Ktry, h(-,-) =2(2c = K)H =0,

we have the conclusion. ]

Let M?(K) be a two-dimensional Riemannian space form of constant curvature K. For
minimal isometric immersions ¢ : M*(K) — N"(c), the research has already completed. In
fact,

e when ¢ = 0, it implies that K = 0 and ¢ is totally geodesic;
e when ¢ = —1, it implies that K = —1 and ¢ is totally geodesic;
e when ¢ = 1, itimplies that K > 0. In addition, if N*(1) is isometric to a round sphere

S"A) = {(xn, X)) €BT 3 41 22, = 1),

then ¢ is locally congruent to generalized Clifford tori, or Bordvka spheres ¢ (k >
1). Here a generalized Clifford torus is a minimal 2-torus in S"(1) which is an orbit
of an abelian closed Lie subgroup of SO(n + 1), and a Bortivka sphere is a minimal
2-sphere in S"(1) which is an orbit of an irreducible representation of SO(3). See
[2, 15] in detail.
At the end of Section 5.2, we consider flat tori in the unit 3-sphere S3(1).
Let T2 be a flat torus, ¢ : T2 — S3(1) an isometric immersion. Then the flat torus 7?2
admits an asymptotic Chebyshev net (s1, 5;), that is, by using the asymptotic Chebyshev net
(81, $2), we can express

gr = ds} +2coswdsidsy +ds;, hr = 2sinwdsds,,

where w = w(sy, 52) is some smooth function, and gr, hy are the induced metric and the



894 R. Akryama, T. SAkAI anD Y. Sato

second fundamental form of ¢, respectively. Moreover, we compute the mean curvature
function H of ¢ from this as

H(s1, s2) = —cot[w(s1, $2)].
See [13] in more precise details regarding an asymptotic Chebyshev net of a flat torus.

Theorem 5.4. Let T? be a flat torus, ¢ : T?> — S3(1) an isometric immersion with
constant mean curvature H. Then ¢ is an (aQ; + fQ»)-map if and only if

i) H=0 (whena+p =0),

a
i) H=0 h 0, > 0],
(i1) (w ena+f#+ wip )

(i) H =0, or H? = ——2 (whena+ﬁ¢0, ¢ <0).

2(a + B) a+p

Moreover, in the case of (iii), H* runs across the whole range of (0, ).

In [14], Kitagawa showed that any isometric embedding ¢ : 7> — S*(1) with constant
mean curvature are congruent to Clifford tori. Therefore, we have the following classifica-
tion theorem.

Corollary 5.5. Let T? be a flat torus, ¢ : T> — S3(1) an isometric embedding with
constant mean curvature H. Then ¢ is an (aQ1 + BQ»)-map if and only if it is congruent to
one of the following Clifford tori

(i) a minimal Clifford torus defined by

s! (l) x S! (l) — S3(1) (whena+8=0),

V2 V2
(i1) a minimal Clifford torus defined by
1 1 a
Sl(—)xsl(—) — S3(1) (whena+ﬁ¢0, > 0],
V2 V2 a+p

(i) a minimal Clifford torus defined by

(ol

or a non-minimal Clifford torus defined by

Str) x S'(rn) = $3(1) (whena/+ﬂ¢0, @ <0),
a+p

where ry, rp are defined by

- _l_ 1+ 2(a+ﬁ)_ | - 2(a/+/3)<
A a+28 \ a+28 |
1 2+p) | [ae+p)

2=V N ar2s T\ a2 |

and the mean curvature of the Clifford torus S'(r)) x S'(r,) — S3(1) satisfies that
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2a+p)
Proof of Theorem 5.4. Let (s, 52) be an asymptotic Chebyshev net for 72. We define a
frame field by using this coordinates
0 0 0
eg=—, e=H—+V1+H>—.
! s 1 2 8s1 8.92

Then {ey, e,} defines a geodesic frame. By using this, we compute

Wi(p) = —4H(1 +2HME,  Walp) = -8H’¢,
where £ is a unit normal vector along ¢. Namely, we have
aWi(p) +BWa(y) = ~4H{a + 2(a + HH)E.

This completes the proof. O

RemMark 5.6. Regarding the following hypersurfaces in unit spheres

1
o S” (6) c S$™1(1) (a totally umbilical small sphere),

1 1
o S™ (— x §"— | c $*™*1(1) (a minimal generalized Clifford torus),
75

these inclusion maps are both (aQ; + 8Q,)-maps for any @, 8 € R such that o> + 52 # 0.

5.3. Chern-Federer isoparametric hypersurfaces in space forms. We remark that for
a hypersurface M™ c N"™*! with a unit normal vector field &, it holds that

(5.4 X, Y) = (A(X), Y)§

for any X, Y € I'(T M), and we may denote the shape operator A by A for simplicity.

Let M™ < N™*!(c) be an isoparametric hypersurface, that is, a hypersurface with con-
stant principal curvatures. Then the inclusion map ¢ : M™ < N™*!(c) gives an isometric
immersion by considering the induced metric gy, by ¢, and we have an orthogonal direct sum
decomposition as vector bundles

T™ = é E,,
a=1

where g denotes the number of distinct principal curvatures and E,, are the principal (curva-
ture) distributions. We remark that each E, is auto-parallel, that is, the following holds

VxY el'(E,) (XY €eI'(E,)),

where V denotes the Levi—Civita connection of (M", gy ). In particular, each E, is inte-
grable. More precisely, see [3, Lemma 3.9] in detail.

Theorem 5.7. Let M c N™'(c) be an isoparametric hypersurface in a Riemannian
space form. Then M™ is Chern—Federer if and only if it satisfies that

cm—D(trA) — (trA)(trA%) + (trA%) = 0.
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We give a proof of Theorem 5.7 after Lemmas 5.9 and 5.10 stated below.

REmMARK 5.8. Let M™ c N™*!(c) be an isoparametric hypersurface. Then the inclusion
map ¢ is a Q;-map if and only if

Wi(0) = c(trA) — (tr A%) = 0,
the inclusion map is a Q,-map (that is, a biharmonic map) if and only if
Wa() = (mc - (tr A%)) (tr A) = 0,
and the inclusion map is a Willmore—Chen map if and only if

WC() = mW, (1) — Wa() = (trA)(tr A%) — m(tr A*) = 0.

Lemma 5.9. Let M c N"*(c¢) be an isoparametric hypersurface, 1 : M™ — N"™(c)
the inclusion map and gy the induced metric of M™ by t. Then it holds that

try, (VE) = 0.
Proof. Let {¢;};, be an orthonormal frame of M™ such that
A(ei) = die;,

where A;’s are principal curvatures, which are constant. Then we have by using (5.4)

m

D (try, (VE), exde

k=1

try, (VE)

m

Z [<Ve,-(Ah(e_,-,e_,-)ei) - (Ah(e,-,e,-)ve,-ei)y €k>

i, jk=1

- <Vel- (Antesene)) = (Anv, eiep€)s €k>] ek
m

Z [—ﬂiﬂj&jweiej, er) + 4id;6 i (Vee, ej)] e
i k=1

Z (ﬂi/lj - /l?)(Ve‘.ei, €j>€j.
i,j=1

From the last formula, we can claim the following statements for e; € I'(E,), e; € I'(Ep):
When a = 3, we have

A= =0
since A; = A;. When « # 3, we have
(Vei,ej) =0
since V,e; € I'(E,) and E, is orthogonal to Eg. Therefore, we complete the proof. O

Lemma 5.10. Under the assumption of Lemma 5.9, it holds that
trg, A(E(-), -) = [(tr A)(tr A%) — (tr A%)J¢,

where £ is a unit normal vector field of M™.
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m

Proof. Taking an orthonormal frame {e;}" |

using (5.4) that

of M™ such that A(e;) = A;e;, we compute by

m
gy A(EC), ) = D MAniey €1 = Abterepes €1)

ij=1

D hiei, (Ale)), e)Ae)) = (Alei), e )A(e;)
=1

i

|74, = 7,67 | € = [(r A)(tr A) - (r A%)]e.

~
I
—_

-

Thus, the proof is completed. O

Proof of Theorem 5.7. From Lemma 5.9 and Lemma 5.10, we can see that an isopara-
metric hypersurface M™ c N™*!(c) is Chern—Federer if and only if it holds that

(T) : try,(VE) =0 (trivially holds),
(L) : emOm = DH = try, h(E(-),-) = [e(m = 1)(tr A) = (tr A)(r A%) + (tr A%)] £ = 0.

Thus, we obtain the conclusion. O

Let L" be a Minkowski n-space. By using the classification [3, Theorem 3.12, Theo-
rem 3.14] of isoparametric hypersurfaces in a Euclidean space E”*! and a hyperbolic space

1 2 2, 2 2
H™ (=1 == {1, s xma2) €L | =x7 + x5+ -+ X, = =1, x; >0},

m

we have the following results:

Theorem 5.11. Let M c E™! be an isoparametric hypersurface. Then M™ is Chern—
Federer if and only if it is congruent to an open portion of one of the following hypersurfaces

[g=1] E™cE™! (atotally geodesic hyperplane),

lg=2] SYr)xE" ' cE"™! (a generalized right circular cylinder).

Theorem 5.12. Let M" c H™!(=1) be an isoparametric hypersurface. Then M™ is
Chern—Federer if and only if it is totally geodesic.

In the case of a unit sphere S"*!(1), there exist fruitfully Chern-Federer isoparametric
hypersurfaces which is not minimal. This is a different situation from that of biharmonic
isoparametric hypersurfaces in a unit sphere. See [10] on the classification of biharmonic
isoparametric hypersurfaces. In this paper, we do not classify Chern—Federer isoparametric
hypersurfaces in $™*!(1). However, we show some examples of Chern—Federer homoge-
neous hypersurfaces, which are also isoparametric. Since all of their proofs are done by di-
rect calculations by using Theorem 5.7, detailed calculations are omitted. We again remark
that g denotes the number of distinct principal curvatures of isoparametric hypersurfaces.

o [g = 1]. The classification is the following totally umbilical hypersurfaces

(5.5) S™(r) = {(x, V1i=r) e B™2 | ||Ix|P? = r2} c SNy O<r<l),

where || - || denotes the canonical Euclidean norm of E”*!. From this, we obtain:
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Proposition 5.13. The isoparametric hypersurface (5.5) is Chern—Federer if and only if
r = 1 (totally geodesic one), orr =1/ V2 (proper biharmonic one).

e [g = 2]. The classification is the following Clifford hypersurfaces
(5.6) SP(r) X S"P(ry) € S™ (1) (rf +15 = 1).
We denote the distinct principal curvatures of (5.6) by 41, 1. Then by setting
A:=A1; =cott (0<t< g),
we have

T 1 1
bmeorfieT) =l L
From this, we obtain:

Proposition 5.14. The isoparametric hypersurface (5.6) is Chern—Federer if and only if
A satisfies that

p(p— 1A% = p@2m—p—-DA*+(m—p)m+p- DA = (m—-p)(m—-p-1)=0.

e [g = 3]. The classification is the following four Cartan hypersurfaces

(5.7) M? = SO(3)/Z, x Z, — S*(1),
(5.8) M® =SU@3)/T?* - S'(1),
(5.9) M" = Sp(3)/Sp(1y’ — sB(1),
(5.10) M* = F4/Spin(8) — S¥(1).

We denote the distinct principal curvatures of (5.7-5.10) by A;, A, 43. Then by setting

A :=A1; = cott (0<t<g),

we have

2 1-v3 . _/l+\/§

TR+l T -1

From this, we obtain:

Proposition 5.15. The isoparametric hypersurfaces (5.7), (5.9) or (5.10) are Chern—
Federer if and only if A = V3 (the only minimal one).
The isoparametric hypersurface (5.8) is Chern—Federer if and only if A satisfies that

(A2 =3)32 =327 =91+ DB +3247-91-1) = 0.
Namely, there are non-minimal ones in the case.

o [g = 4]. In this case, we deal with homogeneous hypersurfaces. Non-homogeneous
isoparametric ones are called to be of OT-FKM type. The classification of homogeneous
hypersurfaces is the following ones

(5.11) M? =50(5)/T? - S°(1),
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(5.12) M = U®5)/SUQ) x SUQR) x U(1) — $P(1),

(5.13) M = U(1) - Spin(10)/S" - Spin(6) — S*'(1),

(5.14) M2 = S(UQR) x U(m))/S(U1) x U(1) x Um = 2)) = S (1) (m > 2),
(5.15)  M>"2 = SOQ2) x SO(m)/Zy x SO(m —2) — $*1(1) (m > 3),

(5.16)  M®"2 = Sp(2) x Sp(m)/Sp(1) x Sp(1) x Sp(m —2) — $¥"71(1) (m > 2).

We denote the distinct principal curvatures of (5.11-5.16) by A, A5, A3, A4. Then by setting

A:= A1, =cott (0<t<g),

we have

R S R b
2Ty BT T :

From this, we obtain:

Proposition 5.16. The isoparametric hypersurface (5.11) is Chern—Federer if and only if
1=1+2 (the only minimal one).
The isoparametric hypersurface (5.12) is Chern—Federer if and only if A satisfies that

3412 = 402'° + 22328 — 6922° + 2232* — 4022 +3 = 0,

which is not minimal.
The isoparametric hypersurface (5.13) is Chern—Federer if and only if A satisfies that

1222 = 1112'° + 48848 — 10982° + 4884* — 11142 + 12 = 0,

which is not minimal.
The isoparametric hypersurface (5.14) is Chern—Federer if and only if A satisfies that

A2 —42m - DA + (72m-85)A% — 32(4m* — 10m + 7)2°
+(72m - 85)A* —42m - DA* + 1 = 0.
The isoparametric hypersurface (5.15) is Chern—Federer if and only if A satisfies that
2m = 3)A% = 4(5m — 9A° + 2(16m* — 62m + 63)A* — 4(5m — 9)A* +2m —3 = 0.
The isoparametric hypersurface (5.16) is Chern—Federer if and only if A satisfies that
3202 = 16mA'° + (136m—117)A% — 4(64m* — 116m + 63)2°
+(136m = 1171)A* = 16mA> +3 = 0.
e [g = 6]. The classification is the following two homogeneous hypersurfaces
(5.17) M® = SO(4)/Zy x Zr — S'(1),
(5.18) M"™ =G,/T? - s"(1).

We denote the distinct principal curvatures of (5.17), (5.18) by 4, A, A3, A4, As, Ag. Then by
setting

A:= A1, =cott (0<t<%),
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we have

, A3 = ,/14— s A5 T = s M =" ="
1+V3 31+ 1 1 V3a-1 1-13

From this, we obtain:

A \/5/1—1/1 1-V3 1 1+V3 3+ 1
2 = _

Proposition 5.17. The isoparametric hypersurfaces (5.17) or (5.18) are Chern—Federer
if and only if A = 2 + V3 (the only minimal one).
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