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Abstract
We study variational problems for integral invariants, which are defined as integrations of in-

variant functions of the second fundamental form, of a smooth map between pseudo-
Riemannian manifolds. We derive the first variational formulae for integral invariants defined
from invariant homogeneous polynomials of degree two. Among these integral invariants, we
show that the Euler–Lagrange equation of the Chern–Federer energy functional is reduced to a
second order PDE. Then we give some examples of Chern–Federer submanifolds in Riemann-
ian space forms.

1. Introduction

1. Introduction
The theory of harmonic maps and biharmonic maps is one of the important fields in

differential geometry. Recall that a smooth map ϕ : (M, gM)→ (N, gN) between Riemannian
manifolds is said to be harmonic if it is a critical point of the energy functional

E(ϕ) =
1
2

∫
M
|dϕ|2dμgM .

By the first variational formula, then ϕ is a harmonic map if and only if

(1.1) τ(ϕ) = trgM (∇̃dϕ) = 0,

where ∇̃dϕ is the second fundamental form and τ(ϕ) is the tension field of ϕ. The Euler–
Lagrange equation (1.1) is a second order nonlinear PDE, therefore the theory of harmonic
maps has been developed in geometric analysis, furthermore it is investigated applying meth-
ods of integrable systems. As a generalization of harmonic maps, Eells and Lemaire [8]
introduced the notion of biharmonic map, which is a critical point of the bienergy functional

E2(ϕ) =
1
2

∫
M
|τ(ϕ)|2dμgM .

Jiang [11] showed that ϕ is a biharmonic map if and only if

τ2(ϕ) = −∇∗∇τ(ϕ) − trgM RN (dϕ(·), τ(ϕ)) dϕ(·) = 0,

where −∇∗∇ is the rough Laplacian and RN is the Riemannian curvature tensor of (N, gN).
By definition, it is clear that a harmonic map is biharmonic. One of the important prob-
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lems in the study of biharmonic maps is Chen’s conjecture, that is, an arbitrary biharmonic
submanifold of a Euclidean space must be minimal.

On the other hand, in integral geometry, Howard [9] provided integral invariants of sub-
manifolds by using invariant polynomials of the second fundamental form, and then he
formulated the kinematic formula in Riemannian homogeneous spaces (see also [12]). In
his formulation, there are some notable integral invariants of submanifolds. One is integral
invariants in the Chern–Federer kinematic formula. These integral invariants played signifi-
cant roles in differential geometry. For example, Weyl [17] showed that the volume of a tube
around a compact submanifold in a Euclidean space can be represented as a polynomial of
the radius of the tube, where the coefficients are integral invariants of the second fundamen-
tal form of the submanifold. Also, Allendoerfer and Weil [1] used these integral invariants
to describe the extended Gauss–Bonnet theorem, and this leads to the development of the
theory of characteristic classes. Another notable one is the integral invariant defined from
a certain invariant homogeneous polynomial of degree two. This invariant polynomial also
appears in the definition of the Willmore-Chen invariant, which is a conformal invariant of
submanifolds ([4, 5]).

In Section 2, with an idea of integral geometry, we introduce integral invariants of a
smooth map ϕ : (M, gM) → (N, gN) between pseudo-Riemannian manifolds by using in-
variant functions of the second fundamental form of ϕ. In particular, we focus on integral
invariants of ϕ defined from invariant homogeneous polynomials of degree two. The space
of those polynomials is spanned by the square norm of the second fundamental form and the
square norm of the tension field, which are denoted by 1 and 2 respectively. Hence, here
the family of integral invariants includes the bienergy functional. In this paper, we study
variational problems for these integral invariants of ϕ. In Section 3, we derive the first vari-
ational formulae for 1- and 2-energy functionals. By the linearity, then we have the first
variational formulae for all integral invariants of degree two. Note that it implies an alter-
native expression of the Euler–Lagrange equation of the bienergy functional. As mentioned
above, from the viewpoint of integral geometry, there are two notable polynomials, called
the Chern–Federer polynomial and the Willmore–Chen polynomial, in the space of invariant
homogeneous polynomials of degree two. In Section 4, we discuss some properties of the
Chern–Federer energy functional from the viewpoint of variational problems. The Euler–
Lagrange equation of an integral invariant of degree two is a fourth order PDE in general,
however, we show that the Euler–Lagrange equation of the Chern–Federer energy functional
is reduced to a second order PDE. In Section 4.2, we describe a symmetry of the Euler–
Lagrange equation of the Chern–Federer energy functional comparing with a symmetry of
the Chern–Federer polynomial. In Section 5, we give some examples of Chern–Federer
submanifolds in Riemannian space forms. Here, a Chern–Federer submanifold is the image
of an isometric immersion which is a Chern–Federer map. For an isometric immersion into
a Riemannian space form, a necessary and sufficient condition to be a Chern–Federer map
is described in Theorem 5.1. Considering this condition, there is an obstruction for the do-
main manifold. In addition, as a trivial example, we can see that any isometric immersion
of a Ricci-flat manifold into a Euclidean space is a Chern–Federer map. Finally, we dis-
cuss isometric immersions of flat tori into the 3-sphere and isoparametric hypersurfaces in
Riemannian space forms.
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2. Integral invariants of a map between pseudo-Riemannian manifolds

2. Integral invariants of a map between pseudo-Riemannian manifolds
In this section, we define integral invariants of the second fundamental form of a map

between pseudo-Riemannian (or semi-Riemannian) manifolds. An m-dimensional pseudo-
Euclidean space with index p is denoted by Em

p = (Rm, 〈, 〉) with 〈x, y〉 = −∑p
i=1 xiyi +∑m

j=p+1 x jy j (x, y ∈ Rm). Define II(Em
p ,E

n
q) to be

II(Em
p ,E

n
q) :=

{
H : Em

p × Em
p → En

q ; symmetric bilinear map
}
,

which is a 1
2 nm(m + 1)-dimensional vector space. Let G be the direct product group of

pseudo-orthogonal groups defined by

G := O(p,m − p) × O(q, n − q).

The group G acts on II(Em
p ,E

n
q), that is for g = (a, b) ∈ G and H ∈ II(Em

p ,E
n
q) then gH is

given by

(gH)(u, v) := b
(
H(a−1u, a−1v)

)
(u, v ∈ Em

p ).

Then a function  on II(Em
p ,E

n
q) is said to be G-invariant if (gH) = (H) for all g ∈ G and

H ∈ II(Em
p ,E

n
q).

Let (Mm
p , gM) and (Nn

q , gN) be pseudo-Riemannian manifolds, and ϕ : M → N a C∞-map.
Thoughout this paper, a fiber metric on a vector bundle is also denoted by 〈, 〉. The second
fundamental form of the map ϕ is the symmetric bilinear map ∇̃dϕ : Γ(T M) × Γ(T M) →
Γ(ϕ−1T N) defined by

(∇̃dϕ)(X, Y) := ∇X (dϕ(Y)) − dϕ (∇XY)

for any vector fields X, Y ∈ Γ(T M), which is a section of
⊙2 T ∗M ⊗ϕ−1T N. Here

⊙
is the

symmetric tensor product. And ∇ is the Levi–Civita connection on the tangent bundle T M
of (Mm

p , gM). ∇ and ∇̃ are the induced connections on the bundles ϕ−1T N and T ∗M⊗ϕ−1T N.
If ϕ is an isometric immersion, then we have

(∇̃dϕ)(X, Y) = ∇′dϕ(X)dϕ(Y) − dϕ (∇XY) = ∇′XY − ∇XY,

where ∇′ is the Levi–Civita connection on the tangent bundle T N of (Nn
q , gN), i.e. the second

fundamental form of the isometric immersion ϕ agrees with the second fundamental form
of the submanifold.

For each x ∈ M, we can write

(∇̃dϕ)x : TxM × TxM → Tϕ(x)N,

which is a symmetric bilinear map. Let {ei}mi=1 be a pseudo-orthonormal basis of TxM, {ei}mi=1
the dual basis of {ei}, and {ξα}nα=1 a pseudo-orthonormal basis of Tϕ(x)N. Hence we identify
TxM and Tϕ(x)N with Em

p and En
q, respectively. Then (∇̃dϕ)x can be expressed as

(∇̃dϕ)x =
∑
α

ε′α
∑
i, j

hαi j ei � e j ⊗ ξα,

where hαi j is defined by

hαi j =
〈
(∇̃dϕ)x(ei, e j), ξα

〉
,
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and

ε′α =

⎧⎪⎪⎨⎪⎪⎩−1 (α = 1, · · · , q)

1 (α = q + 1, · · · , n).

Thus we have a linear isomorphism between T ∗x M � T ∗x M ⊗ Tϕ(x)N and II(Em
p ,E

n
q). That

is, (∇̃dϕ)x ∈ T ∗x M � T ∗x M ⊗ Tϕ(x)N corresponds to Hx := (hαi j) ∈ II(Em
p ,E

n
q). Therefore,

for a G-invariant function  on II(Em
p ,E

n
q), we define an invariant function of the second

fundamental form of ϕ as follows:


(
(∇̃dϕ)x

)
:= (Hx).

This definition does not depend on the choices of {ei}mi=1 and {ξα}nα=1 since  is G-invariant
and a change of a basis is the action of the pseudo-orthogonal group. Also, 

(
(∇̃dϕ)x

)
is a

smooth function on M.

Definition 2.1. Let (Mm
p , gM) be an m-dimensional compact pseudo-Riemannian mani-

fold with index p, (Nn
q , gN) an n-dimensional pseudo-Riemannian manifold with index q,

and  a G-invariant function on II(Em
p ,E

n
q). Then for a smooth map ϕ : M → N, we define

I (ϕ) :=
∫

M

(
(∇̃dϕ)x

)
dμgM .

We call I (ϕ) the integral invariant of ϕ with respect to  .

By definition, I (ϕ) is an invariant of a map ϕ between pseudo-Riemannian manifolds,
that is, I (g ◦ ϕ ◦ f −1) = I (ϕ) holds for any f ∈ Isom(M) and g ∈ Isom(N).

We consider the following G-invariant polynomials on II(Em
p ,E

n
q). For H = (hαi j) ∈

II(Em
p ,E

n
q), define

1(H) :=
∑
α

ε′α
∑
i, j

εiε j(hαi j)
2 and 2(H) :=

∑
α

ε′α

⎛⎜⎜⎜⎜⎜⎝∑
i

εihαii

⎞⎟⎟⎟⎟⎟⎠2

with

εi =

⎧⎪⎪⎨⎪⎪⎩−1 (i = 1, · · · , p)

1 (i = p + 1, · · · ,m).

1(H) and 2(H) are G-invariant homogeneous polynomials of degree two on II(Em
p ,E

n
q).

Definition 2.2. For ϕ ∈ C∞(M,N), the 1-energy functional I1 (ϕ) and the 2-energy
functional I2 (ϕ) are defined by

I1 (ϕ) =
∫

M
1

(
(∇̃dϕ)x

)
dμgM =

∫
M

〈
∇̃dϕ, ∇̃dϕ

〉
dμgM(2.1)

and

I2 (ϕ) =
∫

M
2

(
(∇̃dϕ)x

)
dμgM =

∫
M

〈
trgM (∇̃dϕ), trgM (∇̃dϕ)

〉
dμgM .(2.2)

Then ϕ is called a 1-map if it is a critical point of I1 (ϕ). Also, then ϕ is called a 2-map
if it is a critical point of I2 (ϕ).
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Remark 2.3. The 2-energy functional I2 (ϕ) is equal to two times of the bienergy func-
tional E2(ϕ). Indeed, when ϕ is a smooth map between Riemannian manifolds, it holds
that

I2 (ϕ) =
∫

M

〈
trgM (∇̃dϕ), trgM (∇̃dϕ)

〉
dμgM =

∫
M

∣∣∣∣trgM (∇̃dϕ)
∣∣∣∣2 dμgM = 2E2(ϕ).

Remark 2.4. When dim M = 4, the 1-energy functional and 2-energy functional are
invariant under homothetic changes of the metric on the domain M.

3. The first variational formulae of 1-energy and 2-energy

3. The first variational formulae of 1-energy and 2-energy3.1. Preliminaries.
3.1. Preliminaries. Let (Mm

p , gM) be an m-dimensional compact pseudo-Riemannian
manifold with index p, (Nn

q , gN) an n-dimensional pseudo-Riemannian manifold with index
q, and ϕ : M → N a C∞-map. In this section, we use the following notation.

A local pseudo-orthonormal frame field of (Mm
p , gM) is a set of m-local vector fields {ei}mi=1

such that gM(ei, e j) = εiδi j with ε1 = · · · = εp = −1, εp+1 = · · · = εm = 1.
∇̃2dϕ and ∇̃3dϕ are defined by

(∇̃2dϕ)(X, Y, Z) := ∇X
(
(∇̃dϕ)(Y, Z)

) − (∇̃dϕ) (∇XY, Z) − (∇̃dϕ) (Y,∇XZ)

and

(∇̃3dϕ)(X, Y, Z,W) := ∇X
(
(∇̃2dϕ)(Y, Z,W)

) − (∇̃2dϕ)(∇XY, Z,W)

− (∇̃2dϕ)(Y,∇XZ,W) − (∇̃2dϕ) (Y, Z,∇XW)

for any vector fields X, Y, Z,W ∈ Γ(T M). ∇̃2dϕ and ∇̃3dϕ are sections of
⊗3 T ∗M ⊗ ϕ−1T N

and
⊗4 T ∗M ⊗ ϕ−1T N, respectively. By definition, ∇̃2dϕ has the following symmetry

(∇̃2dϕ)(X, Y,Z) = (∇̃2dϕ)(X, Z, Y).

The tension field τ(ϕ) of ϕ is defined by

τ(ϕ) = trgM (∇̃dϕ) =
∑

i

εi(∇̃dϕ)(ei, ei) =
∑

i

εi
(∇̃eidϕ

)
(ei).

If ϕ is an isometric immersion, then its tension field is equal to m times of the mean curvature
vector field.

In general, the curvature tensor field RE of a connection ∇E on the bundle E over M is
defined by

RE(X, Y) := ∇E
X∇E

Y − ∇E
Y∇E

X − ∇E
[X,Y] (X, Y ∈ Γ(T M)).

In particular, for the curvature tensor field R̃ of the induced connection ∇̃ on the bundle
T ∗M ⊗ ϕ−1T N, we have(

R̃(X, Y)dϕ
)
(Z) = Rϕ−1T N(X, Y)dϕ(Z) − dϕ

(
RM(X, Y)Z

)
= RN (dϕ(X), dϕ(Y)) dϕ(Z) − dϕ

(
RM(X, Y)Z

)
(X, Y, Z ∈ Γ(T M)),

where RM, RN and Rϕ−1T N are the curvature tensor fields on T M, T N and ϕ−1T N, respec-
tively.
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Then we derive the first variational formulae of the 1-energy and 2-energy separately.

3.2. The first variational formula of 1-energy.
3.2. The first variational formula of 1-energy. We consider a smooth variation

{ϕt}t∈I (I := (−ε, ε)) of ϕ, that is we consider a smooth map Φ given by

Φ : M × I → N, (x, t) → Φ(x, t) =: ϕt(x)

such that ϕ0(x) = ϕ(x) for all x ∈ M, and denote by V its variational vector field, that is

V = dΦ
(
∂

∂t

∣∣∣∣∣
t=0

)
∈ Γ(ϕ−1T N).

We denote by ∇, ∇ and ∇̃ the induced connections on T (M × I), Φ−1T N and T ∗(M × I) ⊗
Φ−1T N, respectively. Let {ei}mi=1 be a local pseudo-orthonormal frame field on a neighbor-
hood U of x ∈ M, then

{
ei,

∂
∂t

}
is a pseudo-orthonormal frame field on the neighborhood

U × I of (x, t) ∈ M × I, and it holds that

∇ ∂
∂t

∂

∂t
= 0, ∇ ∂

∂t
ei =∇ei

∂

∂t
= 0 (1 ≤ i ≤ m).

First, we can write the formula (2.1) as

I1 (ϕ) =
∫

M

〈
∇̃dϕ, ∇̃dϕ

〉
dμgM =

∫
M

∑
i, j

εiε j

〈(∇̃dϕ
)
(ei, e j),

(∇̃dϕ
)
(ei, e j)

〉
dμgM .

For a variation {ϕt}t∈I of ϕ, it holds that

d
dt

I1 (ϕt) =
d
dt

∫
M

∑
i, j

εiε j

〈(∇̃dΦ
)
(ei, e j),

(∇̃dΦ
)
(ei, e j)

〉
dμgM(3.1)

= 2
∫

M

∑
i, j

εiε j

〈
∇ ∂

∂t

(
(∇̃dΦ)(ei, e j)

)
, (∇̃dΦ)(ei, e j)

〉
dμgM .

Then we have

∇ ∂
∂t

(
(∇̃dΦ)(ei, e j)

)
=

(
∇̃ ∂

∂t
∇̃eidΦ

)
(e j)(3.2)

=
(
∇̃ei∇̃ ∂

∂t
dΦ

)
(e j) −

(
∇̃[ei,

∂
∂t ]dΦ

)
(e j) −

(
R̃
(
ei,

∂

∂t

)
dΦ

)
(e j)

=
(∇̃2dΦ

) (
ei, e j,

∂

∂t

)
− RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(e j).

By substituting (3.2) into (3.1), we have

d
dt

I1 (ϕt) = 2
∫

M

∑
i, j

εiε j

〈(∇̃2dΦ
) (

ei, e j,
∂

∂t

)
,
(∇̃dΦ

)
(ei, e j)

〉
dμgM(3.3)

− 2
∫

M

∑
i, j

εiε j

〈
RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(e j),

(∇̃dΦ
)
(ei, e j)

〉
dμgM .

We need the following lemma to calculate the first variation of I1 (ϕ).
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Lemma 3.1. Under the setting above, for any variation {ϕt}t∈I of ϕ, it holds∫
M

∑
i, j

εiε j

〈
(∇̃2dΦ)

(
ei, e j,

∂

∂t

)
, (∇̃dΦ)(ei, e j)

〉
dμgM(3.4)

=

∫
M

∑
i, j

εiε j

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)

(
ei, e j, ei, e j

)〉
dμgM .

Proof. We define vector fields on M depending on t ∈ I by

X̃t :=
∑
i, j

εiε j

〈
(∇̃dΦ)

(
e j,

∂

∂t

)
, (∇̃dΦ)

(
ei, e j

)〉
ei

and

Ỹt :=
∑
i, j

εiε j

〈
dΦ

(
∂

∂t

)
,
(∇̃2dΦ

) (
e j, ei, e j

)〉
ei,

where {ei}mi=1 is a local pseudo-orthonormal frame field on a neighborhood U of M. X̃t and
Ỹt are well-defined because of the independence of the choice of {ei}. Hence X̃t and Ỹt are
global vector fields on M.

The divergence of X̃t is given by

divX̃t

=
∑

k

εk

〈
∇ek X̃t, ek

〉
=

∑
i, j

{
εiε j

〈
∇ei

(
(∇̃dΦ)

(
e j,

∂

∂t

))
, (∇̃dΦ)(ei, e j)

〉

+εiε j

〈
(∇̃dΦ)

(
e j,

∂

∂t

)
,∇ei

(
(∇̃dΦ)(ei, e j)

)〉}
−
∑

j,k

ε jεk

〈
(∇̃dΦ)

(
e j,

∂

∂t

)
, (∇̃dΦ)(∇ek ek, e j)

〉

=
∑
i, j

εiε j

{〈
(∇̃2dΦ)

(
ei, e j,

∂

∂t

)
, (∇̃dΦ)(ei, e j)

〉

+

〈
(∇̃dΦ)

(
∇eie j,

∂

∂t

)
, (∇̃dΦ)(ei, e j)

〉
+

〈
(∇̃dΦ)

(
e j,

∂

∂t

)
, (∇̃2dΦ)(ei, ei, e j)

〉
+

〈
(∇̃dΦ)

(
e j,

∂

∂t

)
, (∇̃dΦ)

(
ei,∇eie j

)〉}
.

At the second equality, we use the following∑
i, j,k

εkεiε j

〈
(∇̃dΦ)

(
e j,

∂

∂t

)
, (∇̃dΦ)(ei, e j)

〉 〈∇ek ei, ek
〉

= −
∑
i, j,k

εkεiε j

〈
(∇̃dΦ)

(
e j,

∂

∂t

)
, (∇̃dΦ)(ei, e j)

〉 〈
ei,∇ek ek

〉
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= −
∑

j,k

ε jεk

〈
(∇̃dΦ)

(
e j,

∂

∂t

)
, (∇̃dΦ)

(
∇ek ek, e j

)〉
.

Now, take a neighborhood U of x ∈ M such that the exponential map at x is injective
onto U, which is called a normal neighborhood. And we construct a pseudo-orthonormal
frame field {ei}mi=1 by parallel transporting a pseudo-orthonormal basis at x along a geodesic
γ : [0, 1] → M from γ(0) = x to γ(1) = y for every y ∈ U. The pseudo-orthonormal
frame field {ei}mi=1 is called a geodesic frame field. We note that a geodesic frame field {ei}mi=1
around a point x ∈ M satisfies(

∇eie j

)
x
= 0,

[
ei, e j

]
x
= 0 (1 ≤ i, j ≤ m)

at x. Since
(
∇eie j

)
(x,t)
=

(
∇eie j

)
x
= 0 for all t ∈ I, we have

(
divX̃t

)
x(3.5)

=
∑
i, j

εiε j

⎧⎪⎪⎨⎪⎪⎩
〈
(∇̃2dΦ)(x,t)

⎛⎜⎜⎜⎜⎝(ei)(x,t), (e j)(x,t),

(
∂

∂t

)
(x,t)

⎞⎟⎟⎟⎟⎠ , (∇̃dΦ)(x,t)

(
(ei)(x,t), (e j)(x,t)

)〉

+

〈
(∇̃dΦ)(x,t)

⎛⎜⎜⎜⎜⎝(e j)(x,t),

(
∂

∂t

)
(x,t)

⎞⎟⎟⎟⎟⎠ , (∇̃2dΦ)(x,t)

(
(ei)(x,t), (ei)(x,t), (e j)(x,t)

)〉⎫⎪⎪⎬⎪⎪⎭ .
Each term of the last formula of (3.5) is a tensor, so we have

divX̃t =
∑
i, j

εiε j

{〈
(∇̃2dΦ)

(
ei, e j,

∂

∂t

)
, (∇̃dΦ)(ei, e j)

〉
(3.6)

+

〈
(∇̃dΦ)

(
e j,

∂

∂t

)
, (∇̃2dΦ)(ei, ei, e j)

〉}
,

where {ei}mi=1 is an arbitrary local pseudo-orthonormal frame field.
In a similar way, we calculate the divergence of Ỹt. We have

divỸt

=
∑

k

εk

〈
∇ek Ỹt, ek

〉
=

∑
i, j

{
εiε j

〈
∇ei

(
dΦ

(
∂

∂t

))
, (∇̃2dΦ)(e j, ei, e j)

〉

+εiε j

〈
dΦ

(
∂

∂t

)
,∇ei

(
(∇̃2dΦ)(e j, ei, e j)

)〉}
−
∑

j,k

εkε j

〈
dΦ

(
∂

∂t

)
, (∇̃2dΦ)

(
e j,∇ek ek, e j

)〉

=
∑
i, j

εiε j

{〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(e j, ei, e j)

〉
+

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, e j, ei, e j)

〉

+

〈
dΦ

(
∂

∂t

)
, (∇̃2dΦ)

(
∇eie j, ei, e j

)〉
+

〈
dΦ

(
∂

∂t

)
, (∇̃2dΦ)

(
e j, ei,∇eie j

)〉}
.
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Then, assuming that {ei} is a geodesic frame field around a point x ∈ M, we have(
divỸt

)
x(3.7)

=
∑
i, j

εiε j

⎧⎪⎪⎨⎪⎪⎩
〈
(∇̃dΦ)(x,t)

⎛⎜⎜⎜⎜⎝(ei)(x,t),

(
∂

∂t

)
(x,t)

⎞⎟⎟⎟⎟⎠ , (∇̃2dΦ)(x,t)

(
(e j)(x,t), (ei)(x,t), (e j)(x,t)

)〉

+

〈
(dΦ)(x,t)

⎛⎜⎜⎜⎜⎝( ∂
∂t

)
(x,t)

⎞⎟⎟⎟⎟⎠ , (∇̃3dΦ)(x,t)

(
(ei)(x,t), (e j)(x,t), (ei)(x,t), (e j)(x,t)

)〉⎫⎪⎪⎬⎪⎪⎭ .
Each term of the right hand side of (3.7) is a tensor, so we have

divỸt =
∑
i, j

εiε j

{〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(e j, ei, e j)

〉
(3.8)

+

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, e j, ei, e j)

〉}
,

where {ei}mi=1 is an arbitrary local pseudo-orthonormal frame field.
By Green’s theorem, we have∫

M
divX̃t dμgM = 0 =

∫
M

divỸt dμgM ,

and together with (3.6) and (3.8), we have∫
M

∑
i, j

εiε j

〈
(∇̃2dΦ)

(
ei, e j,

∂

∂t

)
, (∇̃dΦ)(ei, e j)

〉
dμgM

=

∫
M

∑
i, j

εiε j

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)

(
ei, e j, ei, e j

)〉
dμgM .

Here we use the symmetry of ∇̃2dϕ. �

Substituting (3.4) into (3.3), we have

d
dt

I1 (ϕt)

= 2
∫

M

∑
i, j

εiε j

〈
(∇̃3dΦ)(ei, e j, ei, e j) − RN

(
dΦ(e j), (∇̃dΦ)(ei, e j)

)
dΦ(ei), dΦ

(
∂

∂t

)〉
dμgM .

Therefore we obtain the following theorem.

Theorem 3.2. Let (Mm
p , gM) be a compact pseudo-Riemannian manifold, (Nn

q , gN) a
pseudo-Riemannian manifold and ϕ : M → N a C∞-map. Consider a C∞-variation {ϕt}t∈I
of ϕ with variational vector field V. Then the following formula holds

d
dt

I1 (ϕt)
∣∣∣∣∣
t=0

= 2
∫

M

〈∑
i, j

εiε j

{(∇̃3dϕ
) (

ei, e j, ei, e j

)
+ RN((∇̃dϕ)(ei, e j), dϕ(ei)

)
dϕ(e j)

}
,V

〉
dμgM ,

where {ei}mi=1 is a local pseudo-orthonormal frame field of (Mm
p , gM) with gM(ei, e j) = εiδi j,

ε1 = · · · = εp = −1, εp+1 = · · · = εm = 1.
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For a map ϕ ∈ C∞(M,N), we define W1(ϕ) ∈ Γ(ϕ−1T N) by

W1(ϕ) :=
∑
i, j

εiε j

{(∇̃3dϕ
)
(ei, e j, ei, e j) + RN((∇̃dϕ)(ei, e j), dϕ(ei)

)
dϕ(e j)

}
.

Hence ϕ is a 1-map if and only if W1(ϕ) = 0. We can adopt the Euler–Lagrange equation
W1(ϕ) = 0 as the definition of a 1-map. Then the domain M of ϕ is not nesessarily compact.

Remark 3.3. In an analytical setting, Moser [16] studied a variational problem for the
1-energy functional I1 (ϕ) =

∫
M |∇̃dϕ|2dμgM .

3.3. The first variational formula of 2-energy.
3.3. The first variational formula of 2-energy. In a similar way, we show the first

variational formula of the 2-energy. Let {ϕt}t∈I be a C∞-variation of ϕ with variational
vector field V and {ei} a local pseudo-orthonormal frame field on a neighborhood U.

First, we can write (2.2) as

I2 (ϕ) =
∫

M

〈
trgM (∇̃dϕ), trgM (∇̃dϕ)

〉
dμgM

=

∫
M

∑
i, j

εiε j

〈
(∇̃dϕ)(ei, ei), (∇̃dϕ)(e j, e j)

〉
dμgM .

For a variation {ϕt}t∈I of ϕ, it holds that

d
dt

I2 (ϕt) =
d
dt

∫
M

∑
i, j

εiε j

〈
(∇̃dΦ)(ei, ei), (∇̃dΦ)(e j, e j)

〉
dμgM(3.9)

= 2
∫

M

∑
i, j

εiε j

〈
∇ ∂

∂t

(
(∇̃dΦ)(ei, ei)

)
, (∇̃dΦ)(e j, e j)

〉
dμgM .

Then we have

∇ ∂
∂t

(
(∇̃dΦ)(ei, ei)

)
=

(
∇̃ ∂

∂t
∇̃eidΦ

)
(ei)(3.10)

=
(
∇̃ei∇̃ ∂

∂t
dΦ

)
(ei) −

(
∇̃[ei,

∂
∂t ]dΦ

)
(ei) −

(
R̃
(
ei,

∂

∂t

)
dΦ

)
(ei)

= (∇̃2dΦ)
(
ei, ei,

∂

∂t

)
− RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ei).

By substituting (3.10) into (3.9), we have

d
dt

I2 (ϕt) = 2
∫

M

∑
i, j

εiε j

〈
(∇̃2dΦ)

(
ei, ei,

∂

∂t

)
, (∇̃dΦ)(e j, e j)

〉
dμgM(3.11)

− 2
∫

M

∑
i, j

εiε j

〈
RN

(
dΦ(ei), dΦ

(
∂

∂t

))
dΦ(ei), (∇̃dΦ)(e j, e j)

〉
dμgM .

Lemma 3.4. Under the setting above, for any variation {ϕt}t∈I of ϕ, it holds∫
M

∑
i, j

εiε j

〈
(∇̃2dΦ)

(
ei, ei,

∂

∂t

)
, (∇̃dΦ)(e j, e j)

〉
dμgM(3.12)

=

∫
M

∑
i, j

εiε j

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ei, e j, e j)

〉
dμgM .
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Proof. For each t ∈ I, we define vector fields on M by

X̂t :=
∑
i, j

εiε j

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃dΦ)

(
e j, e j

)〉
ei

and

Ŷt :=
∑
i, j

εiε j

〈
dΦ

(
∂

∂t

)
,
(∇̃2dΦ

) (
ei, e j, e j

)〉
ei,

where {ei}mi=1 is a pseudo-orthonormal frame field on a neighborhood U of M. Note that X̂t

and Ŷt are globally defined vector fields on M.
The divergence of X̂t is given by

divX̂t =
∑

k

εk

〈
∇ek X̂t, ek

〉
=

∑
i, j

εiε j

{〈
(∇̃2dΦ)

(
ei, ei,

∂

∂t

)
, (∇̃dΦ)(e j, e j)

〉

+

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(ei, e j, e j)

〉
+2

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃dΦ)

(
∇eie j, e j

)〉}
.

Then, assuming that {ei} is a geodesic frame field around a point x ∈ M, we have(
divX̂t

)
x(3.13)

=
∑
i, j

εiε j

⎧⎪⎪⎨⎪⎪⎩
〈
(∇̃2dΦ)

⎛⎜⎜⎜⎜⎝(ei)(x,t), (ei)(x,t),

(
∂

∂t

)
(x,t)

⎞⎟⎟⎟⎟⎠ , (∇̃dΦ)
(
(e j)(x,t), (e j)(x,t)

)〉

+

〈
(∇̃dΦ)

⎛⎜⎜⎜⎜⎝(ei)(x,t),

(
∂

∂t

)
(x,t)

⎞⎟⎟⎟⎟⎠ , (∇̃2dΦ)(x,t)

(
(ei)(x,t), (e j)(x,t), (e j)(x,t)

)〉⎫⎪⎪⎬⎪⎪⎭ .
Each term of the right hand side of (3.13) is a tensor, so we have

divX̂t =
∑
i, j

εiε j

{〈
(∇̃2dΦ)

(
ei, ei,

∂

∂t

)
, (∇̃dΦ)(e j, e j)

〉
(3.14)

+

〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(ei, e j, e j)

〉}
,

where {ei}mi=1 is an arbitrary local pseudo-orthonormal frame field.
In a similar way, we calculate the divergence of Ŷt. We have

divŶt =
∑

k

εk

〈
∇ek Ŷt, ek

〉
=

∑
i, j

εiε j

{〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(ei, e j, e j)

〉

+

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ei, e j, e j)

〉
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+2
〈
dΦ

(
∂

∂t

)
, (∇̃2dΦ)

(
ei,∇eie j, e j

)〉}
.

Then, assuming that {ei} is a geodesic frame field around a point x ∈ M, we have(
divŶt

)
x(3.15)

=
∑
i, j

εiε j

⎧⎪⎪⎨⎪⎪⎩
〈
(∇̃dΦ)(x,t)

⎛⎜⎜⎜⎜⎝(ei)(x,t),

(
∂

∂t

)
(x,t)

⎞⎟⎟⎟⎟⎠ , (∇̃2dΦ)(x,t)

(
(ei)(x,t), (e j)(x,t), (e j)(x,t)

)〉

+

〈
(dΦ)(x,t)

⎛⎜⎜⎜⎜⎝( ∂
∂t

)
(x,t)

⎞⎟⎟⎟⎟⎠ , (∇̃3dΦ)(x,t)

(
(ei)(x,t), (ei)(x,t), (e j)(x,t), (e j)(x,t)

)〉⎫⎪⎪⎬⎪⎪⎭ .
Each term of the right hand side of (3.15) is a tensor, so we have

divŶt =
∑
i, j

εiε j

{〈
(∇̃dΦ)

(
ei,

∂

∂t

)
, (∇̃2dΦ)(ei, e j, e j)

〉
(3.16)

+

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ei, e j, e j)

〉}
,

where {ei}mi=1 is an arbitrary local pseudo-orthonormal frame field.
By Green’s theorem, we have∫

M
divX̂t dμgM = 0 =

∫
M

divŶt dμgM ,

and together with (3.14) and (3.16), we have∫
M

∑
i, j

εiε j

〈
(∇̃2dΦ)

(
ei, ei,

∂

∂t

)
, (∇̃dΦ)(e j, e j)

〉
dμgM

=

∫
M

∑
i, j

εiε j

〈
dΦ

(
∂

∂t

)
, (∇̃3dΦ)(ei, ei, e j, e j)

〉
dμgM .

�

Substituting (3.12) into (3.11), we have

d
dt

I2 (ϕt)

= 2
∫

M

∑
i, j

εiε j

〈
(∇̃3dΦ)(ei, ei, e j, e j) − RN

(
dΦ(ei), (∇̃dΦ)(e j, e j)

)
dΦ(ei), dΦ

(
∂

∂t

)〉
dμgM .

Therefore we obtain the following theorem.

Theorem 3.5. Let (Mm
p , gM) be a compact pseudo-Riemannian manifold, (Nn

q , gN) a
pseudo-Riemannian manifold and ϕ : M → N a C∞-map. Consider a C∞-variation {ϕt}t∈I
of ϕ with variational vector field V. Then the following formula holds

d
dt

I2 (ϕt)
∣∣∣∣∣
t=0

= 2
∫

M

〈∑
i, j

εiε j

{(∇̃3dϕ
) (

ei, ei, e j, e j

)
+ RN((∇̃dϕ)(ei, ei), dϕ(e j)

)
dϕ(e j)

}
,V

〉
dμgM ,
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where {ei}m=1 is a local pseudo-orthonormal frame field of (Mm
p , gM) with gM(ei, e j) = εiδi j,

ε1 = · · · = εp = −1, εp+1 = · · · = εm = 1.

For a map ϕ ∈ C∞(M,N), we define W2(ϕ) ∈ Γ(ϕ−1T N) by

W2(ϕ) :=
∑
i, j

εiε j

{(∇̃3dϕ
) (

ei, ei, e j, e j

)
+ RN((∇̃dϕ)(ei, ei), dϕ(e j)

)
dϕ(e j)

}
.

Hence ϕ is a 2-map if and only if W2(ϕ) = 0.

Remark 3.6. For a pseudo-Riemannian manifold (Mm
p , gM), if the index p = 0 then

(Mm
0 , gM) is a Riemannian manifold. Therefore a map ϕ : (Mm

p , gM) → (Nn
q , gN) between

Riemannian manifolds is a 1-map if and only if∑
i, j

{(∇̃3dϕ
) (

ei, e j, ei, e j

)
+ RN((∇̃dϕ)(ei, e j), dϕ(ei),

)
dϕ(e j)

}
= 0,

where {ei}mi=1 is a local orthonormal frame field of (Mm, gM). Similarly, we have that a map
ϕ : (Mm

p , gM)→ (Nn
q , gN) between Riemannian manifolds is a 2-map if and only if∑

i, j

{(∇̃3dϕ
) (

ei, ei, e j, e j

)
+ RN((∇̃dϕ)(ei, ei), dϕ(e j),

)
dϕ(e j)

}
= 0.

By Theorem 3.2 and Theorem 3.5, we obtain all the first variational formulae of the
integral invariants which belong to the space spanned by the 1-energy and 2-energy.

By comparing the first variational formula of the bienergy (c.f. [11]) and that of 2-
energy (Theorem 3.5), we have the following proposition.

Proposition 3.7. Let ϕ : M → N be a C∞-map between pseudo-Riemannian manifolds
(Mm

p , gM) and (Nn
q , gN). Then the following formula holds

−∇∗∇τ(ϕ) =
∑
i, j

εiε j(∇̃3dϕ)(ei, ei, e j, e j),

where −∇∗∇ is the rough Laplacian and {ei}mi=1 is a local pseudo-orthonormal frame field of
(Mm

p , gM).

Proof. For any V ∈ Γ(ϕ−1T N), we define vector fields on M by

W :=
m∑
i, j

εiε j

〈
V,∇ei

(
(∇̃dϕ)(e j, e j)

)〉
ei

and

W ′ :=
m∑
i, j

εiε j

〈
V, (∇̃2dϕ)(ei, e j, e j)

〉
ei,

where {ei}mi=1 is a local pseudo-orthonormal frame field of (Mm
p , gM). Then, assuming that

{ei} is a geodesic frame field around a point x ∈ M, we have

W′x =
∑
i, j

εiε j

〈
Vx,

(∇ei

(
(∇̃dϕ)(e j, e j)

))
x − 2

(
(∇̃dϕ)(∇eie j, e j)

)
x

〉
(ei)x

=
∑
i, j

εiε j

〈
Vx,

(∇ei

(
(∇̃dϕ)(e j, e j)

))
x

〉
(ei)x = Wx.
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Therefore W = W ′. Thus,

0 = div(W −W ′)x

=
∑
i, j

εiε j

{〈(∇eiV
)

x,
(∇ei

(
(∇̃dϕ)(e j, e j)

))
x

〉
+
〈
Vx,

(∇ei

(∇ei

(
(∇̃dϕ)(e j, e j)

)))
x

〉}
−
∑
i, j

εiε j

{〈(∇eiV
)

x,
((∇̃2dϕ

)
(ei, e j, e j)

)
x

〉
+
〈
Vx,

(∇ei

(
(∇̃2dϕ)(ei, e j, e j)

))
x

〉}
=

〈
Vx,

( − ∇∗∇τ(ϕ)
)

x −
∑
i, j

εiε j
(
(∇̃3dϕ)(ei, ei, e j, e j)

)
x

〉
,

where {ei}mi=1 is a geodesic frame field around a point x ∈ M. So we have

−∇∗∇τ(ϕ) =
∑
i, j

εiε j(∇̃3dϕ)(ei, ei, e j, e j),

where {ei}mi=1 is an arbitrary local pseudo-orthonormal frame field. �

4. The Euler–Lagrange equation of the Chern–Federer energy

4. The Euler–Lagrange equation of the Chern–Federer energy
We inherit the settings in the previous section. In this section, we introduce the Chern–

Federer energy functional for a map ϕ : (Mm
p , gM) → (Nn

q , gN) between pseudo-Riemannian
manifolds, which is an integral invariant defined by a homogeneous polynomial of degree
two on II(Em

p ,E
n
q) called the Chern–Federer polynomial. Then we verify the Euler–Lagrange

equation of the Chern–Federer energy functional.
For H = (hαi j) ∈ II(Em

p ,E
n
q), the Chern–Federer polynomial CF(H) is defined by

(4.1) CF(H) := 2(H) −1(H).

From Theorems 3.2 and 3.5, the Euler–Lagrange equation of the Chern–Federer energy
functional ICF(ϕ) is

0 = W2(ϕ) −W1(ϕ)(4.2)

=
∑
i, j

εiε j

{
(∇̃3dϕ)(ei, ei, e j, e j) − (∇̃3dϕ)(ei, e j, ei, e j)

+RN((∇̃dϕ)(ei, ei), dϕ(e j)
)
dϕ(e j) − RN((∇̃dϕ)(ei, e j), dϕ(ei)

)
dϕ(e j)

}
,

where {ei}mi=1 is a local pseudo-orthonormal frame field of (Mm
p , gM). In this section, we

give alternative expressions of the Euler–Lagrange equation of the Chern–Federer energy
functional. In particular, the Euler–Lagrange equation of ICF(ϕ) is a second-order partial
differential equation for ϕ. Moreover, we describe the symmetry of the Euler–Lagrange
equation of the Chern–Federer energy functional and that of the Chern–Federer polynomial.

We also introduce the Willmore–Chen energy functional, which is an integral invariant
defined by the homogeneous polynomial of degree two called the Willmore–Chen polyno-
mial. For H = (hαi j) ∈ II(Em

p ,E
n
q), the Willmore–Chen polynomial WC(H) is defined by

WC(H) := m1(H) −2(H).

Let α and β be constant numbers such that α2 + β2 � 0. A C∞-map ϕ : M → N is called
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an (α1 + β2)-map if it satisfies

αW1(ϕ) + βW2(ϕ) = 0.

By definition, an (α1 + β2)-map ϕ is
• a 1-map when (α, β) = (1, 0);
• a 2-map, that is, a biharmonic map, when (α, β) = (0, 1);
• a Chern–Federer map when (α, β) = (−1, 1);
• a Willmore–Chen map when (α, β) = (m,−1).

In Section 5, we construct some examples of these maps.

4.1. Alternative expression of the Euler–Lagrange equation of the Chern–Federer
energy functional I.

4.1. Alternative expression of the Euler–Lagrange equation of the Chern–Federer
energy functional I. First, we prepare the following lemmas.

Lemma 4.1. For a smooth map ϕ : M → N and X, Y, Z ∈ Γ(T M), the following equation
holds:

(∇̃2dϕ)(X, Y, Z) − (∇̃2dϕ)(Y, X,Z) = RN (dϕ(X), dϕ(Y)) dϕ(Z) − dϕ
(
RM(X, Y)Z

)
.

Proof. Let {ei}mi=1 be a geodesic frame field of (Mm
p , gM) around x ∈ M. At x, we have

(∇̃2dϕ)(ei, e j, ek) − (∇̃2dϕ)(e j, ei, ek)

= ∇ei

(
∇e j (dϕ(ek)) − dϕ(∇e jek)

)
− ∇e j

(
∇ei (dϕ(ek)) − dϕ(∇eiek)

)
=

(
∇ei∇e j − ∇e j∇ei − ∇[ei,e j]

)
dϕ(ek)

−
{
(∇̃dϕ)

(
ei,∇e jek

)
+ dϕ

(
∇ei∇e jek

)}
+
{
(∇̃dϕ)(e j,∇eiek) + dϕ

(
∇e j∇eiek

)}
= Rϕ−1T N(ei, e j)dϕ(ek) − dϕ

(
∇ei∇e jek − ∇e j∇eiek − ∇[ei,e j]ek

)
= RN

(
dϕ(ei), dϕ(e j)

)
dϕ(ek) − dϕ

(
RM(ei, e j)ek

)
.

Since all terms of the first and last formulae are tensors, we have the lemma. �

Lemma 4.2. For a smooth map ϕ : M → N and X, Y, Z,W ∈ Γ(T M), the following
equation holds:

(∇̃3dϕ)(X, Y, Z,W) − (∇̃3dϕ)(X, Z, Y,W)

=
(
∇RN

)
(dϕ(X), dϕ(Y), dϕ(Z)) dϕ(W) + RN((∇̃dϕ)(X, Y), dϕ(Z)

)
dϕ(W)

+ RN(dϕ(Y), (∇̃dϕ)(X, Z)
)
dϕ(W) + RN (dϕ(Y), dϕ(Z)) (∇̃dϕ)(X,W)

− (∇̃dϕ)
(
X,RM(Y, Z)W

)
− dϕ

((
∇RM

)
(X, Y, Z)W

)
.

Proof. First, we show that the following equation:

(∇̃3dϕ)(X, Y, Z,W) − (∇̃3dϕ)(X, Z, Y,W)(4.3)

=
(∇Rϕ−1T N)(X, Y, Z)dϕ(W) + Rϕ−1T N(Y, Z)(∇̃dϕ)(X,W)

− (∇̃dϕ)(X,RM(Y, Z)W) − dϕ
((
∇RM

)
(X, Y, Z)W

)
,

where X, Y, Z,W ∈ Γ(T M). Let {ei}mi=1 be a geodesic frame field of (Mm
p , gM) around x ∈ M.

At x, we have
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(∇̃3dϕ)(ei, e j, ek, el) − (∇̃3dϕ)(ei, ek, e j, el)

= ∇ei

(
RN

(
dϕ(e j), dϕ(ek)

)
dϕ(el)

)
− (∇̃dϕ)

(
ei,RM(e j, ek)el

)
− dϕ

(
∇ei

(
RM(e j, ek)el

))
=

(∇Rϕ−1T N)(ei, e j, ek)dϕ(el) + Rϕ−1T N(e j, ek)(∇̃dϕ)(ei, el) − (∇̃dϕ)
(
ei,RM(e j, ek)el

)
− dϕ

((∇RM)
(ei, e j, ek)el

)
.

Here, the first equality holds because of Lemma 4.1. Since all terms of the first and last
formulae are tensors, we have (4.3). Then, on Endϕ−1T N, we have

Rϕ−1T N(Y, Z)
(
(∇̃dϕ)(X,W)

)
= RN(dϕ(Y), dϕ(Z))

(
(∇̃dϕ)(X,W)

)
,(4.4)

where X, Y, Z,W ∈ Γ(T M), since the following equation holds:

Rϕ−1T N(X, Y) = (ϕ−1RN)(X, Y) = RN(dϕ(X), dϕ(Y)).

Also, we can verify the following equation:(∇Rϕ−1T N)(X, Y,Z) = (∇RN)(dϕ(X), dϕ(Y), dϕ(Z))(4.5)

+ RN(dϕ(Y), (∇̃dϕ)(X, Z)) + RN((∇̃dϕ)(X, Y), dϕ(Z)).

Thus we have(∇Rϕ−1T N)(X, Y, Z)

= ∇X(Rϕ−1T N(Y, Z)) − Rϕ−1T N(∇XY, Z) − Rϕ−1T N(Y,∇XZ)

= ∇X(RN(dϕ(Y), dϕ(Z))) − RN(dϕ(∇XY), dϕ(Z)) − RN(dϕ(Y), dϕ(∇XZ))

= ∇X(RN(dϕ(Y), dϕ(Z))) + RN((∇̃dϕ)(X, Y), dϕ(Z)) + RN(dϕ(Y), (∇̃dϕ)(X, Z))

− RN(∇X(dϕ(Y)), dϕ(Z)) − RN(dϕ(Y),∇X(dϕ(Z)))

= RN((∇̃dϕ)(X, Y), dϕ(Z)) + RN(dϕ(Y), (∇̃dϕ)(X, Z)) + (∇RN)(dϕ(X), dϕ(Y), dϕ(Z)).

Here, by taking local frame fields of (M, gM) and (N, gN) and calculating locally, we verify
the last equality. Therefore the assertion holds from (4.3), (4.4) and (4.5). �

Remark 4.3. Recall that ∇Rϕ−1T N is the derivative of the curvature tensor field Rϕ−1T N ,
defined by (∇Rϕ−1T N)(X, Y,Z)s := ∇X

(
Rϕ−1T N(Y, Z)s

) − Rϕ−1T N (∇XY, Z) s

− Rϕ−1T N (Y,∇XZ) s − Rϕ−1T N(Y, Z)∇X s,

where X, Y, Z ∈ Γ(T M) and s ∈ Γ(ϕ−1T N).

Using Lemma 4.2, we obtain the following proposition.

Proposition 4.4. A smooth map ϕ : M → N is a Chern–Federer map if and only if

0 =
∑
i, j

εiε j

{(
∇RN

) (
dϕ(ei), dϕ(ei), dϕ(e j)

)
dϕ(e j) − (∇̃dϕ)

(
ei,RM(ei, e j)e j

)
(4.6)

− dϕ
((
∇RM

)
(ei, ei, e j)e j

)
+ 2RN((∇̃dϕ)(ei, ei), dϕ(e j)

)
dϕ(e j)
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+2RN(dϕ(ei), (∇̃dϕ)(ei, e j)
)
dϕ(e j)

}
,

where {ei}mi=1 is a local pseudo-orthonormal frame field of (Mm
p , gM).

By the equation (4.6), it can be seen that the Euler–Lagrange equation of the Chern–
Federer energy functional for a map ϕ is a second-order partial differential equation for ϕ.

4.2. Alternative expression of the Euler–Lagrange equation of the Chern–Federer
energy functional II.

4.2. Alternative expression of the Euler–Lagrange equation of the Chern–Federer
energy functional II. Here, we express the Chern–Federer energy functional as follows:

ICF(ϕ) = I2−1 (ϕ)

=

∫
M

⎛⎜⎜⎜⎜⎜⎜⎝∑
α

ε′α

⎛⎜⎜⎜⎜⎜⎝∑
i

εihαii

⎞⎟⎟⎟⎟⎟⎠2

−
∑
α

ε′α
∑
i, j

εiε j(hαi j)
2

⎞⎟⎟⎟⎟⎟⎟⎠ dμgM

=

∫
M

∑
α

ε′α
∑
i, j

εiε jdet
⎛⎜⎜⎜⎜⎝hαii hαi j

hαi j hαj j

⎞⎟⎟⎟⎟⎠ dμgM .

Then we have the following alternative expression of the Euler–Lagrange equation of the
Chern–Federer energy functional.

Theorem 4.5. Let ϕ : M → N be a C∞-map between pseudo-Riemannian manifolds. We
define (0, 4)-type tensor fields μ and ν valued on ϕ−1T N by

μ(X1, X2, X3, X4) := (∇̃3dϕ)(X1, X2, X3, X4)

and

ν(X1, X2, X3, X4) := RN((∇̃dϕ)(X3, X4), dϕ(X1)
)
dϕ(X2),

where X1, X2, X3, X4 ∈ Γ(T M). Then ϕ is a Chern–Federer map if and only if

C(μ + ν) = 0.(4.7)

Here C is the contraction of a (0, 4)-tensor field on M defined by

C := det
(
C12 C13

C24 C34

)
,

where Ci j is the contraction of the i-th and j-th variables.

Proof. From the definition of μ and ν, we have μ, ν ∈ Γ(T ∗M ⊗ T ∗M ⊗ (T ∗M � T ∗M) ⊗
ϕ−1T N). For simplicity, we set

μi jkl := μ(ei, e j, ek, el)

and

νi jkl := ν(ei, e j, ek, el),

where {ei}mi=1 is a local pseudo-orthonormal frame field of M. Note that, by the pseudo-
Riemannian metric gM, there is a natural correspondence between a covariant tensor and a
contravariant tensor on M. Hence we can consider a contraction of (0, 4)-tensor field on M.
Then we have
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i, j

εiε j

{
(∇̃3dϕ)(ei, ei, e j, e j) − (∇̃3dϕ)(ei, e j, ei, e j)

}
=

∑
i, j

εiε j

(
μii j j − μi ji j

)
=

∑
i, j

(
μi

i
j

j − μi j
i j
)

= C12C34μ −C13C24μ = det
(
C12 C13

C24 C34

)
μ.

In a similar way, we have∑
i, j

εiε j

{
RN((∇̃dϕ)(ei, ei), dϕ(e j)

)
dϕ(e j) − RN((∇̃dϕ)(ei, e j), dϕ(ei)

)
dϕ(e j)

}
= det

(
C12 C13

C24 C34

)
ν.

Therefore the Euler–Lagrange equation (4.2) of the Chern–Federer energy functional can be
expressed as the following equation:

det
(
C12 C13

C24 C34

)
(μ + ν) = 0.

�

In addition, we observe symmetry of the equation (4.7) and the Chern–Federer poly-
nomial (4.1). Let  be the space of O(p,m − p) × O(q, n − q)-invariant homogeneous
polynomials of degree two on II(Em

p ,E
n
q), which is spanned by 1 and 2:

 := span
R
{1,2} .

Also we denote by  the space of sections of ϕ−1T N spanned by v1 := C13C24(μ + ν) and
v2 := C12C34(μ + ν):

 := span
R
{v1, v2} .

Then, by the first variational formula of the (α1+β2)-energy functional, we have a linear
isomorphism between  and  . From the first variational formula (4.7) of the Chern–
Federer energy functional, we observe the invariance of v2 − v1 under the symmetric group
S4 of degree four acting on  as the permutation of the variables. The symmetric group S4

is generated by transpositions (1 2), (1 3) and (1 4). Here, we set

σ1 :=
(
1 2 3 4
2 1 3 4

)
, σ2 :=

(
1 2 3 4
3 2 1 4

)
, σ3 :=

(
1 2 3 4
4 2 3 1

)
.

By the symmetry of the third and fourth variables of μ and ν, we have the following relations:

σ1(v1) = v1, σ1(v2) = v2, σ2(v1) = v1, σ2(v2) = v1, σ3(v1) = v2, σ3(v2) = v1.

From these, it can be seen that v1 and v2 are symmetric by the transposition (1 2) = σ1,
and v2 − v1 is antisymmetric by the permutation σ3. There are totally 24 elements in S4,
however, due to the invariance by the permutation σ1 and the symmetry for the third and
fourth variables of μ and ν, the action of S4 on  is reduced to the following six permutations:
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σ1, σ2, σ3, σ4 :=
(
1 2 3 4
3 4 1 2

)
, σ5 :=

(
1 2 3 4
1 4 3 2

)
, σ6 :=

(
1 2 3 4
1 3 2 4

)
.

Then we can verify that v2−v1 is antisymmetric by the permutationsσ3 andσ6. Furthermore,
an element of  is antisymmetric by σ3 and σ6 if and only if it is a scalar multiple of v2− v1.

In a similar way, we observe the invariance of the Chern–Federer polynomial under the
symmetric group S4. First, we rewrite the Chern–Federer polynomial as follows. For H =
(hαi j) ∈ II(Em

p ,E
n
q), we define ρ ∈ ⊗4(Em

p )∗ as follows

ρ :=
∑
i, j,k,l

ρi jkl ei ⊗ e j ⊗ ek ⊗ el,

where ρi jkl is defined by

ρi jkl :=
∑
α

ε′αhαi jh
α
kl

and {ei}mi=1 is the dual basis of the standard basis of Em
p . Then we have

1(H) =
∑
α

ε′α
∑
i, j

εiε jhαi jh
α
i j =

∑
i,, j

εiε jρi ji j =
∑
i, j

ρi j
i j = C13C24ρ

and

2(H) =
∑
α

ε′α
∑
i, j

εiε jhαiih
α
j j =

∑
i, j

εiε jρii j j = C12C34ρ.

Therefore we can rewrite the Chern–Federer polynomial CF(H) as follows:

CF(H) = 2(H) −1(H) = det
(
C12 C13

C24 C34

)
ρ.

As in the case of  , the action of S4 on  is reduced to six elements σi (i = 1, 2, · · · , 6).
Then we can verify that an element of  is antisymmetric by σ3 and σ6 if and only if it is a
scalar multiple of the Chern–Federer polynomial CF(H). Consequently, we find that CF(H)
and v2 − v1 have the same symmetry via the first variational formula and the actions of S4 on
 and  .

5. Chern–Federer submanifolds in Riemannian space forms

5. Chern–Federer submanifolds in Riemannian space forms
Let (Mm, gM), (Nn, gN) be two Riemannian manifolds. From now on, we deal with iso-

metric immersions ϕ : (Mm, gM) → (Nn, gN). In this section, we firstly derive the Euler–
Lagrange equation for an isometric immersion from a Riemannian manifold into a Riemann-
ian space form. Secondly, we construct examples in the case of curves or surfaces. Finally,
we consider Chern–Federer isoparametric hypersurfaces in Riemannian space forms.

5.1. Euler–Lagrange equations for isometric immersions.
5.1. Euler–Lagrange equations for isometric immersions. For an isometric immersion

ϕ : (Mm, gM)→ (Nn, gN), we denote the shape operator and the mean curvature vector field
by A and , respectively. Namely, they are defined by

〈Aξ(X), Y〉 = 〈(∇̃dϕ)(X, Y), ξ〉,  =
1
m

trgM (∇̃dϕ) =
1
m
τ(ϕ)
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for any X, Y ∈ Γ(T M), ξ ∈ Γ(T⊥M), where T⊥M is the normal bundle over M of ϕ. In
addition, we simply denote by h the second fundamental form ∇̃dϕ in this section.

We denote a Riemannian space form of constant curvature c ∈ R by Nn(c). Namely,
it is locally isometric to one of a Euclidean space (c = 0), a round sphere (c > 0) and a
hyperbolic space (c < 0).

When we denote the Ricci operator of (Mm, gM) by Q, we obtain the Euler–Lagrange
equation for an isometric immersion into a Riemannian space form.

Theorem 5.1. Let ϕ : (Mm, gM)→ Nn(c) be an isometric immersion. Then ϕ is a Chern–
Federer map if and only if it satisfies that

(5.1) CF(ϕ) = −dϕ(trgM (∇Q)) + 2cm(m − 1) − trgM h(Q(-), -) = 0,

equivalently,

(5.2) (�) : trgM (∇Q) = 0, (⊥) : 2cm(m − 1) − trgM h(Q(-), -) = 0,

where (�) and (⊥) denote the tangent component and the normal component of (5.1), re-
spectively.

Remark 5.2. We define two (1, 1)-type tensor fields AC and Ξ on Mm as

AC(X) :=
k∑

α=1

A2
ξα

(X), Ξ(X) := Aτ(ϕ)(X) − AC(X) = mA(X) − AC(X),

where k = n−m and {ξα}kα=1 is a local orthonormal frame of T⊥M. The operator AC is called
the Casorati operator (cf. [6, 7]). Then, from the Gauss equation, we have

Q(X) = c(m − 1)X + Ξ(X).

From this, we can also describe the formula (5.2) as

(5.3) (�) : trgM (∇Ξ) = 0, (⊥) : cm(m − 1) − trgM h(Ξ(-), -) = 0.

Proof of Theorem 5.1. Since the target space Nn is of constant curvature c and ϕ∗gN =

gM, by using Lemma 4.4, we compute
m∑

i, j=1

{(
∇RN

)
(dϕ(ei), dϕ(ei), dϕ(e j), dϕ(e j)) − dϕ((∇RM)(ei, ei, e j, e j))

−h(ei,RM(ei, e j)e j) + 2RN(h(ei, ei), dϕ(e j))dϕ(e j) + 2RN(dϕ(ei), h(ei, e j))dϕ(e j)
}

= −dϕ(trgM (∇Q)) − trgM h(Q(-), -) + 2c(m − 1)τ(ϕ).

Therefore, the proof is completed since τ(ϕ) = m. �

5.2. Examples of Chern–Federer submanifolds.
5.2. Examples of Chern–Federer submanifolds. Here, we construct some examples of

Chern–Federer maps in the case of isometric immersions. When an isometric immersion
ϕ : (Mm, gM) → (Nn, gN) is a Chern–Federer map, we call the image a Chern–Federer
submanifold in (Nn, gN), and the map ϕ to be Chern–Federer.

Let I ⊂ R be an open interval. Then an arbitrary curve γ : I → (Nn, gN) is a Chern–
Federer map. Actually, we have W1(γ) = W2(γ) from Theorem 3.2 and 3.5. Therefore, it is
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trivial that

CF(γ) = W2(γ) −W1(γ) = 0.

There are other obvious examples in the following way. We consider a Euclidean n-space
E

n as a target space (Nn, gM), which is a flat Riemannian space form. If (Mm, gM) is a
Ricci-flat Riemannian manifold, then an arbitrary isometric immersion ϕ : (Mm, gM) → En

is Chern–Federer. For example, Calabi–Yau manifolds, Hyperkähler manifolds and G2-
manifolds are all Ricci-flat. Moreover, for any Riemannian manifold (Mm, gM), there exists
an isometric immersion into a Euclidean space by Nash’s theorem.

Next, we consider the two-dimensional case (m = 2).

Proposition 5.3. Let ϕ : (M2, gM) → Nn(c) be an isometric immersion and K the sec-
tional curvature of (M2, gM). Then ϕ is Chern–Federer if and only if

(i) K is constant and ϕ is minimal, or
(ii) K = 2c and ϕ is arbitrary, that is, unconditional on ϕ.

Proof. In the two-dimensional case, we have, for any X ∈ Γ(T M),

Q(X) = KX.

Thus, since ϕ is Chern–Federer if and only if

(�) : trgM (∇Q) = grad K = 0,

(⊥) : 4c − KtrgM h(-, -) = 2(2c − K) = 0,

we have the conclusion. �

Let M2(K) be a two-dimensional Riemannian space form of constant curvature K. For
minimal isometric immersions ϕ : M2(K) → Nn(c), the research has already completed. In
fact,

• when c = 0, it implies that K = 0 and ϕ is totally geodesic;
• when c = −1, it implies that K = −1 and ϕ is totally geodesic;
• when c = 1, it implies that K ≥ 0. In addition, if Nn(1) is isometric to a round sphere

S
n(1) := {(x1, · · · , xn+1) ∈ En+1 | x2

1 + · · · + x2
n+1 = 1},

then ϕ is locally congruent to generalized Clifford tori, or Borůvka spheres ψk (k ≥
1). Here a generalized Clifford torus is a minimal 2-torus in Sn(1) which is an orbit
of an abelian closed Lie subgroup of SO(n + 1), and a Borůvka sphere is a minimal
2-sphere in Sn(1) which is an orbit of an irreducible representation of SO(3). See
[2, 15] in detail.

At the end of Section 5.2, we consider flat tori in the unit 3-sphere S3(1).
Let T 2 be a flat torus, ϕ : T 2 → S3(1) an isometric immersion. Then the flat torus T 2

admits an asymptotic Chebyshev net (s1, s2), that is, by using the asymptotic Chebyshev net
(s1, s2), we can express

gT = ds2
1 + 2 cosω ds1ds2 + ds2

2, hT = 2 sinω ds1ds2,

where ω = ω(s1, s2) is some smooth function, and gT , hT are the induced metric and the
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second fundamental form of ϕ, respectively. Moreover, we compute the mean curvature
function  of ϕ from this as

(s1, s2) = − cot [ω(s1, s2)].

See [13] in more precise details regarding an asymptotic Chebyshev net of a flat torus.

Theorem 5.4. Let T 2 be a flat torus, ϕ : T 2 → S
3(1) an isometric immersion with

constant mean curvature . Then ϕ is an (α1 + β2)-map if and only if

(i)  = 0 (when α + β = 0),

(ii)  = 0
(
when α + β � 0,

α

α + β
≥ 0

)
,

(iii)  = 0, or 2 = − α

2(α + β)

(
when α + β � 0,

α

α + β
< 0

)
.

Moreover, in the case of (iii), 2 runs across the whole range of (0,∞).

In [14], Kitagawa showed that any isometric embedding ϕ : T 2 → S3(1) with constant
mean curvature are congruent to Clifford tori. Therefore, we have the following classifica-
tion theorem.

Corollary 5.5. Let T 2 be a flat torus, ϕ : T 2 → S3(1) an isometric embedding with
constant mean curvature . Then ϕ is an (α1 + β2)-map if and only if it is congruent to
one of the following Clifford tori

(i) a minimal Clifford torus defined by

S
1
(

1√
2

)
× S1

(
1√
2

)
↪→ S3(1) (when α + β = 0),

(ii) a minimal Clifford torus defined by

S
1
(

1√
2

)
× S1

(
1√
2

)
↪→ S3(1)

(
when α + β � 0,

α

α + β
≥ 0

)
,

(iii) a minimal Clifford torus defined by

S
1
(

1√
2

)
× S1

(
1√
2

)
↪→ S3(1),

or a non-minimal Clifford torus defined by

S
1(r1) × S1(r2) ↪→ S3(1)

(
when α + β � 0,

α

α + β
< 0

)
,

where r1, r2 are defined by

r1 =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
√√√

1 +

√
2(α + β)
α + 2β

−
√√√

1 −
√

2(α + β)
α + 2β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
r2 =

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
√√√

1 +

√
2(α + β)
α + 2β

+

√√√
1 −

√
2(α + β)
α + 2β

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
and the mean curvature of the Clifford torus S1(r1) × S1(r2) ↪→ S3(1) satisfies that
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2 = − α

2(α + β)
.

Proof of Theorem 5.4. Let (s1, s2) be an asymptotic Chebyshev net for T 2. We define a
frame field by using this coordinates

e1 =
∂

∂s1
, e2 = 

∂

∂s1
+
√

1 +2 ∂

∂s2
.

Then {e1, e2} defines a geodesic frame. By using this, we compute

W1(ϕ) = −4(1 + 22)ξ, W2(ϕ) = −83ξ,

where ξ is a unit normal vector along ϕ. Namely, we have

αW1(ϕ) + βW2(ϕ) = −4{α + 2(α + β)2}ξ.
This completes the proof. �

Remark 5.6. Regarding the following hypersurfaces in unit spheres

• Sm

(
1√
2

)
⊂ Sm+1(1) (a totally umbilical small sphere),

• Sm

(
1√
2

)
× Sm

(
1√
2

)
⊂ S2m+1(1) (a minimal generalized Clifford torus),

these inclusion maps are both (α1 + β2)-maps for any α, β ∈ R such that α2 + β2 � 0.

5.3. Chern–Federer isoparametric hypersurfaces in space forms.
5.3. Chern–Federer isoparametric hypersurfaces in space forms. We remark that for

a hypersurface Mm ⊂ Nm+1 with a unit normal vector field ξ, it holds that

(5.4) h(X, Y) = 〈Aξ(X), Y〉ξ
for any X, Y ∈ Γ(T M), and we may denote the shape operator Aξ by A for simplicity.

Let Mm ⊂ Nm+1(c) be an isoparametric hypersurface, that is, a hypersurface with con-
stant principal curvatures. Then the inclusion map ι : Mm ↪→ Nm+1(c) gives an isometric
immersion by considering the induced metric gM by ι, and we have an orthogonal direct sum
decomposition as vector bundles

T M =
g⊕
α=1

Eα,

where g denotes the number of distinct principal curvatures and Eα are the principal (curva-
ture) distributions. We remark that each Eα is auto-parallel, that is, the following holds

∇XY ∈ Γ(Eα) (X, Y ∈ Γ(Eα)),

where ∇ denotes the Levi–Civita connection of (Mm, gM). In particular, each Eα is inte-
grable. More precisely, see [3, Lemma 3.9] in detail.

Theorem 5.7. Let Mm ⊂ Nm+1(c) be an isoparametric hypersurface in a Riemannian
space form. Then Mm is Chern–Federer if and only if it satisfies that

c(m − 1)(tr A) − (tr A)(tr A2) + (tr A3) = 0.
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We give a proof of Theorem 5.7 after Lemmas 5.9 and 5.10 stated below.

Remark 5.8. Let Mm ⊂ Nm+1(c) be an isoparametric hypersurface. Then the inclusion
map ι is a 1-map if and only if

W1(ι) = c(tr A) − (tr A3) = 0,

the inclusion map is a 2-map (that is, a biharmonic map) if and only if

W2(ι) =
(
mc − (tr A2)

)
(tr A) = 0,

and the inclusion map is a Willmore–Chen map if and only if

WC(ι) = mW1(ι) −W2(ι) = (tr A)(tr A2) − m(tr A3) = 0.

Lemma 5.9. Let Mm ⊂ Nm+1(c) be an isoparametric hypersurface, ι : Mm ↪→ Nm+1(c)
the inclusion map and gM the induced metric of Mm by ι. Then it holds that

trgM (∇Ξ) = 0.

Proof. Let {ei}mi=1 be an orthonormal frame of Mm such that

A(ei) = λiei,

where λi’s are principal curvatures, which are constant. Then we have by using (5.4)

trgM (∇Ξ) =
m∑

k=1

〈trgM (∇Ξ), ek〉ek

=

m∑
i, j,k=1

[〈
∇ei(Ah(e j,e j)ei) − (Ah(e j,e j)∇eiei), ek

〉
−
〈
∇ei(Ah(ei,e j)e j) − (Ah(∇ei ei,e j)e j), ek

〉]
ek

=

m∑
i, j,k=1

[
−λiλ jδi j〈∇eie j, ek〉 + λiλ jδ jk〈∇eiei, e j〉

]
ek

=

m∑
i, j=1

(λiλ j − λ2
i )〈∇eiei, e j〉e j.

From the last formula, we can claim the following statements for ei ∈ Γ(Eα), e j ∈ Γ(Eβ):
When α = β, we have

λiλ j − λ2
i = 0

since λi = λ j. When α � β, we have

〈∇eiei, e j〉 = 0

since ∇eiei ∈ Γ(Eα) and Eα is orthogonal to Eβ. Therefore, we complete the proof. �

Lemma 5.10. Under the assumption of Lemma 5.9, it holds that

trgM h(Ξ(-), -) = [(tr A)(tr A2) − (tr A3)]ξ,

where ξ is a unit normal vector field of Mm.
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Proof. Taking an orthonormal frame {ei}mi=1 of Mm such that A(ei) = λiei, we compute by
using (5.4) that

trgM h(Ξ(-), -) =
m∑

i, j=1

h(Ah(e j,e j)ei − Ah(ei,e j)e j, ei)

=

m∑
i, j=1

h(ei, 〈A(e j), e j〉A(ei) − 〈A(ei), e j〉A(e j))

=

m∑
i, j=1

[
λ2

i λ j − λ2
i λ jδ

2
i j

]
ξ = [(tr A)(tr A2) − (tr A3)]ξ.

Thus, the proof is completed. �

Proof of Theorem 5.7. From Lemma 5.9 and Lemma 5.10, we can see that an isopara-
metric hypersurface Mm ⊂ Nm+1(c) is Chern–Federer if and only if it holds that

(�) : trgM (∇Ξ) = 0 (trivially holds),

(⊥) : cm(m − 1) − trgM h(Ξ(-), -) =
[
c(m − 1)(tr A) − (tr A)(tr A2) + (tr A3)

]
ξ = 0.

Thus, we obtain the conclusion. �

Let Ln be a Minkowski n-space. By using the classification [3, Theorem 3.12, Theo-
rem 3.14] of isoparametric hypersurfaces in a Euclidean space Em+1 and a hyperbolic space

H
m+1(−1) := {(x1, · · · , xm+2) ∈ Lm+2 | −x2

1 + x2
2 + · · · + x2

m+2 = −1, x1 > 0},
we have the following results:

Theorem 5.11. Let Mm ⊂ Em+1 be an isoparametric hypersurface. Then Mm is Chern–
Federer if and only if it is congruent to an open portion of one of the following hypersurfaces

[g = 1] E
m ⊂ Em+1 (a totally geodesic hyperplane ),

[g = 2] S
1(r) × Em−1 ⊂ Em+1 (a generalized right circular cylinder ).

Theorem 5.12. Let Mm ⊂ Hm+1(−1) be an isoparametric hypersurface. Then Mm is
Chern–Federer if and only if it is totally geodesic.

In the case of a unit sphere Sm+1(1), there exist fruitfully Chern–Federer isoparametric
hypersurfaces which is not minimal. This is a different situation from that of biharmonic
isoparametric hypersurfaces in a unit sphere. See [10] on the classification of biharmonic
isoparametric hypersurfaces. In this paper, we do not classify Chern–Federer isoparametric
hypersurfaces in Sm+1(1). However, we show some examples of Chern–Federer homoge-
neous hypersurfaces, which are also isoparametric. Since all of their proofs are done by di-
rect calculations by using Theorem 5.7, detailed calculations are omitted. We again remark
that g denotes the number of distinct principal curvatures of isoparametric hypersurfaces.
• [g = 1]. The classification is the following totally umbilical hypersurfaces

(5.5) S
m(r) =

{
(x,
√

1 − r2) ∈ Em+2 | ||x||2 = r2
}
⊂ Sm+1(1) (0 < r ≤ 1),

where || · || denotes the canonical Euclidean norm of Em+1. From this, we obtain:
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Proposition 5.13. The isoparametric hypersurface (5.5) is Chern–Federer if and only if
r = 1 (totally geodesic one), or r = 1/

√
2 (proper biharmonic one).

• [g = 2]. The classification is the following Clifford hypersurfaces

(5.6) S
p(r1) × Sm−p(r2) ⊂ Sm+1(1) (r2

1 + r2
2 = 1).

We denote the distinct principal curvatures of (5.6) by λ1, λ2. Then by setting

λ := λ1 = cot t
(
0 < t <

π

2

)
,

we have

λ2 = cot
(
t +

π

2

)
= − 1

cot t
= −1

λ
.

From this, we obtain:

Proposition 5.14. The isoparametric hypersurface (5.6) is Chern–Federer if and only if
λ satisfies that

p(p − 1)λ6 − p(2m − p − 1)λ4 + (m − p)(m + p − 1)λ2 − (m − p)(m − p − 1) = 0.

• [g = 3]. The classification is the following four Cartan hypersurfaces

M3 = SO(3)/Z2 × Z2 → S4(1),(5.7)

M6 = SU(3)/T 2 → S7(1),(5.8)

M12 = Sp(3)/Sp(1)3 → S13(1),(5.9)

M24 = F4/Spin(8)→ S25(1).(5.10)

We denote the distinct principal curvatures of (5.7–5.10) by λ1, λ2, λ3. Then by setting

λ := λ1 = cot t
(
0 < t <

π

3

)
,

we have

λ2 =
λ − √3√
3λ + 1

, λ3 = − λ +
√

3√
3λ − 1

.

From this, we obtain:

Proposition 5.15. The isoparametric hypersurfaces (5.7), (5.9) or (5.10) are Chern–
Federer if and only if λ =

√
3 (the only minimal one).

The isoparametric hypersurface (5.8) is Chern–Federer if and only if λ satisfies that

(λ2 − 3)(3λ3 − 3λ2 − 9λ + 1)(3λ3 + 3λ2 − 9λ − 1) = 0.

Namely, there are non-minimal ones in the case.

• [g = 4]. In this case, we deal with homogeneous hypersurfaces. Non-homogeneous
isoparametric ones are called to be of OT–FKM type. The classification of homogeneous
hypersurfaces is the following ones

M8 = SO(5)/T 2 → S9(1),(5.11)
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M18 = U(5)/SU(2) × SU(2) × U(1)→ S19(1),(5.12)

M30 = U(1) · Spin(10)/S1 · Spin(6)→ S31(1),(5.13)

M4m−2 = S(U(2) × U(m))/S(U(1) × U(1) × U(m − 2))→ S4m−1(1) (m ≥ 2),(5.14)

M2m−2 = SO(2) × SO(m)/Z2 × SO(m − 2)→ S2m−1(1) (m ≥ 3),(5.15)

M8m−2 = Sp(2) × Sp(m)/Sp(1) × Sp(1) × Sp(m − 2)→ S8m−1(1) (m ≥ 2).(5.16)

We denote the distinct principal curvatures of (5.11–5.16) by λ1, λ2, λ3, λ4. Then by setting

λ := λ1 = cot t
(
0 < t <

π

4

)
,

we have

λ2 =
λ − 1
λ + 1

, λ3 = −1
λ
, λ4 = −λ + 1

λ − 1
.

From this, we obtain:

Proposition 5.16. The isoparametric hypersurface (5.11) is Chern–Federer if and only if
λ = 1 +

√
2 (the only minimal one).

The isoparametric hypersurface (5.12) is Chern–Federer if and only if λ satisfies that

3λ12 − 40λ10 + 223λ8 − 692λ6 + 223λ4 − 40λ2 + 3 = 0,

which is not minimal.
The isoparametric hypersurface (5.13) is Chern–Federer if and only if λ satisfies that

12λ12 − 111λ10 + 488λ8 − 1098λ6 + 488λ4 − 111λ2 + 12 = 0,

which is not minimal.
The isoparametric hypersurface (5.14) is Chern–Federer if and only if λ satisfies that

λ12 − 4(2m − 1)λ10 + (72m−85)λ8 − 32(4m2 − 10m + 7)λ6

+ (72m − 85)λ4 − 4(2m − 1)λ2 + 1 = 0.

The isoparametric hypersurface (5.15) is Chern–Federer if and only if λ satisfies that

(2m − 3)λ8 − 4(5m − 9)λ6 + 2(16m2 − 62m + 63)λ4 − 4(5m − 9)λ2 + 2m − 3 = 0.

The isoparametric hypersurface (5.16) is Chern–Federer if and only if λ satisfies that

3λ12 − 16mλ10 + (136m−117)λ8 − 4(64m2 − 116m + 63)λ6

+ (136m − 117)λ4 − 16mλ2 + 3 = 0.

• [g = 6]. The classification is the following two homogeneous hypersurfaces

M6 = SO(4)/Z2 × Z2 → S7(1),(5.17)

M12 = G2/T 2 → S13(1).(5.18)

We denote the distinct principal curvatures of (5.17), (5.18) by λ1, λ2, λ3, λ4, λ5, λ6. Then by
setting

λ := λ1 = cot t
(
0 < t <

π

6

)
,
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we have

λ2 =

√
3λ − 1

λ +
√

3
, λ3 =

λ − √3√
3λ + 1

, λ4 = −1
λ
, λ5 = − λ +

√
3√

3λ − 1
, λ6 = −

√
3λ + 1

λ − √3
.

From this, we obtain:

Proposition 5.17. The isoparametric hypersurfaces (5.17) or (5.18) are Chern–Federer
if and only if λ = 2 +

√
3 (the only minimal one).

Acknowledgements. The authors would like to thank Volker Branding for useful com-
ments.
This work was partly supported by Osaka City University Advanced Mathematical Insti-
tute : MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JP-
MXP0619217849. The first author was partly supported by JST SPRING, Grant Number
JPMJSP2156. The second author was partly supported by JSPS KAKENHI Grant Numbers
21K03250. The third author was partly supported by Foundation of Research Fellows, The
Mathematical Society of Japan.

References

[1] C.B. Allendoerfer and A. Weil: The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math.
Soc. 53 (1943), 101–129.

[2] R.L. Bryant: Minimal surfaces of constant curvature in Sn, Trans. Amer. Math. Soc. 290 (1985), 259–271.
[3] T.E. Cecil and P.J. Ryan: Geometry of hypersurfaces, Springer Monographs in Mathematics, Springer, New

York, 2015.
[4] B.-Y. Chen: An invariant of conformal mappings, Proc. Amer. Math. Soc. 40 (1973), 563–564.
[5] B.-Y. Chen: Some conformal invariants of submanifolds and their applications, Boll. Unione Mat. Ital. (4)

10 (1974), 380–385.
[6] B.-Y. Chen: Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific, Hackensack,

NJ, 2011.
[7] B.-Y. Chen: Recent developments in δ-Casorati curvature invariants, Turkish J. Math. 45 (2021), 1–46.
[8] J. Eells and L. Lemaire: Selected topics in harmonic maps, CBMS Regional Conference Series in Mathe-

matics 50, Amer. Math. Soc., Providence, RI, 1983.
[9] R. Howard: The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc. 106

(1993), no. 509.
[10] T. Ichiyama, J. Inoguchi and H. Urakawa: Bi-harmonic maps and bi-Yang-Mills fields, Note Mat. 28 (2009),

[2008 on verso], suppl. 1, 233–275.
[11] G. Jiang: 2-harmonic maps and their first and second variational formulas, Translated from the Chinese

by Hajime Urakawa, Note Mat. 28 (2009), [2008 on verso], suppl. 1, 209–232.
[12] H.J. Kang, T. Sakai and Y.J. Suh: Kinematic formulas for integral invariants of degree two in real space

forms, Indiana Univ. Math. J. 54 (2005), 1499–1519.
[13] Y. Kitagawa: Periodicity of the asymptotic curves on flat tori in S3, J. Math. Soc. Japan 40 (1988), 457–476.
[14] Y. Kitagawa: Isometric deformations of flat tori in the 3-sphere with nonconstant mean curvature, Tohoku

Math. J. (2) 52 (2000), 283–298.
[15] K. Kenmotsu: On minimal immersion of R2 into SN , J. Math. Soc. Japan 28 (1976), 182–191.
[16] R. Moser: A variational problem pertaining to biharmonic maps, Comm. Partial Differential Equations 33

(2008), 1654–1689.
[17] H. Weyl: On the volume of tubes, Amer. J. Math. 61 (1939), 461–472.



Variational Problems for Integral Invariants 901

Rika Akiyama
Department of Mathematical Sciences
Tokyo Metropolitan University
Minami-Osawa 1–1, Hachioji
Tokyo, 192–0397
Japan
e-mail: akiyama-rika@ed.tmu.ac.jp

Takashi Sakai
Department of Mathematical Sciences
Tokyo Metropolitan University
Minami-Osawa 1–1, Hachioji
Tokyo, 192–0397
Japan
e-mail: sakai-t@tmu.ac.jp

Yuichiro Sato
Academic Support Center
Kogakuin University
Nakano-cho, 2665–1, Hachioji
Tokyo, 192–0015
Japan
e-mail: kt13699@ns.kogakuin.ac.jp

yuichiro-sato@tmu.ac.jp


