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Abstract
In this paper, we study perturbations of the d-dimensional Ising model for d ≥ 2, including

long range ones to which the Pirogov-Sinai theory is not applicable. We show that the unique-
ness of the equilibrium state of the Ising model at high temperature and the coexistence of
equilibrium states at low temperature are preserved by spin-flip symmetric perturbations.

1. Introduction

1. Introduction
In this paper, we deal with Zd-lattice systems for d ≥ 2. We begin with the definition of

them. Let F be a finite set and Ω = FZ
d
. Then Ω is a compact metrizable space with respect

to the product topology. For Λ ⊂ Zd, we write ΩΛ = FΛ and ω = (ω(x))x∈Λ for an element
ofΩΛ. For each a ∈ Zd, the translation by a is canonically defined, that is, for each Λ ⊂ Zd,
we define τa : ΩΛ → ΩΛ−a by

(τaω)(x) = ω(x + a), x ∈ Λ − a

for ω ∈ ΩΛ. When Λ = Zd, these translations define the Zd-action on Ω. In this paper, we
write Λ � Zd when Λ ⊂ Zd and Λ is a finite set. We say Φ is an interaction if Φ is a family
of functions ΦΛ : ΩΛ → R for each Λ � Zd and write Φ = {ΦΛ}Λ�Zd . We always assume in
this paper that an interaction Φ is translation invariant, that is, for any a ∈ Zd and Λ � Zd,

ΦΛ(ω) = ΦΛ−a(τaω).

We also assume that Φ is absolutely summable, that is, the norm

‖Φ‖ =
∑

0∈Λ�Zd

sup
ξ∈ΩΛ
|ΦΛ(ξ)|

is finite. Under such an interaction Φ, for each Λ � Zd and ω ∈ Ω, the Hamiltonian is
defined by

HΦ,Λ(ω) =
∑
Δ∈FΛ

ΦΔ(ω),

where FΛ =
{
Δ � Zd |Δ ∩ Λ � ∅

}
and ΦΔ(ω) = ΦΔ ((ω(x))x∈Δ). By the translation invari-

ance and the absolute summability of Φ, it is easily seen that the infinite sum converges.
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Then Ω is interpreted as the configuration space and HΦ,Λ (Λ � Zd) define the energy for
each configuration ω ∈ Ω. Then we regard Ω with Φ as a Zd-lattice system. We say that an
interaction Φ is finite range if

r(Φ) = inf
{
R > 0
∣∣∣ΦΛ = 0 for any Λ � Zd with diam(Λ) > R

}
< ∞.

In the above, for Λ ⊂ Zd, we write diam(Λ) = sup {‖x − y‖∞| x, y ∈ Λ}, where ‖x‖∞ =
max {|x1|, . . . , |xd |} for x = (x1, . . . , xd) ∈ Zd. We emphasize that, in this paper, we deal with
interactions which are long range, that is, r(Φ) = ∞ in general.

The Ising model is a famous and important example of a Zd-lattice system, which we
mainly deal with in this paper. This is a simple mathematical model of ferromagnetism.

Definition 1.1 (The Ising model). Let β > 0. The d-dimensional Ising model at the
inverse temperature β is a Zd-lattice system on Ω = {1,−1}Zd

with a finite range interaction
Φβ defined by

Φ
β
Λ

(ω) =

⎧⎪⎪⎨⎪⎪⎩−βω(x)ω(y), if Λ = {x, y} with ‖x − y‖1 = 1

0, otherwise,

for each Λ � Zd and ω ∈ ΩΛ = {1,−1}Λ, where ‖x‖1 = ∑d
i=1 |xi| for x = (x1, . . . , xd) ∈ Zd.

Here, β is the parameter representing the inverse of the temperature of the system.

For a Zd-lattice system, Borel probability measures onΩ which represent statistical states
of the system stable under the interaction are determined and called Gibbs states. Trans-
lation invariant probability measures representing stable statistical states are called equilib-
rium states. We give the rigorous definition in Section 2.1. It is an important problem to
determine whether there is more than one equilibrium state for the system or not. For the
case of d = 1, it is known that there exists the only one equilibrium state for any interaction
under a reasonable condition. For example, finite range interactions satisfy this condition
(see [27, Chapter 5]). On the other hand, the system might have more than one equilibrium
state when d ≥ 2. Concerning this problem, the Ising model defined in Definition 1.1 shows
the remarkable property below.

Theorem 1.1 (Phase transition on the Ising model). Let d ≥ 2. Then there exists βc > 0
depending on d such that the followings hold.

(1) If β < βc, then Φβ has a unique Gibbs state and, in particular, a unique equilibrium
state.

(2) If β > βc, then Φβ has more than one equilibrium state.

This phenomenon is called phase transition on the Ising model and βc as above the
critical inverse temperature. The coexistence of equilibrium states at low temperature was
shown in [22]. For an intelligible explanation of Theorem 1.1, see [13, Chapter 3].

Remark 1.1. (i) For the Ising model with β > βc, the concrete structure of the set of
equilibrium states is known. See [1] or [16] for d = 2 and [6] for d ≥ 3. For the
result on the Ising model on a general amenable graph, see [25]. We will mention
this structure in detail later (Section 4).

(ii) It seems difficult to study the Ising model at the critical temperature. However, it
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is shown that, at β = βc, Φβc has a unique Gibbs state. This was shown in [29] for
d = 2, [3] for d ≥ 4 and [2] for d = 3.

The central question of this paper is to determine for the Ising model whether the unique-
ness or coexistence of equilibrium states is preserved if we perturb the interaction Φβ. Here
a perturbation of Φβ means an interaction Φβ + Ψ defined by

(Φβ + Ψ)Λ = Φ
β
Λ
+ ΨΛ

for each Λ � Zd for some small perturbation interaction Ψ. Perturbations of the interaction
may correspond to some influence from the surroundings to the system or some noise in
the interaction. Hence, it is interesting to study what happens under perturbations of the
interaction. We remark that the ‘upper semicontinuity’ of equilibrium states in perturbations
of interactions holds in the following sense.

Proposition 1.2. Let Φ0 be an interaction, IΦ0 be the set of equilibrium states for Φ0

and I be the set of translation invariant Borel probability measures on Ω. Then, for any
neighborhood U of IΦ0 in I with respect to the weak*-topology, there exists 0 < δ < 1 such
that, for any interaction Ψ with ‖Ψ‖ < δ, we have

IΦ0+Ψ ⊂ U.

We give the proof in the appendix. However, Proposition 1.2 does not ensure the stability
of the uniqueness or coexistence of equilibrium states.

If the perturbations are finite range, then this perturbation problem can be studied by
the known theory, called the Pirogov-Sinai theory and it is known that the coexistence
of equilibrium states at low temperature is stable under finite range perturbations which
preserve some symmetry of the Ising model, called the spin-flip symmetry.

Definition 1.2. An interaction Ψ on Ω = {1,−1}Zd
is spin-flip symmetric if

ΨΛ(ω) = ΨΛ(−ω)

for Λ � Zd and ω ∈ ΩΛ.

Our main theorem says that the same statement holds under long range perturbations to
which the Pirogov-Sinai theory is not applicable. We remark in detail the relation between
our main theorem and the Pirogov-Sinai theory in Section 2.4. We consider perturbations
by small perturbation interactions with respect to the norm |||·|||, which we call the d-th order
decaying norm. We give its definition in Section 2.2. The following is our main theorem.

Theorem 1.3 (Main theorem). Let d ≥ 2 and, for β > 0, Φβ be the interaction of the
d-dimensional Ising model at the inverse temperature β. We write βc for the critical inverse
temperature. Then we have the following.

(1) There exist 0 < βh < βc and δ > 0 such that, for any 0 < β ≤ βh and any translation
invariant interaction Ψ with |||Ψ||| < δ, Φ = Φβ + Ψ has a unique Gibbs state and, in
particular, a unique equilibrium state.

(2) There exist βc < βl < ∞ and δ > 0 such that, for any β ≥ βl and any translation
invariant interaction Ψ with |||Ψ||| < δ which is spin-flip symmetric, Φ = Φβ + Ψ has
more than one equilibrium state.
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We notice that this norm is stronger than ‖ · ‖ and weaker than the exponentially decaying
norm.

Remark 1.2. (i) Actually, Theorem 1.3 (1) is a direct corollary of Dobrushin’s cri-
terion, which gives a condition for an interaction to have a unique Gibbs state. We
remark this in detail in Section 2.3.

(ii) Theorem 1.3 (2) follows from stronger results, Theorems 3.1 and 3.2 below.
(iii) In Theorem 1.3, the d-th order decaying condition is crucial. See Remark 3.2.

We notice that Theorem 1.3 (2) fails if we drop the spin-flip symmetry condition. To see
this, we see the phase diagram of the Ising model with external fields. For β, h ∈ R, we
define the interaction {Φβ,h

Λ
}Λ�Zd by

Φ
β,h
Λ

(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−βω(x)ω(y), Λ = {x, y} with ‖x − y‖1 = 1

−hω(x), Λ = {x}
0, otherwise,

for each Λ � Zd and ω ∈ ΩΛ. When h = 0, then Φβ,0 = Φβ and, by taking h � 0 arbitrarily
small, we can think Φβ,h as a perturbation of Φβ. The following was shown in [19] (see [13,
Chapter 3] for an intelligible explanation).

Theorem 1.4. For any β, h ∈ R with h � 0, Φβ,h has a unique Gibbs state.

We notice that the perturbationsΦβ,h (h � 0) are not spin-flip symmetric. Hence, Theorem
1.4 says that, for sufficiently large β, non-spin-flip symmetric perturbations of Φβ can break
the structure of the equilibrium states. Moreover, it is known that the uniqueness of the
equilibrium state is a ‘generic’ property in the space of interactions (with appropriate norms).
This fact is discussed in [8], [12], [28] and [17]. Our Main Theorem 1.3 says that spin-flip
symmetric perturbations are ‘not generic’ and preserve the coexistence.

In Section 2.1, we give the rigorous definition of Gibbs states and equilibrium states. We
give the definition of the d-th order decaying norm |||·||| in Section 2.2. In Section 2.3, we give
Dobrushin’s criterion and deduce Theorem 1.3 (1) from it. We remark the relation between
our main theorem and the Pirogov-Sinai theory in Section 2.4. We prove the main theorem
at low temperature in Section 3. We use in the proof some extension of Peierls’ argument.
We notice further questions in Section 4.

2. Preliminaries

2. Preliminaries2.1. Gibbs states and equilibrium states.
2.1. Gibbs states and equilibrium states. In this section, for a Zd-lattice system on

Ω = FZ
d

with an interaction Φ, we give the rigorous definition of Gibbs states and equi-
librium states. We first define Gibbs states by the thermodynamical condition, called the
DLR condition1. We next define equilibrium states by the variational principle in the the-
ory of dynamical systems and notice that these different definitions are equivalent under the
translation invariant condition.

For Λ � Zd, η ∈ ΩZd\Λ and ξΛ ∈ ΩΛ, we write ξΛ ∨ η for the element of Ω defined by
ξΛ ∨ η|Λ = ξΛ and ξΛ ∨ η|Zd\Λ = η. We define the finite Gibbs state μη

Φ,Λ in Λ with the
1This is named after R. L. Dobrushin, O. E. Lanford and D. Ruelle.
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boundary condition η as the Borel probability measure on ΩΛ defined by

(2.1) μ
η
Φ,Λ

({ωΛ}) = 1
Zη
Φ,Λ

exp
(−HΦ,Λ(ωΛ ∨ η))

for each ωΛ ∈ ΩΛ, where

Zη
Φ,Λ =

∑
ξΛ∈ΩΛ

exp
(−HΦ,Λ(ξΛ ∨ η)) .

We call Zη
Φ,Λ the partition function in Λ with the boundary condition η. Let C(Ω) be the

real Banach space of continuous real-valued functions on Ω with the supremum norm and
M(Ω) be the set of Borel probability measures on Ω. Then M(Ω) can be viewed as a subset
of the dual space of the Banach space C(Ω) and is a compact, convex and metrizable space
with respect to the weak*-topology.

Definition 2.1 (Gibbs state). A probability measure σ ∈ M(Ω) is a Gibbs state for an
interaction Φ if for each Λ � Zd, there exists a Borel probability measure σZd\Λ on ΩZd\Λ
such that for any ωΛ ∈ ΩΛ,

σ({ξ ∈ Ω | ξ|Λ = ωΛ}) =
∫
Ω
Zd\Λ
μ
η
Φ,Λ

({ωΛ}) dσZd\Λ(η).

Definition 2.1 is equivalent to the following: for each Λ � Zd and η ∈ ΩZd\Λ, the condi-
tional probability that ξ|Λ = ωΛ under ξ|Zd\Λ = η is μη

Φ,Λ
({ωΛ}). This condition is called the

DLR condition. Let KΦ be the set of Gibbs states for Φ. This is a nonempty, compact and
convex subset of M(Ω) (see [27, Chapter 1]). We notice that KΦ+C = KΦ for any constant
interaction C (that is, an interaction such that CΛ is constant for each Λ � Zd).

Next, we state the variational principle in the theory of dynamical systems and give the
definition of equilibrium states. Let I be the set of Borel probability measures μ on Ω which
are translation invariant, that is, τa∗μ = μ for each a ∈ Zd. This is a nonempty, compact and
convex subset of M(Ω). For a sequence {Λn}∞n=1 of finite subsets of Zd, we write Λn ↗ ∞
(limit in the sense of van Hove) when |Λn| → ∞ and, for any a ∈ Zd, |(Λn+a)\Λn|/|Λn| → 0.
An example of such a sequence is {B(n)}∞n=1, where B(n) = {−n, . . . , n}d.

Definition 2.2. For each μ ∈ I, the limit

h(μ) = lim
n→∞−

1
|Λn|
∑
ω∈ΩΛn

μΛn({ω}) log μΛn({ω}),

where μΛn({ω}) = μ({ξ ∈ Ω | ξ|Λn = ω}), exists and is independent of the choice of sequence
{Λn}∞n=1 such that Λn ↗ ∞ (see [27, Chapter 3]). h(μ) is called the measure-theoretic
entropy of μ.

Definition 2.3. For each interaction Φ and Λ � Zd, we define the partition function in
Λ with free boundary condition by

ZΦ,Λ =
∑
ω∈ΩΛ

exp

⎛⎜⎜⎜⎜⎜⎝−∑
Δ⊂Λ
ΦΔ(ω)

⎞⎟⎟⎟⎟⎟⎠ .
Then, the limit
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PΦ = lim
n→∞

1
|Λn| log ZΦ,Λn

exists and is independent of the choice of sequence {Λn}∞n=1 such that Λn ↗ ∞ (see [27,
Chapter 3]). We call PΦ the pressure of Φ.

For an interaction Φ, we define AΦ : Ω→ R by

AΦ(ω) = −
∑
Λ

ΦΛ(ω),

where the sum runs over those Λ � Zd such that Λ contains 0 in Zd and 0 is the middle
element of Λ (that is, the �(|Λ| + 1) /2�-th2 element) with respect to the lexicographic order
on Λ. Since Φ is absolutely summable, AΦ is continuous. Here, −AΦ(ω) represents the
contribution of 0 ∈ Zd to the energy in the configuration ω. The variational principle is the
statement which connects entropy, pressure and AΦ.

Proposition 2.1 (Variational principle). For each interaction Φ,

PΦ = sup
μ∈I

(
h(μ) +

∫
Ω

AΦdμ
)
.

Moreover, there exists some μ ∈ I such that μ achieves the supremum (see [27, Theorem
3.12]).

Definition 2.4 (Equilibrium state). An element μ ∈ I is an equilibrium state for an inter-
action Φ if μ achieves the supremum of Proposition 2.1.

Let IΦ be the set of the equilibrium states for Φ. This is a nonempty, compact and convex
subset of M(Ω). The definition of the equilibrium states turns out to be a characterization
of the translation invariant Gibbs states, that is, the following proposition holds (see [27,
Theorem 4.2]).

Proposition 2.2. For each interaction Φ,

IΦ = KΦ ∩ I.

2.2. d-th order decaying interactions.
2.2. d-th order decaying interactions. In this section, we introduce d-th order decaying

interactions on Ω = {−1, 1}Zd
and give the definition of the d-th order decaying norm |||·||| in

Theorem 1.3.

Definition 2.5. An interaction Ψ is d-th order decaying if

|||Ψ||| =
∑

0∈Λ�Zd

(diam(Λ) + 1)d sup
ω∈ΩΛ
|ΨΛ(ω)| < ∞.

We call the norm |||·||| the d-th order decaying norm.

It is obvious that

‖Ψ‖ ≤ |||Ψ|||
for any d-th order decaying interaction Ψ on Ω. Let us see some examples of d-th order

2For a ∈ R, �a� denotes the largest integer that is not larger than a.
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decaying interactions. Clearly, we have many d-th order decaying interactions other than
these examples.

Example 2.1. (1) Finite range interactions are clearly d-th order decaying.
(2) (Two body interactions.) Let Ψ be a translation invariant interaction on Ω which

satisfies

ΨΛ = 0

unless Λ consists of distinct two points. We emphasize that these two body interac-
tions are not finite range in general. We assume that Ψ is (2d+ ε)-th order decaying,
that is, there exists ε > 0 such that

‖Ψ‖ε = sup
{
‖x − y‖2d+ε

∞
∣∣∣Ψ{x,y}(ω)

∣∣∣ ∣∣∣ x, y ∈ Zd, x � y, ω ∈ Ω{x,y}
}
< ∞.

We have

|||Ψ||| =
∑

x∈Zd\{0}
(‖x‖∞ + 1)d sup

ω∈Ω{0,x}

∣∣∣Ψ{0,x}(ω)
∣∣∣

≤
∑

x∈Zd\{0}
(‖x‖∞ + 1)d‖x‖−(2d+ε)

∞ ‖Ψ‖ε

= Mε‖Ψ‖ε,
where Mε =

∑∞
n=1((2n+ 1)d − (2n− 1)d)(n+ 1)dn−(2d+ε) < ∞. Hence, Ψ is d-th order

decaying.

Here, we give a remark on two body interactions. For a translation invariant two body
interaction Ψ which has a form Ψ{x,y}(ω) = Kx,yω(x)ω(y), Kx,y ∈ R, the following fact was
shown in [15]. If Ψ satisfies that K0,ei +

∑
x∈Zd ,‖x‖1>1 |xi||K0,x| < 0 for each i = 1, . . . , d, then,

for sufficiently large β > 0, βΨ has more than one equilibrium state. Here ei ∈ Zd is the
element such that the i-th component is 1 and the other components are 0. From this, we
can see that, if a perturbation interaction Ψ has a form as above, we obtain the coexistence
of equilibrium states under the weaker condition than the d-th order decaying condition.

2.3. High temperature cases and Dobrushin’s criterion.
2.3. High temperature cases and Dobrushin’s criterion. In this section, we give Do-

brushin’s criterion, which gives a condition for an interaction to have a unique Gibbs state.
This was first proved in [11]. We also see that Theorem 1.3 (1) follows from Dobrushin’s
criterion. Let Φ be a translation invariant interaction. For any x ∈ Zd \ {0}, we define

ρΦ(x) = sup
{ ∣∣∣∣μηΦ,{0}({1}) − μζΦ,{0}({1})∣∣∣∣ ∣∣∣∣ η, ζ ∈ ΩZd\{0}, η|Zd\{0,x} = ζ |Zd\{0,x}

}
.

Proposition 2.3 (Dobrushin’s criterion). If∑
x∈Zd\{0}

ρΦ(x) < 1,

then Φ has a unique Gibbs state.
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Proposition 2.4 below is a convenient version of Dobrushin’s criterion. We define

varΛΦ = sup
ω,ω′∈ΩΛ

∣∣∣ΦΛ(ω) − ΦΛ(ω′)
∣∣∣

for each Λ � Zd and

‖Φ‖var =
∑

0∈Λ�Zd

(|Λ| − 1)varΛΦ,

where |Λ| be the cardinality of Λ. It is obvious that

(2.2) ‖Φ‖var ≤ 2|||Φ|||
for any d-th order decaying interaction Φ.

Proposition 2.4. If

‖Φ‖var < 2,

then Φ satisfies Dobrushin’s criterion. Hence, it has a unique Gibbs state.

We refer [14, Chapter 8] for proofs of the above propositions. It is easy to see that
‖Φβ‖var = 4dβ. From this, Inequality (2.2) and Proposition 2.4, we have Theorem 1.3 (1).

2.4. Low temperature cases and Pirogov-Sinai theory.
2.4. Low temperature cases and Pirogov-Sinai theory. We notice the relation between

Theorem 1.3 (2) and the Pirogov-Sinai theory. If β is sufficiently large and a perturbation
interaction Ψ is finite range, then the equilibrium states of Φ = Φβ + Ψ can be studied by
an application of the Pirogov-Sinai theory. It was introduced by S. A. Pirogov and Ya. G.
Sinai in [23] and [24], and sophisticated in [30] to study phase diagrams of more general
finite range interactions at low temperature. We refer [13, Chapter 7] for an intelligible
introduction to this theory. The periodic ground states of Φβ, that is, the states which have
the lowest energy under Φβ, are exactly the constant configurations η+ and η− ∈ Ω, which
are constant 1 and −1 on Zd, respectively, and it can be seen that sufficiently small and spin-
flip symmetric perturbations of Φβ preserves η+ and η− as periodic ground states. Hence,
by the Pirogov-Sinai theory, if Ψ is sufficiently small, spin-flip symmetric and finite range
interaction, then Φ = Φβ + Ψ has equilibrium states corresponding to two periodic ground
states, η+ and η−.

The assumption that interactions are finite range is crucial in the Pirogov-Sinai theory.
Hence, Theorem 1.3 (2), including results in the case of long range perturbations, does not
follows from it. The Pirogov-Sinai theory was extended to some extent in [20] and [21], but
this extension is possible only for sum of finite range interactions and two body interactions
satisfying some exponentially decaying condition. It was also extended to quantum cases in
[7], or a series of papers [9] and [10]. In these cases, perturbation interactions can be long
range but must exponentially decay. Hence, Theorem 1.3 (2), allowing d-th order decaying
perturbations, also does not follow from these extended versions. On the other hand, we can
not study spin-flip symmetric perturbations (which are long range in general) in detail using
the techniques in this paper as well as finite range perturbations using the Pirogov-Sinai
theory. We will mention this later (Section 4).
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3. Perturbations of the Ising model at low temperature

3. Perturbations of the Ising model at low temperature3.1. The main theorem in low temperature cases and rearrangement of perturbation
interactions.

3.1. The main theorem in low temperature cases and rearrangement of perturbation
interactions. In Section 3, we give a proof of Theorem 1.3 (2). As we mentioned in Remark
1.2, Theorem 1.3 (2) follows from stronger results: Theorems 3.1 and 3.2 below. We first
state these results.

We introduce a norm |||·|||′, which is weaker than the d-th order decaying norm |||·|||. For a
translation invariant interaction Ψ, we define

|||Ψ|||′ =
∑

0∈Λ�Zd

|Λ|−1(diam(Λ) + 1)d sup
ω∈ΩΛ
|ΨΛ(ω)| .

It is clear that |||Ψ|||′ ≤ |||Ψ|||. Then we have the following theorem.

Theorem 3.1. Let d ≥ 2. Then there exists 0 < L < ∞ satisfying the following. If β, δ > 0
satisfy β − δ > L, then, for any translation invariant interaction Ψ with |||Ψ|||′ < δ which is
spin-flip symmetric, Φ = Φβ + Ψ has more than one equilibrium state.

Theorem 3.1 follows from Theorem 3.2 below. We say that Λ ⊂ Zd is ‖ · ‖1-connected if,
for each x and y ∈ Λ, there exist finite points x0, x1, . . . , xn−1, xn ∈ Λ such that x0 = x, xn =

y, ‖xi+1 − xi‖1 = 1 for i = 0, . . . , n − 1. We call such a finite sequence x0, x1, . . . , xn−1, xn a
‖ · ‖1-path from x to y. For an interaction Ψ, we say that Ψ is zero on non-‖ · ‖1-connected
sets if ΨΛ ≡ 0 whenever Λ � Zd is not ‖ · ‖1-connected.

Theorem 3.2. Let d ≥ 2. Then there exists 0 < L < ∞ satisfying the following. If β, δ > 0
satisfy β − δ > L, then, for any translation invariant interaction Ψ with ‖Ψ‖ < δ which is
spin-flip symmetric and zero on non-‖ · ‖1-connected sets, Φ = Φβ + Ψ has more than one
equilibrium state.

We see that how Theorem 3.1 reduces to Theorem 3.2. For this purpose, we rearrange
a perturbation interaction. Let Ψ be a translation invariant interaction with |||Ψ|||′ < ∞. For
R � Zd, we say R is a rectangle if R = [a1, b1]×· · ·×[ad, bd]∩Zd for some a1 ≤ b1, . . . , ad ≤
bd ∈ Z. For each finite Λ � Zd, we write R(Λ) for the minimal rectangle which contains Λ
with respect to the partial order given by inclusion. We notice that diam(Λ) = diam(R(Λ)).
For each rectangle R, we define S (R) =

{
Λ � Zd |R(Λ) = R

}
. For Ψ as above, we define an

interaction Ψ̃ as

Ψ̃Λ ≡ 0

if Λ is not a rectangle and

Ψ̃R(ω) =
∑
Λ∈S (R)

ΨΛ(ω|Λ)

for any rectangle R � Zd and ω ∈ ΩR. This interaction Ψ̃ is made by putting interactions
ΨΛ on Λ ∈ S (R) together into the rectangle R. Obviously Ψ̃ is a translation invariant
interaction. We write S0 for the set of Λ � Zd such that Λ contains 0 in Zd and 0 is the
middle element of Λ (that is, the [(�Λ� + 1) /2]-th element) with respect to the lexicographic
order on Λ. Then, by the translation invariance of Ψ̃, we have

‖Ψ̃‖ =
∑

0∈R�Zd ,R:rectangle

sup
ω∈ΩR

|Ψ̃R(ω)|(3.1)
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=
∑

0∈R�Zd ,R:rectangle,
R∈S0

|R| sup
ω∈ΩR

|Ψ̃R(ω)|

≤
∑

0∈R�Zd ,R:rectangle,
R∈S0

|R|
∑
Λ∈S (R)

sup
ω∈ΩΛ
|ΨΛ(ω)|

=
∑
Λ�Zd ,

R(Λ)∈S0

|R(Λ)| sup
ω∈ΩΛ
|ΨΛ(ω)|

(∗)
=
∑

0∈Λ�Zd

|Λ|−1|R(Λ)| sup
ω∈ΩΛ
|ΨΛ(ω)|

≤
∑

0∈Λ�Zd

|Λ|−1 (diam(Λ) + 1)d sup
ω∈ΩΛ
|ΨΛ(ω)|

= |||Ψ|||′.
Here the equation (∗) holds since Ψ is translation invariant and, for each Λ � Zd, there is
exactly one translation of Λ that appears in the summation

∑
Λ�Zd ,R(Λ)∈S0

. The following
lemma shows that Ψ̃ and Ψ induce the same statistical system.

Lemma 3.3. Let Ψ and Ψ̃ be the interactions as above. For any interaction Φ0, interac-
tions Φ = Φ0 + Ψ and Φ̃ = Φ0 + Ψ̃ have the same Gibbs states.

In particular, by Proposition 2.2, Φ and Φ̃ have the same equilibrium states.

Proof. We take arbitrary Λ � Zd and η ∈ ΩZd\Λ. For any ωΛ ∈ ΩΛ, we have, by (2.1),

μ
η

Φ̃,Λ
({ωΛ})

=

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

(
ΦΔ (ωΛ ∨ η) + Ψ̃Δ (ωΛ ∨ η)

)⎞⎟⎟⎟⎟⎟⎟⎠
∑
ξΛ∈ΩΛ

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

(
ΦΔ (ξΛ ∨ η) + Ψ̃Δ (ξΛ ∨ η)

)⎞⎟⎟⎟⎟⎟⎟⎠

=

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ (ωΛ ∨ η) −
∑

R∈RΛ

∑
S∈S (R)

ΨS (ωΛ ∨ η)
⎞⎟⎟⎟⎟⎟⎟⎟⎠

∑
ξΛ∈ΩΛ

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ (ξΛ ∨ η) −
∑

R∈RΛ

∑
S∈S (R)

ΨS (ξΛ ∨ η)
⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where RΛ =
{
R � Zd

∣∣∣R is a rectangle and R ∩ Λ � ∅
}
. Here, for any ξΛ ∈ ΩΛ,∑

R∈RΛ

∑
S∈S (R)

ΨS (ξΛ ∨ η)

=
∑

R∈RΛ

∑
S∈S (R)∩FΛ

ΨS (ξΛ ∨ η) +
∑

R∈RΛ

∑
S∈S (R)\FΛ

ΨS (η)

=
∑
Δ∈FΛ

ΨΔ (ξΛ ∨ η) +
∑

R∈RΛ

∑
S∈S (R)\FΛ

ΨS (η)
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and the second term is independent of ξΛ. Hence, we have

μ
η

Φ̃,Λ
({ωΛ})

=

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ (ωΛ ∨ η) −
∑

R∈RΛ

∑
S∈S (R)

ΨS (ωΛ ∨ η)
⎞⎟⎟⎟⎟⎟⎟⎟⎠

∑
ξΛ∈ΩΛ

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ (ξΛ ∨ η) −
∑

R∈RΛ

∑
S∈S (R)

ΨS (ξΛ ∨ η)
⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

(
ΦΔ (ωΛ ∨ η) + ΨΔ (ωΛ ∨ η)

)⎞⎟⎟⎟⎟⎟⎟⎠
∑
ξΛ∈ΩΛ

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

(
ΦΔ (ξΛ ∨ η) + ΨΔ (ξΛ ∨ η)

)⎞⎟⎟⎟⎟⎟⎟⎠
= μ

η
Φ,Λ({ωΛ}).

This implies that each finite Gibbs state coincides for Φ and Φ̃. Hence, the statement holds.
�

Obviously Ψ̃ is zero on non-‖ · ‖1-connected sets. Hence, by replacing Ψ with Ψ̃ in Theorem
3.1 and using (3.1) and Lemma 3.3, we see that Theorem 3.1 follows from Theorem 3.2.

3.2. Gibbs states with the +,−-boundary condition.
3.2. Gibbs states with the +,−-boundary condition. We will give a proof of Theorem

3.2. Let Φ be a translation invariant interaction such that ‖Φ‖ < ∞. For Λ � Zd, we define
the finite Gibbs state with the + and −-boundary condition: μ+

Φ,Λ and μ−
Φ,Λ as the Borel

probability measures on ΩΛ defined by (2.1) for η = η+
Zd\Λ and η−

Zd\Λ: the constant 1 and −1
configurations on Zd \ Λ, respectively. That is,

μ+Φ,Λ ({ω}) = 1
Z+
Φ,Λ

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ(ω ∨ η+
Zd\Λ)

⎞⎟⎟⎟⎟⎟⎟⎠ and(3.2)

μ−Φ,Λ ({ω}) = 1
Z−
Φ,Λ

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ(ω ∨ η−
Zd\Λ)

⎞⎟⎟⎟⎟⎟⎟⎠
for each ω ∈ ΩΛ, where

Z+Φ,Λ =
∑
ω∈ΩΛ

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ(ω ∨ η+
Zd\Λ)

⎞⎟⎟⎟⎟⎟⎟⎠ and

Z−Φ,Λ =
∑
ω∈ΩΛ

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ(ω ∨ η−
Zd\Λ)

⎞⎟⎟⎟⎟⎟⎟⎠ .
Here, we state the Key Proposition 3.4 and see that Theorem 3.2 follows from it. We

say that Λ ⊂ Zd is ‖ · ‖∞-connected if, for each x and y ∈ Λ, there exist finite points
x0, x1, . . . , xn−1, xn ∈ Λ such that x0 = x, xn = y, ‖xi+1 − xi‖∞ = 1 for i = 0, . . . , n− 1. We call
such a finite sequence x0, x1, . . . , xn−1, xn a ‖ · ‖∞-path from x to y. Moreover, we say that Λ
is c-connected if Λ and Zd \ Λ are ‖ · ‖∞-connected.
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Proposition 3.4. Let d ≥ 2. Then there exists sufficiently large 0 < L < ∞ and 0 <
ε(L) < 1/2 with ε(L) → 0 as L → ∞ satisfying the following. Let β, δ > 0 and β − δ > L
and Ψ be a translation invariant interaction with ‖Ψ‖ < δ which is spin-flip symmetric and
zero on non-‖ · ‖1-connected sets. We write Φ = Φβ + Ψ. Then, for any c-connected Λ � Zd

and x ∈ Λ, we have

μ+Φ,Λ ({ω ∈ ΩΛ |ω(x) = 1 }) > 1 − ε(L) and μ−Φ,Λ ({ω ∈ ΩΛ |ω(x) = −1 }) > 1 − ε(L).

This proposition means that, with respect to μ+
Φ,Λ and μ−

Φ,Λ, the spin at x is magnetized
for each x ∈ Λ. Let us see that Theorem 3.2 follows from Proposition 3.4. For a sequence
{Λn}∞n=1 of finite subsets of Zd, we write Λn ↑ Zd when Λn ⊂ Λn+1 for each n and

⋃∞
n=1Λn =

Z
d. For example, Λn = B(n) satisfies these conditions. For each Λ � Zd, we canonically

regard μ+
Φ,Λ and μ−

Φ,Λ as Borel probability measures onΩ with μ+
Φ,Λ(Ω+

Λ
) = 1 and μ−

Φ,Λ(Ω−
Λ

) =
1, where Ω+

Λ
=
{
ω ∈ Ω ∣∣∣ω(x) = 1, x ∈ Zd \ Λ

}
and Ω−

Λ
=
{
ω ∈ Ω ∣∣∣ω(x) = −1, x ∈ Zd \ Λ

}
,

respectively. It is known that if μ+
Φ,Λn

(resp. μ−
Φ,Λn

) converges to some μ+ (resp. μ−) in M(Ω)
as n→ ∞, then μ+ ∈ KΦ (resp. μ− ∈ KΦ) (see [27, Chapter 1]).

Proof of Theorem 3.2. Assume that Proposition 3.4 holds. We take L, β, δ,Ψ and Φ
as in Proposition 3.4. We take a sequence {Λn}∞n=1 of finite and c-connected subsets of Zd

such that Λn ↑ Zd. Then we have divergent subsequences {nk}∞k=1 and {mk}∞k=1 of N such that
μ+
Φ,Λnk

and μ−
Φ,Λmk

converge to some μ̂+
Φ

and μ̂−
Φ

in M(Ω), respectively. Then, as we mentioned
above, μ̂+

Φ
and μ̂−

Φ
are in KΦ. By Proposition 3.4, μ̂+

Φ
satisfies

μ̂+Φ ({ω ∈ Ω |ω(x) = 1 }) = lim
k→∞
μ+Φ,Λnk

({ω ∈ Ω+Λnk
|ω(x) = 1 })(3.3)

≥ 1 − ε(L)

for each x ∈ Zd. For each N ∈ N, we define ν+
Φ,N ∈ M(Ω) by

ν+Φ,N =
1
|B(N)|

∑
x∈B(N)

τx
∗μ̂
+
Φ.

Since Φ is translation invariant and μ̂+
Φ
∈ KΦ, τx∗μ̂+Φ ∈ KΦ for each x ∈ B(N). Hence, by the

convexity of KΦ, ν+
Φ,n ∈ KΦ. Moreover, from Inequality (3.3), we have

ν+Φ,N ({ω ∈ Ω |ω(0) = 1 }) = 1
|B(N)|

∑
x∈B(N)

μ̂+Φ ({ω ∈ Ω |ω(x) = 1 })(3.4)

≥ 1 − ε(L).

We can take a divergent subsequence {Nl}∞l=1 ⊂ N such that ν+
Φ,Nl

converges to some ν+
Φ

in M(Ω). It is seen that ν+
Φ
∈ I and, since KΦ ⊂ M(Ω) is closed, ν+

Φ
∈ KΦ. Hence, by

Proposition 2.2 we have ν+
Φ
∈ IΦ. Moreover, from Inequality (3.4), we have

ν+Φ ({ω ∈ Ω |ω(0) = 1 }) = lim
l→∞
ν+Φ,Nl

({ω ∈ Ω |ω(0) = 1 })
≥ 1 − ε(L).

By doing the same argument to μ̂−
Φ

, we have ν−
Φ
∈ IΦ such that ν−

Φ
({ω ∈ Ω |ω(0) = −1 }) ≥

1 − ε(L). Since ε(L) < 1/2, we have ν+
Φ
� ν−
Φ

and complete the proof. �
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3.3. Contours for a configuration and Peierls’ argument.
3.3. Contours for a configuration and Peierls’ argument. We will give a proof of

Proposition 3.4. We notice that the following argument is based on Peierls’ argument,
which was used in [22] to show that the nonperturbed Ising model at low temperature shows
ferromagnetism.

We introduce the notion of a contour on Zd. We follow the notion in [13, Chapter 5]. For
each x ∈ Zd, we write Ix for the closed unit cube in Rd centered at x:

Ix = x +
[
−1

2
,

1
2

]d
,

and, for each Λ ⊂ Zd, define

M (Λ) =
⋃
x∈Λ

Ix ⊂ Rd.

Definition 3.1. A set γ ⊂ Rd is a contour if

γ = ∂M (Λ)

for some c-connected Λ � Zd (where ∂ denotes the boundary with respect to the usual
topology of Rd). It is seen that, for each contour γ, Λ � Zd such that γ = ∂M (Λ) is
uniquely determined. We call such Λ the interior of γ and write intγ.

It is seen that a contour γ is a connected sum of plaquettes, which are (d−1)-dimensional
faces of Ix, x ∈ Zd, such that γ divides Zd into two ‖ · ‖∞-connected sets: the interior and
exterior of γ (for example, see [13, Appendix B]). We write |γ| for the number of plaquettes
which are contained in γ. We write E =

{
{x, y} ⊂ Zd

∣∣∣ ‖x − y‖1 = 1
}

and call an element
of E an edge (considering the graph (Zd,E )). There is the one-to-one mapping between
plaquettes and E , associating a plaquette with the unique edge crossing it. By this mapping,
the plaquettes contained in γ correspond to elements of

{
{x, y} ∈ E

∣∣∣x ∈ intγ, y ∈ Zd \ intγ
}
.

For each Λ � Zd, let Ω+
Λ
=
{
ω ∈ Ω ∣∣∣ω(x) = 1 on Zd \ Λ

}
. We write Ω+ =

⋃
Λ�Zd Ω+

Λ
. For

each ω ∈ Ω+, we define Λ−(ω) =
{
x ∈ Zd |ω(x) = −1

}
� Zd and

M (ω) =M (Λ−(ω)).

We decompose ∂M (ω) into connected components:

∂M (ω) =
n⊔

i=1

γi,

then it is shown that each γi (i = 1, . . . , n) is a contour and, by the mapping mentioned above,
a plaquette contained in some γi is associated with an edge {x, y} ∈ E such that ω(x) = 1
and ω(y) = −1 (see [13, Section 5.7.4]). We write

Γ(ω) = {γ1, . . . , γn}.
Let us consider the Ising model with inverse temperature β > 0. For Λ � Zd, we define
EΛ = {{x, y} ∈ E | {x, y} ∩ Λ � ∅}. Then for ω ∈ Ω+

Λ
, we have
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exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

Φ
β
Δ
(ω)

⎞⎟⎟⎟⎟⎟⎟⎠ = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝β ∑
{x,y}∈EΛ

ω(x)ω(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= eβ|EΛ |e−2β|{{x,y}∈EΛ |ω(x)=1,ω(y)=−1 }|

= eβ|EΛ |
∏
γ∈Γ(ω)

e−2β|γ|.

Suppose Λ is c-connected. For ω ∈ Ω+
Λ

and γ ∈ Γ(ω), we define ωγ ∈ Ω by

ωγ(x) =

⎧⎪⎪⎨⎪⎪⎩−ω(x), x ∈ intγ

ω(x), x ∈ Zd \ intγ.

Then, by the assumption that Λ is c-connected, ωγ ∈ Ω+Λ and

(3.5) Γ(ωγ) = Γ(ω) \ {γ}.
Hence, we have

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

Φ
β
Δ
(ω)

⎞⎟⎟⎟⎟⎟⎟⎠ = e−2β|γ| exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

Φ
β
Δ
(ωγ)

⎞⎟⎟⎟⎟⎟⎟⎠ .
This is a key equation in Peierls’ argument.

Let us consider a perturbation of Φβ by a spin-flip symmetric interaction Ψ such that
‖Ψ‖ < δ and it takes zero on non-‖ · ‖1-connected sets. Then, since ωγ = −ω on intγ and
ωγ = ω on Zd \ intγ, by the spin-flip symmetry of Ψ, we have∑

Δ∈FΛ
ΨΔ(ω) =

∑
Δ∈FΛ,

Δ⊂intγ or Δ∩intγ=∅

ΨΔ(ω) +
∑
Δ∈FΛ,

Δ�intγ,Δ∩intγ�∅

ΨΔ(ω)

=
∑
Δ∈FΛ,

Δ⊂intγ or Δ∩intγ=∅

ΨΔ(ωγ) +
∑
Δ∈FΛ,

Δ�intγ,Δ∩intγ�∅

ΨΔ(ω).

If Δ ∈ FΛ is ‖·‖1-connected, Δ � intγ and Δ∩intγ � ∅, then Δ contains some edge {x, y} ∈ E

associated with some plaquette contained in γ. Hence, we have∣∣∣∣∣ ∑
Δ∈FΛ,

Δ�intγ,Δ∩intγ�∅

ΨΔ(ω)
∣∣∣∣∣ ≤ |γ|‖Ψ‖ < |γ|δ and

∣∣∣∣∣ ∑
Δ∈FΛ,

Δ�intγ,Δ∩intγ�∅

ΨΔ(ωγ)
∣∣∣∣∣ < |γ|δ.

From these, we have

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

(
Φβ + Ψ

)
Δ

(ω)

⎞⎟⎟⎟⎟⎟⎟⎠(3.6)

= e−2β|γ| exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

Φ
β
Δ
(ωγ)

⎞⎟⎟⎟⎟⎟⎟⎠ exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΨΔ(ω)

⎞⎟⎟⎟⎟⎟⎟⎠
= e−2β|γ| exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

(
Φβ + Ψ

)
Δ

(ωγ)

⎞⎟⎟⎟⎟⎟⎟⎠ exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−
∑
Δ∈FΛ,

Δ�intγ,Δ∩intγ�∅

(
ΨΔ(ω) − ΨΔ(ωγ)

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= e−2β|γ|+δ(Λ,ω,γ) exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

(
Φβ + Ψ

)
Δ

(ωγ)

⎞⎟⎟⎟⎟⎟⎟⎠
with

(3.7) |δ (Λ, ω, γ)| < 2|γ|δ.

3.4. Proof of Proposition 3.4.
3.4. Proof of Proposition 3.4. First, we give the following lemma about the number of

contours surrounding a fixed point. The similar statement for a little different definition of
contours is in [26]. We give the proof for the completeness.

Lemma 3.5. For any n ∈ N, let

Γn,0 = {γ : contour ||γ| = n, 0 ∈ intγ } .
Then we have ∣∣∣Γn,0

∣∣∣ ≤ (n + 1)C2n
d ,

where Cd ∈ N is the number of (d − 1)-dimensional faces of Ix, x ∈ Zd which are not
{1/2} × [−1/2, 1/2]d−1 and intersect with it.

Proof. Let γ ∈ Γn,0. Then it is easily seen that, if we write Hi = {1/2+ i}× [−1/2, 1/2]d−1:
the (d − 1)-dimensional faces for i ∈ Z, then Hi ⊂ γ for some i = 0, . . . , n. We define the
graph G = (V, E), where the set of vertices V is the set of all (d − 1)-dimensional faces
of Ix, x ∈ Zd and the set of edges is the set of all pairs {H ,H ′} of elements of V such
that H ∩H ′ � ∅. For any H ∈ V , the number of edges which have H as an end point
is Cd. By elementary arguments of graph theory, it is seen that, for any finite connected
subset S ⊂ V and any H ∈ S, there exists a walk p in G such that p starts from and ends
at H , passes through every vertex in S and does not pass through any other vertices and
the length of p is bounded by 2|S|. We fix i = 0, . . . , n. Then, by regarding a contour as a
finite connected subset in V , we can associate each γ ∈ Γn,0 such that Hi ⊂ γ with a walk
p in G starting from and ends at Hi which satisfies the conditions for γ as above. Since the
number of walks starting from Hi the length of which is bounded by 2n is bounded by C2n

d ,
we obtain

∣∣∣Γn,0
∣∣∣ ≤ (n + 1)C2n

d . �

Remark 3.1. The proof above is simple. However, the estimate in Lemma 3.5 is not the
best. The estimate has been improved in [18] and [4] and, as the recent result, it was shown
in [4] that the number of contours of size n is bounded by (Cd)2n/d, where C is a constant
independent of n and d.

The next lemma is a key to prove Proposition 3.4.

Lemma 3.6. Let β > 0, 0 < δ < 1 and Ψ be a translation invariant and spin-flip symmet-
ric interaction which is zero on non-‖ · ‖1-connected sets and ‖Ψ‖ < δ. We write Φ = Φβ+Ψ.
Let Λ � Zd be c-connected and γ1, . . . , γn be contours such that intγ1, . . . , intγn ⊂ Λ and
they are pairwise disjoint. Then we have

μ+Φ,Λ
({
ω ∈ Ω+Λ |γ1, . . . , γn ∈ Γ(ω)

}) ≤ exp (−2(β − δ)(|γ1| + · · · + |γn|))
(where we canonically regard μ+

Φ,Λ as a measure on Ω+
Λ

).
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Proof. For each i = 1, . . . , n, we define a map θγi :
{
ω ∈ Ω+

Λ
|γi ∈ Γ(ω)

}
� ω �→ ωγi ∈{

ω ∈ Ω+
Λ
|γi � Γ(ω)

}
. It is clear that θγi is injective. From Equation (3.5), we can define

the composition θ = θγn ◦ · · · ◦ θγ1 :
{
ω ∈ Ω+

Λ
|γ1, . . . , γn ∈ Γ(ω)

}
→ Ω+

Λ
and it is injective.

Moreover, for each ω ∈ Ω+
Λ

such that γ1, . . . , γn ∈ Γ(ω), from Equation (3.6) and Inequality
(3.7), we have

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ(ω)

⎞⎟⎟⎟⎟⎟⎟⎠ ≤ e−2(β−δ)|γ1 | exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ(θγ1 (ω))

⎞⎟⎟⎟⎟⎟⎟⎠
≤ e−2(β−δ)|γ1 |e−2(β−δ)|γ2 | exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ
(
θγ2

(
θγ1 (ω)
))⎞⎟⎟⎟⎟⎟⎟⎠

...

≤ exp(−2(β − δ)(|γ1| + · · · + |γn|)) exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ (θ(ω))

⎞⎟⎟⎟⎟⎟⎟⎠ .
Hence, we have

μ+Φ,Λ
({
ω ∈ Ω+Λ |γ1, . . . , γn ∈ Γ(ω)

})
=

1
Z+
Φ,Λ

∑
ω∈Ω+

Λ
,

γ1,...,γn∈Γ(ω)

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ(ω)

⎞⎟⎟⎟⎟⎟⎟⎠

≤ exp(−2(β − δ)(|γ1| + · · · + |γn|)) · 1
Z+
Φ,Λ

∑
ω∈Ω+

Λ
,

γ1,...,γn∈Γ(ω)

exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∑
Δ∈FΛ

ΦΔ (θ(ω))

⎞⎟⎟⎟⎟⎟⎟⎠
≤ exp(−2(β − δ)(|γ1| + · · · + |γn|))

and obtain the statement. �

We prove Proposition 3.4 using these lemmas.

Proof of Proposition 3.4. Let β, δ > 0 and Ψ be a translation invariant and spin-flip
symmetric interaction which is zero on non-‖ · ‖1-connected sets and ‖Ψ‖ < δ. We write
Φ = Φβ + Ψ. We take arbitrary Λ � Zd and x ∈ Λ and write Ω+,−

Λ,x =
{
ω ∈ Ω+

Λ
|ω(x) = −1

}
.

Let Γx = {γ : contour |x ∈ intγ }. For each ω ∈ Ω+,−
Λ,x , it is seen that Γ(ω) ∩ Γx � ∅. Hence,

by Lemmas 3.6 and 3.5, we have

μ+Φ,Λ
(
Ω
+,−
Λ,x

)
≤
∑
γ∈Γx

μ+Φ,Λ({ω ∈ Ω+Λ |γ ∈ Γ(ω) })

≤
∑
γ∈Γx

e−2(β−δ)|γ|

=

∞∑
k=1

∑
γ∈Γk,0

e−2(β−δ)k
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≤
∞∑

k=1

(k + 1)C2k
d e−2(β−δ)k.

uniformly in Λ and x. Hence, if we take log Cd < L < ∞ sufficiently large and β − δ > L we
have

μ+Φ,Λ
(
Ω
+,−
Λ,x

)
≤

∞∑
k=1

(k + 1)C2k
d e−2(β−δ)k

≤
∞∑

k=1

(k + 1)e−2(L−log Cd)k

= ε(L) <
1
2

and ε(L) → 0 as L → ∞. We obtain the statement in the case of +. By the same argument
in the case of −, we obtain Proposition 3.4. �

Remark 3.2. In the proof of Theorem 1.3 (2) above, we showed that there exist equilib-
rium states ν+

Φ
and ν−

Φ
for Φ = Φβ + Ψ such that the magnetization is positive and negative,

respectively, that is, ∫
Ω

ω(0) dν+Φ(ω) > 0 and
∫
Ω

ω(0) dν−Φ(ω) < 0.

It can be seen that some condition on order of decay of Ψ, like d-th order decaying con-
dition, is necessary for Φ to have non-magnetization-vanishing equilibrium states. In [12],
a translation invariant and spin-flip symmetric two body interaction Φ is constructed such
that every equilibrium state μ for Φ = Φβ + Ψ vanishes magnetization. This interaction Ψ is
antiferromagnetic type (that is, Ψ{x,y}(ω) = Kx,yω(x)ω(y),Kx,y ≥ 0) and small with respect to
‖ · ‖, but not d-th order decaying. Moreover, it is shown in [5] that, if d < s ≤ d+ 1, then, for
the antiferromagnetic interaction Ψ of the form Kx,y = δ/|x − y|s, δ > 0 (where | · | is the Eu-
clidean distance), every equilibrium state for Φ = Φβ +Ψ vanishes magnetization. (It seems
unknown whether the uniqueness of the equilibrium state holds for these perturbations.)

4. Further questions

4. Further questions
Here we notice some further questions next to our results. We showed that there is more

than one equilibrium state for Φ = Φβ + Ψ, where β > 0 is sufficiently large and Ψ is a
translation invariant and spin-flip symmetric interaction such that |||Ψ||| is sufficiently small.
When Ψ = 0, that is, Φ = Φβ, the nonperturbed Ising model at sufficiently low temperature,
the structure of IΦβ is completely known. Remember μ+

Φβ,Λ
and μ−

Φβ,Λ
defined for eachΛ � Zd

in (3.2).

Theorem 4.1 (Completeness of phase diagram). Let β > βc. We take a sequence {Λn}∞n=1
of finite and c-connected subsets of Zd such that Λn ↑ Zd. Then {μ+

Φβ,Λn
}∞n=1 and {μ−

Φβ,Λn
}∞n=1

converge to some μ+
Φβ

and μ−
Φβ

in M(Ω), respectively and they are independent of the choice of
{Λn}∞n=1. Here, μ+

Φβ
and μ−

Φβ
are translation invariant Gibbs states forΦβ and, then μ+

Φβ
, μ−
Φβ
∈

IΦβ . Furthermore, μ+
Φβ

and μ−
Φβ

span IΦβ , that is,
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IΦβ =
{
pμ+
Φβ
+ (1 − p)μ−

Φβ

∣∣∣0 ≤ p ≤ 1
}
.

For a proof of the first half of the statement, see [13, Chapter 3] and for that of the second
statement, see [1] or [16] for d = 2 and [6] for d ≥ 3. These results are due to the FKG
inequality, the crucial property of ferromagnetic interactions. If β > 0 is sufficiently large
and a perturbation interaction Ψ is finite range, then, as we saw in Section 2.4, we can apply
the Pirogov-Sinai theory to Φ = Φβ + Ψ and the same statement holds (see [30]).

Problem 4.2. For sufficiently large β > 0, does the same statement as Theorem 4.1 hold
in general when Ψ is a translation invariant and spin-flip symmetric interaction such that
|||Ψ||| is sufficiently small?

We notice that these general cases include many cases to which the FKG inequality and
existing extensions of the Pirogov-Sinai theory can not be applicable.

We notice other questions. In Theorem 1.3, we saw the stability of uniqueness of the
equilibrium state for sufficiently small β and coexistence for sufficiently large β. Then what
about the case when β > 0 is intermediate? At β = βc, it is clear that the stability is broken.
Hence, we have a problem as follows.

Problem 4.3. (1) Determine for each 0 < β < βc whether the stability of uniqueness
of the equilibrium state as Theorem 1.3 (1) holds or not.

(2) Determine for each βc < β < ∞ whether the stability of coexistence of equilibrium
states as Theorem 1.3 (2) holds or not.

The Ising model can be considered not only on Zd, but also amenable graphs and it has
similar properties to the Ising model on Zd. It can be expected that the same result as
Theorem 1.3 holds for the Ising model on amenable graphs. Furthermore, it is interesting to
determine whether the same result holds for the Ising model on non-amenable graphs, such
as Cayley trees.

Problem 4.4. (1) Does the same statement as Theorem 1.3 hold for the Ising model
on any amenable graph?

(2) What about the Ising model on non-amenable graphs, such as Cayley trees?

Appendix

Here we give a proof of Proposition 1.2.

Proof of Proposition 1.2. Let Φ0 be an interaction. We take an open set IΦ0 ⊂ U ⊂ I. For
an interaction Φ, we define the function FΦ : I → R as

FΦ(μ) = h(μ) +
∫
Ω

AΦdμ, μ ∈ I.

Then FΦ takes its maximal value PΦ = supμ∈I FΦ(μ) exactly on IΦ. Moreover, since I � μ �→∫
Ω

AΦdμ ∈ R is continuous and I � μ �→ h(μ) ∈ R is upper semicontinuous, FΦ(μ) is upper
semicontinuous in μ ∈ I. Hence, for Φ = Φ0, we have

I \ U ⊂
{
μ ∈ I
∣∣∣FΦ0 (μ) < PΦ0

}



Stability of Equilibrium States Under Perturbations 751

and the left-hand side is compact and the right-hand side is open in I. Then, using the upper
semicontinuity of FΦ0 again, there exists 0 < ε < 1 such that

I \ U ⊂
{
μ ∈ I
∣∣∣FΦ0 (μ) < PΦ0 − ε

}
.

We set δ = ε/4 and take an arbitrary interaction Ψ with ‖Ψ‖ < δ. We write Φ = Φ0 + Ψ.
Then, for any μ ∈ I, we have∣∣∣FΦ(μ) − FΦ0 (μ)

∣∣∣ = ∣∣∣∣∣
∫
Ω

AΦdμ −
∫
Ω

AΦ0dμ
∣∣∣∣∣

≤
∫
Ω

∣∣∣AΦ − AΦ0

∣∣∣ dμ
≤ ‖Ψ‖
< δ

and ∣∣∣PΦ − PΦ0
∣∣∣ = ∣∣∣∣∣∣sup

μ∈I
FΦ(μ) − sup

μ∈I
FΦ0 (μ)

∣∣∣∣∣∣ ≤ δ.
If μ ∈ I \ U, then FΦ0 (μ) < PΦ0 − ε. Hence, we have

FΦ(μ) ≤ FΦ0 (μ) + δ

< PΦ0 − ε + δ
≤ PΦ − ε + 2δ

= PΦ − ε
2

and μ does not achieve the supremum. Hence, μ � IΦ. �

Acknowledgements. The author is grateful to Masayuki Asaoka and Mitsuhiro
Shishikura for their helpful advice, and Takehiko Morita, Masaki Tsukamoto and Tom
Meyerovitch for their useful comments.

References

[1] M. Aizenman: Translation invariance and instability of phase coexistence in the two dimensional Ising
system, Comm. Math. Phys. 73 (1980), 83–94.

[2] M. Aizenman, H. Duminil-Copin and V. Sidoravicius: Random currents and continuity of Ising model’s
spontaneous magnetization, Comm. Math. Phys. 334 (2015), 719–742.

[3] M. Aizenman and R. Fernández: On the critical behavior of the magnetization in high-dimensional Ising
models, J. Stat. Phys. 44 (1986), 393–454.

[4] P.N. Balister and B. Bollobás: Counting regions with bounded surface area, Comm. Math. Phys. 273
(2007), 305–315.

[5] M. Biskup, L. Chayes and S.A. Kivelson: On the absence of ferromagnetism in typical 2D ferromagnets,
Comm. Math. Phys. 274 (2007), 217–231.

[6] T. Bodineau: Translation invariant Gibbs states for the Ising model, Probab. Theory Related Fields 135
(2006), 153–168.



752 S. Usuki
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