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Abstract
In this paper, we will show that if the sectional curvature of a Hadamard manifold M is pinched

by two negative constants, then M-valued jump-diffusion process {Xt ; 0 ≤ t < e} satisfying
suitable conditions on the Lévy measure is irreducible, transient and conservative. In order to
show such properties of paths, we need the upper and lower estimates of the radial part of the
jump-diffusion process.

1. Introduction

1. Introduction
It is a classical task to construct Markov processes in various spaces and to study their

long time behavior. In this paper, we study the jump-diffusion process whose infinitesimal
generator is similar to that of Lévy processes. There are previous studies about the con-
struction of such processes: Hunt [8] studied the Lévy process on Lie groups in terms of
the semigroup and its corresponding generator. Elles-Elworthy-Malliavin constructed the
Brownian motion on manifolds by projecting the solution of the certain stochastic differen-
tial equation in the orthonormal frame bundle onto the base space. Later, Applebaum [2], [3]
extended such method to the case of the jump-diffusion process on Riemannian manifolds.
Remark that an integral curve on a homogeneous space with a two-sided invariant metric is
a geodesic. Therefore, the exponential map as the Lie group coincides with that as the Rie-
mannian manifold. From this fact, the jump-diffusion process constructed by Applebaum
[2], [3] coincides with the one constructed by Hunt [8].

This paper deals with irreducibility, recurrence, transience, and conservativeness as the
long time behavior. Lévy processes, a kind of Markov processes on Euclidean space, are ir-
reducible and conservative. Previous works about long time behavior of the jump-diffusion
process are as follows: Recurrence and transience of the Lévy process on Euclidian space
are characterized by Chung-Fuchs [4] in terms of the characteristic functions. Applebaum
[1] studied some properties of the process on symmetric spaces through the Fourier trans-
forms. He found an analogy with the Chung-Fuchs result [4] on Lévy processes on Eu-
clidean space. On the other hand, Ichihara [9], [10] showed that recurrence, transience, and
conservativeness of the Brownian motion on general manifolds can be investigated by eval-
uating its radial part. Grigor’yan-Huang-Masamune [6] and Masamune-Uemura-Wang [15]
studied the long time behavior of symmetric jump-diffusion processes on Riemannian man-
ifolds via Dirichlet forms. These works reveal that the symmetric jump-diffusion process is
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conservative if the volume of the geodesic ball satisfies a certain growth rate. If the sectional
curvature is bounded from below by a negative constant, then the volume of the geodesic
ball satisfies the growth rate described in [15]. Therefore, our work is regarded as a kind
of criterion of the conservativeness of the jump-diffusion process that cannot guarantee a
symmetric Markov process. More details are presented at the end of this paper.

In this paper, the properties of paths are studied by evaluating the radial part of the jump-
diffusion process. Such method clearly shows how the curvature of the manifold affects
their paths, and that the jump-diffusion process on the simply connected Riemannian man-
ifold whose sectional curvature is pinched by negative constants is irreducible, transient,
and conservative. Since the sectional curvature of a homogenous space is pinched by two
constants, the results of this paper can be applied to the jump-diffusion process on homoge-
neous spaces as well. This is a kind of extension of Ichihara’s works [9], [10] on the global
properties of the Brownian motion on manifolds.

The organization of this paper is as follows: In Section 2, we will prepare for the dif-
ferential geometry and the probabilistic setting. See Sakai [14] for the differential geome-
try, and Kai-Takeuchi [11] and Hsu [7] for the probabilistic setting. We will construct the
jump-diffusion process by projecting the solution of the Marcus-type stochastic differential
equation. By Applebaum-Estrade [2], the rotational invariance of the Lévy measure enables
us to see that the jump-diffusion process is Markovian, and that the generator of the jump-
diffusion process on the manifold is well-defined. Irreducibility, recurrence, transience and
conservativeness are defined by the first hitting time, the last exit time and the explosion
time, respectively. In Section 3, we summarize the main results obtained in this paper. The
conditions under which the jump-diffusion process is irreducible, transient, and conserva-
tive are mentioned. In Section 4, we shall provide the proofs for each claims. First, we shall
prove the irreducibility of the jump-diffusion process. Our strategy to attack this problem is
a functional analysis approach. Next, we shall prove transience. The lower estimate of the
radial part is helpful since it indicates that the jump-diffusion process diverges to infinity at
the rate stronger than its randomness. Since our target manifold is non-compact, it is enough
to check that the radial part of the jump-diffusion process diverges to infinity. Finally, we
shall prove the conservativeness of the jump-diffusion process. To prove this, we shall study
the property of the explosion time, and prove that there exists the upper estimate of the radial
part of the jump-diffusion process which shows that it does not diverge rapidly to infinity.
The comparison theorem of the Hessian will play an important role to find the nice estimates
of the radial part of the jump-diffusion process.

The results of this paper are argued for both the pure-jump process and the jump-diffusion
process. Therefore, the discussion will be divided into the cases of each process.

2. Preliminaries

2. Preliminaries
We first prepare the notions from the differential geometry that we will use throughout

this paper. The setting of this paper is based on Kai-Takeuchi [11]. Let (M, g) be a complete,
orientable, connected and smooth Riemannian manifold of dimension m (≥ 2), and ∇ the
Levi-Civita connection. The one-point compactification of the manifold M by an infinite-
point ∂M is written as M̂ = M ∪ {∂M}. Denote the bundle of orthonormal frames by O(M),
and let
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π : O(M)→ M

be the canonical projection. For u ∈ O(M), we write u = ((v1)πu, . . . , (vm)πu), where
{(vi)πu; 1 ≤ i ≤ m} is an orthonormal basis for TπuM. From now on, we will regard u ∈ O(M)
as a linear operator from Rm to TπuM through the following action

R
m � z 	→ uz =

m∑
i=1

zi(vi)πu ∈ TπuM.

Denote by Hz(u) the horizontal lift of uz. Now, for given z ∈ Rm, the horizontal vector field
on O(M) is given by

O(M) � u 	→ Hz(u) ∈ TuO(M).

When {ei; 1 ≤ i ≤ m} is the standard orthonormal basis on Rm, the family

{Hi = Hei; i = 1, . . . ,m}
of the horizontal vector fields is called fundamental. For any z ∈ Rm, the horizontal vector
field Hz has the following property

Hz( f ◦ π)(u) = (uz) f (πu),

where f ∈ C∞(M). Here C∞(M) denotes the space of smooth functions on M. Write
R

m
0 = R

m\{0}. For z ∈ Rm
0 and u ∈ O(M), let {Ξz

s(u);−∞ < s < ∞} be the unique solution to
the ordinary differential equation on O(M) of the form:

d
ds
Ξz

s(u) = Hz(Ξz
s(u)), Ξz

0 = u.

Remark that for given z ∈ Rm
0 , the curve {πΞz

s(u); −∞ < s < ∞} is a geodesic. See
Kobayashi-Nomizu [12]. Denote the exponential map at x ∈ M by expx, and so we have

πΞz
s(u) = expπu(suz), −∞ < s < ∞.

Let dist(·, ·) : M × M → [0,∞) be the distance function on M induced by the Riemannian
metric g. Denote the inner product and the norm on TxM by 〈·, ·〉x = gx(·, ·) and | · |x =
gx(·, ·)1/2, respectively. Notice that if u ∈ O(M), then

〈Z1, Z2〉πu = 〈u−1Z1, u−1Z2〉
holds for all Z1, Z2 ∈ TπuM. Here 〈·, ·〉 is the inner product on Rm. Remark that

dist(x, expxZ) = |Z|x
holds for all Z ∈ TxM within the cut-locus of x ∈ M.

Let (Ω, ,P) be a probability space, and let ν be a Lévy measure over Rm
0 , that is, ν(dz)

satisfies ∫
R

m
0

(|z|2 ∧ 1)ν(dz) < ∞.

Here, we shall summarize conditions for the measure ν(dz) used throughout this paper.

Assumption 1. The measure ν(dz) is rotationally invariant.
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Assumption 2. The measure ν(dz) is absolutely continuous with respect to the Lebesgue
measure on Rm

0 , and its Radon-Nikodým derivative

h(z) :=
ν(dz)

dz

is continuous and strictly positive.

Assumption 3. The measure ν(dz) satisfies that∫
|z|>1
|z|2ν(dz) < ∞.

Assumption 3 is not necessary to construct a jump-diffusion process on M. This Assump-
tion is necessary to justify Lemma 4.

Remark 1. If the measure ν(dz) satisfies Assumptions 1 and 2, then the function

h(z) =
ν(dz)

dz

is also rotationally invariant. Thus, h(z) depends only on |z|, which can be expressed by
h(|z|).

Let B = {Bt = (B1
t , . . . , B

m
t ); t ≥ 0} be an m-dimensional Brownian motion on (Ω, ,P).

A Poisson random measure and its compensated Poisson random measure over Rm
0 × [0,∞)

with intensity measure n̂(dz, ds) = ν(dz)ds are given by N(dz, ds) and Ñ(dz, ds), respec-
tively.

Now, let us introduce the Marcus-type stochastic differential equation on O(M) of the
form:

dUt = σ

m∑
i=1

Hi(Ut−) ◦ dBi
t + η

∫
|z|≤1

(
Ξz

1(Ut−) − Ut−
)
Ñ(dz, ds)(2.1)

+ κ

∫
|z|>1

(
Ξz

1(Ut−) − Ut−
)
N(dz, ds),

where ◦dBi
t (i = 1, . . . ,m) is the Stratonovich stochastic integral, andσ, η and κ are constants

in {0, 1}. A stochastic process

{Ut; 0 ≤ t < e}
is called the solution to the stochastic differential equation (2.1), if for any F ∈ C∞(O(M))
with a compact support,

F(Ut)−F(U0) = σ
m∑

i=1

∫ t

0
HiF(Us−) ◦ dBi

s

+ η

∫ t

0

∫
|z|≤1

(
F ◦ Ξz

1(Us−) − F(Us−)
)
Ñ(dz, ds)

+ κ

∫ t

0

∫
|z|>1

(
F ◦ Ξz

1(Us−) − F(Us−)
)
N(dz, ds)
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+ η

∫ t

0

∫
|z|≤1

(
F ◦ Ξz

1(Us−) − F(Us−) − (HzF)(Us−)
)
ν(dz)ds

holds for all t ≥ 0, where e is an explosion time. This stochastic differential equation has the
strong unique càdlàg solution up to the explosion time. See Kunita [13, Theorem 7.1.1] for
details. Define

(2.2) {Xt = πUt; 0 ≤ t < e},
and let us consider

Xt = ∂M

for all t ≥ e. Denote the filtrations generated by {Ut; 0 ≤ t < e} and {Xt; 0 ≤ t < ∞} by


U∗ = {U
t ; 0 ≤ t < ∞} and 

X∗ = {X
t ; 0 ≤ t < ∞} respectively.

In this paper, we consider the following five cases.
• (σ, η, κ) = (0, 1, 0); the pure jump process without large jumps.
• (σ, η, κ) = (0, 1, 1); the pure jump process.
• (σ, η, κ) = (1, 1, 0); the jump-diffusion process without large jumps.
• (σ, η, κ) = (1, 1, 1); the jump-diffusion process.
• (σ, η, κ) = (1, 0, 0); the Brownian motion.

Let us denote the family of probability measures {Pu[ · ]; u ∈ O(M)} by

Pu[ · ] = P[ · | U0 = u].

Denote the space of bounded measurable functions on O(M) by b(O(M)). The semigroup
{St; 0 ≤ t < ∞} on b(O(M)) is given by

StF(u) = Eu[F(Ut)1{t<e}].

We shall define the linear operator  on C∞c (O(M)) by

F(u) = σ
1
2

m∑
i=1

H2
i F(u) + η

∫
|z|≤1

(
F ◦ Ξz

1(u) − F(u) − (Hz)F(u)
)
ν(dz)

+ κ

∫
|z|>1

(
F ◦ Ξz

1(u) − F(u)
)
ν(dz)

for F ∈ C∞c (O(M)), where C∞c (O(M)) is the space of smooth functions on O(M) with a
compact support. Remark that if {Ut; 0 ≤ t < e} is a Feller process, then  is the expression
on C∞c (O(M)) of the infinitesimal generator of {Ut; 0 ≤ t < e}.

Remark 2. Let

{Ut; 0 ≤ t < e}
be the stochastic process determined by (2.1). In general, the M-valued process {Xt =

πUt; 0 ≤ t < e} is not always Markov process because the law of πUt depends on the
choice of the frame of the initial point X0 = x ∈ M. Suppose that the Lévy measure ν(dz)
satisfies the condition of Assumption 1. Then, the law of πUt is independent of the choice
of the frame of the initial point, and the stochastic process
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{Xt = πUt; 0 ≤ t < e}
is Markov process. See Applebaum-Estrade [2] and Kai-Takeuchi [11] for details.

Moreover, {Xt; 0 ≤ t < e} has the strong Markov property with respect to the filtration


X∗ . This can be seen from the following discussion: Let τ be a 
X∗ -stopping time. The

stopping time τ is also 
U∗ -stopping time because 

X
t ⊂ 

U
t holds for all t ≥ 0. Since

{Ut; 0 ≤ t < e} is the strong unique solution to the stochastic differential equation (2.1),
{Ut; 0 ≤ t < e} has the strong Markov property with respect to 

U∗ . For any nonnegative
f ∈(M), the strong Markov property implies

E[ f (Xt+τ)|X
τ ] = E[( f ◦ π)(Ut+τ)|X

τ ] = EUτ[( f ◦ π)(Ut)] = EUτ[ f (Xt)].

Since the law of Xt is independent of the choice of the initial frame, it holds that

EUτ[( f ◦ π)(Ut)] = EXτ[ f (Xt)].

Thus, we see that

E[ f (Xt+τ)|X
τ ] = EXτ[ f (Xt)],

which implies that {Xt; 0 ≤ t < e} is the strong Markov process.

Next, we shall study the generator of the stochastic process

{Xt = πUt; 0 ≤ t < e}
on M under Assumption 1. Let {Tt; 0 ≤ t < ∞} be the family of the linear operators on
b(M) given by

Tt f (x) = Ex[ f (Xt)1{t<e}].

If we define f (∂M) = 0 and extend the domain of the function f on M to M̂, then we get

Tt f (x) = Ex[ f (Xt)].

From now on, any functions on M will be extended to M̂ in such a way. Since {Xt; 0 ≤
t < e} is Markovian under Assumption 1, the family of linear operators {Tt; 0 ≤ t < ∞}
is a semigroup. Since the orthonormal frame bundle O(M) has the orthogonal group as its
structural group, which is compact, we have f ◦ π ∈ C∞c (O(M)) for any f ∈ C∞c (M). Thus,
for f ∈ C∞c (M), we have

St( f ◦ π)(u) = Eu[( f ◦ π)(Ut)]

and

( f ◦ π)(u) = σ
1
2
ΔM f (πu) + η

∫
|z|≤1

(
f ◦ expπuuz − f (πu) − 〈∇ f (πu), uz〉πu

)
ν(dz)

+ κ

∫
R

m
0

(
f ◦ expπuuz − f (πu)

)
ν(dz).

Define the measure on TπuM as ν ◦ u−1, which is independent of the choice of the frame
u ∈ π−1({x}) under Assumption 1. So, we can write νx = ν ◦ u−1, where u is any frame of
π−1({x}). Moreover, we define the linear operator L on C∞c (M) by
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L f (x) = σ
1
2
ΔM f (x) + η

∫
Tx M0

(
f ◦ expxZ − f (x) − 〈∇ f (x),Z〉x

)
1{|Z|x≤1}νx(dZ)

+ κ

∫
Tx M0

(
f ◦ expxZ − f (x)

)
1{|Z|x>1}νx(dZ)

where TxM0 = TxM\{0}. The jump-diffusion process related to the (infinitesimal) generator
L is studied in [2].

Now, let us introduce some properties of the paths of a Markov process on M. Let 
be the family of relatively compact and non-empty open domains on M. For given D ∈ ,
define the first hitting time of {Xt; 0 ≤ t < e} to the set D by

TD = inf{t > 0; Xt ∈ D}
and the last exit time σD by

σD = sup{t > 0; Xt ∈ D}.
Definition 1. A càdlàg Markov process {Xt; 0 ≤ t < e} is irreducible, if for any D ∈ ,

Px[TD < ∞] > 0

holds for all x ∈ M.

Definition 2. The recurrence and transience of a càdlàg Markov process

{Xt; 0 ≤ t < e}
on M are defined as follows.

• The Markov process {Xt; 0 ≤ t < e} is recurrent, if for any D ∈ ,

Px[σD = ∞] = 1

holds for all x ∈ M.
• The Markov process {Xt; 0 ≤ t < e} is transient, if for any D ∈ ,

Px[σD < ∞] = 1

holds for all x ∈ M.

Remark 3. If a càdlàg Markov process

{Xt; 0 ≤ t < e}
is irreducible, then {Xt; 0 ≤ t < e} is recurrent or transient. Details can be seen in Tweedie
[16, Theorem 2.3].

Remark 4. If a càdlàg Markov process

{Xt; 0 ≤ t < e}
is irreducible and recurrent, then

Px[e = ∞] = 1

holds for all x ∈ M. See Getoor [5, Lemma 3.4]. Therefore, by Remark 3, if there exists a
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point x such that Px[e < ∞] > 0, then the M-valued process {Xt; 0 ≤ t < e} is transient.

Definition 3. A càdlàg Markov process {Xt; 0 ≤ t < e} is called conservative, if

Px[e = ∞] = 1

holds for all x ∈ M.

3. Main results

3. Main results
In this section, we shall introduce our main results in this paper. Those proofs will be

given in the next section. Recall that the M-valued process {Xt; 0 ≤ t < e} is determined
by (2.1) and (2.2). Let K be the sectional curvature tensor of M. We shall add the following
conditions:

Assumption 4. Suppose that M is simply connected, and that there is a negative constant
β such that

K ≤ β < 0.

Assumption 5. Suppose that M is simply connected, and that there are negative constants
α, β such that

α ≤ K ≤ β < 0.

Remark that when the manifold M is simply connected and K ≤ 0, M is a diffeomorphic
to the Euclidean space (cf. Sakai [14, Chapter V, Theorem 4.1]). Thus, M is non-compact.
The Poincaré half-plane model is a typical example of a manifold satisfying Assumption 5.

Assumption 6. There exists the density function p(t, x, y) of the probability law of Xt with
respect to the volume element Vol(dy).

Assumption 7. The density function p(t, x, y) described in Assumption 6 is of C2-class
for x ∈ M, and there exist functions

G1 : [0,∞) × M → [0,∞)

and

G2 : [0,∞) × M → [0,∞)

such that ∣∣∣∇xlog p(t, x, y)
∣∣∣
x ≤ G1(t, y),

∣∣∣∇x∇xlog p(t, x, y)
∣∣∣
x ≤ G2(t, y),

∫
M

G1(t, y)Vol(dy) < ∞

and
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M

G2(t, y)Vol(dy) < ∞

hold for all x ∈ M, y ∈ M and t ∈ [0,∞).

Lemma 1. Assuming that the conditions of Assumption 7 hold, then Tt f is of C2-class
for any f ∈b(M).

Proof. Computing the logarithmic derivative of p(t, x, y), ∇x p(t, x, y) and ∇x∇x p(t, x, y)
are calculated by

∇x p(t, x, y) = p(t, x, y)∇xlog p(t, x, y)

and

∇x∇x p(t, x, y) = ∇x p(t, x, y) ⊗ ∇xlog p(t, x, y) + p(t, x, y)∇x∇xlog p(t, x, y)

= p(t, x, y)
(
∇xlog p(t, x, y) ⊗ ∇xlog p(t, x, y) + ∇x∇xlog p(t, x, y)

)
,

where ⊗ is the tensor product. Thus, we see that

(3.1) |∇x p(t, x, y)|x ≤ p(t, x, y)G1(t, y)

and

(3.2) |∇x∇x p(t, x, y)|x ≤ p(t, x, y)
(
(m2 − m + 1)G1(t, y) +G2(t, y)

)
hold for all x ∈ M, y ∈ M and t ∈ [0,∞). On the other hand, it follows that

Tt f (x) =
∫

M
f (y)p(t, x, y)Vol(dy).

Since |∇x p(t, x, y)|x and |∇x∇x p(t, x, y)|x are evaluated by (3.1) and (3.2) respectively, we see
by Fubini’s theorem that Tt f is of C2-class. �

Theorem 1. {Xt; 0 ≤ t < e} is irreducible under Assumptions 1 and 2.

Theorem 2. Suppose that Assumptions 1, 2, 4 and 6 are satisfied. (When κ = 1, we
additionally assume Assumption 3.) Then,

{Xt; 0 ≤ t < e}
is transient.

Furthermore, if the manifold M satisfies Assumption 5, the conservativeness of {Xt; 0 ≤
t < e} can be shown.

Theorem 3. Suppose that Assumptions 1, 2, 5, 6 and 7 are satisfied. (When κ = 1, we
additionally assume Assumption 3.) Then,

{Xt; 0 ≤ t < e}
is conservative.

Remark 5. Since M is diffeomorphic to the Euclidean space under Assumption 5, the
density function p(t, x, y) of the probability law of Xt with respect to the volume element
Vol(dy) will be C2-class for both x ∈ M and y ∈ M under suitable condition. See Kunita
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[13] for details.

4. Proofs

4. Proofs4.1. Proof of Theorem 1.
4.1. Proof of Theorem 1. We shall give the proof of Theorem 1. Suppose that the Lévy

measure ν(dz) satisfies Assumption 1 . Then, as pointed out before, the M-valued process
{Xt; 0 ≤ t < e} is Markovian.

Proof of Theorem 1. We will begin with the proof of Theorem 1 in case of (σ, η, κ) =
(0, 1, 0). Let D ∈  and x ∈ M. At the beginning, we shall show that

Px[TD < ∞] > 0

holds for any x ∈ M with dist(x,D) ≤ 1/2. It is clear that

Px[TD < ∞] = 1

holds for all x ∈ D, since D is finely open and {Xt; 0 ≤ t < e} is càdlàg. We shall show that

(4.1) lim inf
t↘0

Px[Xt ∈ D]
t

= lim inf
t↘0

Px[Xt ∈ D] − 1D(x)
t

> 0

holds for any x ∈ Dc with dist(x,D) ≤ 1/2. Remark that (4.1) implies that there exists t > 0
such that

Px[Xt ∈ D]
t

> 0,

which indicates Px[TD < ∞] > 0. Recall that {Tt; 0 ≤ t < ∞} is the semigroup correspond-
ing to {Xt; 0 ≤ t < e}. Then, (4.1) is equivalent to

(4.2) lim inf
t↘0

Tt1D(x) − 1D(x)
t

> 0.

Let D̂ ∈  be a set such that

dist((D̄)c, D̂) <
1
4
.

and { fε,D̂ ∈ C∞c (M); ε > 0} the family of the cutoff functions satisfying fε,D̂(x) = 1 for all
x ∈ D̂ and fε,D̂(x) = 0 for all x ∈ M with dist(x, D̂) ≥ ε. To show (4.2), we shall prove that

lim inf
t↘0

Tt1D(x)
t

≥ lim
ε↘0

lim
t↘0

Tt fε,D̂(x) − fε,D̂(x)

t
=

∫
|Z|x≤1

1D̂(expxZ)νx(dZ)

holds.
If ε < 1/4, then

fε,D̂(x) ≤ 1D(x)

holds for all x ∈ M. Since the semigroup {Tt; 0 ≤ t ≤ ∞} is positive preserving, it holds that

Tt fε,D̂(x) ≤ Tt1D(x)

for any ε < 1/4, t ∈ [0,∞) and x ∈ M. Thus, we see that
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(4.3)
Tt1D(x) − fε,D̂(x)

t
≥ Tt fε,D̂(x) − fε,D̂(x)

t
for any ε < 1/4, t ∈ [0,∞) and x ∈ M. If x ∈ Dc, then (4.3) is equivalent to

Tt1D(x)
t

≥ Tt fε,D̂(x) − fε,D̂(x)

t
.

Since fε,D̂ = 0 in the neighborhood of x ∈ Dc when ε is sufficiently small, it follows that

fε,D̂(expxZ) − fε,D̂(x) − 〈∇ fε,D̂(x), Z〉x = fε,D̂(expxZ).

Thus, we get

lim
t↘0

Tt fε,D̂(x) − fε,D̂(x)

t
=

∫
|Z|x≤1

(
fε,D̂(expxZ) − fε,D̂(x) − 〈∇ fε,D̂, Z〉x

)
νx(dZ)

−−−→
ε↘0

∫
|Z|x≤1

1D̂(expxZ)νx(dZ).

Take a point x ∈ Dc such that dist(x,D) ≤ 1/2. Denote the unit geodesic ball centered at x ∈
M by B(x, 1). Since dist(x,D) ≤ 1/2 and dist((D̄)c, D̂) < 1/4, we see that D̂ ∩ B(x, 1) � ∅.
From Assumption 2, we have ∫

|Z|x≤1
1D̂(expxZ)νx(dZ) > 0

for any x ∈ Dc with dist(x,D) ≤ 1/2. Define D0 = D and

Dn =

{
x ∈ M; dist(x,Dn−1) ≤ 1

2

}
.

If we take a point x from D2, we get Px[TD1 < ∞] > 0 by the same argument mentioned
above. Since Px[TD1 < ∞] > 0 for any x ∈ D2 and Px[TD < ∞] > 0 for any x ∈ D1, the
strong Markov property of {Xt; 0 ≤ t < e} implies that

Px[TD < ∞] ≥ Ex

[
PXTD1

[TD < ∞]1{TD1<∞}
]
> 0

holds for all x ∈ D2. Inductively, we get

Px[TD < ∞] > 0

for all x ∈ M.
The proof in case of (σ, η, κ) = (0, 1, 1) is almost the same as that of (σ, η, κ) = (0, 1, 0).

In fact, we have

lim inf
t↘0

Px[Xt ∈ D]
t

≥
∫

Tx M0

1D̂(expxZ)νx(dZ)

for any x ∈ Dc.
Next, we shall give a proof in case of (σ, η, κ) = (1, 1, 0). For any x ∈ Dc and ε < 1/4, it

holds that

lim inf
t↘0

Px[Xt ∈ D]
t
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≥ lim
t↘0

Tt fε,D̂(x) − fε,D̂(x)

t

=
1
2
ΔM fε,D̂(x) +

∫
|Z|x≤1

(
fε,D̂(expx(Z)) − fε,D̂(x) − 〈∇ fε,D̂(x), Z〉x

)
νx(dZ).

Take ε sufficiently small so that fε,D = 0 in a neighborhood of x. Then, we have ΔM fε,D(x) =
0. Hence, we have

lim inf
t↘0

Px[Xt ∈ D]
t

≥ lim
t↘0

Tt fε,D̂(x) − fε,D̂(x)

t

=
1
2
ΔM fε,D̂(x) +

∫
|Z|x≤1

(
fε,D̂(expx(Z)) − fε,D̂(x) − 〈∇ fε,D̂(x),Z〉x

)
νx(dZ)

−−−→
ε↘0

∫
|Z|x≤1

1D̂(expx(Z))νx(dZ) > 0

for all x ∈ Dc with dist(x,D) ≤ 1/2. By the same argument in the proof in case of (σ, η, κ) =
(0, 1, 0), we see that the M-valued process {Xt; 0 ≤ t < e} is irreducible. The case (σ, η, κ) =
(1, 1, 1) can also be proved in such a way.

The proof in case of (σ, η, κ) = (1, 0, 0) is described in Hsu [7, Proposition 4.4.4]. �

4.2. Proof of Theorem 2.
4.2. Proof of Theorem 2. First, we shall evaluate the radial part of the jump-diffusion

process on M. Fix the base point o ∈ M. Define r(·) = dist(o, ·) , and write ξZ(x) = expxZ.
Remark that if M is a Hadamard manifold, there are no cut-locus. Therefore, the radial
function r is smooth on M\{o}. In order to find the nice lower estimate of the radial part of
the M-valued process {Xt; 0 ≤ t < e}, we have to evaluate Lr on M\{o}, which is computed
as follows:

Lr(y) = σ
1
2
ΔMr(y) + η

∫
|Z|y≤1

(
r ◦ ξZ(y) − r(y) − 〈∇r(y),Z〉y

)
νy(dz)

+ κ

∫
|Z|y>1

(
r ◦ ξZ(y) − r(y)

)
νy(dz), y ∈ M\{o}.

Now, for any y ∈ M, we represent Z ∈ TyM by Z = ρΘ, where ρ ∈ [0,∞) and Θ ∈ UyM =
{Z ∈ TyM; |Z|y = 1}. Let us define Q = Q(ρ,Θ, y) by

(4.4) Q(ρ) = Q(ρ,Θ, y) = r ◦ ξρΘ(y) − r(y) − 〈∇r(y),Θ〉yρ.
Here, we summarize the properties of Q.

Lemma 2. For given y ∈ M\{o} and Θ ∈ UyM with 〈∇r(y),Θ〉y < 0, let us define
ρ0 = ρ(Θ, y) by

ρ0 = sup{ρ > 0;
d

dρ
Q(ρ) ≤ −〈∇r(y),Θ〉y}.

Then, Q satisfies the following conditions under Assumption 4:

• For any y ∈ M\{o} and Θ ∈ UyM, the function

[0,∞) � ρ 	→ Q(ρ) ∈ R
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is convex, and Q(ρ) ≥ 0 for all ρ ≥ 0.
• If 〈∇r(y),Θ〉y < 0, then the following inequality

Q(ρ) ≥ 1
2

√|β|(1 − 〈∇r(y),Θ〉2y)ρ2

holds for all ρ ≤ ρ0.
• If 〈∇r(y),Θ〉y < 0 and ρ0 < ∞, then the following inequality

Q(ρ) ≥ −〈∇r(y),Θ〉y(ρ − ρ0)

holds for all ρ ≥ 0.

Proof. Since the sectional curvature satisfies K < 0, the second variation formula enables
us to see that

d2

dρ2 Q(ρ) ≥ 0.

See Sakai [14, Chapter III, Remark 2.6] for details. Thus, the function

ρ 	→ Q(ρ)

is convex. Furthermore, a simple calculation reveals

Q(0) = 0

and

d
dρ

Q(ρ)
∣∣∣∣∣
ρ=0
= 0.

Therefore, we see that

Q(ρ) ≥ 0

holds for all ρ ≥ 0.
Next, we shall show that if 〈∇r(y),Θ〉y < 0, then the following inequality

Q(ρ) ≥ 1
2

√|β|(1 − 〈∇r(y),Θ〉2y)ρ2

holds for all ρ ≤ ρ0. By applying Taylor’s theorem to the function

ρ 	→ Q(ρ),

there exists θ ∈ (0, ρ) such that

Q(ρ) = Q(ρ) − d
dρ

Q(ρ)
∣∣∣∣∣
ρ=0
ρ − Q(0) =

1
2

d2

dρ2 Q(ρ)

∣∣∣∣∣∣
ρ=θ

ρ2.

On the other hand, d2

dρ2 Q(ρ) is computed as follows:

(4.5)
d2

dρ2 Q(ρ) =
d2

dρ2

(
r ◦ ξρΘ(y)

)
= ∇2r(ξρΘ(y))((dexpyρΘ)(Θ), (dexpyρΘ)(Θ))

where ∇2 denotes the Hessian of M. For given Z ∈ TyM, we define
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Z⊥ = Z − 〈∇r(y), Z〉y∇r(y).

Applying the comparison theorem on the Hessian (cf. Sakai [14, Chapter IV, Lemma 2.9])
implies that

(4.6) ∇2r(y)(Θ,Θ) ≥
√|β||Θ⊥|2y

tanh
(√|β|r(y)

) =
√|β|(1 − 〈∇r(y),Θ〉2y)

tanh
(√|β|r(y)

)
holds for any y ∈ M\{o} and Θ ∈ UyM. From the Gauss lemma (cf. Sakai [14, Chapter II,
Proposition 2.3]), we have

(4.7) |(dexpyρZ)Z|expyρZ = |Z|y
for any ρ ≥ 0, y ∈ M and Z ∈ TyM. Thus, we see by (4.5), (4.6) and (4.7) that

d2

dρ2 Q(ρ) ≥
√|β|(1 − 〈∇r(expyρΘ), (dexpyρΘ)(Θ)〉2expyρΘ

)

tanh
(√|β|r(expyρΘ)

)(4.8)

≥ √|β|(1 − 〈∇r(expyρΘ), (dexpyρΘ)(Θ)〉2expyρΘ
)

holds for all ρ ≥ 0. Since the function

[0,∞) � ρ 	→ d
dρ

Q(ρ) ∈ [0,∞]

is monotone increasing, we have

0 ≤ d
dρ

Q(ρ) = 〈∇r(expyρΘ), (dexpyρΘ)(Θ)〉expyθΘ − 〈∇r(y),Θ〉y ≤ −〈∇r(y),Θ〉y
for all ρ ≤ ρ0. Clearly, this implies that

〈∇r(y),Θ〉y ≤ 〈∇r(expyρΘ), (dexpyρΘ)(Θ)〉expyρΘ ≤ 0.

Therefore, we see that if 〈∇r(y),Θ〉y < 0, then

(4.9)
∣∣∣〈∇r(expyρΘ), (dexpyρΘ)(Θ)〉expyρΘ

∣∣∣ ≤ ∣∣∣〈∇r(y),Θ〉y
∣∣∣

holds for all ρ ≤ ρ0. Thus, if 〈∇r(y),Θ〉y < 0, then we see by (4.8) and (4.9) that

d2

dρ2 Q(ρ) ≥ √|β|(1 − 〈∇r(y),Θ〉2y)

holds for all ρ ≤ ρ0.
Finally, we shall show that if 〈∇r(y),Θ〉y < 0 and ρ0 < ∞, then the following inequality

Q(ρ) ≥ −〈∇r(y),Θ〉y(ρ − ρ0)

holds for all ρ ≥ 0. Since the function

ρ→ Q(ρ)

is convex and
d

dρ
Q(ρ)

∣∣∣∣∣
ρ=ρ0

= −〈∇r(y),Θ〉y,
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we have

Q(ρ) ≥ Q(ρ0) − 〈∇r(y),Θ〉y(ρ − ρ0) ≥ −〈∇r(y),Θ〉y(ρ − ρ0)

for all ρ ≥ 0. �

Lemma 3. Let {Ut; 0 ≤ t < e} be the O(M)-valued process determined by the stochastic
differential equation (2.1) and πUt = Xt. Suppose that

Px[e = ∞] = 1

holds for all x ∈ M, and that Assumptions 1, 2, 4 and 6 are satisfied. (When κ = 1,
we additionally assume Assumption 3.) Then, there exists a constant C > 0 such that the
following inequality

r(Xt) ≥ r(x) +Ct + σ
∫ t

0
〈U−1

s−∇r(Xs−), dBs〉

+

∫ t

0

∫
R

m
0

(
r ◦ ξUs−z(Xs−) − r(Xs−)

)(
η1{|z|≤1} + κ1{|z|>1}

)
Ñ(dz, ds)

holds for all t ≥ 0.

Proof. Assumption 6 implies that

(4.10) Px

[
Xt = o

]
= 0

holds for all x ∈ M and t ≥ 0. Hence, we see by Fubini’s theorem that

Ex

[∫ ∞

0
1{Xs=o}ds

]
=

∫ ∞

0
Px[Xs = o]ds = 0,

which implies

Px

[∫ ∞

0
1{Xs=o}ds = 0

]
= 1.

Thus, from the Itô formula and (4.10), the following equality holds under Assumptions 1, 4
and 6:

r(Xt) = r(x) + σ
∫ t

0
〈U−1

s−∇r(Xs−), dBs〉 + σ
∫ t

0

1
2
ΔMr(Xs)ds

+ η

{∫ t

0

∫
|z|≤1

(
r ◦ ξUs−z(Xs−) − r(Xs−)

)
Ñ(dz, ds)

+

∫ t

0

∫
|z|≤1

(
r ◦ ξUs−z(Xs−) − r(Xs−) − 〈U−1

s−∇r(Xs−), z〉
)
ν(dz)ds

}

+ κ

{∫ t

0

∫
|z|>1

(
r ◦ ξUs−z(Xs−) − r(Xs−)

)
Ñ(dz, ds)

+

∫ t

0

∫
|z|>1

(
r ◦ ξUs−z(Xs−) − r(Xs−)

)
ν(dz)ds

}

= r(x) + σ
∫ t

0
〈U−1

s−∇r(Xs−), dBs〉 + σ
∫ t

0

1
2
ΔMr(Xs)ds
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+

∫ t

0

∫
R

m
0

(
r ◦ ξUs−z(Xs−) − r(Xs−)

)(
η1{|z|≤1} + κ1{|z|>1}

)
Ñ(dz, ds)

+ η

∫ t

0

∫
|z|≤1

(
r ◦ ξUs−z(Xs−) − r(Xs−) − 〈U−1

s−∇r(Xs−), z〉)
)
ν(dz)ds

+ κ

∫ t

0

∫
|z|>1

(
r ◦ ξUs−z(Xs−) − r(Xs−)

)
ν(dz)ds.

For any y ∈ M\{o}, write

Γ1(y) =
∫
|Z|y≤1

(
r ◦ ξZ(y) − r(y) − 〈∇r(y), Z〉y

)
νy(dZ),(4.11)

Γ2(y) =
∫
|Z|y>1

(
r ◦ ξZ(y) − r(y)

)
νy(dZ),

Γ3(y) =
1
2
ΔMr(y).

Our strategy is to evaluate Γ1, Γ2 and Γ3. First, we shall prove that there exists a constant
C1 > 0 satisfying

Γ1(y) =
∫
|Z|y≤1

(
r ◦ ξZ(y) − r(y) − 〈∇r(y), Z〉y

)
νy(dZ) ≥ C1

for all y ∈ M\{o}. Recall that Q is defined by (4.4). By Lemma 2, we get

Γ1(y) =
∫ 1

0

∫
UyM

Q(ρ)h(ρ)dΘdρ

=

∫
UyM

∫ 1

0
Q(ρ)h(ρ)dρdΘ

≥
∫
〈∇r(y),Θ〉y<0

(∫ ρ0∧1

0
Q(ρ)h(ρ)dρ +

∫ 1

ρ0∧1
Q(ρ)h(ρ)dρ

)
dΘ

≥
∫
〈∇r(y),Θ〉y<0

{∫ ρ0∧1

0

1
2

√|β|(1 − 〈∇r(y),Θ〉2y)ρ2h(ρ)dρ

+

∫ 1

ρ0∧1
−〈∇r(y),Θ〉y(ρ − ρ0)h(ρ)dρ

}
dΘ,

where h(ρ) is the density introduced in Assumption 2 and Remark 1. Let us define C0 =

C0(〈∇r(y),Θ〉) by

C0 = inf
0<s≤1

(
1
2

∫ s

0

√|β|(1 − 〈∇r(y),Θ〉2y)ρ2h(ρ)dρ +
∫ 1

s
−〈∇r(y),Θ〉y(ρ − s)h(ρ)dρ

)
.

Since it holds that ∫ 1

0
ρ2h(ρ)dρ > 0,

we have

lim
s↘0

∫ 1−s

0
ρh(ρ + s)dρ > 0.
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Thus, if −1 < 〈∇r(y),Θ〉y < 0, then C0 > 0. Therefore, we obtain

Γ1(y) ≥
∫
〈∇r(y),Θ〉y<0

C0(〈∇r(y),Θ〉y)dΘ > 0.

Now, we shall choose the constant C1 as follows:

C1 =

∫
〈∇r(y),Θ〉y<0

C0(〈∇r(y),Θ〉y)dΘ.

The rotational invariance of the Lebesgue measure on UyM enables us to see that

C1 =

∫
〈∇r(y),Θ〉y<0

C0(〈∇r(y),Θ〉y)dΘ =
∫
Sm−1∩{z1<0}

C0(z1)dz,

which implies that C1 is independent of y ∈ M\{o}.
Next, we shall show that

Γ2(y) =
∫
|Z|y>1

(
r ◦ ξZ(y) − r(y)

)
νy(dZ) ≥ 0,

if the Lévy measure ν(dz) satisfies Assumption 3. By Taylor’s theorem and the second
variation formula (cf. Sakai [14, Chapter III, Remark 2.6]), there exists θ ∈ (0, ρ) such that

r ◦ ξρΘ(y) − r(y) = 〈∇r(y),Θ〉yρ + 1
2
∇2r(ξθΘ(y))((dexpyθΘ)Θ, (dexpyθΘ)Θ)ρ2

≥ 〈∇r(y),Θ〉yρ.
Since the Lévy measure ν(dz) satisfies Assumption 3, we have∫

|z|>1
|z|ν(dz) < ∞.

Hence, we can obtain∫
|Z|y>1

(
r ◦ ξZ(y) − r(y)

)
νy(dZ) =

∫ ∞

1

∫
UyM

(
r ◦ ξρΘ(y) − r(y)

)
h(ρ)dΘdρ

≥
∫ ∞

1

∫
UyM
〈∇r(y),Θ〉yρh(ρ)dΘdρ

=

∫ ∞

1

(∫
UyM
〈∇r(y),Θ〉ydΘ

)
ρh(ρ)dρ

=

∫
|Z|y>1
〈∇r(y),Z〉yνy(dZ).

Moreover, the rotational invariance of ν(dz) implies that∫
|Z|y>1
〈∇r(y), Z〉yνy(dZ) =

∫
|z|>1
〈v, z〉ν(dz) =

∫
|z|>1
〈v, (−z)〉ν(dz)

for any unit vector v ∈ Rm. Then, we have∫
|Z|y>1
〈∇r(y), Z〉yνy(dZ) = 0.

By the comparison theorem on the Laplacian (cf. Sakai [14, Chapter V, Lemma 2.9]), it
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holds that

Γ3(y) =
1
2
ΔMr(y) ≥

√|β|(m − 1)

2 tanh(
√|β|r(y))

≥
√|β|(m − 1)

2
.

Let us define a constant C by

C = η C1 +
1
2
σ
√|β|(m − 1).

Then, we can see that∫ t

0
Lr(Xs−)ds =

∫ t

0

(
ηΓ1(Xs−) + κΓ2(Xs−) + σΓ3(Xs−)

)
ds ≥ Ct.

The proof of the theorem is complete. �

Now, we write

(4.12) Mt =

∫ t

0

∫
R

m
0

(
r ◦ ξUs−z(Xs−) − r(Xs−)

)(
η1{|z|≤1} + κ1{|z|>1}

)
Ñ(dz, ds),

(4.13) λ =

∫
R

m
0

|z|2
(
η1{|z|≤1} + κ1{|z|>1}

)
ν(dz),

(4.14) Wt =

∫ t

0
〈U−1

s−∇r(Xs−), dBs〉.

Remark that if the Lévy measure ν(dz) satisfies Assumption 3, then (4.12) is well-defined
and (4.13) is finite in case of κ = 1. For the proof of Theorem 2, we need the following
lemma.

Lemma 4. Let {Mt; 0 ≤ t < ∞} be the martingale defined by (4.12). Suppose that

Px[e = ∞] = 1

holds for all x ∈ M. Then, we have

(4.15) Px

[
lim
t→∞

Mt

t
= 0

]
= 1

for all x ∈ M in case of (σ, η, κ) = (0, 1, 0), (1, 1, 0). Moreover, if the Lévy measure ν(dz)
satisfies Assumption 3, then (4.15) holds in case of (σ, η, κ) = (0, 1, 1), (1, 1, 1).

Proof. First, we consider the case of κ = 0. It is clear that
∣∣∣ Mt

t

∣∣∣ ≤ ∣∣∣ Mt
s

∣∣∣ for any s ≤ t. From
Doob’s inequality,

Ex

[
sup
s≤t≤u

∣∣∣∣∣ Mt

t

∣∣∣∣∣2
]
≤ s−2

Ex

[
sup
s≤t≤u
|Mt|2

]
≤ 4s−2

Ex[M2
u] ≤ 4λs−2u

holds for all 0 ≤ s ≤ u < ∞ and x ∈ M. Choose s = 2n and u = 2n+1 in the above inequality.
Then, we obtain

Ex

[
sup

2n≤t≤2n+1

∣∣∣∣∣ Mt

t

∣∣∣∣∣2] ≤ λ2−(n−3).
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Then, from Chebyshev’s inequality,

Px

[
sup

2n≤t≤2n+1

∣∣∣∣∣ Mt

t

∣∣∣∣∣ > ε
]
≤ ε−2

Ex

[
sup

2n≤t≤2n+1

∣∣∣∣∣ Mt

t

∣∣∣∣∣2
]
≤ ε−2λ2−(n−3)(4.16)

holds for any ε > 0, n ∈ N and x ∈ M. From the Borel-Cantelli lemma with (4.16), we have

Px

[
lim
t→∞

Mt

t
= 0

]
= 1.

Next, we turn to consider the case of κ = 1. If the Lévy measure ν(dz) satisfies Assumption
3, then (4.13) is finite and hence the inequality (4.16) holds, via a similar argument stated
above. Thus, we also see that (4.15) holds for κ = 1. �

Lemma 5. Let {Wt; 0 ≤ t < ∞} be the martingale defined by (4.14). Suppose that

Px[e = ∞] = 1

holds for all x ∈ M. Then, we have

Px

[
lim
t→∞

Wt

t
= 0

]
= 1

for all x ∈ M.

Proof. Since |∇r(x)| = 1 for all x ∈ M\{o}, we have

Ex[|Wt|2] = t.

Hence, by the same argument in the proof of Lemma 4, we have

Px

[
lim
t→∞

Wt

t
= 0

]
= 1.

�

Proof of Theorem 2. Assume that the Lévy measure ν(dz) satisfies Assumptions 1 and
2. Then, we see from Theorem 1 that the M-valued process {Xt; 0 ≤ t < e} is irreducible.
Let us consider the following cases:

(i) There exists x ∈ M such that

Px[e < ∞] > 0.

(ii) For any x ∈ M,

Px[e = ∞] = 1

holds.
Remark 4 tells us that {Xt; 0 ≤ t < e} is transient in the case (i). So, we only need to consider
the case (ii). From Lemmas 4 and 5, it is easy to verify that

r(x) + σWt + Mt +Ct
t

a.s−−−→
t→∞ C > 0,

which implies

r(x) + σWt + Mt +Ct
a.s−−−→

t→∞ ∞.
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Thus, by Lemma 3, we have

r(Xt) ≥ r(x) + σWt + Mt +Ct
a.s−−−→

t→∞ ∞.
The proof of Theorem 2 is complete. �

4.3. Proof of Theorem 3.
4.3. Proof of Theorem 3. In order to prove Theorem 3, let us discuss the properties of

the explosion time e defined by

e = inf{t > 0; Xt = ∂M}.
Lemma 6. Define a function j on M by

j(x) = Px[e = ∞].

Suppose that the Lévy measure ν(dz) satisfies Assumptions 1, 2, 4, 6 and 7. (When κ = 1,
we additionally assume Assumption 3.) Then, the function j satisfies one of the following:

• For all x ∈ M, j(x) = 1.
• For all x ∈ M, j(x) = 0.
• For all x ∈ M, 0 < j(x) < 1.

Proof. Since the proof in case of κ = 1 is similar to the case of κ = 0, we shall only give
the proof for κ = 0. From the Markov property, we see that

Px[e = ∞] = Ex

[
PXt [e = ∞]

]
holds for any x ∈ M and t ∈ [0,∞). Thus, we get

(4.17) j(x) = Tt j(x)

for all x ∈ M. From (4.17), j is expressed by

j(x) =
∫

M
j(y)p(t, x, y)Vol(dy).

From Lemma 1, we see that j is of C2-class. Therefore, j belongs to the domain of L.
Moreover, we see by (4.17) that

(4.18) L j(x) = σ
1
2
ΔM j(x) +

∫
|Z|x≤1

(
j ◦ expxZ − j(x) − 〈∇ j(x), Z〉x

)
νx(dZ) = 0

holds for all x ∈ M. Let x0 ∈ M such that j(x0) = 1. Then, from Assumptions 1, 2 and
(4.18), we have

(4.19) σ
1
2
ΔM j(x0) +

∫
|Z|x0≤1

(
j ◦ expx0

Z − 1
)
h(|Z|x0 )dZ = 0.

Since x0 is the maximizer of the function j, it holds that

ΔM j(x0) ≤ 0.

Moreover, it is clear that

j ◦ expx0
Z − 1 ≤ 0

holds for any Z ∈ Tx0 M. Thus, we see by (4.19) that
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ΔM j(x0) = 0

and ∫
|Z|x0≤1

(
j ◦ expx0

Z − 1
)
h(|Z|x0 )dZ = 0.

Since the functions

j ◦ expx0
: Tx0 M → [0, 1]

and

h(| · |) : Tx0 M → (0,∞)

are continuous, we have

(4.20) j ◦ expx0
Z = 1

for all Z ∈ Tx0 M0 with |Z|x0 ≤ 1. Furthermore, (4.20) implies that

(4.21) j(x) = 1

holds for any x ∈ B(x0, 1) = {x ∈ M; dist(x0, x) < 1}. Applying the same argument to all
points in B(x0, 1), we have (4.21) for all x ∈ B(x0, 2). Inductively, (4.21) holds for all x ∈ M,
because M is connected.

On the other hand, by the same argument, we see that the existence of the point x0 ∈ M
such that j(x0) = 0 implies j(x) = 0 for all x ∈ M.

Next, we shall prove Lemma 6 in case of (σ, η, κ) = (1, 0, 0). By the same discussion
stated above, we see that

L j(x) =
1
2
ΔM j(x) = 0

holds for any x ∈ M. Therefore, the function j is a bounded harmonic function. The proof
in case of (σ, η, κ) = (1, 0, 0) is complete. �

Next, we shall study the upper estimate of the radial part of the jump-diffusion process
which plays an important role in the proof of Theorem 3.

Lemma 7. Let δ > 0 be a positive constant, and recall that Q is defined by (4.4). Then,
Q satisfies the following conditions under Assumption 5:

• If r(y) > δ, then the following inequality

(4.22) Q(ρ) ≤
√|α|

2 tanh
(√|α|δ)ρ2

holds for all ρ ∈ [0, r(y) − δ] and Θ ∈ UyM.
• The following inequality

(4.23) Q(ρ) ≤ (1 − 〈∇r(y),Θ〉y)ρ
holds for all ρ ≥ 0, y ∈ M\{o} and Θ ∈ UyM.
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Proof. First, we shall show that if r(y) > δ, then (4.22) holds for all ρ ∈ [0, r(y) − δ].
Applying Taylor’s theorem enables us to see that there exists θ ∈ (0, ρ) such that

Q(ρ) =
1
2
∇2r(ξθΘ(y))(dexp(θΘ)Θ, dexp(θΘ)Θ)ρ2.

So, we see by the comparison theorem on the Hessian (cf. Sakai [14, Chapter IV, Lemma
2.9]) that

Q(ρ) ≤
√|α||Θ⊥|2y

2 tanh
(√|α|(r ◦ ξθΘ(y))

)ρ2 ≤
√|α|

2 tanh
(√|α|(r ◦ ξθΘ(y))

)ρ2(4.24)

holds for any y ∈ M\{o}, Θ ∈ UyM and ρ ≥ 0. From the triangle inequality, it holds that

r ◦ ξρΘ(y) + ρ ≥ r(y).

Thus, if r(y) > δ, then we have

(4.25) r ◦ ξρΘ(y) ≥ δ
for all ρ ∈ [0, r(y) − δ] and Θ ∈ UyM. Therefore, for any y ∈ M\{o} and Θ ∈ UyM, (4.24)
and (4.25) enable us to see that

Q(ρ) ≤
√|α|

2 tanh
(√|α|δ)ρ2

holds for all ρ ∈ [0, r(y) − δ].
Next, we shall show that (4.23) holds for all ρ ≥ 0. From the triangle inequality, we have

r ◦ ξρΘ(y) − r(y) ≤ ρ,
which implies that

Q(ρ) = r ◦ ξρΘ(y) − r(y) − 〈∇r(y),Θ〉yρ ≤ ρ − 〈∇r(y),Θ〉yρ
holds for all ρ ≥ 0. The proof is complete. �

Lemma 8. Let {Ut; 0 ≤ t < e} be the solution to the stochastic differential equation (2.1)
and Xt = πUt. Fix a positive constant δ > 0, and define the stopping time τ = τ(δ) by

τ = inf{t > 0; r(Xt) < 2δ}.
Suppose that Assumptions 1, 2, 5 and 6 are satisfied. (When κ = 1, we additionally assume
Assumption 3.) Then, there exists a positive constant V = V(δ) < ∞ such that

Px

[
r(Xt) ≤ r(x) + σWt + Mt + Vt holds for all t < τ ∧ e

]
= 1

holds for any x ∈ M. Here, Mt and Wt are defined by (4.12) and (4.14).

Proof. Our strategy to prove the statement is similar to Lemma 3. First, we shall prove
that there exists V1 = V1(δ) < ∞ satisfying∫

|Z|y≤1

(
r ◦ ξZ(y) − r(y) − 〈∇r(y), Z〉y

)
νy(dZ) ≤ V1

for r(y) ≥ 2δ. For any y ∈ M\{o} with r(y) > δ, the following equation
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|Z|y≤1

(
r ◦ ξZ(y) − r(y) − 〈∇r(y),Z〉y

)
νy(dZ) =

∫
UyM

∫ 1

0
Q(ρ)h(ρ)dρdΘ(4.26)

=

∫
UyM

∫ (r(y)−δ)∧1

0
Q(ρ)h(ρ)dρdΘ

+

∫
UyM

∫ 1

(r(y)−δ)∧1
Q(ρ)h(ρ)dρdΘ

holds under Assumptions 1 and 2. By (4.22), we can easily verify that∫
UyM

∫ (r(y)−δ)∧1

0
Q(ρ)h(ρ)dρdΘ ≤

√|α|
2 tanh

(√|α|δ)
∫
|Z|y≤1
|Z|2yνy(dZ)(4.27)

=

√|α|
2 tanh

(√|α|δ)
∫
|z|≤1
|z|2ν(dz) < ∞

holds for any y ∈ M\{o} with r(y) > δ. On the other hand, if r(y) ≥ 2δ, then we see by (4.23)
that ∫

UyM

∫ 1

(r(y)−δ)∧1
Q(ρ)h(ρ)dρdΘ ≤

∫
UyM

∫ 1

δ∧1
(1 − 〈∇r(y),Θ〉y)ρh(ρ)dρdΘ(4.28)

=

∫
(δ∧1)≤|Z|y≤1

|Z|yνy(dZ)

=

∫
(δ∧1)≤|z|≤1

|z|ν(dz) < ∞

holds. Now, let us define V1 = V1(δ) by

V1 =

√|α|
2 tanh

(√|α|δ)
∫
|z|≤1
|z|2ν(dz) +

∫
(δ∧1)≤|z|≤1

|z|ν(dz).

Then, by (4.26), (4.27) and (4.28), we have∫
|Z|y≤1

(
r ◦ ξZ(y) − r(y) − 〈∇r(y), Z〉y

)
νy(dZ) ≤ V1

for all y ∈ M with r(y) ≥ 2δ. Thus, the following inequality∫ t

0

∫
|z|≤1

(
r ◦ ξUs−z(Xs−) − r(Xs−) − 〈U−1

s−∇r(Xs−), z〉
)
ν(dz)ds ≤ V1t

holds for all t < τ ∧ e.
If ν(dz) satisfies Assumption 3, from the triangle inequality, we have∫

|Z|>1

(
r ◦ ξZ(y) − r(y)

)
νy(dZ) ≤

∫
|z|>1
|z|ν(dz) < ∞.

On the other hand, by the comparison theorem on the Laplacian (cf. Sakai [14, Chapter
III, Lemma 2.9]), we see that

ΔMr(y) ≤
√|α|(m − 1)

tanh(
√|α|r(y))
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holds for all y ∈ M\{o}. Thus, we have

ΔMr(Xt) ≤
√|α|(m − 1)
tanh(2

√|α|δ)
for all t < τ ∧ e. Define V = V(δ) by

V = η V1 + κ

∫
|z|>1
|z|ν(dz) + σ

√|α|(m − 1)
2 tanh(2

√|α|δ) .

Then, we see that∫ t

0
Lr(Xs−)ds =

∫ t

0

(
ηΓ1(Xs−) + κΓ2(Xs−) + σΓ3(Xs−)

)
ds ≤ Vt

holds for t < τ ∧ e, where Γ1, Γ2 and Γ3 are defined by (4.11). The proof is complete. �

In order to prove Theorem 3, we need to study how the martingales {Mt; 0 ≤ t < e} and
{Wt; 0 ≤ t < e}will behave as t → e when the explosion time is finite. Such kind of problem
can be solved by the following lemma.

Lemma 9. Suppose that Assumptions 1 and 2 are satisfied. (If κ = 1, then we additionally
assume Assumption 3.) Then,

Px

[
lim sup

t↗e
|Mt| < ∞, e < ∞

]
= Px

[
e < ∞

]
holds for all x ∈ M.

Proof. Define the stopping time τn by τn = inf{t > 0; r(Xt) ≥ 2n}. From Doob’s
inequality, we see that

Ex

[
sup

2n≤t<2n+1
|Mt∧τn |2

]
≤ 4Ex

[
|M2n+1∧τn |2

]
≤ 2n+3λ

holds for all n ∈ N, where λ is defined by (4.13). From Chebyshev’s inequality, we have

Px

[
sup

2n≤t<2n+1
|Mt∧τn | ≥ 2n

]
≤ 2−2n

Ex

[
sup

2n≤t<2n+1
|Mt∧τn |2

]
for all n ∈ N. Thus, we can verify that

(4.29) Px

[
sup

2n≤t<2n+1
|Mt∧τn | ≥ 2n

]
≤ 2−n+3λ

holds for all n ∈ N. Applying the Borel-Cantelli lemma with (4.29) implies

Px

[
lim inf

n→∞ { sup
2n≤t<2n+1

|M2n∧τn | < 2n}
]
= 1.

So, we see that

Px

[ ∞⋃
N=1

∞⋂
n=N

{ sup
2n≤t<2n+1

|M2n∧τn | < 2n}, e < 2l
]
= Px[e < 2l]

holds for any l ∈ N. From the definition of τn, we have

Px[τn ≤ e] = 1
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and

Px[ lim
n→∞ τn = e] = 1.

Therefore, we get

Px[e < 2l] = Px

[
lim inf

n→∞ { sup
2n≤t<2n+1

|Mt∧τn | < 2n}, e < 2l
]

= Px

[ ∞⋃
N=1

∞⋂
n=N

{ sup
2n≤t<2n+1

|Mt∧τn | < 2n}, e < 2l
]

= Px

[ ∞⋃
N=l

∞⋂
n=N

{ sup
2n≤t<2n+1

|Mt∧τn | < 2n}, e < 2l
]

= Px

[ ∞⋃
N=l

∞⋂
n=N

{ sup
2n≤t<2n+1

|Mτn | < 2n}, e < 2l
]

= Px

[ ∞⋃
N=l

∞⋂
n=N

{|Mτn | < 2n}, e < 2l
]

= Px

[
lim inf

n→∞ {|Mτn | < 2n}, e < 2l
]
,

which implies that

Px

[
lim sup

t↗e
|Mt| < ∞, e < 2l

]
= Px

[
e < 2l

]
holds for all l ∈ N. The proof is complete. �

We shall omit the proof of Lemma 10, because it is the same discussion as the one of
Lemma 9.

Lemma 10. The following equality holds for any x ∈ M:

Px

[
lim sup

t↗e
|Wt| < ∞, e < ∞

]
= Px

[
e < ∞

]
.

Now, we prove Theorem 3.

Proof of Theorem 3. Under Assumptions 1 and 2, we see from Remark 2 and Theorem
1 that the M-valued process {Xt; 0 ≤ t < e} is Markovian and irreducible. It is clear that the
following equality holds for any x ∈ M:

Px[e < τ < ∞] + Px[τ < e = ∞] + Px[τ = e = ∞](4.30)

+ Px[e = τ < ∞] + Px[e < τ = ∞] + Px[τ < e < ∞] = 1,

where τ = τ(δ) is introduced in Lemma 8. We shall show that

Px[e < τ < ∞] = Px[e < τ = ∞] = Px[τ < e < ∞] = 0.

It is clear that Px[e = τ < ∞] = 0. Since P∂M [τ < ∞] = 0, we see that

(4.31) Px[e < τ < ∞] = 0

holds for all x ∈ M. By Lemma 8, it holds that



50 H. Kai

Px[e < τ = ∞](4.32)

= Px

[
r(Xt) ≤ r(x) + σWt + Mt + Vt holds for all t < e ∧ τ, e < τ = ∞

]
.

Let us show that the right hand side of (4.32) is 0. From the definition of e,

(4.33) Px

[
lim
t↗e

r(Xt) = ∞
]
= 1

holds for any x ∈ M. On the other hand, Lemmas 9 and 10 tell us that

(4.34) Px

[
lim sup

t↗e

(
r(x) + σWt + Mt + Vt

)
< ∞, e < ∞

]
= Px

[
e < ∞

]
holds for any x ∈ M. Hence, by (4.33) and (4.34), we obtain

(4.35) Px

[
r(Xt) ≤ r(x) + σWt + Mt + Vt holds for all t < e, e < ∞

]
= 0.

Applying (4.35) to (4.32) enables us to see that

(4.36) Px[e < τ = ∞] = 0

holds for all x ∈ M. Next, we shall show that

Px[τ < e < ∞] = 0

holds for all x ∈ M. From the Markov property, it holds that

Px[τ < e < ∞] = Ex

[
PXτ[e < ∞]1{τ<e<∞}

]
.

Hence, we see that

(4.37) Ex

[(
1 − PXτ[e < ∞]

)
1{τ<e<∞}

]
= 0

holds for any x ∈ M, and that (4.37) implies

(4.38) Px

[(
1 − PXτ[e < ∞]

)
1{τ<e<∞} = 0

]
= 1.

If there exists x ∈ M such that Px[τ < e < ∞] > 0, then, by (4.38), there exists x0 ∈ M such
that

Px0 [e < ∞] = 1.

From Lemma 6,

(4.39) Px[e < ∞] = 1

holds for all x ∈ M. Therefore, (4.30), (4.31), (4.36) and (4.39) enable us to see that

Px[τ < e < ∞] = 1

holds for all x ∈ M. Thus, we can verify that

(4.40) Px[τ < ∞] = 1

holds for any x ∈ M. However, since (4.40) holds for all x ∈ M, we see that the geodesic
ball B(o, 2δ) is recurrent on the M-valued process {Xt; 0 ≤ t < e}. Moreover, since (4.39)
holds for all x ∈ M, we see by Remark 4 that the M-valued process {Xt; 0 ≤ t < e} is
transient. These conclusions contradict our claim in Theorem 1 that the M-valued process
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{Xt; 0 ≤ t < e} is irreducible. So, it follows that

(4.41) Px[τ < e < ∞] = 0

for all x ∈ M. Thus, from (4.30), (4.31), (4.36), (4.39) and (4.41), we conclude that

Px[e = ∞] = 1.

�

Finally, we shall discuss the relationship between Theorem 3 and Masamune-Uemura-
Wang [15] in the following remark.

Remark 6. If there exist suitable conditions on the Lévy measure ν(dz) and the manifold
M such that M-valued Markov process {Xt, 0 ≤ t < e} is symmetric with respect to the
Riemannian volume measure Vol(dy), then the condition

(4.42) lim inf
r→∞

logVol(B(o, r))
rlog r

< ∞

implies that {Xt; 0 ≤ t < e} is conservative. See [15, Theorem 1.1]. In fact, Assumption 5
implies (4.42). We shall prove this fact. The volume of the m − 1 dimensional unit sphere
on Euclidean space is denoted by Vol(Sm−1(1)). If the condition of Assumption 5 holds, then
from the Bishop-Gromov inequality (cf. Sakai [14, Chapter IV, Corollary 3.2, and Chapter
IV, Theorem 3.3]), the function

[0,∞) � r → Vol(B(o, r))
u(r)

is monotone decreasing, where u(r) is defined by

u(r) = Vol(Sm−1(1))
∫ r

0

(sinh(
√|α|t)√|α|

)m−1
dt.

Since sinh(
√|α|t) ≤ e

√|α|t holds for any t ≥ 0, we have

u(r) ≤ Vol(Sm−1(1))
e(m−1)

√|α|r

(m − 1)|α|m/2 .

Now, let us define

I(o, α) =
Vol(B(o, 1))

u(1)(m − 1)|α|m/2 Vol(Sm−1(1)),

then we obtain

Vol(B(o, r)) ≤ I(o, α)e(m−1)
√|α|r,

which implies

log Vol(B(o, r))
rlog r

≤ log I(o, α) + (m − 1)
√|α|r

rlog r
−−−−→
r→∞ 0.

Therefore, the symmetric Markov process {Xt; 0 ≤ t < e} is conservative. From this
discussion, Masamune-Uemura-Wang’s work [15] could be extended to the non-symmetric
case if it is confirmed that the sectional curvature is pinched by negative constants.



52 H. Kai

Acknowledgements. I would like to thank Professor Atsushi Takeuchi of Tokyo Woman’s
Christian University for his helpful discussion and encouragement. Professor Masamichi
Yoshida of Osaka Metropolitan University gave me his support and important remarks on
my research. I would also like to express my sincere gratitude to him. Professor Kazuhiro
Kuwae of Fukuoka University gave very useful advice on this paper and introduced the
relevant topics in terms of Dirichlet forms. I would like to express my gratitude to him as
well.

References

[1] D. Applebaum: Aspects of recurrence and transience for Lévy processes in transformation groups and
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