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Abstract
We show that the Liouville heat kernel decays fast at large distances. In particular, the Liou-

ville semigroup Tt is C0-Feller, where C0 is the space of real-valued continuous functions on C
vanishing at infinity. This is a problem mentioned in the paper [2].
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1. Introduction

1. Introduction
Liouville quantum gravity (LQG) was introduced by Polyakov in a seminal paper [19]

and can be considered as the canonical 2-dimensional random Riemannian manifold. The
Riemannian volume form can be formally written in the form

eγX(z)dz

where X is a massive Gaussian free field (GFF) on C; γ ∈ (0, 2) is a parameter; and dz is the
Lebesgue measure on C.

Of course the above form is not rigorous as the GFF is not a random function (but a
distribution in the sense of Schwartz). Nonetheless, one can make sense of the volume form
by the theory of Gaussian multiplicative chaos [15] or some other regularization procedure
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[6]. The rigorous construction of the random volume form is then referred as the Liouville
measure Mγ.

The Liouville Brownian motion (LBM) is the canonical diffusion process for Liouville
quantum gravity, which is constructed in [9, 3] as a time-changed Brownian motion of 2-
dimension according to the Liouville measure (independent of the Brownian motion). More
precisely, for the Liouville measure Mγ one can construct the associated positive continuous
additive functional (PCAF) F of a Brownian motion W which can be formally written as

Ft =

∫ t

0
eγX(Ws) ds.

Then the LBM {Yt}t≥0 as a stochastic process is defined by Yt := WF−1
t

, where F−1 is the
inverse of F (the inverse exists). For the rigorous discussion of LBM one can refer to [9, 3, 7]
or see Section 2 of this paper.

The heat kernel of Liouville Brownian motion (LHK) is constructed in [8]. Further prop-
erties of LHK are studied in [2, 17, 5]. However none of them indicates large distance
behavior of LHK.

In [9] it is shown that the semigroup Tt of Liouville Brownian motion is weak Feller,
meaning that the semigroup operator Tt maps bounded continuous functions to bounded
continuous functions. In [8] they show Tt is strong Feller, meaning that Tt maps bounded
Borel measurable functions to continuous functions. But it is not clear whether it is C0-
Feller. That is, we don’t know Tt(C0) ⊆ C0, where C0 is the space of continuous functions
vanishing at infinity (it is also mentioned in [2, Remark 2.3]). This is one of the motivations
for this paper.

In this paper we show that the LHK decays fast at large distances (Theorem 3.9), which
immediately implies C0-Feller property. We also attach in Appendix a simple proof of Feller
property without using estimates of LHK.

2. Background and preliminaries

2. Background and preliminaries2.1. The massive Gaussian free field and the Liouville measure.
2.1. The massive Gaussian free field and the Liouville measure. Given a real number

m > 0, the whole-plane massive Gaussian free field (MGFF) (see [21] for more information
about Gaussian free field) X is a centered Gaussian random distribution (in the sense of
Schwartz) with covariance function given by the Green function of the operator m2 −Δ, that
is,

E[X(x)X(y)] = Gm(x, y) =
∫ ∞

0
e−(m2/2)u−|x−y|2/(2u) du

2u
for all x, y ∈ C.

Note that Gm(x, y) can be written as

Gm(x, y) =
∫ +∞

1

km(u(x − y))
u

du

where km(z) = 1
2

∫ ∞
0 e−

m2
2s |z|2− s

2 ds is a continuous covariance kernel (see [1] for details about
this expression). This expression helps us to decompose X into a sum of good Gaussian
fields.

We then introduce the n-regularized field Xn. For this purpose, let {cn}n∈N be a strictly
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increasing sequence of real numbers starting from c0 = 1 and satisfying limn→∞ cn = ∞. Let
(ηn)n≥1 be a family of independent continuous Gaussian fields on C with covariance

E[ηn(x)ηn(y)] =
∫ cn

cn−1

km(u(x − y))
u

du for all x, y ∈ C.

Note that for each n we can choose ηn to be continuous in space by applying Kolmogorov
continuity theorem ([16, Theorem 2.23]). Define Xn :=

∑n
k=1 ηk, and the associated random

Radon measure Mn = Mγ,n on C by

Mn,γ(dz) = exp
(
γXn(z) − γ

2

2
E
[
Xn(z)2

])
dz, γ ∈ [0,∞)

where dz is the Lebesgue measure on C. By Kahane’s theory of multiplicative chaos [15]
almost surely Mn converges vaguely toward a limit Radon measure M, which is called the
Liouville measure. The law of the limit does not depend on the choice of cn and the limit
measure is nontrivial if and only if γ ∈ [0, 2).

Recall (see [15, 20]) that the Liouville measure has an important property that for any
bounded Borel set A and p ∈ (−∞, 4/γ2) we have E[M(A)p] < ∞ and that

sup
r∈(0,1]

r−ξM(p)E
[
M(rA)p] ≤ Cp

for some constant Cp only depending on p, diamA(:= supx,y∈A |x − y|), γ and m, where

ξM(q) = − γ2

2 q2 + (2 + γ2

2 )q is the power law spectrum of M (see [1]).

2.2. Liouville Brownian motion.
2.2. Liouville Brownian motion. The Liouville Brownian motion is constructed in [9, 3]

as the canonical diffusion process under the geometry induced by the measure M. More
precisely, Let (Ω,,P) be the probability space that (ηn)n≥1 live on. Let Ω′ := C([0,∞),C)
and W = (Wt)t≥0 be the coordinate procress on Ω′. Set  = σ(Ws, s < ∞) and t =

σ(Ws, s ≤ t). Let {Px}x∈C be the family of probability measures on (Ω′, ) such that W
under Px is a Brownian motion on C starting from x ∈ C.

For each n ∈ N define Fn(t) : Ω ×Ω′ → [0,∞) to be

Fn(t) :=
∫ t

0
exp

(
γXn(Ws) − γ

2

2
E
[
Xn(Ws)2

])
ds, t ≥ 0.

Note that Fn(t) is the positive continuous additive functional ([4], [7]) of W with Revuz
measure Mγ,n. In [9, Theorem 2.7] (see also [3, Theorem 1.2]) they show that P-a.s. there
exists a unique positive continuous additive functional (PCAF) F = (F(t))t≥0 of W such that
the Revuz measure of F is M and

lim
n→∞ Px[sup

t≤T
|Fn(t) − F(t)| > ε] = 0 for all ε > 0, T > 0, x ∈ C.

And then the Liouville Brownian motion is defined to be

Yt = WF̄(t)

where F̄(t) = F−1(t) = inf{s ≥ 0 : F(s) > t}. Note that it is proved in [9] (see also [3,
Theorem 1.2]) that P-a.s. for any x ∈ C, Px-a.s., F is continuous, strictly increasing and
diverging to∞.
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2.3. Notation.
2.3. Notation. Throughout this paper, we will fix γ ∈ (0, 2). Define two constants in

terms of γ which we will frequently use: α1 =
1
2 (2+ γ)2, α2 =

1
2 (2− γ)2. Let X be a massive

GFF on C and M = Mγ be the Liouville measure constructed from X. We write

ξ̃(q) = −ξM(−q) = (2 +
γ2

2
)q +

γ2

2
q2

for q > 0. Let {Yt}t≥0 be a LBM and pt(x, y) be its heat kernel w.r.t. the Liouville measure
M.

We denote a ∨ b = max{a, b} and a ∧ b = min{a, b}. Let Bx,r = {z ∈ C : |z − x| ≤ r}, in
particular we write BR = {z ∈ C : |z| ≤ R}. Let τx,r = inf{t ≥ 0 : Yt � Bx,r} be the first exit
time of LBM of the ball Bx,r.

The symbols c,C stand for positive constants whose value may change from line to line,
but they won’t depend on any parameters in this article. By adding subscripts X, γ, α, ...
to the symbols c,C we indicate their dependence on those subscripts, while some other
symbols C̄R, ĈR,C∗, ... are exclusively used in some propositions or theorems.

We use � to indicate the inequality holds up to an absolute constant C > 0, i.e. x � y if
and only if x ≤ Cy for some C > 0. By adding subscripts X, γ, α, ... to the symbols � we
indicate dependence of the constant on those subscripts.

We use Px, Ex to take the probability (expectation) w.r.t. the Brownian motion starting at
x ∈ C, and use P,E to take the probabitlity (expectation) w.r.t. the massive GFF.

3. The estimates

3. The estimates
In this section we will establish some estimates of the Liouville heat kernel (LHK).

3.1. Liouville measure at large distances.
3.1. Liouville measure at large distances. We first do some preparation for estimates of

LHK. The following lemma will be used in Proposition 3.2, Proposition 3.3, and Lemma 3.5.

Lemma 3.1. Let {ZR}R≥1 be a family of nonnegative random variables that are almost
surely nondecreasing in R such that

E[Zp
R] ≤ CRm for all R ≥ 1.

for some positive constants p,m,C > 0. Then for any θ > m/p, almost surely there is a
random constant Cθ > 0 such that ZR ≤ CθRθ for all R ≥ 1.

Proof. Let Rn = 2n and for any θ > 0 define An = {ZRn ≤ Rθ
n}. Then

P[Ac
n] ≤ R−θp

n EZp
Rn
≤ CRm−θp

n for all n ≥ 0.

If θ > m/p then by Borel-Cantelli’s lemma P[Ac
n i.o.] = 0 and thus almost surely there is a

random constant Cθ > 0 such that ZRn ≤ CθRθ
n for any n ≥ 0. By monotonicity we have

ZR ≤ ZRn+1 ≤ CθRθ
n+1 = Cθ2θRθ

n ≤ Cθ2θRθ

provided Rn ≤ R ≤ Rn+1 for n ≥ 0. Reassigning Cθ2θ as Cθ finishes the proof. �

The following proposition gives the Liouville volume growth rate of Euclidian balls
which will be used in Proposition 3.8.

Proposition 3.2. For any ε > 0, P-a.s. the Liouville measure satisfies
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M(BR) �X,γ,ε R2+ε for all R ≥ 1.

Proof. Notice that for any n-regularized Liouville measure Mn and bounded Borel set A
we have

E[Mn(A)] =
∫

A
E exp

(
γXn(z) − γ

2

2
E
[
Xn(z)2

])
dz =

∫
A

1 dz.

Hence letting n → ∞, by vague convergence (in fact we have Mn(A) → M(A)) and Fatou’s
Lemma we have

E[M(BR)] ≤ E[ lim
n→∞

Mn(BR)] ≤ lim
n→∞
E[Mn(BR)] = πR2.

Then apply Lemma 3.1 to get the bound. �

Next we give the growth rate of the coefficients of Hölder continuity of the Liouville
measure, which will be also used in Proposition 3.8.

Proposition 3.3. For any γ ∈ (0, 2) and α ∈ (0, α2), set m0(γ, α) = γ2

2 +
4αγ2

(α1−α)(α2−α) . Then
there exists a random constant C̄R depending on X, γ, α,R such that P-a.s.

sup
|x|≤R

M(Bx,r) ≤ C̄Rrα for all r ∈ (0, 1]

and for any ε > 0 and any R ≥ 1 we have

C̄R �X,γ,α,ε Rm0+ε.

Proof. We prove it in a similar manner as in [9, Theorem 2.2], but give the coefficient
estimates depending on R. The main idea is to improve Borel-Cantelli’s lemma and use
stationarity of the Liouville measure.

For n ∈ N we partition [−8, 8]2 into 22n dyadic squares {I j
n : j = 1, 2, ..., 22n} of equal size.

Fix α > 0, let An be the event that M(I j
n) ≤ 2−αn for all 1 ≤ j ≤ 22n. Then for p ∈ (0, 4/γ2)

we have using the stationarity of GFF and the power law of the Liouville measure

P[Ac
n] ≤ 2pαnE

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

1≤ j≤22n

M
(
I j
n

)p

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≤ Cp2−nK(α,p)

where K(α, p) := ξM(p) − αp − 2. Set En = ∩∞k=nAk and Ẽ0 = E0, Ẽn = En \ En−1 for
n ∈ N∗, then P[Ẽn] ≤ P[Ac

n−1] for n ∈ N∗, and Ẽn are disjoint and P[∪∞n=0Ẽn] = P[∪∞n=0En] =
1 − P[Ac

n i.o.] = 1 by Borel-Cantelli’s lemma.
Define

C̄0 :=

⎧⎪⎪⎨⎪⎪⎩
4 on Ẽ0

4 ∨ sup|x|≤1,r∈(2−n,2)
M(Bx,r)

rα on Ẽn for n ∈ N∗.
Note that C̄0 is almost surely well-defined because Ẽn are disjoint and P[∪∞n=0Ẽn] = 1. Also
C̄0 is -measurable as sup|x|≤1,r∈(2−n,2)

M(Bx,r)
rα = supx∈Q2,|x|≤1,r∈(2−n,2)

M(Bx,r)
rα . This is because for

x � Q2 with |x| ≤ 1 and r ∈ (2−n, 2) we can find xi ∈ Q2 with |xi| ≤ 1 and ri ∈ (2−n, 2) such
that xi → x, ri ↓ r, Bx,r ⊆ Bxi,ri and hence M(Bx,r)

rα ≤ lim supi→∞
M(Bxi ,ri )

rαi
.
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We claim P-a.s. M(Bx,r) ≤ C̄0rα for any |x| ≤ 1 and r ∈ (0, 1]. Indeed, on Ẽn, when
r ∈ (2−n, 1] by the definition of C̄0 we have M(Bx,r) ≤ C̄0rα; when r ∈ (2−k−1, 2−k] for k ≥ n,
any ball Bx,r is contained in at most 4 dyadic squares I j

k+1 and each square I j
k+1 (of size 23−k)

has Liouville measure no greater than 2−(k+1)α, hence M(Bx,r) ≤ 4 · 2−α(k+1) ≤ 4rα.
Moreover, for θ > 0 by Hölder inequality for q−1 + q′−1 = 1

EC̄θ
0 ≤ 4θ +

∞∑
n=1

2nαθE[M(B3)θ; Ẽn]

≤ 4θ +
∞∑

n=1

2nαθE[M(B3)θq
′
]1/q′P[Ẽn]1/q

≤ 4θ +
∞∑

n=1

2nαθE[M(B3)θq
′
]1/q′(Cp2−(n−1)K(α,p))1/q

= 4θ +C1/q
p E[M(B3)θq

′
]1/q′

∞∑
n=1

2−n(K(α,p)/q−αθ)+K(α,p)/q.

The above is finite if θq′ < 4/γ2 and K(α, p)/q − αθ > 0. So θ < K(α,p)
qα ∧ 4

γ2q′ . Take

p = 2+γ2/2−α
γ2 (< 4

γ2 ) (whence K(α, p) = (α1−α)(α2−α)
2γ2 ) and q = (α1−α)(α2−α)

8α + 1 to maximize the

right hand side to get EC̄θ
0 < ∞ whenever θ < (α1−α)(α2−α)

2γ2((α1−α)(α2−α)/8+α) .
Now do the same partition and reasoning for each region zk + [−8, 8]2 where zk ∈ Z2

and we get a sequence of C̄zk (defined similar to C̄0) with the same distribution as C̄0. Set
C̄R = maxzk∈Z2∩BR+1 C̄zk . Since any ball Bx,r with |x| ≤ R and r ∈ (0, 1] is contained in one of
the regions {zk + [−8, 8]2}zk∈Z2∩BR+1 (one can find zk ∈ Z2 with |x− zk| ≤ 1 for each x ∈ C with
|x| ≤ R), thus sup|x|≤R M(Bx,r) ≤ C̄Rrα for any r ∈ (0, 1] . Moreover, using union bound and
the stationarity of GFF, we have for some absolute constant C > 0 that

EC̄θ
R ≤

∑
zk∈Z2∩BR+1

EC̄θ
zk
≤ CR2EC̄θ

0.

By Lemma 3.1, we can show that C̄R �X,γ,α,m1 Rm1 for R ≥ 1 when m1 > 2/θ. Combining
with the bound for θ, we get m1 > m0(γ, α) := γ2

2 +
4αγ2

(α1−α)(α2−α) . �

It is natural to ask whether we can get similar estimates for the lower bound coefficients.
Here we give the estimates but with some cost on the range of lower Hölder exponent α. We
won’t use the following proposition in the rest of this paper.

Proposition 3.4. For any γ ∈ (0, 2) and α > γ2/2+2
√

2γ+2 (> α1), there is m00(γ, α) > 0
such that, there exists a random constant c̄R depending on X, γ, α,R such that P-a.s.

inf
|x|≤R

M(Bx,r) ≥ c̄Rrα for all r ∈ (0, 1]

and for any ε > 0 and any R ≥ 1 we have

c̄R �X,γ,α,ε R−m00−ε.

Proof. For each n ∈ N we partition [−1, 1]2 into 22n dyadic squares {I j
n : j = 1, 2, ..., 22n}

of equal size and define good events
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An = { inf
1≤ j≤22n

M(I j
n) ≥ 2−αn}

and set En = ∩∞k=nAk and Ẽ0 = E0, Ẽn = En \ En−1 for n ∈ N∗. Note that Ẽn ⊆ Ac
n−1. Then

for p < 0 by using Markov inequality, the stationarity of GFF and the power law of the
Liouville measure we have

P[Ẽn+1] ≤ P[Ac
n] ≤ 2pαnE

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

1≤ j≤22n

M
(
I j
n

)p

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≤ Cp2−nK(α,p)

where K(α, p) := ξM(p) − αp − 2. When K(α, p) > 0 by Borel-Cantelli’s lemma we have

P[∪∞n=0Ẽn] = P[∪∞n=0En] = 1 − P[Ac
n i.o.] = 1.

Define

c̄ :=

⎧⎪⎪⎨⎪⎪⎩
8−α on Ẽ0

8−α ∧ inf |x|≤1,r∈(2−n,1]
M(Bx,r)

rα on Ẽn for n ∈ N∗.
Note that c̄ is almost surely well-defined because Ẽn are disjoint and P[∪∞n=0Ẽn] = 1. The
-measurability of c̄ can be shown in a similar way to the proof of the -measurability of
C̄0 in Proposition 3.3. We claim P-a.s. M(Bx,r) ≥ c̄rα for any |x| ≤ 1 and r ∈ (0, 1]. Indeed,
on Ẽn, when r ∈ (2−n, 1] by the definition of c̄ we have M(Bx,r) ≥ c̄rα; when r ∈ (2−k−1, 2−k]
for k ≥ n, any ball Bx,r contains at least 1 dyadic square I j

k+3 and each square I j
k+3 (of size

2−2−k) has Liouville measure no less than 2−(k+3)α, hence M(Bx,r) ≥ 2−α(k+3) ≥ 8−αrα.
Moreover, for θ > 0 by Hölder inequality for q−1 + q′−1 = 1

E(c̄)−θ ≤ 8αθ +
∞∑

n=1

E[ sup
|x|≤1,r∈(2−n,1]

rαθM(Bx,r)−θ; Ẽn]

≤ 8αθ +
∞∑

n=1

E[ sup
1≤ j≤22n+4

M(I j
n+2)−θ; Ẽn]

≤ 8αθ +
∞∑

n=1

22n+4E[M(I1
n+2)−θq

′
]1/q′P[Ẽn]1/q

≤ 8αθ +Cγ,p,q,θ

∞∑
n=1

22n · 2−nξ(−θq′)/q′ · 2−(n−1)K(α,p)/q

The above is finite if

2 − K(α, p)/q − ξ(−θq′)/q′ < 0.

Solving the above inequality, we have

θ < −ξ
−1(q′(2 − K(α, p)/q))

q′

where ξ−1(x) = 1
2 +

2
γ2 − 1

γ2

√
(2 + γ2/2)2 − 2γ2x by the quadratic formula. Since θ > 0 we

need 2 − K(α, p)/q < 0. Set p = p(α) = 2+γ2/2−α
γ2 (< 0), and noting that q can be chosen

arbitrarily close to 1, we have α > 2 + γ2

2 + 2
√

2γ.
Now do the same partition and reasoning for each region zk + [−1, 1]2 where zk ∈ Z2
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and we get a sequence of c̄zk (defined similar to c̄) with the same distribution as c̄. Set
c̄R = minzk∈Z2∩BR+1 c̄zk . Since for any ball Bx,r with |x| ≤ R and r ∈ (0, 1], one can find
zk ∈ Z2∩BR+1 with |x− zk| ≤ 1, we have inf |x|≤R M(Bx,r) ≥ c̄Rrα for any r ∈ (0, 1]. Moreover,
using union bound and the stationarity of GFF, we have for some absolute constant C > 0
that

Ec̄−θR ≤
∑

zk∈Z2∩BR+1

Ec̄−θzk
≤ CR2Ec̄−θ.

By Lemma 3.1, we can show that c̄R �X,γ,α,m R−m for R ≥ 1 when m > 2/θ. Combining with
the bound for θ we get

m > 2/θ > 2q′γ2/

(√
(2 + γ2/2)2 − 4q′γ2 +

q′

q
(α2 − α)(α1 − α) − γ

2

2
− 2

)
=: m00(γ, α)

where we have chosen some q = q(α) such that 2 − K(α, p(α))/q < 0. �

3.2. Exit time estimates.
3.2. Exit time estimates.

Lemma 3.5. For any γ ∈ (0, 2), q > 0, p > 1, p′ := p/(p − 1), κ > p(2 + ξ̃(q)), and any
ε > 0, there exists a random constant ĈR depending on X, γ, q, κ,R such that P-a.s.

sup
|x|≤R

Ex[τ−q
x,r] ≤ ĈRr−κ for all r ∈ (0, 1],

and for any R ≥ 1,

ĈR �X,γ,q,p,κ,ε R2p′+ε.

Proof. We follow the proof in [2, Proposition 3.2], but give the coefficient estimates
depending on R. The main idea is the same as Proposition 3.3, i.e., to improve Borel-
Cantelli’s lemma and use the stationarity of the Liouville measure.

Let μz
y,r be the harmonic measure of the circle ∂By,r viewed at z ∈ C. In particular when

z = y, μz
y,r is the uniform distribution on ∂By,r and we set μy,r = μ

y
y,r. When |z − y| ≤ r/2

we have μz
y,r ≤ Cμy,r for some absolute constant C > 0. For n ∈ N, set rn := 2−n and

Ξn := {(i2−n, j2−n) : i, j ∈ [−2n, 2n] ∩ Z}. In the proof of [2, Proposition 3.2], they obtained
that

EEμx,rn

[
τ
−q
x,2rn

]
≤ Cγ,qr−ξ̃(q).

Define the event

An := {max
x∈Ξn+1

Eμx,rn
[τ−q

x,2rn
] ≤ r−κn }, En := ∩∞k=nAk

and Ẽ0 := E0, Ẽn := En \ En−1 for n ∈ N∗. For n ∈ N we have using the stationarity of GFF
and the power law of the Liouville measure that

P[Ẽn+1] ≤ P[Ac
n] ≤ rκn

∑
x∈Ξn+1

EEμx,rn
[τ−q

x,2rn
]

≤ rκn · (2n+1 + 1)2Cγ,qr−ξ̃(q)
n ≤ 9Cγ,qrκ−ξ̃(q)−2

n .

By Borel-Cantelli’s lemma P[∪∞n=0Ẽn] = P[∪∞n=0En] = 1 − P[Ac
n i.o.] = 1.

Now define
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Ĉ0 :=

⎧⎪⎪⎨⎪⎪⎩
C8κ on Ẽ0,

C
(
8κ ∨maxx∈Ξn+3 Eμx,rn+2

[τ−q
x,rn+1 ]

)
on Ẽn for n ∈ N∗.

Note that Ĉ0 is well-defined because Ẽn are disjoint and P[∪∞n=0Ẽn] = 1. We claim

Ex[τ−q
x,r] ≤ Ĉ0r−κ

for all x ∈ B1 and r ∈ (0, 1]. Indeed, fix n0 ∈ N. When r ∈ (2−n+2, 1] for n ≥ n0 + 3, we
have for any x ∈ B1, there is some xi ∈ Ξn+1 such that |x − xi| ≤ rn+1. By the strong Markov
property

Exτ
−q
x,r ≤ Eμx

xi ,rn
[τ−q

x,r] ≤ Eμx
xi ,rn

[τ−q
xi,2rn

] ≤ CEμxi ,rn
[τ−q

xi,2rn
],

and this is at most Ĉ0 ≤ Ĉ0r−κ on Ẽn−2. Thus the claim holds on Ẽn0 for r ∈ (2−n0 , 1].
Moreover on Ẽn0 ⊆ En, if r ∈ (2−n+2, 2−n+3] we have

Exτ
−q
x,r ≤ CEμxi ,rn

[τ−q
xi,2rn

] ≤ Cr−κn ≤ C8κr−κ ≤ Ĉ0r−κ.

Hence the claim is true.
Next we examine the moment of Ĉ0. Let p > 1 and p′ = p

p−1 . Then

EĈ1/p′
0 ≤ (C8κ)1/p′ +

∞∑
n=1

E

⎡⎢⎢⎢⎢⎢⎣
(
C sup

x∈Ξn+3

Eμx,rn+2
[τ−q

x,rn+1 ]
)1/p′

; Ẽn

⎤⎥⎥⎥⎥⎥⎦

≤ (C8κ)1/p′ +

∞∑
n=1

[
CE sup

x∈Ξn+3

Eμx,rn+2
[τ−q

x,rn+1 ]
]1/p′

P[Ẽn]1/p

≤ (C8κ)1/p′ +

∞∑
n=1

⎡⎢⎢⎢⎢⎢⎢⎣CE
∑

x∈Ξn+3

Eμx,rn+2
[τ−q

x,rn+1 ]

⎤⎥⎥⎥⎥⎥⎥⎦
1/p′

P[Ẽn]1/p.

Using the stationarity of GFF and the bounds for EEμx,rn+2
[τ−q

x,rn+1 ] and P[Ẽn], we get

EĈ1/p′
0 ≤ (C8κ)1/p′ +

∞∑
n=1

(C22(n+5))1/p′
[
EEμx,rn+2

[τ−q
x,rn+1 ]

]1/p′
P[Ẽn]1/p

≤ (C8κ)1/p′ +

∞∑
n=1

(C22(n+5))1/p′(Cγ,qr−ξ̃(q)
n+2 )1/p′(9Cγ,qrκ−ξ̃(q)−2

n )1/p

= (C8κ)1/p′ +Cγ,q,p,κ

∞∑
n=1

r
1
p (κ−2)− 2

p′ −ξ̃(q)
n .

When 1
p (κ − 2) − 2

p′ − ξ̃(q) > 0, i.e. κ > p(2 + ξ̃(q)), we have EĈ1/p′
0 < ∞.

Now do the same partition and reasoning for each region zk + [−1, 1]2 where zk ∈ Z2 and
we get a sequence of Ĉzk (defined similar to Ĉ0) with the same distribution as Ĉ0. For R ≥ 1
set ĈR := maxzk∈Z2∩BR+1 Ĉzk . Then

sup
|x|≤R

Ex[τ−q
x,r] ≤ ĈRr−κ for all r ∈ (0, 1].

Moreover
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E[Ĉ1/p′
R ] ≤

∑
zk∈Z2∩BR+1

E[Ĉ1/p′
zk ] ≤ CR2E[Ĉ1/p′

0 ].

By Lemma 3.1, we can show that for any ε > 0 we have P-a.s. ĈR �X,γ,q,p,κ,ε R2p′+ε for
R ≥ 1. �

Corollary 3.6. Let q, p, p′, κ and ĈR be as in Lemma 3.5. For any β > κ/q and ε ∈ (0, 1),
with δR := (ε/ĈR)1/q, P-a.s.

sup
r∈(0,1]

sup
|x|≤R

Px[τx,r ≤ δRrβ] ≤ ε.

Proof. By Lemma 3.5 and Markov inequality we have for any x ∈ BR and r ∈ (0, 1]

Px

[
τx,r ≤ δRrβ

]
= Px

[
τ
−q
x,r ≥

(
δRrβ

)−q
]
≤ ĈRδ

q
Rrβq−κ ≤ ε. �

Now we come to the main result of this subsection, which gives the exit time estimate of
large balls.

Proposition 3.7. Let q, p, p′, κ and ĈR be as in Lemma 3.5. Then P-a.s. for any ε ∈
(0, 1/4] and any β > κ/q the following holds. Let R ≥ 1 and δ2R := (ε/Ĉ2R)1/q. Then for
some cβ,ε > 0 we have for any t ∈ (0,Rδ2R/(2β)) and r ∈ [2βt/δ2R,R],

sup
|x|≤R

Px[τx,r ≤ t] ≤ 1
1 − 2ε

exp

⎛⎜⎜⎜⎜⎜⎜⎝−cβ,ε

(
δ2Rrβ

t

) 1
β−1

⎞⎟⎟⎟⎟⎟⎟⎠ .
Proof. For any x ∈ BR and r ∈ (0,R] set r̃ = r/K ≤ 1 for some K > 2 to be determined.

Let θ be the shift operator for {Yt}t≥0. Define

τ0 := 0, r0 := 0, τn := τYτn−1 ,r̃ ◦ θτn−1 + τn−1, rn := |Yτn − Y0|, n ≥ 1

and N := min{n : rn > r/2}. Note that {τn}n≥0 are stopping times w.r.t. the right-continuous
filtration generated by Y , because for n ≥ 1

τn = τn−1 + inf{s ≥ 0 : |Ys+τn−1 − Yτn−1 | > r̃} = inf{s ≥ τn−1 : |Ys − Yτn−1 | > r̃}
and hence by the continuity of sample paths of Y (and induction on that τn−1 is a stopping
time)

{τn < t} = ∪s∈[0,t)∩Q{τn−1 ≤ s, |Ys − Yτn−1 | > r̃} ∈ σ{Ys; s ≤ t}.
By the strong Markov property we have

Px [τn≤t,N=n]≤Px

[
max

0≤i≤n−1
|Yτi |<2R, #{i∈{1, ..., n}:τi−τi−1≤δ2Rr̃β}≥n−t/(δ2Rr̃β)

]

≤2nεn−t/(δ2Rr̃β).

Note that N ≥ K/2 since the path of Y needs to exit at least �K/2� balls of radius r̃ before
achieving rn > r/2, and that τN ≤ τY0,r by r̃ < r/2. So by the estimates above we get

Px[τx,r ≤ t] ≤
∞∑

n=�K/2�
Px [τn ≤ t,N = n]
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≤
∞∑

n=�K/2�
2nεn−t/(δ2Rr̃β)

=
ε−t/(δ2Rr̃β)(2ε)�K/2�

1 − 2ε

≤ 1
1 − 2ε

exp
(

K
2

log(2ε) − Kβt
δ2Rrβ

log ε
)
.

Set K = ( δ2Rrβ

2βt )
1
β−1 . The assertion is obvious if K ≤ 2, by choosing cβ,ε ≤ 1

2 (2β)
−1
β−1 log 1

1−2ε .
When K > 2 and r ≥ 2βt/δ2R we have K ≥ r so that r̃ ≤ 1, then we get

Px[τx,r ≤ t] ≤ 1
1 − 2ε

exp
(
−cβ,ε(δ2Rrβ/t)

1
β−1

)

for cβ,ε = 1
2 (β − 2)(2β)−

β
β−1 log 1

ε
> 0. �

3.3. Liouville heat kernel upper bounds.
3.3. Liouville heat kernel upper bounds. We first establish the on-diagonal bound of

the Liouville heat kernel at large distances.

Proposition 3.8. For any γ ∈ (0, 2) and α ∈ (0, α2) we have P-a.s. for any R > 2 and
t ∈ (0, 1/2],

sup
|x|,|y|<R

pR
t (x, y) �X,γ,α (log R)t−1 log t−1

where pR
t is the Liouville heat kernel killed upon exiting BR, and

sup
|x|,|y|<R

pt(x, y) �X,γ,α,q,κ (log R)t−1 log t−1

where q, κ are from Lemma 3.5 and q > 2.

Proof. To get the bound for pR
t (x, y), we first show a Faber-Krahn-type inequality (an

estimate for the smallest eigenvalue of the generator). For a fixed non-empty bounded open
set U ⊆ BR, let λ1(U) be the smallest eigenvalue of the generator −U of the LBM killed
upon leaving U and GU f (x) = (−U)−1 f (x) =

∫
gU(x, y) f (y)M(dy) where gU is the Green

kernel of the standard Brownian motion killed upon leaving U. For gU we have (see e.g.
[18, Lemma 3.37]) for any x, y ∈ U ⊆ BR

gU(x, y) ≤ gB2R(x, y)

=
1
π

log
1
|x − y| +

1
π
Ex

[
log |WT2R − y|

]

≤ 1
π

log
1
|x − y| +

1
π

log(3R)

where T2R = inf{t ≥ 0 : Wt � B2R}. We have for β > 0

‖GU1‖∞ = sup
x∈U

∫
gU(x, y)M(dy)

� sup
x∈U

∫
U

(
log(3R) + log

1
|x − y|

)
M(dy)
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� M(U)
[
log(3R) + sup

x∈U
β−1

∫
U

log
1

|x − y|β
M(dy)
M(U)

]

� M(U)
[
log(3R) + sup

x∈U
β−1 log

∫
U

1
|x − y|β

M(dy)
M(U)

]
,

where the last inequality follows from Jensen’s inequality. By Proposition 3.3, one can get
for any x ∈ BR ∫

U

1
|x − y|β

M(dy)
M(U)

≤ 1 +
∞∑

n=1

∫
U∩{2−n<|x−y|≤2−n+1}

1
|x − y|β

M(dy)
M(U)

≤ 1 +
∞∑

n=1

2βnM({|x − y| ≤ 2−n+1})
M(U)

≤ 1 +
2αC̄R

M(U)

∞∑
n=1

2(β−α)n,

where α > 0 is from Proposition 3.3. Choose β = α/2, and the sum Cα = 2α
∑∞

n=1 2−αn/2

(> 1) is finite. Hence

‖GU1‖∞ � M(U)
[
log(3R) + log

(
1 +

CαC̄R

M(U)

)]

� M(U)
[
log(3R) + log(CαC̄R) + log

(
1

CαC̄R
+

1
M(U)

)]

�
(
log(3R) + log(CαC̄R)

)
M(U) log

(
2 +

1
M(U)

)
.

By [13, Lemma 3.2] we know λ1(U)−1 ≤ ‖GU1‖∞ and hence

λ1(U) �
C9

M(U) log
(
2 + 1

M(U)

)
where C−1

9 = log(3R) + log(CαC̄R) �X,γ,α log(R) provided R > 2.
Now we apply the proof of [2, Proposition 5.3]. Let T BR

t be the semigroup operator
associated to the heat kernel pR

t . They obtained that

‖T BR
t ‖L1(BR)→L∞(BR) ≤ m(t)

for some function m(t). By following their proof, it is straightforward to check that for
t ∈ (0, 1/2]

m(t) ≤ 4C−1
9 t−1 log t−1 �X,γ,α (log R)t−1 log t−1.

Hence the bound for pR
t (x, y) follows.

To extend the bound to pt(x, y), we can use Kigami’s iteration argument [14, Lemma 5.6].
Let Qt(R) := CQ(log R)t−1 log t−1 where CQ = CQ(X, γ, α) is the constant so that

sup
|x|,|y|≤R

pR
t (x, y) ≤ Qt(R).

Notice that for any s ∈ [t/2, t], λ ∈ [1, 4] we have

Qs(λR) ≤ 12Qt(R).
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Let L := 12 and ε := 1
2L . Now choose R0 = R0(X, γ, q, κ) > 0 large enough so that for any

R ≥ R0,

δ2RR > β and 2 exp
(
−cβ,1/4

(
2δ2RRβ

) 1
β−1

)
≤ ε.

This can be done because when 1 − 2p′/q > 0 we have δ2RR → ∞ as R ↑ ∞. Then from
Proposition 3.7 we get

sup
|x|≤R

Px[τ0,4R ≤ t] ≤ sup
|x|≤R

Px[τx,R ≤ t] ≤ ε.

Define for k = 0, 1, 2, ... the sequences

tk =
1
2

(1 + 2−k)t, Rk = 4kR0, Bk = BRk .

Let

sup
U

pR
t := sup

x,y∈U
pR

t (x, y)

for any set U ⊆ C. We apply the inequality [14, Theorem 4.6] to get

sup
Bk

pR
tk ≤ sup

Bk+1

pRk+1

2−(k+2)t + ε sup
Bk+1

pR
tk+1

≤ Q2−(k+2)t(Rk+1) + ε sup
Bk+1

pR
tk+1

≤ Lk+2Qt(R0) + ε sup
Bk+1

pR
tk+1

as long as Rk+1 ≤ R. Let n ≥ 1, set R = Rn and by iteration we get

sup
B0

pRn
t ≤ L2

(
1 + Lε + (Lε)2 + . . .

)
Qt (R0) + εn sup

Bn

pRn
tn

≤ 2L2Qt (R0) + (Lε)nQt(R0).

Since limn→∞ pRn
t (x, y) = pt(x, y) for any x, y ∈ B0 by [2, Proof of Theorem 5.1 for un-

bounded U], let n→ ∞ and we get

sup
B0

pt ≤ 2L2Qt (R0) = 288CQ(log R0)t−1 log t−1.

Since R0 = R0(X, γ, q, κ) can be chosen to be any larger value, it follows that

sup
|x|,|y|≤R

pt(x, y) �X,γ,α,q,κ (log R)t−1 log t−1

for any R > 2. �

Now comes the main result of this paper.

Theorem 3.9. For any γ ∈ (0, 2), p > 1, p′ = p
p−1 , q > 2p′, α ∈ (0, α2) and β > p

q (2 +
ξ̃(q)), there exist c∗,C∗ > 0 depending on X, γ, q, p, β, such that P-a.s. for any t ∈ (0, 1/2],
R > 2, and x, y ∈ BR with |x − y| > c∗R2p′/qt, we have

pt(x, y) �X,γ,α,q,p,β (log R)t−1 log t−1 exp

⎛⎜⎜⎜⎜⎜⎜⎝−C∗
( |x − y|β

tR2p′/q

) 1
β−1

⎞⎟⎟⎟⎟⎟⎟⎠ .



348 Y. Yu

Proof. We apply a result in [10, Theorem 10.4] (see also [11, Theorem 5.1]) that, if U,V
are non-empty open subsets of C with U ∩ V = ∅, then for any (x, y) ∈ V × U,

pt(x, y) ≤ ψV
(
x,

t
2

)
sup

t/2≤s≤t
sup
v∈∂V

ps(v, y) + ψU
(
y,

t
2

)
sup

t/2≤s≤t
sup
u∈∂U

ps(u, x)

where ψV(z, s) = Pz[τV ≤ s], and τV is the first exit time of Liouville Brownian motion
from V . Note that we can change “esup” to “sup” because pt(x, y) has been proved to have
a (t, x, y)-jointly continuous version (see [2, Theorem 1.1]) and ψV(x, t/2) is continuous in
x ∈ V by [2, Theorem 5.1(ii)].

Set r = |x − y|/2, V = Bx,r, U = By,r. Applying Proposition 3.7 with ε = 1/4 and
κ = 1

2 (qβ + p(2 + ξ̃(q))) (so that β > κ/q) leads to

ψV
(
x,

t
2

)
∨ ψU

(
y,

t
2

)
≤ 2 exp

(
−cβ,1/4(2δ2Rrβ/t)

1
β−1

)

provided δ2Rr > βt. In particular by Lemma 3.5 it is true if |x − y| > c∗R2p′/qt for some
c∗ = c∗(X, γ, q, p, β) > 0.

Furthermore, by Proposition 3.8 we have

sup
t/2≤s≤t

sup
v∈∂V

ps(v, y) ∨ sup
t/2≤s≤t

sup
u∈∂U

ps(u, x) �X,γ,α,q,κ (log R)t−1 log t−1.

Hence

pt(x, y) �X,γ,α,q,p,β (log R)t−1 log t−1 exp
(
−1

2
cβ,1/4(δ2R|x − y|β/t) 1

β−1

)

�X,γ,α,q,p,β (log R)t−1 log t−1 exp

⎛⎜⎜⎜⎜⎜⎜⎝−C∗
( |x − y|β

tR2p′/q

) 1
β−1

⎞⎟⎟⎟⎟⎟⎟⎠
for some C∗ = C∗(X, γ, q, p, β) > 0. �

Corollary 3.10. Under the setting of Theorem 3.9, set R = |x| ∨ |y| ∨ 2. If in addition
R ≤ c|x − y| for some c > 0, then

pt(x, y) �X,γ,α,q,p,β (log R)t−1 log t−1 exp

⎛⎜⎜⎜⎜⎜⎜⎝−C̃∗
( |x − y|β−2p′/q

t

) 1
β−1

⎞⎟⎟⎟⎟⎟⎟⎠
for some C̃∗ = C̃∗(X, γ, q, p, β, c) > 0.

Corollary 3.11. Under the setting of Theorem 3.9, for any t ∈ (0, 1/2] and R0 > 1, there
exists R1 = R1(c∗,R0, p, q) > R0 such that for any y ∈ BR0 , x � BR1 , we have

pt(x, y) �X,γ,α,q,p,β exp

⎛⎜⎜⎜⎜⎜⎜⎝−0.5C̃∗
( |x − y|β−2p′/q

t

) 1
β−1

⎞⎟⎟⎟⎟⎟⎟⎠
for some C̃∗ = C̃∗(X, γ, q, p, β) > 0.

Proof. Choose R1 such that R1 > (c∗/2+1)
q

q−2p′ ∨(R0+1)
q

2p′ ∨(2R0) (recall that q−2p′ > 0).
Then for any y ∈ BR0 , x � BR1 we have 2|x − y| ≥ 2(|x| − R0) ≥ R and |x − y| > c∗R2p′/qt + 1,
where R = |x| ∨ |y|. The result follows from Corollary 3.10 with c = 2 by absorbing
(log R)t−1 log t−1 into the exponential. �
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Corollary 3.12. Liouville Brownian motion is C0-Feller in the sense that Tt is a posi-
tive contraction strongly continuous semigroup on C0, where C0 is the space of continuous
functions on C vanishing at infinity.

Appendix A A simple proof of the Feller property

Appendix A. A simple proof of the Feller property
In this section, we give a simple proof of the C0-Feller property without using heat kernel

estimates.
We slightly change the notation. Let X be a whole plane (massive) Gaussian free field

defined on some probability space Ω with the law denoted by PX , and B be a Brownian
motion defined on another probability space. Let PB

x be the law of Brownian motion starting
from x ∈ C. By making the product space and setting Px = P

X ⊗ PB
x , then X and B are

independent under Px. We use Ex, EB
x and EX to mean taking expectation under Px, P

B
x and

PX respectively. When x = 0, we drop the subscript.
Let F denote the PCAF of B whose Revuz measure is the Liouville measure and F̄ be the

inverse of F, i.e., F̄(t) = F−1(t) = inf{s ≥ 0 : F(s) > t}. We denote the Liouville Brownian
motion by Yt = BF̄(t), and define the running supremum Y∗t := maxs≤t |Ys − Y0|.

Let DR be the open disk with center 0 and radius R > 0 and σ̄R(dx) be the uniform
probability measure on the circle ∂DR . For a finite set S, we use |S| to denote the number of
elements in S.

The following discussion is for PX-a.e. element of Ω. Recall that it has already been
proved that Tt maps Cb to Cb, where Cb is the set of bounded continuous functions on C.
Fix t > 0. To show Tt maps C0 to C0, it is enough to show that for any R > 0,

lim
x→∞ P

B
x [Yt ∈ DR] = 0.

Indeed, for any f ∈ C0 and ε > 0 there is a continuous function fε ∈ CK with compact
support such that ‖ f − fε‖∞ < ε. Choose R large enough so that the support of fε is contained
in DR, then |Tt f (x)| ≤ ε + ‖ fε‖∞PB

x [Yt ∈ DR]. Let x → ∞ and then ε → 0, and we get
limx→∞ Tt f (x) = 0.

Now fix R > 0 and t > 0. Define g(x) = g(x, X) := PB
x [Y∗t ≥ |x| − R].

Lemma A.1. Let θ ∈ C and |θ| = 1. Then g(θx) and g(x) have the same law under PX. In
particular we have EXg(x) = EXg(|x|).

Proof. Let Xθ = X(·/θ) and Bθ = θB. First we show that PX-a.s., Ft(X, B) = Ft(Xθ, Bθ)
PB

x -a.s. for any x ∈ C. Indeed, we have

Fn(t) =
∫ t

0
exp

(
γXn(Bs) − γ

2

2
EX

[
Xn(Bs)2

])
ds =

∫ t

0
exp

(
γXθ

n(Bθs) −
γ2

2
EX

[
Xθ

n(Bθs)
2
])

ds.

Let n → ∞ and by the uniqueness of the limit we have Ft(X, B) = Ft(Xθ, Bθ), and conse-
quently F̄t(X, B) = F̄t(Xθ, Bθ).

Notice that

g(x, X) = PB
x [Y∗t ≥ |x| − R]

= PB
x [max

s≤t
|BF̄s(X,B) − B0| ≥ |x| − R]

= PB
x [max

s≤t
|θBF̄s(Xθ,Bθ) − θB0| ≥ |x| − R]
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= PB
x [max

s≤t
|BθF̄s(Xθ,Bθ) − Bθ0| ≥ |x| − R]

= PB
θx[max

s≤t
|BF̄s(Xθ,B) − B0| ≥ |θx| − R]

= g(θx, Xθ).

Since X and Xθ have the same law under PX by the rotation invariance of the covariance
function Gm, we see that g(θx) and g(x) also have the same law under PX . Now fix x ∈ C,
choose θ such that θx = |x|, take the expectation, and we get EXg(x) = EXg(|x|). �

Lemma A.2. Let xn = n ∈ C. Then limn→∞ EXg(xn) = 0.

Proof. For x ∈ C \ {0} and ε > 0, set s = ε|x|2, and we get

g(x) ≤ PB
x

[
Y∗t ≥ |x| − R, F̄(t) ≤ s

]
+ PB

x

[
F̄(t) > s

]

≤ PB
[
max

l≤s
|Bl| ≥ |x| − R

]
+ PB

x

[
F̄(t)
|x|2 > ε

]

= PB
[
max

l≤1
|Bl| ≥ |x| − R√

ε|x|
]
+ PB

x

[
F̄(t)
|x|2 > ε

]
.

Thus by the translation invariance of the law of X we have

EXg(xn) ≤ PB
[
max

l≤1
|Bl| ≥ 1

2
√
ε

]
+ P[F̄(t)/n2 > ε]

provided n is large enough so that R/n ≤ 1/2. Now let n → ∞, then ε → 0 and we get the
desired result. �

Now we are ready to prove that Tt is Feller.

Theorem A.3. PX-a.s., Tt maps C0 to C0.

Proof. By Lemma A.1 we have

EX
∫

g(x)σ̄n(dx) =
∫
EXg(n)σ̄n(dx) = EXg(n).

By Lemma A.2 we get

lim
n→∞E

X
∫

g(x)σ̄n(dx) = lim
n→∞E

Xg(n) = 0.

Thus there is a subsequence of n along which
∫
g(x)σ̄n(dx)→ 0 PX-a.s.. Then for any ε > 0

and δ > 0, there is some n > R sufficiently large such that

σ̄n({x ∈ ∂Dn : g(x) > ε}) < δ.
Set Sn = {x ∈ ∂Dn : g(x) ≤ ε}, then we have σ̄n(Sc

n) ≤ δ.
Let τn = inf{s > 0 : Ys ∈ ∂Dn}, then |Yτn | = n. When |x| > n > R, using the strong Markov

property (see, e.g., [12, Proposition 3.4]), we have

PB
x [Yt ∈ DR] = PB

x [Yt ∈ DR, τn < t]

=

∫
{τn<t}
PB

Yτn (ω)[Yt−τn(ω) ∈ DR]PB
x (dω)
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≤ EB
x

[
PB

Yτn
[Y∗t ≥ n − R]

]
≤ EB

x
[
g(Yτn), Yτn ∈ Sn

]
+ PB

x [Yτn ∈ Sc
n]

=

∫
Sn

g(z)μx,n(dz) + μx,n(Sc
n)

where μx,n(dz) = PB
x [Yτn ∈ dz], which is the harmonic measure of the Brownian motion

viewed at x.
We claim μx,n → σ̄n in total variation as x → ∞. Indeed. Let φ(z) = n2z/|z|2. Notice that

φ is analytic on C \ {0} and φ|∂Dn is the identity map. We have

μx,n(dz) = PB
x [BF̄(τn) ∈ dz] = PB′

x′ [B
′
τn
′ ∈ dz]

where x′ = φ(x), B′ = φ(B) (which is a time-change of a Brownian motion) and τn
′ =

inf{s > 0 : B′s ∈ ∂Dn}. Thus

μx,n(dz) = μx′,n(dz) = pn(x′, z)σ̄n(dz)

where pn(x′, z) is the Poisson kernel on ∂Dn. Hence

‖μx,n − σ̄n‖total variation =

∫
|pn(x′, z) − 1|σ̄n(dz)→ 0

as x′ → 0 (x→ ∞). So we have PX-a.s.

lim sup
x→∞

PB
x [Yt ∈ DR] ≤

∫
Sn

g(z)σ̄n(dz) + σ̄n(Sc
n)

≤ ε + δ.
Let ε → 0 and δ → 0, and combining the discussion at the very beginning of this section,
we complete the proof. �
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