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Abstract
We give a method to construct a critical Schrodinger form from the subcritical Schrodinger
form by subtracting a suitable positive potential. The method enables us to obtain optimal
Hardy-type inequalities.
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1. Introduction

In [6], Devyver, Fraas and Pinchover give a method for obtaining optimal Hardy weights
for second-order non-negative elliptic operators on non-compact Riemannian manifolds, in
particular, they show that the criticality of Schrodinger forms is related to the critical Hardy
weights. In [20] we give a method to construct a critical Schrodinger form from a tran-
sient Dirichlet form by subtracting a suitable positive potential. In other words, we give a
method to construct critical Hardy weights for a transient Dirichlet form by applying the
idea in [6]. In this paper, we will consider subcritical Schrodinger forms instead of transient
Dirichlet forms, and extend the method for subcritical Schrodinger forms. As an application,
we obtain a method to construct critical Hardy weights for Schrodinger forms. Moreover,
we discuss the optimality of Hardy weights in the sense of [6], a stronger notion than the
criticality, and give a condition for the critical Hardy weights being optimal ones.

Let E be a locally compact separable metric space and m a positive Radon measure on
E with full topological support. Let X = (P, X;,{) be an m-symmetric Hunt process. We
assume that X is irreducible and resolvent doubly Feller, in addition, that X generates a
regular Dirichlet form (£, D(€)) on L*(E; m).

Denote by K;,.(X) the totality of local Kato measures (Definition 3.1 (1)). For a singed
local Kato measure such that the positive (resp. negative) part u* (resp. u~) of u belongs to
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Kioe(X) (1 € Kjpe(X) — K1pe(X) in notation), we define a symmetric form by
EF(u, u) = E(u,u) + f Wdu, ue DE)N CyE).
E

The regularity of (£, D(E)) implies that a measure in Kj,.(X) is Radon (Remark 3.2) and
the form (E#, D(E) N Cy(E)) is well-defined. In the sequel, for a symmetric bilinear form
(a, D(a)) we simply write a(u) for a(u, u).

We suppose that (£, D(E) N Cy(E)) is positive semi-definite:

(1) E¥u) =0 (4:) fuzd,u_ < 8”+(u)), u € D(E)N Cy(E).
E
Applying results in [1], we prove in [20] that (E#, D(E) N Co(E)) is closable in L*(E; m).
We denote the closure (E¥, D(EH)) and call it Schrddinger form with potential u. By the
Radonness of u*, we see that D(£) N L*(E; u*) ¢ D(EX) and

EFu) = Eu) + f Wdu, ueDE)NLE;u").
E

Here u is a quasi-continuous version of u. In this paper, we always assume that every func-
tion u is represented by its quasi-continuous version if it admits.

The L2-semigroup T generated by (¥, D(E)) is expressed by Feynman-Kac semigroup
([20, Theorem 4.2]): For a bounded Borel function f in L*(E; m)

2) THF(x) = P (== Ex (e f(X))). m-ae. x.

Here A" = A — A" and A" (resp. A" is the positive continuous additive functional with
Revuz measure p* (resp. p~). We suppose that (E#, D(EH)) is subcritical, that is, there exists
the Green function R“(x, y) such that for a positive Borel function f

fo Pl f(odt = fE R (x, y) f(y)dm(y), Vx € E.

Let IC’;OC(X) be the set of local Kato measures such that for any compact set K € E
3) R (1gvyu(x) = f Ri(x, p1kdv(y) € L™ (E;m).
E
For a non-trivial measure v in IC’Z‘OC(X ) define measures v and ¢ by
y

4 Y= —

@) Rty

and

(5) W= =

We will show in Corollary 4.2 and Lemma 4.3 below that x” belongs to KCppe(X) — Kppe(X)
and (&X', D(E) N Cy(E)) is still positive semi-definite

(6) EX (1) = EM(u) — f wdv >0, u € DE) N Cy(E).
E

In other words, the measure v* is a Hardy weight for (¥, D(E*)). As remarked above,
(EF', D(E)NCy(E)) is closable and its closure defines a new Schrodinger form (EF, D(EM)).
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Let C be the totality of compact sets of £E. We then obtain the following main result in
this paper: If a non-trivial positive measure v in K (X) satisfies that

(7 sup f f R (x, y) v(dx)v(dy) < oo,
KxK¢

KeC

then (E¥, D(EX")) turns out to be a critical Schrodinger form. Here K¢ is the complement of
K. More precisely, the function R*v is a ground state of (£¥, D(EX)), that is, R*v belongs
to the extended Schrodinger space D,(EM) of (E*, D(EM")) (see Section 2 for the definition
of the extended Schrodinger space) and X (R*v) = 0. As a corollary, we see that W is a
critical Hardy weight for (£#, D(E)) in the sense that there exists no non-trivial positive
function s such that

&) fuzd O+ ym) < EF(u), u € D(E) N Cy(E).
E

In particular, if (£, D(E)) is transient and y = 0, then every v € K;,.(X) satisfies (3) by
replacing R*(x, y) with the O-resolvent R(x, y) of X. Indeed, since 1gv is Green-tight, 1xv €
Ko(X) (Definition 3.1 (2)), the condition (3) is derived from [3, Proposition 2.2]. As a
result, for any v € Ky, the next Hardy-type inequality follows:

9) f uzﬂ < E), u € DE) N Cy(E).
E RV

The inequality (9) is proved in Fitzsimmons [7] (see also [2]). Moreover, we see that if the
measure v/Ru is a critical Hardy weight for the Dirichlet form (&€, D(E)) if v satisfies (7)
obtained by replacing R“(x, y) with R(x, y).

As stated above, the function R*v belongs to D,(E*) under the condition (7). Lemma
4.3 below tells us that D,(EX) is included in D,(EX") and R*y does not belong to D,(EX) in
general. If v satisfies the stronger condition than (7),

f f R (x, y)v(dx)v(dy) < oo,
EXE

i.e., v is of finite energy with respect to R*, then Ry belongs to L*(E; v*) because

f (Rv)*dv* = f Rfvdy = f f R (x, y)v(dx)v(dy) < oo.
E E EXE

Moreover, R*v belongs to D,(E*) by Lemma 4.8 below. Hence, £#(R!v) is finite and thus

1(R-
£ (Riy) = 0 s S V) _
fE(Rl‘v)zdv/l
Noting that by (6)
1
(10) gW_,

in > >
ueD, (EH M
o )fEu dv

we see R‘v is a minimizer for the left hand side of (10). In this case, the Schrodinger form
(EF, D(EF)) is said to be positive-critical ([6, Definition 4.8]).
On the other hand, if v is not of finite energy,
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(11) lf R Gr, p)v(dv(dy) = oo,
EXE

then R*y does not belong to L>(E; ) and (£, D(E*")) is null-critical in the sense of [6].

The measure v is called optimal at infinity if for any K € C
Pl f wdvt < EMu), u e D(E)N Co(K°),
E

then 4 < 1. We see from [12, Corollary 3.4] (or [14, Theorem 3]) that if for any K € C

f f R (x, y)v(dx)v(dy) < eo,
KXE

i.e., R*v is locally integrable, then the null-criticality implies the optimality at infinity. In
generally, if for any K € C

(12) if R (x, y)W(d)v(dy) = oo,
K¢XE

then the optimality at infinity holds. Devyver, Fraas and Pinchover [6], where they call
a Hardy-type inequality optimal if a Hardy weight is critical, null-critical and optimal at
infinity. Noting that (12) implies (11), we can conclude that if a measure v satisfies (3), (7)
and (12), then the measure v is an optimal Hardy-weight for (£, D(EH)) in the sense of [6].

2. Extended Schrodinger spaces

Let E be a locally compact separable metric space and m a positive Radon measure on
E with full topological support. Let (£, D(£)) be a regular Dirichlet form on L*(E;m) (cf.
[9, p.6]). We denote by u € D,,.(€) if for any relatively compact open set D there exists a
function v € D(E) such that u = v m-a.e. on D. We assume that (£, D(E)) is irreducible (c.f.
[9, p.40, p.55]).

We call a positive Borel measure p on E smooth if it satisfies

(i) u charges no set of zero capacity,

(i1) there exists an increasing sequence {F,} of closed sets such that
) w(F,) <oo,n=1,2,...,
b) lim, . Cap(K \ F,) = 0 for any compact set K.

We denote by S the totality of smooth measures.
For a signed smooth Radon measure y = u* —u~ € S — S define a symmetric form on
L*(E;m) by

(13) EF(u,v) = E(u,v) + f uvdu, u,v € D(E) N Cy(E).
E
We assume that (¥, D(E) N Cy(E)) is positive semi-definite:
(14) EFu) >0 (<=> f Wdu < 8“+(u)), u € D(E) N Cy(E).
E

When (EH, D(E) N Co(E)) is closable, we denote by (&EX, D(EF)) its closure and call it
Schrodinger form with potential p.
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A densely defined, closed, positive semi-definite symmetric bilinear form (a, D(a)) is said
to be positive preserving if for u € D(a), |u| belongs to D(a) and a(lu|) < a(u). It follow from
[5, Lemma 1.3.4] that the form (&, D(EF)) is positive preserving because EX(Jul) < EH(u)
for u € D(E) N Cy(E). As aresult, we see from [17, Proposition 2] that (E#, D(E*)) has the
Fatou property, i.e., if {u,} C D(EH) satisfies sup, E¥(u,) < oo and u, — u € D(EF) m-a.e.,
then liminf, ., E¥(u,) > E#(u). Hence, following [16], we can define a space D (EF) in
the way similar to the extended Dirichlet space: An m-measurable function u with |u| < oo
m-a.e. is said to be in D, (&) if there exists an E-Cauchy sequence {u,,} C D(E) such that
lim, o u, = u m-a.e. We call D,(EF) the extended Schrodinger space of (EF, D(EF)) and
the sequence {u,} an approximating sequence of u. For u € D,(E*) and an approximating
sequence {u,} of u, we define

(15) EM(u) = lim & (uy).

We define the criticality and subcriticality of Schrodinger forms in the way similar to the
recurrence and transience of Dirichlet forms.

Dermnition 2.1. Let (EF, D(EF)) be a positive semi-definite Schrodinger form.

(1) (E*, D(EM)) is said to be subcritical if there exists a bounded function g in L'(E;m)
strictly positive m-a.e. such that

(16) flulgdm < VEMu), u e D(EY).
E

(2) (E*, D(EM)) is said to be critical if there exists a function ¢ in D, (E*) strictly positive
m-a.e. such that £#(¢) = 0. The function ¢ is said to be the ground state.

Define the operator G by

G'f(x) = f‘x’ TV f(x)dt (< +00)
0

for a positive function f. Here T is the L>-semigroup on L?(E; m) generated by (E#, D(EX)).

Lemma 2.2 ([20, Lemma 2.3]). Let g be the function in Definition 2.1 (1). Then G!g
belongs to D.(EF).

Remark 2.3. It is recently proved in [15, Theorem A.3] that if the semigroup T* is ex-

pressed using a density p/'(x,y), T" f(x) = fE P (e, y) f(y)dm(y), then (EH, D(EM)) is subcrit-
ical or critical.

Remark 2.4. We see from the inequality (16) that if (E#, D(EV)) is subcritical, then
(D(EM), EX(+,+)) is a Hilbert space.

3. Probabilistic representation of Schrodinger semigroups

Let X = (Q, F,{F }r20, {Pr}rer, {Xi}20, £) be the symmetric Hunt process generated by
(&€, D(E)), where {F;}»0 is the augmented filtration and ¢ is the lifetime of X. Denote by
{P:}=0 and {R,}4>0 the semigroup and resolvent of X:
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pf(X) = Ef(X)).  Ref(x) =f0 ¢ p, f(x)dr.

Then p,f(x) = T,f(x) m-a.e., R, f(x) = fooo T, f(x)dt m-a.e., where T, is the Lz—semigroup
on L*(E;m) generated by (£, D(E)). In the sequel, we assume that X satisfies, in addition,
the next condition:

Feller Property (F). For each t > 0, p,(Co(E)) C Cw(E) and for each f € Cu(E)
and x € E, lim,o p,f(x) = f(x), where C(E) is the space of continuous functions on £
vanishing at infinity.

Resolvent Strong Feller Property (RSF). For each @ > 0, R,(B,(E)) C C,(E), where
By (E)(resp. Cp(E)) is the space of bounded Borel (resp. continuous) functions on E.

Following [11], a Hunt process is said to be resolvent doubly Feller if it enjoys both the
Feller property and resolvent strong Feller property. We see from (RSF) that the resolvent
kernel R, (x, dy) of X has a non-negative jointly measurable density R, (x, y) with respect to
m: For x € E and f € B,(F)

Ruf(x) = fE Ra(x. ) fm(dy).

Moreover, R,(x, y) is a-excessive in x and in y ([9, Lemma 4.2.4]). We simply write R(x, i)
for Ry(x, y)(:= lim,_ R, (x, y)). For a measure u, we define the a-potential of u by

Rou(x) = f Ro(x,y)udy), a=0.
E

Let Soo be the set of positive Borel measures u such that u(E) < oo and R;u is bounded.
We call a Borel measure u on E smooth measure in the strict sense if there exists a sequence
{E,} of Borel sets increasing to E such that for each n, 1z, u € Spo and for any x € E

Px(hm OE\E, > 4) = 1,

where o g\g, is the first hitting time of E \ E,. We denote by S I the set of smooth measures
in the strict sense.

DeriNrTion 3.1, Letu € S
(1) u is said to be in the Kato class of X (X(X) in abbreviation) if

lim [|Roplleo = 0.
a— 00

u is said to be in the local Kato class (Kj,.(X) in abbreviation) if for any compact set K,
1k - u belongs to K£(X). (2) Suppose that X is transient. A measure y is said to be in the class

K (X) if for any € > 0, there exists a compact set K = K(¢€)
sup f R(x, y)u(dy) < e.
xeE ¢

uin Ko (X) is called Green-tight.
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Remark 3.2. It is known in [19, Theorem 3.1] that for a measure u in X(X) and @ > 0

(17) kfﬁMSMwmamxuema.
E

By the regularity of (£, D(£)) and the inequality (17), a measure u in X(X) is Radon, and so
is a measure u in Ky, (X). As aresult, D(E) N LZ(E;u+) C D(EH) and

Efu) = Eu) + f wdu, ue DE)N LXHE;uh).
E

If u € Koo(X), then [|[Rulle < oo by [3, Proposition 2.2] and [11, Lemma 4.1], and the
equation (17) is meaningful for a = 0:

(18) ffwgwmaWueu@.
E

We denote by AY the PCAF corresponding to u € S'.

Theorem 3.3 ([20, Theorem 4.2]). Let u = pu™ — = € Kjpe(X) — Koo (X). If (EF, D(E) N
Co(E)) is positive semi-definite, then it is closable. Moreover; the semigroup T!' generated
by the closure (EF, D(EV)) is expressed as

T/ f(x) = P f(0) = Ex (e f(X)) m-ae.

RemMArk 3.4. By [9, Theorem 4.2.4], the transition semigroup p; of X is expressed using
transition probability density p,(x, y), as a result, 7% is also expressed by a kernel p/'(x, y) by
Theorem 3.3. Hence, as discussed in Remark 2.3, (E¥, D(EH)) is either critical or subcritical.

4. Criticality and Hardy-type inequalities

We maintain the setting in Section 3 and fix a measure y € Kj,.(X) — Kjpe(X). Though
this section, we assume that (£, D(EH)) is positive semi-definite and subcritical. By the
subcriticality of (E#, D(EF)), (D.(EF), E(-,-)) becomes a Hilbert space. The a-order re-
solvent kernel {R}(x, y)}o>0 of (¥, D(EH)) can be constructed in the same manner as [9,
Lemma 4.2.4] and the Green kernel, i.e., 0-order resolvent kernel R*(x,y) is defined by
RA(x,y) = lim,_,g R,(x, y). The potential of a positive measure v is defined by

R = [ Ry
E
Lemma 4.1. Let v be a non-trivial positive measure in K;,-(X). Then for any compact
set K
inf RFv(x) > 0.
xeK

Proof. For any compact set K, take a relatively compact domain G such that K ¢ G and
v(G) > 0. Consider the subprocess XH = ({Py Vieks (Xm0, O) defined by

P’f(B;t <) = f e dp,, Be 7,
B{r<¢)

Then X* has Properties (F) and (RSF) by [13, Corollary 6.1], and so the part process X* ¢
of X*" on G has Property (RSF) by [13, Theorem 3.1]. Furthermore, X*"C is irreducible
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because G is a domain.

Since the measure v, the restriction of v to G, is in the Green-tight Kato class of X*"-C,
V0 € Koo(XH9), R Gy(= R*9Y0) is bounded by [3, Proposition 2.4] on G. Moreover
it is continuous on G. Indeed, by Property (RSF) of X*"-C, RYC(RCy) € Cp(G) and
||R’(f’Gv||o0 — 0 as @ — oo because of V¢ € K(X*Y). Hence, R* Cy € C,(G) because the

resolvent equation implies
IR"Cy — aRY C(R* )|l = IRE Vil = 0, @ — oo,
By the irreducibility and v(G) > 0, R*%v(x) > 0 for each x € E, and thus inf ..x R* “v(x) >
0. On account of R“v(x) > R*Sv(x), we have this lemma. m]
By Lemma 4.1, we have the next corollary.

Corollary 4.2. For a non-trivial positive measure v € K;,.(X), the measure v/R'v be-
longs to Kjye(X).

We define the subclass K, (X) of Kjoc(X) by
K (X) = {v € Kipe(X) | Forany K € C, [|[R*(1gV)leo < 0.},

where C is the totality of compact sets of E. If u = 0, then IC’;OC(X) equals KCj,(X) because
1gxv € Koo(X) and |[R(1 gv)|leo < 0.

Lemma 4.3. Let v be a non-trivial measure in IC’;OC(X). Then
, dv
¢"—— < EX(P), ¢ € D(E) N Co(E).
E R1y

Proof. Let {K),} be a increasing sequence of compact sets such that K, C Io(,H] and K, T E.
We fix the sequence {K),}. For 0 < € < 1, define u§ = u* — eu;,, where i, () := u= (K, N ).
The positive semi-definiteness of (E¥, D(E) N Cy(E)) implies that

€ f P*du; < e EX (¢),
and )
(19) (1-e& ()< & (p)—e fE $duy; = EM(P) < E(9),
which implies
(20) D (£") = Do(EM)(C D(£)).

Let v,, = v(- N K,;). We may suppose that v; is non-trivial and Ry (x) is bounded below
by a positive constant on each compact set K C E. Noting v,, € K (X), we see from (18)
and (19) that

1/2
f |pldv, < v(K)'"? (f ¢2dvm) < V(K) PRI - E()'?
E E
< CE ()7 < CTEr ()

Hence R*1v,, belongs to D,(£+) and
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dv,,
Ry,

8"5(R”5vm,¢) = f¢de - fRH;Vm -
E E
which implies
gﬂi—Vm/Rl‘ﬁVm(Rﬂivm’(p) =0, ¢ € D(E)N Cy(E).

Note that R“v,, is in D,(£) by (20) and in L*(E, m) by R“+v,, < R*v,,. Moreover, it is
bounded below by a positive constant on each compact set by Lemma 4.1. We then see from
Lemma 4.5 and Lemma 4.6 below that

gﬂf,—vm/R“g"M(qj) >0, XS D(E) N Cy(E),

and
EN(g) - fE ¢2% > EM(p) - fE ‘Z’Z% = gHimmlRivn(g) > 0,
Since
e [ G S eto- [ ook
2L e - f F dv
22, eng) - f F dV
we have this lemma. O

Lemma 4.3 leads us to an extension of the inequality (17).

Corollary 4.4. It holds that

f¢2dv < IRVl E(¢), ¢ € D(E) N Co(E).
E

Lemma 4.5. Let u € D,(£) N L*(E; m) is bounded below by a positive constant on each
compact set. Then ¢/u belongs to D(E) for any ¢ € D(E) N Cy(E).

Proof. Let ¢ € D(E) N Cy(E) and s suppose that u > ¢ > 0 on supp[e]. Let {u,} C
D(€) N Cy(E) be an approximating sequence of u. We may suppose sup,, [lunlle < [[ulleo
Then since by [9, Theorem 1.4.2 (ii)]

Enp)'? < NunllwE (@) + llplloo € ()2,

we have sup,, £(u,p) < co. On account of [18, 1.6.1°], up is in D,(€) and so in D(E) because
D.(E) N LXE;m) = D(E).
Since for (x, y) € supple] X supple]

< (o)

u(x) )
o) _ Y < 2¢7M@(x) = o) + ¢ u(x)p(x) — u(y)ey)l,
u(x)  u(y)

we have this lemma by the same argument as in the proof of [9, Theorem 6.3.2]. |
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[8, Theorem 10.2] yields the next lemma.

Lemma4.6. Let u=u" —u~ € Kjpe(X) — K(X) and u € D,(E) N L¥(E; m) be a function
bounded below by a positive constant on each compact. If u satisfies E*(u, ¢) = 0 for any
@ € D(E) N Cy(E), then (EH, D(EH)) is positive semi-definite.

Proof. The function u is a generalized eigenfunction corresponding to the generalized
eigenvalue 0 in [8, Definition 9.1]. Note that by Lemma 4.5, ¢/u is a bounded function in
D(&F) with compact support. Then, applying [8, Theorem 10.2], we have

£4(0) = EXule/u)) = f u(Ru(y)dT (/) = 0,

EXE

where ['(¢/u) is the positive measure on E X E defined in [8, Subsection 3.2]. O

Lemma 4.7. Letv € IC’;DC(X) and v,, = v(- N Ky,). Then R*v,, belongs to D,(EV) for any
m.

Proof. Since for ¢ € D(E) N Cy(E)

1/2
f Bl < v(Ky)'"? ( f ¢2dvm) < u(Ko) IR || 2 E4 ()
E E
by Corollary 4.4 and ||R“V,|lc < o0 by v € K (X), we have this lemma. m|
y y y loc

Lemma4.8. Ifv e ICZ)C(X) is of finite energy with respect to R*(x, ),

e [ repmaonap <o
EXE
then R*v belongs to D,(EM).
Proof. Since R*v,, € D .(E") T R*v(x) for any x € E as m — oo and

sup E#(Rv,) = supf
m m E

< f f R (x, y)v(dx)v(dy) < co.
EXE

By Banach-Saks Theorem (cf.[4, Theorem A.4.1]) there exists a subsequence {K,,,} C {K,}
such that

R, + RAYyy + - + RAYy, :Rﬂ((lkm, +1g,, -+ 1k,)
l l

with £#-strongly, and thus Lemma 4.7 implies this lemma. O

Révydvy, = sup f f R (x, y)(d0v(dy)
m K, XK,

v) — Rty

For pt € Kjoe(X) = Kpoe(X) and v € K, (X), define
v
= i
Then p” is in Kjpe(X) — Kipe(X) by Corollary 4.2 and (EF',D(E) N Cy(E)) is positive semi-
definite by Lemma 4.3. Hence by [20, Theorem 4.2] we can define the Schrédinger form
with potential u”, the closure (E¥,D(EF)) of (EH,D(E) N Co(E)) and its extended
Schrédinger space D,(EX).

(22) )
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Lemma 4.9. Ifu € D, (EM), then

EX (u) = EX(u) — f wdv*,

E

Proof. Noting u € D,.(£), there exists an €“+—Cauchy sequence {u,} C D(E) N Cy(E)
such that u, — u q.e. Since ¥ (u) < EMu) < EF (), u € D(E) N Cy(E), {u,) is also an
approximating sequence of « in D,(E*) and D(EX"). In particular, u is in D.(EX) C D (EX),
and thus u € L*(E; ) by Lemma 4.3. Hence we have

EX (u) = lim E* (u,) = lim (sﬂ(un)— f u,%dv“) = EM(u) - f utdv*. 0
n—00 n—-oo E E

Lemma 4.10. Ir holds that
EX (R*v,y) = EX(R vy — f (R*v,)*d v,
E

Proof. Let {¢,} be a positive sequence such that €, T 1 as n — oo and denote by ;, the
measure u," defined in Lemma 4.3. Put u,, = R¥1y,,. Then u,, is in De(8”+) as shown in the
proof of Lemma 4.3. Since

() < E¥ (1) = f undv < f Rivpdvy, < oo,
E E

There exists a subsequence {u,, } of {u,} such that

Up, + Up, + -+ Uy, +
Vg = . € D,(EH)

is an approximating sequence of R*v,, in D, (EX) and v (x) T R*v,,(x) for any x € E.
Noting that {v;} is also an approximating sequence of R*v,, in D,(E*"), we have by Lemma
4.9

EF (RMv,,) = Jim EF (o) = Jim (eﬂ(uk)— f u,%dvﬂ)zeﬂ(kﬂvm)— f (R'vp)’dv'. O
—00 —00 E E

Let K% be the set of measures in K

{Kn},,_, € Csuchthat K, T E and

(X) satistying (7). Forv € ]C’é there exists a sequence

(23) sup f f RE(x, y)vim(dx)v,,(dy) < oo,
m EXE

where v, (A) = v(K;;, NA). If a measures v € IC’;OC(X) of finite energy with respect to R*, then
it satisfies (23).

Lemma 4.11. Ifv € K, then R*v is in D(EM).

fR"vmdvzfR”vmdvm+fR“vmdvfn < 00
E E E

Proof. For v € K.

because
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fR"vmdvm = E*(R'v,,) <
E

by Lemma 4.7.
By Lemma 4.10 we have

EX (R*y,,) = EF(RMy,y,) — f (R*v)d*
E

= f R*Ypdvyy — f (R*v,)d*
E E

: RHY,,)?
:fR“vmdv—fR"vdejn—fL")'dv
E E E R”Vm + R#V,Ln

The right hand side equals

Rty (RMy, + RMYE) — (R*y,,)? ,
f m (R, m)l (R*vp) dy — f ROy,
E R”Vm + R'uV,L,n E

R*v,,R*V¢ .
(24) = f — My — f Ry, dve,
E R‘uVm + RHVm E
RH va“v Ry, Rfv;, .
= dv,, + ——— — Ry, |dv,,.
R/‘vm + RHYS, g \R*v,, + RHYVG,
Since
SR R o gy,
Rtv,, + RHYG, R:v,, + RHYS,

the right hand side of (24) is less than or equal to fE R*yE dvy,. Therefore, we see from (23)
that

sup EX (R, < supr"vfndvm < 00,
m JE

m

Since R*v,, — R"v, this lemma follows from Lemma 4.7. m|

The next lemma is obtained in the same argument as in [20, Lemma 5.3].
Lemma 4.12. Forv € K.
EX(R*y,0) =0, ¢ € D(E)N Cy(E).
Proof. Since sup,, EX (R*y,,) < oo, there exists a subsequence {Ky,} € {Kj} such that

R/‘((IK"” + 1k, -+ 1xk,)
[

v) — Ry

EF _strongly.
Let ¢, := (I, + Ik, -+ lg,)/l. For afixed ¢ € D(E) N Co(E) we can assume
suppl¢] C K. By the same argument as in Lemma 4.10, we have

EX (R () + ) = EXRM D) +9) - f (RU o) + @),
E

and thus
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EX (R (G, ) = EXRMBY). ) — f RA b )gd,

E
Hence

E (R, ¢) = lim X (R (¢rv), ¢)

= llim (8“(R“(¢IV), ¢) - f R”(cbszdV”) .
— 00 E
Note that R*(¢;v) € D.(E#) by Lemma 4.7. Then since
lim £4(R(¢). ¢) = lim f obudy = f odv
—00 - JE E

and by the monotone convergence theorem

d
lim | RK(¢v)pdV = fR”v~go—v = f(pdv,
E E Rty JE

>0

we have this lemma. O

The next theorem is an extension of [20, Theorem 5.4].

Theorem 4.13. Ifv € lC‘é, then R*v is a ground state of (E*, D(EM)), consequently,
(EX', D(EM)Y) is critical.

Proof. Since R*v belongs to D,(EX), there exists a sequence {¢,} € D(E) N Cy(E) such
that ¢, converges £ -strongly to R*v. Hence

EX(RMy) = lim EX(R*v,,) =0
by Lamma 4.12. |
Corollary 4.14. There exists no non-trivial positive function W such that
(25) fE u?d OF + ym) < E*(u, u), u € D(E) N Cy(E).
Proof. If (25) holds, then
fE wydm < E¥ () = 0, u € D(E) N Cy(E).

Since R*v is in D.(EX"), there exists an approximating sequence {u,} C D(E) N Co(E). We
then have

f (R*V)*ydm < lim | wlydm < lim ¥ (u,) = EX (R"v) = 0,
E

n—oo JE n—oo

and so ¥ = 0 m-a.e. because R*v > 0 by the irreducibility of X. |

Corollary 4.14 tells us that v* is a critical Hardy weight for (£, D(E)) ([6], [10]).
A Hardy weight v* is called optimal at infinity if for any K € C

A f wdvt < EMu), u e D(E)N Co(K°),
E
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then A < 1.

Lemma 4.15. Ifv e IC‘é satisfies that

(26) f f R (x, y)v(dx)v(dy) = oo for any K € C,
(,‘XE
then v is optimal at infinity.

Proof. Denote & = R*v. Since h is a ground state of (£¥", D(E*")) by Theorem 4.13, & is
P/ -invariant, p/' h = h, where p/' is the semigroup associated with (¥, D(E*")). Denote
by (", D(€")) the Dirichlet form generated by A-transform of (£¥, D(EX")):

EMw) = E¥ (uh), u e DE") = {u | uh € D(EF)).

Since & is in D,(EX"), there exists a sequence {4,} € D(E) N Cy(E) such that 0 < h, T h and
EX(h—h,) = 0asn — oo. Then {g, := h,/h} is an approximating sequence of 1 € D (EM).
Suppose that there exist F' € C and € > 0 such that for any u € D(E) N Cy(F€)

(27) E*w) = (1 +e€) f wd', ue D(E) N Cy(FO).

c

Let G, G be relatively compact open set such that F ¢ G| C G, cG,cGyCE. Let ¢ be
a function in D(E) N Co(E) such that 0 < ¢ < 1, ¢(x) = 1 on x € G, and supp[¢] C G». Put
¥ = (1 —¢). Then h,r € D(E) N Cy(F€), and so by (27)

(28) € f L. < £ (.
£ h
Then we have by [9, Theorem 1.4.2 (ii)]
v hn
4 (hyy) = E"(S1w) < 2 (€M) + E' ).
and so
f 2dv 2 ( h h )
sup | (hoy)*— < =|sup &' (h,/h) + E'"W)] <
n E h €\ n

on account of (28). Hence

d d
f hdy = f lim (h)? 2 < lim f . < o,
oA G e h = SeJde h

G G n—oco

fj_‘ R (x, y)dv(x)dv(y) = j_‘ hdy < oo,
G>xE G,

which is contradictory to (26). m|

and thus

Ifve lC’é satisfies the inequality (26), then the ground state R*v of (E#, D(E*")) does not
belong to L*(E; i) and so v is a null-critical Hardy weight for (£#, D(E*)). Therefore, we
have
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Theorem 4.16. Ifv e IC‘é satisfies

ff R (x, y)v(dx)v(dy) = o for any K € C,
xE
then the measure v defined in (22) is a optimal Hardy weight for (E¥, D(EV)).

REMARK 4.17. The measure v(dx) := |x|"“+®/2dx satisfies (26) with respect to the Green
kernel |x — y|*~, @ < d, the O-resolvent of the symmetric a-stable process because (jy|*¢ *
ly|~ 02y (x) = C|x|@D/2 and |x|@D/2 . |x|7@*0/2 = |x|=; however v satisfies (23) ([20,
Example 5.6]). Hence v is an optimal Hardy weight for the Dirichlet form of symmetric
a-stable process.

AckNOWLEDGEMENTS. The author would like to thank the referee for a useful comment on
Lemma 4.15.
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