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Abstract
Consider the Schrödinger operator with constant magnetic field and smooth potential V :

H(ε) = H + V(εx, εy), H = D2
x + (Dy + μx)2, (x, y) ∈ Ωd, with Dirichlet boundary condi-

tions. Here Ωd = Π
d
j=1] − a j, a j[×Rd

y . The spectral properties of two operators H and H(ε) are
investigated. For ε small enough, we study the effect of the slowly varying potential V(εx, εy).
In particular, we derive asymptotic trace formula and we give an asymptotic expansion in pow-
ers of ε of the spectral shift function corresponding to (H(ε),H).

1. Introduction

1. Introduction
The Hamiltonian for a system of d interacting electrons confined along the x-direction

and free to move along the y-direction in the presence of magnetic and electric potentials is
given by

(1.1) H(ε) :=
d∑

j=1

D2
x j
+ (Dy j + μ j x j)2 + V(εx, εy), Dν =

1
i
∂ν,

where x = (x1, · · · , xd) ∈ Λd := Πd
j=1]−a j, a j[, y ∈ Rd, μ = (μ1, · · · , μd) with ε, a j, μ j > 0.

The potential V is assumed to be smooth and real-valued. The non-perturbed operator

H = D2
x + (Dy + μx)2 =

d∑
j=1

D2
x j
+ (Dy j + μ jx j)2

is defined on 
D
Ωd

:= {u ∈ H2(Ωd); u|∂Ωd = 0}, where H2(Ωd) stands for the second order
Sobolev space on Ωd := {(x, y) ∈ Rd × Rd;−a j < x j < a j} = Λd × Rd. The Fourier
transformation with respect to y reduces the spectral problem of H to an analysis of the
eigenvalues {el(k)}∞l=0 depending on k = (k1, · · · , kd) of the operator

H0(k) = D2
x + (k + μx)2 =

d∑
j=1

D2
x j
+ (k j + μ j x j)2,

on Λd with Dirichlet boundary condition.
When the electron moves freely in both directions (i.e. a j = ∞, H∞ = H on R2d), the

spectrum of H∞ exhibits infinitely degenerate eigenvalues, the so called Landau levels. The
two-dimensional version of (1.1) is generally considered to serve as a minimal model for the
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integer quantum Hall, and has therefore been intensively investigated by physicists, see for
instance [19, 29].

When a j is finite, the spectrum of H is absolutely continuous, and coincides with [e0(0),
+∞[. The points e j(0) are thresholds in σ(H), and tends to the Landau level when μ or a j

is large enough (see Proposition 3.1). The application of the H(ε) spectrum in the theory
means that we take into consideration important factors like finite size of the Hall system
and the presence of a crystal lattice or impurities, and so on, in it. If the scalar potential
V tends to zero as |y| → ∞, the essential spectra of H(ε) and H are the same, and discrete
eigenvalues with finite multiplicities can arise in ] − ∞, e0(0)[. Moreover, it is reasonable
to expect that the electric field creates embedded eigenvalues and resonances on the second
sheet. The principal topic of this paper centers around the effect of the slowly varying
decaying perturbation V(εx, εy) on the non-perturbed operator H. Particular attention will
be paid to the asymptotic behavior of the spectrum near the thresholds e j(0).

The spectrum of the non-perturbed Hamiltonian H on a bounded domain Ω ⊂ R2 were
considered by many others. The asymptotic behavior of the bottom of the spectrum of H as
μ tends to infinity has been treated for different geometry of Ω (see [14] and the references
cited therein). WhenΩ is the semi-infinite plane or the disk, the WKB approximations of the
energies and the eigenfunctions are obtained in [28]. For the counting function of the number
of eigenvalues of the two dimensional Schrödinger operator with magnetic field we refer to
[23, 27] and the monographs [14, 16]. The nature of the spectrum of the operator H(1) on
the half plane with Dirichlet boundary condition was studied in [2]. Other exciting spectral
properties of the 2D Schrödinger operator with crossed magnetic and electrical fields have
been investigated in [4, 6, 18, 22, 26].

In [5] (see also [6]), Mourre’s theory and the spectral shift function near the thresholds
e j(0) were considered when ε = 1 and Ω1 =] − a, a[×R. In [8], the W.K.B approximation
method is used to study the dynamics and the bottom of the spectrum of the operator H(ε)
on Ω1. This method cannot used to describe all the spectrum of H(ε). On the other hand, the
multi-dimensional case (i.e., Ωd with d > 1) is more complicated, since the thresholds e j(0)
are in general degenerates when d > 1. Here we present an unified approach and derive an
explicit formula for the counting and spectral shift functions corresponding to H and H(ε).
Our goal is to give a rigorous way to recover the spectrum of H(ε) on Ωd, (d ≥ 1) near any
energy level λ, by studying systems of pseudo-differential operators which have a principal
symbol quite close to one of e j(εDy)+V(0, y)− z, where z is the spectral parameter and e j(k)
is an eigenvalue of H0(k).

The main results of this paper are briefly summarized here. Sections 2 and 3 are devoted
to the study of the non-perturbed operators H0(k) and H. We collect in Theorem 2.1 and
Corollary 2.2 a few properties of the eigenvalues e j(k) and their corresponding eigenfunc-
tions Ψ j(·, k). We introduce some type of ”density of states ρ”, related to H (see (2.14)),
and examine its regularity in Theorem 2.3. We show that t → ρ(t) is analytic except at the
thresholds e j(0), and we give its asymptotic behavior near every point e j(0), j = 0, 1, · · · .
In section 3, we study the asymptotic behavior of e j(k) when μ tends to infinity. For k = 0,
j = 0 and μ large enough, it is well known that e0(0)−1 ∼ 4π−

1
2 a2μ

3
2 e−a2μ (see [3]). In Propo-

sition 3.1, we generalize this result for j ∈ N and |k| << μ. The proof uses the parabolic
cylinder functions.
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In sections 4-7, we study the perturbed operator H(ε) when ε is small enough. First, we
give a complete asymptotic expansion in powers of ε of tr(Ψ f (H(ε))) where f ∈ C∞0 (R) and
Ψ is a multiplication operator by a real integrable function Ψ(y) ∈ L1(Rd). In particular, we
obtain a Weyl type asymptotics with optimal remainder estimates of the counting function
of eigenvalues of H(ε) in any closed interval in ] − ∞, e0(0)[. To investigate the effect of
the perturbation on the continuous spectrum of H, it is natural to study the spectral shift
function (SSF for short). When V vanishes as ‖y‖ → ∞ (see (4.1)), the SSF ξ(μ; ε) related
to H(ε) and H is well defined in the sense of distribution :

(1.2) tr
[
f (H(ε)) − f (H)

]
= −〈ξ′(·; ε), f (·)〉 =

∫
R

ξ(μ; ε) f ′(μ)dμ, f ∈ C∞0 (R).

The function ξ(μ; ε) is fixed up to a constant by the formula (1.2), and we normalize ξ(μ; ε)
so that ξ(μ; ε) = 0 for μ < inf(σ(H(ε)). The spectral shift function may be considered
as a generalization of the eigenvalues counting function. It is one of important physical
quantities in scattering theory, and it plays an important role in the study of the location of
resonances in various scattering problems. We refer to [25] and references cited there for
comprehensive information on related subjects.

Under assumption (4.1), we give in Theorem 4.3 a complete asymptotic expansion in
powers of ε of the left hand side of (1.2), and in Theorem 4.4, we establish a complete as-
ymptotic expansions in powers of ε for ξ(μ; ε). The leading coefficients of these asymptotics
are expressed in terms of the density ρ and the potential V (see (4.6) and (4.11)).

Let us provide a broad outline of the proof. Spectral properties of the free operator H
follow from the direct integral decomposition (7.10). According to Theorem 2.1, we may
write

H0(k) =
∑
j≥0

e j(k)π j(k),

where π j(k)u(x) = 〈u(·),Ψ j(·, k)〉Ψ j(x, k) is the projection on Ψ j(·, k). By (2.6) and (2.7),
the operators e j(Dy) and π j(Dy) are well defined as pseudo-differential operators. Thus, for
instance, if V(x, y) = V(y) is independent on x then

H(ε) = H0(Dy) + V(εy) =
∑
j≥0

[
e j(Dy) + V(εy)

]
π j(Dy).

Since V is bounded, and lim j→∞ e j(k) = +∞ uniformly with respect to k, it follows by an
elliptic argument that (e j(Dy)+V(εy)− z) is invertible for z in a bounded set and j > N, with
N large enough. This allows one to reduce the spectral study of H(ε) on L2(Ωd) near z to the
study of a system of ε-pseudo-differential operators on L2(Rd

y), whose diagonal entries are
(e j(εDy) + V(y) − z), j = 0, · · · ,N (see Propositions 6.1-6.2). Now, the main results follow
from standard Theorems of functional calculus and micro-local analysis. When V depends
on x, we use the fact that x is confined in a box, we then treat for ε small enough V(εx, εy)
as a perturbation of V(0, εy).

Notations : We shall employ the following standard notations. Given a complex function fh
depending on a small positive parameter h, the relation fh = (hN) means that there exist
CN , hN > 0 such that | fh| ≤ CNhN for all h ∈]0, hN[. The relation fh = (h∞) means that, for
all N ∈ N := {0, 1, 2, . . .}, we have fh = (hN). We write fh ∼ ∑∞

j=0 a jh j if, for each N ∈ N,
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we have fh −∑N
j=0 a jh j = (hN+1). We adopt the notation N∗ := N \ {0}.

Let  be a Hilbert space. The scalar product in  will be denoted by 〈·, ·〉. The set of
linear bounded operators from 1 to 2 is denoted by (1,2) and  (1) in the case
where 1 = 2.

2. The non-perturbed Hamiltonians H0(k) and H

2. The non-perturbed Hamiltonians H0(k) and H
In this section we study the non-perturbed operator H0(k) and H. In particular, we intro-

duce an integrated density of states, ρ, corresponding to H.
The operator H is unitarily equivalent to

(2.1) H
∗ =

∫ ⊕

Rd
H0(k)dk,

where  is the partial Fourier transform with respect to y given by

(u)(x, k) =
1

(2π)d/2

∫
Rd

e−iyku(x, y)dy,

and

(2.2) H0(k) = D2
x + (k + μx)2,

is the operator defined on Λd := {u ∈ H2(Λd); u|∂Λd = 0}. In what follows, we will consider
Λd as a Hilbert space equipped with the standard scalar product of H2(Λd).

We first consider the two dimensional case (i.e, d = 1, Ω1 =]−a, a[×R). From the Sturm-
Liouville theory (see [21]), it is well-known that H0(k) has a simple discrete spectrum:
e0(k) < e1(k) < · · · . The change of variable x �→ −x implies that el(k) = el(−k). Since
the eigenvalues are simple, an ordinary analytic perturbation theory shows that el(k) (and
the corresponding eigenfunction) are analytic functions in k (see [20, 24]).

Theorem 2.1. The eigenvalue e j(k) satisfies :

(2.3) ke′j(k) > 0 (k � 0), and e′j(0) = 0, e′′j (0) > 0.

Moreover, for every fixed j ∈ N and any a, μ > 0, the following properties hold :

(2.4) e j(k) = e j(0) +
∞∑

l=1

α j,lk2l (k → 0), α j,1 > 0,

(2.5) e j(k) = k2 − 2aμk + ν j(2μk)2/3(1 + o(1)), (k → +∞),

where 0 < ν0 < ν1 < · · · < ν j < · · · are the eigenvalues of the operator D2
x + x on R+. The

normalized eigenfunctions Ψn(·, k) corresponding to en(k) can be chosen real-valued and
analytic with respect to k satisfying :

(2.6) ∀p ∈ N, ∃Cp, such that
∫ a

−a

(
∂

p
kΨn(x, k)

)2
dx ≤ Cp, ‖Ψn(·, k)‖L2(−a,a) = 1.

For all p ∈ N, there exists Cp > 0 such that

(2.7) |∂p
k en(k)| ≤ Cp(1 + |k|)2−p.
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Proof. The assertion (2.3) is proved in [15] (see Theorem 2 in [15]). Formula (2.4)
follows from the fact that e j(k) is an even real analytic function with e′′j (0) > 0.

To prove (2.5), consider the operator H̃(k) = D2
x + 2μxk + k2. Replacing x by t = μ(x+ a)

and rescaling t �→ λt/μ (with λ = (2μk)1/3) we transform H̃(k) into λ2G − 2aμk + k2, where

G = D2
t + t : L2([0, b])→ L2([0, b]), b = 2λa,

is the Airy operator with Dirichlet boundary condition. The general solution of the equation
D2

t u(t) + tu(t) = 0 can be written as a linear combination of the Airy functions :

u(t) = C+Ai(t) +C−Bi(t).

We recall that Bi(t) = Ai(e2πi/3x). Using the fact that v(t) = u(t − ν j) satisfies the equation
Gv = ν jv, we deduce from the boundary conditions v(0) = v(b) = 0, the quantization
condition on the eiguenvalues ν j of the operator G

Ai(−ν j) = Bi(−ν j)
Ai(−ν j + b)
Bi(−ν j + b)

.

Since the right-hand side of the above equality tends to zero as b tends to +∞, −ν j are
approximated (when k → +∞) by the zeros of the Airy function Ai(x). Consequently, the
eigenvalues λ0(k) < λ1(k) < · · · of H̃(k) satisfies

(2.8) λ j(k) = k2 − 2aμk + ν j(2μk)2/3(1 + o(1)) (k → +∞).

Let A and B be self-adjoint operators that are bounded from below. We write A ≤ B if and
only if D(B) ⊂ D(A) and

(Au, u) ≤ (Bu, u) ∀u ∈ D(B).

Using the above inequality and the fact that x ∈ [−a, a], we obtain

H0(k) − μ2a2 ≤ H̃(k) = H0(k) − μ2x2 ≤ H0(k),

which together with Theorem XIII.1 in [24] yields

e j(k) − μ2a2 ≤ λ j(k) ≤ e j(k).

Thus (2.5) follows from (2.8) and the above inequality.
Next we prove (2.6). Let Ψn(·, k) be the normalized real-valued analytic function corre-

sponding to en(k). Since Ψn is real and ‖Ψn(·, k)‖ = 1, it follows that

(2.9)
∂

∂k

∫ a

−a
Ψn(x, k)2dx = 0 = 2

∫ a

−a
Ψn(x, k)

∂

∂k
Ψn(x, k)dx.

Put Ĥ(k) = H0(k) − k2, and let Γn be a simple closed contour around en(k) − k2 such that
dist(Γn, σ(Ĥ(k))) ≥ C > 0 uniformly on k. Let Πn(k) be the orthogonal projection onto the
eigenspace spanned by Ψn(·, k), that is for u(x) ∈ Λ2

(2.10) Πn(k)u(x) =
1

2πi

∫
Γn

(Ĥ(k) − z)−1dz = 〈 u(·) ,Ψn(·, k)〉Ψn(x, k).

From (2.9) we deduce that Πn(k)∂kΨn(·, k) = 0. Combining this with the fact that
Πn(k)Ψn(·, k) = Ψn(·, k) and using (2.10) as well as the fact that ∂kĤ(k) = 2μx, we get
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(2.11) ∂kΨn(x, k) = ∂kΠn(k)Ψn(x, k) =
−1
2πi

∫
Γn

(Ĥ(k) − z)−12μx(Ĥ(k) − z)−1dzΨn(x, k),

which yields

‖∂kΨn(·, k)‖ = (1)‖Ψn(·, k)‖ = (1).

We now proceed by induction using (2.11).
To prove (2.7), we differentiate the equality (H0(k) − en(k))Ψn(·, k) = 0 with respect to k

we get (
2(x + k) − en(k)

)
Ψn(x, k) =

(
H0(k) − en(k)

)
∂kΨn(x, k).

Taking the product scalar of both sides of the above equality with Ψn(·, k) and using the self
adjointeness of H0(k), as well as well as the fact that Ψn is real valued and normalized we
obtain the formula

(2.12) ∂ken(k) = 2
∫ a

−a
xΨn(x, k)2dx + 2k,

which yields (2.7) for p = 1. For p ≥ 2, we differentiate (2.12) and we use (2.6). �

We return now to the general case d ≥ 1. Let
(
e j

l (k j)
)

l∈N and
(
Ψ

j
l (x j, k j)

)
l∈N be the

eigenvalues and eigenvectors of the operator D2
x j
+ (k j + μ j x j)2 given by Theorem 2.1. For

J = ( j1, · · · , jd) ∈ Nd and k = (k1, · · · , kd) ∈ Rd, we denote

(2.13) eJ(k) = e1
j1 (k1) + · · · + ed

jd (kd), ΨJ(x, k) = Ψ1
j1 (x1, k1) × · · · × Ψd

jd (xd, kd).

By Theorem 2.1, we have

Corollary 2.2. Fix d ≥ 1. The spectrum of the operator H0(k) on {u ∈ H2(Λd); u|∂Λd = 0}
is discrete and coincides with {eJ(k); J ∈ Nd}. The family (ΨJ(·, k))J∈Nd is an orthonormal
basis in L2(Λd).

According to Theorem 2.1, Corollary 2.2, and the theory of decomposable operators (see
Theorem XIII. 85 in [24]) the spectrum of the operator H = D2

x + (Dy + μx)2 with domain


D
Ωd

is absolutely continuous, and given by

σ(H) =
⋃
J∈Nd

⋃
k∈Rd

eJ(k) = [e0(0),+∞[.

The points eJ(0) are thresholds in σ(H). From now on we denote this set by

Σ :=
⋃
J∈Nd

eJ(0) = σ(H0(0)).

For t0 ∈ Σ, we let t0 := {J ∈ Nd; eJ(0) = t0} and mt0 := #t0 be its multiplicity. In order to
formulate our results on the trace formula and the asymptotics of the spectral shift function,
we need to introduce the function ρ : R→ R related to the non-perturbed H by

(2.14) ρ(t) =
∑
J∈Nd

∫
{eJ(k)≤t}

dk
(2π)d .

Obviously, ρ(t) = 0 for t < e0(0) = infσ(H). In an appendix, we shall prove that the function
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ρ(t) is analytic except near Σ. More precisely, we have

Theorem 2.3. The function ρ is analytic except at Σ. Moreover, near any point t0 =
eJ(0) ∈ Σ, there exists analytic functions f and g such that :

ρ(t) = f (t − t0) + Y(t − t0)g(
√

t − t0),

for |t − t0| small enough with

g(t) ∼t→0

∑
J∈t0

vol(Sd−1)

d
√

det(∇
2eJ(0)

2 )
td.

Here Y(t) is the Heaviside function and Sd−1 stands for the unit sphere in Rd.

Remark 2.4. Notice that the singularity and the behavior of ρ near eJ(0) is similar to
those of the integrated density of states, ρ0(t), of −Δ on Rd near t = 0. We recall that

ρ0(t) = (2π)−dvol(BRd (0, 1))Y(t)td/2.

3. Asymptotic behavior of eigenvalues of H0(k) for μ � 1.

3. Asymptotic behavior of eigenvalues of H0(k) for μ � 1.
In this section, we investigate the asymptotic behavior of the eigenvalues of H0(k) when

μ tend to infinity. Without any loss of generality we may assume that d = 1, (i.e, Ω1 =

[−a, a] × R). For d > 1 we use (2.13). We set e j(k) and Ψ j(k) as the j−th eigenvalue
and the j-th eigenfunction of H0(k), respectively. In the following proposition we give the
asymptotic behavior of the eigenvalues e j(k) when μ tends to infinity.

Proposition 3.1. Fix j and a, we have :

e j(k) − μ(2 j + 1) ∼
μ→∞

2
(
a
√

2μ
)2 j+3

j!
√

2π
e−a2μe−k2/μ cosh(2ak)(3.1)

×
⎡⎢⎢⎢⎢⎢⎣1 + (2 j + 1)k

aμ
tanh(2ak) + j(2 j + 1)

(
k

aμ

)2

+ o
(

k2

μ2

)⎤⎥⎥⎥⎥⎥⎦ ,
uniformly for |k| � μ.

Proof. Change of variable x→ y − k/μ transforms H0(k) to

H̃0(k) = D2
y + μ

2y2, on [−a+k/μ,a+k/μ],

and again employ the change of variable y→ z/(
√

2μ), we have H0(k) is unitarily equivalent
to

(3.2) Ȟ0(k) = 2μ
(
D2

x +
x2

4

)
, on ̌[−z−,z+],

where

z± :=
√

2μ
(
a ± k

μ

)
.(3.3)

Hence the eigenvalue problem for H0(k) can be reduced to the one for Ȟ0(k). Here let uν(x)
be the solution of the Weber’s equation
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D2

x +
x2

4
−

(
ν +

1
2

)]
uν(x) = 0,(3.4)

with boundary condition uν(z+) = uν(−z−) = 0. Then uν(x) can be written as a linear
combination of the parabolic cylinder functions Dν(z) and Dν(−z),

(3.5) uν(x) = A1Dν(x) + A2Dν(−x).

We recall that

Dν(z) =
2ν/2e−z2/4

√
π

[
Γ

(
ν + 1

2

)
cos(νπ/2)F1

(
−ν

2
;

1
2

;
z2

2

)

+
√

2zΓ
(
1 +

ν

2

)
sin(νπ/2)F1

(
1 − ν

2
;

3
2

;
z2

2

)]
,

where F1 is the confluent hypergeometric function. For large |z| � 1, we have

(3.6) Dν(z) = e−z2/4zν
[
1 − ν(1 − ν)

2z2 + · · ·
]
, z � 1,

and for z � −1,

Dν(z) = e−z2/4zν
[
1 − ν(1 − ν)

2z2 + · · ·
]

(3.7)

−
√

2π
Γ(−ν)eνπiez2/4z−ν−1

[
1 +

(ν + 1)(ν + 2)
2z2 ± · · ·

]
.

By the boundary condition uν(z+) = uν(−z−) = 0, we obtain from (3.5) the conditions on the
energy spectrum :

(3.8) Dν(z+)Dν(z−) − Dν(−z+)Dν(−z−) = 0.

Since z± tends to infinity as μ→ ∞, it follows from (3.6) and (3.7) that

Dν(z+)Dν(z−) = e−(z2
++z2−)/4zν+zν−

[
1 + (z−2

± ) + · · ·
]

and

Dν(−z+)Dν(−z−) = e−(z2
++z2−)/4zν+zν−

[
1 + (z−2

± ) + · · ·
]

+

√
2π
Γ(−ν)eνπiez2

+/4−z2−/4(z+)−ν−1(z−)ν
[
1 + (z−2

± ) + · · ·
]

+

√
2π
Γ(−ν)eνπiez2−/4−z2

+/4(z+)ν(z−)−ν−1
[
1 + (z−2

± ) + · · ·
]

+

⎛⎜⎜⎜⎜⎝
√

2π
Γ(−ν)

⎞⎟⎟⎟⎟⎠2

e2νπie(z2
++z2−)/4(z+z−)−ν−1

[
1 + (z−2

± ) + · · ·
]
.

By (3.8), we have

ez2
+/4−z2−/4(z+)−ν−1(z−)ν

[
1 + (z−2

± ) + · · ·
]

+ ez2−/4−z2
+/4(z+)ν(z−)−ν−1

[
1 + (z−2

± ) + · · ·
]

+

√
2π
Γ(−ν)eνπie(z2

++z2−)/4(z+z−)−ν−1
[
1 + (z−2

± ) + · · ·
]
= 0.
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This implies

(
e−z2−/2z2ν+1

− + e−z2
+/2z2ν+1

+

) [
1 + (z−2

± ) + · · ·
]
= −
√

2π
Γ(−ν)eνπi

[
1 + (z−2

± ) + · · ·
]
.(3.9)

Recall that,

Γ(1 + z)Γ(−z) = − π

sin(πz)
, ∀z ∈ C \ Z.

Combining this with (3.9) we get

(
z2ν+1
+ e−z2

+/2 + z2ν+1
− e−z2−/2

) (
1 + 

(
1
z2±

))
=

√
2
π

e2πνi − 1
2i

Γ(1 + ν)
(
1 + 

(
1
z2±

))
.(3.10)

Now we look for ν = j + α j(μ, k) for some fixed j, with α j(μ, k) tends to zero when μ tends
to infinity. As a first approximation, it follows from (3.10) that

(3.11) z2 j+1
+ e−z2

+/2 + z2 j+1
− e−z2−/2 =

√
2πΓ(1 + j)α j(μ, k),

where we use

e2( j+α j)πi − 1√
2πi

∼ √2πα j(μ, k), as α j(μ, k)→ 0.

Thus by using (3.3) and (3.11),

α j(μ, k)
√

2πΓ(1 + j)

= (
√

2μ)2 j+1

⎛⎜⎜⎜⎜⎜⎝
(
a +

k
μ

)2 j+1

e−μ(a+k/μ)2
+

(
a − k

μ

)2 j+1

e−μ(a−k/μ)2

⎞⎟⎟⎟⎟⎟⎠
=

(
a
√

2μ
)2 j+1

e−a2μe−k2/μ

⎡⎢⎢⎢⎢⎢⎣
(
1 +

k
aμ

)2 j+1

e−2ak +

(
1 − k

aμ

)2 j+1

e2ak

⎤⎥⎥⎥⎥⎥⎦
=

(
a
√

2μ
)2 j+1

e−a2μe−k2/μ

⎡⎢⎢⎢⎢⎢⎢⎣
2 j+1∑
l=0

(
2 j + 1

l

) (
k

aμ

)l (
e−2ak + (−1)2 j−le2ak

)⎤⎥⎥⎥⎥⎥⎥⎦
=

(
a
√

2μ
)2 j+1

e−a2μe−k2/μ

×
⎡⎢⎢⎢⎢⎢⎣2 cosh(2ak) +

2(2 j + 1)k
aμ

sinh(2ak) + (2 j)(2 j + 1)
(

k
aμ

)2

cosh(2ak) + o
(

k2

μ2

)⎤⎥⎥⎥⎥⎥⎦ .
Consequently,

α j(μ, k)
√

2πΓ(1 + j) = 2
(
a
√

2μ
)2 j+1

e−a2μe−k2/μ cosh(2ak)

×
⎡⎢⎢⎢⎢⎢⎣1 + (2 j + 1)k

aμ
tanh(2ak) + j(2 j + 1)

(
k

aμ

)2

+ o
(

k2

μ2

)⎤⎥⎥⎥⎥⎥⎦ .
Notice that, according to (2.2), (3.4) and the unitary equivalence of H0(k) and Ȟ0(k), the
eigenvalues of H0(k) satisfy

e j(k) = 2μ
(

j +
1
2
+ α j(μ, k)

)
.

Summing up and using that Γ(1 + j) = j! we obtain (3.1). �
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Remark 3.2. For j = 0 and k = 0, (3.1) were obtained in [3].

4. Perturbed Hamiltonian

4. Perturbed Hamiltonian
Now, we investigate the effect of the slowly varying potential on the undisturbed operator

spectrum. First, we give a complete asymptotic expansion in powers of ε of tr(Ψ f (H(ε)))
where f ∈ C∞0 (R) and Ψ is an L1(Rd

y)-function. In particular, we obtain a Weyl type asymp-
totics with optimal remainder estimates of the counting function of eigenvalues of H(ε)
below the essential spectra. Finally, we give a complete asymptotic expansion in powers of
ε of the spectral shift function corresponding to (H(ε),H).

We suppose that V is smooth, and there exists δ ≥ 0 such that :

(4.1) ∀α, β ∈ Nd, ∃Cα,β s.t supx∈Λd
|∂βx∂αyV(x, y)| ≤ Cα,β〈y〉−δ.

By the Weyl criterion (see [17, 24]), if δ > 0, the essential spectra of H and H(ε) are the
same:

σess(H(ε)) = σess(H) = σ(H) = [e0(0),+∞[.

First, we derive a local trace formula.

Theorem 4.1. Assume (4.1) with δ ≥ 0, and let Ψ be a smooth function such that ∂αyΨ ∈
L1(Rd

y) for |α| ≤ 2d + 1 . Then for all f ∈ C∞0 (R), the operator (Ψ f (H(ε))) is trace class and
the following asymptotics hold :

(4.2) tr (Ψ f (H(ε))) ∼
∞∑
j=0

a jε
−d+ j,

with

(4.3) a0 = −
�
Rd×Rt

Ψ(y) f ′(t)ρ(t − V(0, y))dydt.

Here f (H(ε)) is the operator given by the spectral theorem and Ψ : L2(Ωd) � u →
Ψ(y)u(x, y) ∈ L2(Ωd) is the multiplication operator.

Let N([a, b]; ε) be the number of eigenvalues of H(ε) in [a, b] ⊂]−∞, e0(0)[ counted with
their multiplicity.

Corollary 4.2. Assume that V tends to zero at infinity, and let f ∈ C∞0 (] − ∞, e0(0)[;R).
We have

(4.4) tr( f (H(ε))) ∼
∞∑
j=0

b jε
−d+ j,

with

(4.5) b0 = −
�
Rd×Rt

f ′(t)ρ(t − V(0, y))dydt.

In particular,

(4.6) lim
ε↘0

[
εdN([a, b]; ε)

]
=

∫
Rd

[
ρ(b − V(0, y)) − ρ(a − V(0, y))

]
dy.
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Theorem 4.3. Assume (4.1) with δ > d. For f ∈ C∞0 (R) the operator f (H(ε)) − f (H) is
trace class. Moreover, the following asymptotics holds

(4.7) tr( f (H(ε)) − f (H)) ∼
∞∑
j=0

c jε
−d+ j

with

(4.8) c0 =

�
Rd×Rt

f ′(t)(ρ(t) − ρ(t − V(0, y))) dydt.

The above theorem, enables us to define the spectral shift function ξ(·, ε) ∈ ′(R), related
to the operators H(ε) and H (see (1.2)). Theorem 4.3 tel us that ξ(·, ε) converges to

∫
ρ(t) −

ρ(t − V(0, y))dy in the sense of distribution. Under a non-trapping condition, the following
result gives a pointwise asymptotic expansion in powers of ε of ξ′(·; ε).

Theorem 4.4. Fix λ > e0(0) with λ � {e1(0), e2(0), · · · }, and assume that

(4.9) k · ∇e j(k) − y · ∇yV(0, y) ≥ c > 0 in {(y, k) ∈ R2d; e j(k) + V(0, y) = λ}.
There exists η > 0 such that the following complete asymptotic expansion holds uniformly
on t ∈]λ − η, λ + η[:

(4.10) ξ′(t, ε) ∼
∞∑
j=0

κ j(t)ε−d+ j,

with

(4.11) κ0(t) =
∫

(ρ′(t) − ρ′(t − V(0, y)))dy.

Comments. Let us briefly examine the above results and their generalizations.
• By (2.3), assumption (4.9) is satisfied under the following condition :

−y∇yV(0, y) ≥ 0 and − y∇yV(0, y) > 0, on {y ∈ Rd; V(0, y) = λ − e j(0)}.
• All results above will remain true if we substitute H by HW := H +W(x), where W

is defined for x ∈ Λd. In this case, the ρ distribution of the abovementioned results
is associated with operator HW .
• If W � 0, the properties of the ρ distribution corresponding to the HW operator will

change. Indeed, it depends on the critical point of the eigenvalues e j(k) correspond-
ing to the operator HW(k) = D2

x + (k + μx)2 +W(x) on L2(Λd) (see Appendix A). In
particular, the set of ρ singularities is not only the defined threshold Σ, but contains
the critical values of the e j(k) eigenvalues. Note that statement (2.3) is generally not
true for W � 0. Critical value can occur for λ = e j(k) with λ > infke j(k).
• Let μ ∈ ′(R) be the distribution on R defined by

〈μ, f 〉 =
∫ [

f (V(0, y)) − f (0)
]
dy, f ∈ C∞0 (R).

As in [10, 12], using Theorem 4.4 and the definition of resonances by the analytic
distortion method one prove that near any point t ∈ Σ + singsuppa(μ) there are at
least (ε−d) resonances. Here singsuppa(μ) denotes the analytic singular support of
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the distribution μ.

5. Effective Hamiltonian

5. Effective Hamiltonian
We need some basic result about pseudodifferential operators with operator-valued sym-

bol (see [11] and the references cited therein). We shall consider a family of Hilbert space
X , X = R2d satisfying :

(5.1) X = Y , ∀X, Y ∈ R2d,

there exist N ∈ N and C > 0 such that for all u ∈ 0 and all X, Y ∈ R2d we have

(5.2) ‖u‖X ≤ C〈X − Y〉N‖u‖Y .

Notice that (5.1) means that only the norm of X depends on X, not on the space itself.
Let X be a second family with the same properties. We say that p ∈ C∞(R2d;(0,0))
belongs to the symbol class S0(R2d;(X ,X)) if for every α ∈ N2d there exists Cα such
that

(5.3) ‖∂αX p‖(X ,X) ≤ Cα, ∀X ∈ R2d.

If p depends on a semi-classical parameter ε and possibly on other parameters as well, we
require (5.3) to hold uniformly with respect to these parameters. For ε-dependent symbols,
we say that p(y, k; ε) has an asymptotic expansion in powers of ε , and we write

p(y, k; ε) ∼
∑

j

p j(y, k)ε j in S0(R2d;(X ,X))

if for every N ∈ N, ε−N−1
(
p(y, k; ε) −∑N

j=0 p j(y, k)ε j
)
∈ S0(R2d;(X ,X)).

We can then associate to p an ε-pseudo-differential operator

pw(y, εDy; ε)u(y) =
�

e
i
ε (y−t)k p(

y + t
2

, k; ε)u(t)
dtdk

(2πε)d , u ∈ 0.

Here we use the Weyl quantization. Similarly to the scalar case, the following results hold.

Theorem 5.1. Let p ∈ S0(R2d;(X ,X)) where X ,X satisfy (5.1) and (5.2) then
pw(y, εDy, ε) is uniformly continuous from S(Rd;0) into S(Rd;0).

Theorem 5.2. Assume X = 0 and X = 0 for all X ∈ R2d. If p ∈ S0(R2d;(0,0))
then pw(y, εDy; ε) is bounded from L2(Rd,0) into L2(Rd,0).

Let X be a third Hilbert space which satisfies (5.1), (5.2).

Theorem 5.3. Let p ∈ S0(R2d;(X ,X)), q ∈ S0(R2d;(X ,X)). Then

pw(y, εDy) ◦ qw(y, εDy) = rw(y, εDy; ε),

where r is given by

(5.4) r(y, k; ε) ∼
∑
j=0

1
j!

(
iε
2
σ(Dy,Dk; Dx,Dξ)) j p(y, k)q(x, ξ)|x=y,k=ξ.
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5.1. Grushin problem: brief description.
5.1. Grushin problem: brief description. In this paragraph we recall the basic results

about Grushin problem. Let H1,H2 and H3 be three Hilbert spaces, and let P ∈ (H1,H3)
be self-adjoint. Assume that there exist R+ ∈ (H1,H2) and R− ∈ (H2,H3) such that the
following operator

(z) =
(
P − z R−
R+ 0

)
: H1 × H2 → H3 × H2

is bijective for z ∈ Ω. Here Ω is an open bounded set in C. Let

(z) =
(

E(z) E+(z)
E−(z) Eeff(z)

)
be its inverse. We refer to the problem (z) as a Grushin problem and the operator Eeff(z)
is called effective Hamiltonian. Notice that, an effective Hamiltonian is a Hamiltonian that
acts in a reduced space and only describes a part of the eigenvalue spectrum of the true
Hamiltonian P. Morally, effective Hamiltonians are much simpler than the true Hamilton-
ian and hence their eigensystems can often be determined analytically or with little effort
numerically.

The following useful properties (relating the operator P and its effective Hamiltonian) are
consequences of the identities  ◦  = I and  ◦  = I:

(5.5) (P − z) is invertible if and only if Eeff(z) is invertible,

(5.6) dim ker(P − z) = dim ker(Eeff(z)),

(5.7) (P − z)−1 = E(z) − E+(z)E−1
eff (z)E−(z),

(5.8) E−1
eff (z) = −R+(P − z)−1R−.

The last two equalities hold for all �z � 0. On the other hand, since z �→ (P − z) is
holomorphic, it follows that the operators E(z), E±(z) and Eeff(z) are also holomorphic in
z ∈ Ω. Moreover, we have

(5.9) ∂zEeff(z) = E−(z)E+(z).

This identity comes from the fact that R± are independent of z.

6. Spectral Reduction to an ε-pseudodifferential operator

6. Spectral Reduction to an ε-pseudodifferential operator
Throughout this section we assume that V is independent on x. The proof of the general

case is quite similar with minor modifications (see Remark 7.2). Fix an interval I = [α, β],
and set

U = {J ∈ Nd; eJ(k) ≤ β + ‖V‖∞}.
According to Theorem 2.1 and Corollary 2.2, eJ(0) (respectively eJ(k)) tends to infinity as
|J| → ∞ (respectively |k| → ∞). Therefore U is finite. In what follows, (Ψ0(·, k), · · · ,
ΨN−1(·, k)) denotes the family (ΨJ(·, k))J∈U, where N = #U.

To shorten notation, we omit the index d in Ωd and Λd. For k ∈ Rd, let Λ,k = Λ be the
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Hilbert space with k-dependent norm: ‖u‖2
Λ,k = ‖u‖2H2(Λ) + |k|4‖u‖2L2(Λ). We denote by CN

k the
space CN equipped with norm (1 + |k|2)| · |CN .

By the change of variable y �→ y/ε, the operator H(ε) is unitarily equivalent to

(6.1) H1 := H1,0 + V(y),

where

H1,0 :=
d∑

j=1

D2
x j
+ (εDy j + μ j x j)2.

Let G(y, k) = H0(k) + V(y) be the linear bounded operator from Λ into L2(Λ), where
H0(k) is given by (2.2). Obviously, G ∈ S0(R2d;(Λ,k, L2(Λ)). Thus, by quantizing G we
have

G(y, εDy) = H1.

More precisely, H1 can be viewed as an ε-pseudo-differential operator on y with operator
valued symbol G(y, k).

For k ∈ Rd, and N ∈ N∗, define R+(k) : L2(Λ)→ CN , R−(k) = R∗+(k) : CN → L2(Λ) by

R+(k)u = (〈u,Ψ0(·, k)〉, · · · , 〈u,ΨN−1(·, k)〉),

R−(k)(c1, · · · , cN) =
N−1∑
j=0

c jΨ j(·, k).

According to Corollary 2.2 the family (ΨJ(·, k))J∈Nd is an orthonormal basis in L2(Λ). Hence,
a simple computation yields

R+(k)R−(k) = ICN ,(6.2)

R−(k)R+(k)u =
N−1∑
j=0

〈u,Ψ j(·, k)〉Ψ j(·, k) =: ΠNu, ∀u ∈ L2(Λ).

The following proposition reduces the spectral study of the operator G(y, k) : Λ,k → L2(Λ)
near the energy z, to the study of an N × N-square matrix Eeff(y, k, z).

Proposition 6.1. Fix a bounded interval I. There exists N ∈ N∗ such that for all z ∈ I the
operator

(6.3) (y, k) :=
(
G(y, k) − z R−(k)

R+(k) 0

)
: Λ,k × CN → L2(Λ) × CN

k ,

is bijective with bounded two-sided inverse

(6.4) (y, k, z) :=
(
ĜN(y, k, z) R−(k)

R+(k) Eeff(y, k, z)

)
.

Here ĜN(y, k, z) = (G(y, k) − z)−1(1 − ΠN) and Eeff(y, k, z) is the square diagonal matrix
(z − e j(k) − V(0, y))δi j)0≤i, j≤N−1. Moreover

(6.5)  ∈ S0(R2d;(Λ,k × CN ; L2(Λ) × CN
k )).
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(6.6)  ∈ S0(R2d;(L2(Λ) × CN
k ;Λ,k × CN)).

Proof. By construction, we have

eJ(k) + V(y) − z ≥ c > 0,

uniformly for (z, k, y) ∈ I × R2d and J � U. Thus, the operator

(G(y, k) − z)−1(1 − ΠN) : L2(Λ)→ Λ,Y ,

is well-defined and uniformly bounded on (z, y, k) ∈ I × R2d. Using (6.2), an easy compu-
tation shows that (y, k) ◦ (y, k, z) = I and (y, k, z) ◦ (y, k) = I. On the other hand,
it follows from (2.6) that (y, k) → R−(k) ∈ S0(R2d;(CN ; L2(Λ)) and (y, k) → R+(k) ∈
S0(R2d;(Λ,k;CN)). �

Proposition 6.2. The operator

(6.7)  :=
(
G(y, εDy) − z R−(εDy)

R+(εDy) 0

)
: D
Ω × H2(Rd;CN)→ L2(Ω) × L2(Rd;CN),

is bijective with an inverse

(z; ε) := 
w(z; ε) =

(
Ew(y, εDy, z; ε) Ew

+(y, εDy, z; ε)
Ew−(y, εDy, z; ε) Ew

eff(y, εDy, z; ε)

)
,

uniformly bounded with respect to z ∈ I and ε small enough. Moreover, (z; ε) depend
holomorphically on z, and (y, k, z; ε) has an asymptotic expansion in S0(R2d;(L2(Λ) ×
C

N
k ;Λ,k × CN)), i.e.,

(6.8) (y, k, z; ε) =
(

E(y, k, z; ε) E+(y, k, z; ε)
E−(y, k, z; ε) Eeff(y, k, z; ε)

)
∼
∞∑
j=0

 j(y, k, z)ε j.

In particular Eeff(y, k, z; ε) ∼ ∑∞
j=0 Eeff, j(y, k, z)ε j in S0(R2d;(CN

k ;CN)). The leading terms
0(y, k, z) and Eeff,0(y, k, z) are given by Proposition 6.1, i.e.,

0(y, k, z) = (y, k, z; 0) and Eeff,0(y, k, z) = Eeff(y, k, z; 0).

Proof. The fact that  can be viewed as an ε-pseudodifferential operator valued symbol
(y, k) and Theorem 5.3 show that

(6.9) 
w(y, εDy) ◦ w(y, εDy, z) = I + εw(y, εDy, z; ε),

where (y, k, z; ε) ∼ ∑∞
j=0  j(y, k, z)ε j in S0(R2d;(L2(Λ) × CN ; L2(Λ) × CN)). It follows

from Theorem 5.2 that w(y, εDy, z; ε) is uniformly bounded for z ∈ I and |ε | ≤ 1. Thus,
for ε small enough the right hand side of (6.9) is invertible. On the other hand we know
that if P = pw(y, k, ε) is an invertible ε-pseudo-differential with p(y, k; ε) ∼ ∑∞

j=0 p j(y, k)ε j

then its inverse qw is also an ε-pseudodifferential operator with q(y, k; ε) ∼ ∑∞
j=0 q j(y, k)ε j.

Consequently, w(y, εDy, z; ε) := 
w(y, εDy, z) ◦ (I + εw(y, εDy, z; ε))−1 satisfies all the

desired properties. �

Remark 6.3. Let 0(z) be the operator given by Proposition 6.2 corresponding to the
non-perturbed operator H0 (i.e., V = 0). Since (y, k) = (k) is y-independent, we have
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0(z) =
(
ĜN(εDy, z) E0

+(εDy)
E0−(εDy) E0

eff(εDy, z)

)
,

where E0
+(k) = R−(k), E0−(k) = R+(k) and E0

eff(k, z) = ((z − e j(k))δi j)0≤i, j≤N−1

7. Proof of the main results

7. Proof of the main results7.1. Proof of Theorem 4.1.
7.1. Proof of Theorem 4.1. In the following we fix a bounded interval I containing

supp( f ), and we apply Proposition 6.1 and Proposition 6.2 on I. For the simplicity of the no-
tation we ignore the dependence of E, E+, E−, Eeff on (y, k, z, ε). We denote by E0, E0

+, E
0−,

E0
eff the operators given by Proposition 6.2 corresponding to the case V = 0 (see Remark

6.3). We shall sometimes use the same symbol for an ε-pseudodifferential operator and for
its Weyl symbol.

Applying formulas (5.7) and (5.8) to Proposition 6.2 we obtain

(7.1) (H1 − z)−1 = E − E+E−1
effE−,

(7.2) ∂zEeff = E−E+.

Assume that f ∈ C∞0 (R) is real-valued, we can construct an almost analytic extension
f̃ ∈ C∞0 (C) of f satisfying the following properties (see [11]) :

(7.3) f̃ (z) = f (z), ∀z ∈ R,
for all N ∈ N there exists CN such that

(7.4) |∂ f̃
∂z

(z)| ≤ CN |�z|N .
Let H be any self-adjoint operator, the Dynkin-Helffer-Sjöstrand formula reads [11]:

(7.5) f (H) = −1
π

∫
∂ f̃
∂z

(z)(z − H)−1L(dz), with z = x + iy,

which yields

(7.6) f (H1) = −1
π

∫
∂ f̃
∂z

(z)(z − H1)−1L(dz).

Here L(dz) is the Lebesgue measure on the complex plane C ∼ R2
x,y.

Inserting (7.1) in the right hand side of (7.6) and using the fact that z → Ew(y, εDy, z; ε)
is holomorphic, we get

(7.7) f (H1) = −1
π

∫
∂ f̃
∂z

(z)E+E−1
effE−L(dz).

Here and in what follows we use the fact that
∫
∂z f̃ (z)K(z)L(dz) = 0 provided that K(z) is

holomorphic in a neighborhood of supp( f̃ ). We recall that the principal symbol of Eeff is
given by

Eeff,0(y, k, z) = ((z − V(y) − e j(k))δi, j)0≤i, j≤N−1,

and that e j(k) ∼ |k|2 at infinity from (2.5) in Theorem 2.1. For j = 0, · · · ,N − 1, let ẽ j(k) be
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a smooth function such that ẽ j(k) = e j(k) for |k| large enough and

(7.8) |z − V(y) − ẽ j(k)| ≥ c0(1 + |k|2), ∀ (z, y, k) ∈ supp f̃ × Rd × Rd.

Put

Ẽeff(y, k, z; ε) = Eeff(y, k, z; ε) + Ẽeff(y, k, z) − Eeff(y, k, z),

where Ẽeff(y, k, z) = ((z−V(y)−ẽ j(k))δi, j)0≤i, j≤N−1. We conclude from (7.8) that Ẽeff(y, k, z; ε)
is elliptic for ε small enough, hence that Ẽeff := Ẽw

eff(y, εDy, z; ε) is invertible and holomor-
phic for z ∈ supp( f̃ ), and finally that∫

∂ f̃
∂z

(z)E+Ẽ−1
effE−L(dz) = 0.

Combining the above equality with (7.7), we obtain

(7.9) f (H1) = −1
π

∫
∂ f̃
∂z

(z)E+(E−1
eff − Ẽ−1

eff )E−L(dz).

Let Ψ be as in Theorem 4.1. Writing E−1
eff − Ẽ−1

eff = Ẽ−1
eff (Ẽeff − Eeff)E−1

eff and using the fact
that Ẽeff − Eeff = ((e j(k) − ẽ j(k))1≤i, j≤N has a compact support, we deduce that the operator
Ψ
(
E+Ẽ−1

eff (Ẽeff − Eeff)E−1
effE−

)
is trace class. Thus, by using the cyclicity of the trace we get

tr
(
Ψ f (H1)

)
= −1

π

∫
∂ f̃
∂z

(z)tr
(
E−1

eff − Ẽ−1
eff )E−ΨE+

)
L(dz)(7.10)

= tr
(
− 1
π

∫
∂ f̃
∂z

(z)E−1
effE−ΨE+L(dz)

)
.

In the last equality we have used the fact the operator Ẽ−1
effE−ΨE+ is holomorphic on z ∈

supp( f̃ ).
According to Proposition 6.2 and Theorem 5.3 the operator A = E−ΨE+ is an ε-

pseudodifferential operator on L2(Rd;CN) with A = Aw(y, εDy, z; ε) where A(y, k, z; ε) ∼∑∞
j=0 Aj(y, k, z)ε j in S0(R2d;(CN ;CN)). Moreover, from Proposition 6.1 we have A0(y, k, z)
= Ψ(y).

The proof of the following lemma is similar to the one in [7].

Lemma 7.1. Fix δ ∈]0, 1/2[. There exists r ∈ S0(R2d;(CN ,CN)) such that r(y, k; ε) ∼∑∞
j=0 r j(y, k)ε j and

rw(y, εDy; ε) = −1
π

∫
|�z|≥εδ

∂ f̃
∂z

(z)E−1
effE−ΨE+L(dz),

with

r0(y, k) = −1
π

∫
∂ f̃
∂z

(z)
((

z − e j(k) − V(y)
)−1

δi, j

)
0≤i, j≤N−1

L(dz)Ψ(y).

We now turn to the proof of Theorem 4.1. If we restrict the integral in the right hand side
of (7.10) to the domain |�z| ≤ εδ then we get a term (ε∞) in trace norm. Here we have
used the fact that | ∂ f̃

∂z (z)| = (|�z|M) for all M ∈ N (see (7.4)). If we restrict our attention to
the domain |�z| ≥ εδ then by Lemma 7.1 we get a complete asymptotic expansion in powers
of ε, which yields (4.3). To finish the proof let us compute a0. We have
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a0 =

�
t̂r(r0(y, k))

dydk
(2π)d =

N−1∑
j=0

� (
−1
π

∫
∂ f̃
∂z

(z)(z − e j(k) − V(y))−1L(dz)
)
Ψ(y)

dydk
(2π)d .

Here t̂r stands for the trace of square matrices. Since 1
π
∂z

1
z−z0
= δ(· − z0), it follows that

− 1
π

∫
∂ f̃
∂z (z)(z − e j(k) − V(y))−1L(dz) = f (e j(k) + V(y)). Consequently,

a0 =

N−1∑
j=0

�
f (e j(k) + V(y))Ψ(y)

dydk
(2π)d =

∑
j

�
f (e j(k) + V(y))Ψ(y)

dydk
(2π)d .

In the above equality we have used the fact that e j(k) + V(y) � supp( f ) for (y, k) ∈ Rd × Rd

and j � {0, · · · ,N − 1}. Combining this with the obvious equality∑
j

∫
f (e j(k) + V(y))

dk
(2π)d = −

∑
j

∫
f ′(t)

∫
e j(k)≤t−V(y)

dkdt = −
∫

f ′(t)ρ(t − V(y))dt,

we get (4.3).

7.2. Proof of Corollary 4.2.
7.2. Proof of Corollary 4.2. Let f be as in Corollary 4.2, and fix η > 0 small enough such

that supp( f ) ⊂]−∞, e0(0)−η]. Putωη := {y ∈ Rd; ∃( j, k) ∈ N×Rd s.t. e j(k)+V(y) ∈ supp( f )}.
Since V tends to zero at infinity and e j(k) ≥ e j(0) for all j, k, it follows that ωη is a compact
set.

Let Ṽ be a smooth function such that Ṽ(y) ∈ [−η/2, η/2] for all y ∈ Rd and Ṽ(y) = V(y)
for |y| large enough. Put

Ẽeff(y, k, z; ε) = Eeff(y, k, z; ε) + (Ṽ(y) − V(y))IN .

By construction of Ṽ , we have

|z − e j(k) − Ṽ(y)| ≥ C(1 + |k|2),

uniformly on ( j, y, k) ∈ N × R2d and z in small complex neighborhood of supp( f̃ ).
Hence, the principal symbol Ẽeff(y, k, z) = ((z− Ṽ(y)−e j(k))δi, j)0≤i, j≤N−1 of Ẽeff is elliptic.

We can now proceed analogously to the proof of (7.9), and obtain

(7.11) f (H1) = −1
π

∫
∂ f̃
∂z

(z)E+(E−1
eff − Ẽ−1

eff )E−L(dz).

Let ψ ∈ C∞0 (Rd) be equal to one in a neighborhood of supp(Ṽ − V = Ẽeff − Eeff). Writing
E+(E−1

eff − Ẽ−1
eff )E− = E+Ẽ−1

eff (Ẽeff −Eeff)E−1
effE− and using the fact that supp(1−ψ)∩ supp(Ṽ −

V) = ∅, we deduce from (7.11) and (5.4) that ‖(1 − ψ) f (H1)‖tr = (ε∞). Consequently,

(7.12) tr( f (H1)) = tr(ψ f (H1)) + (ε∞),

which together with Theorem 4.1 yields (4.4) and (4.5). Notice that the right hand side of
(7.12) is independent modulo (ε∞) of the choice of ψ, since ψ = 1 near the characteristic
set Ση of Eeff .

It remains to prove (4.6). For every small η > 0, choose fη, fη ∈ C∞0 (R; [0, 1]) with

1[a+η,b−η] ≤ fη ≤ 1[a,b] ≤ fη ≤ 1[a−η,b+η].

It then suffices to observe that
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tr
[
fη(H(ε))

]
≤ N([a, b]; ε) ≤ tr

[
fη(H(ε))

]
,

which yields

lim
η↘0

lim
ε↘0

(
(2πε)dtr

[
fη(H(ε))

])
≤ lim

ε↘0
(2πε)dN([a, b]; ε) ≤ lim

η↘0
lim
ε↘0

(
(2πε)dtr

[
fη(H(ε))

])
,

and to apply Theorem 4.1.

7.3. Proof of Theorem 4.3.
7.3. Proof of Theorem 4.3. We only mention the steps in the proof of Theorem 4.3 which

are the same as in the proof of Theorem 4.1. Fix z0 < inf(σ(Hj)) ( j = 0, 1), and let m >

d/2 + 1. From the assumption (4.1) the operator (H1 − z0)−m − (H0 − z0)−m is trace class.
Therefore, f (H1)− f (H0) is trace class for all f ∈ C∞0 (R). In contrast to the proof of Theorem
4.1, we don’t need to introduce the function Ψ, since f (H1) − f (H0) is trace class.

As in the proof of (7.7), Proposition 6.2 and Remark 6.3 yield

f (H0) = −1
π

∫
∂ f̃
∂z

(z)E0
+(E0

eff)
−1

E0
−L(dz),

which together with (7.7) gives

(7.13) tr ( f (H1) − f (H0)) = tr
(
−1
π

∫
∂ f̃
∂z

(z)
[
E1
+Eeff

−1E1
− − E0

+(E0
eff)
−1

E0
−
]
L(dz)

)
.

Next, analysis similar to that in the proof of (7.10) shows that

(7.14) tr ( f (H1) − f (H0)) = tr
(
−1
π

∫
∂ f̃
∂z

(z)
[
Eeff

−1E1
−E1
+ − (E0

eff)
−1

E0
−E0
+

]
L(dz)

)
.

According to (5.9), Proposition 6.2 and Remark 6.3, we have

∂zEeff = E1
−E1
+, ∂zE0

eff = E0
−E0
+.

Combining this with (7.14), we obtain

(7.15) tr ( f (H1) − f (H0)) = tr
(
−1
π

∫
∂ f̃
∂z

(z)
[
Eeff

−1∂zEeff − (E0
eff)
−1
∂zE0

eff

]
L(dz)

)
.

We now apply the same arguments after Lemma 7.1, with (7.10) replaced by (7.15), to obtain
Theorem 4.3.

7.4. Proof of Theorem 4.4.
7.4. Proof of Theorem 4.4. The starting point is formula (7.15). Let θ and g be C∞-

functions with compact support such that θ = 1 near zero, g = 1 on ]λ − η, λ + η[ and
supp(g) ⊂]λ−2η, λ+2η[. We choose η > 0 small enough so that (4.9) holds on ]λ−2η, λ+2η[.
Applying (1.2) and (7.15) to the function f (x) = g(x)(−1

ε θ)(λ − x), we obtain

− 〈ξ′(·; ε), g(·)(−1
ε θ)(λ − ·)〉 = tr

(
g(H1)(−1

ε θ)(λ − H1) − g(H0)(−1
ε θ)(λ − H0)

)
(7.16)

= tr
(
−1
π

∫
∂g̃

∂z
(z)(−1

ε θ)(λ − z)
[
Eeff

−1∂zEeff − (E0
eff)
−1
∂zE0

eff

]
L(dz)

)
.

Here g̃ is an almost analytic extension of g, and 
−1
ε is the semi-classical Fourier transform

of θ :
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(−1
ε θ)(τ) =

1
(2πε)

∫
R

e
i
ε tτθ(t)dt.

A symbol (y, k)→ A(y, k, z) ∈ (CN ;CN) is non-trapping at the energy z = z0 if and only
if there exists a scalar escape function G ∈ C∞(R2d;R) such that

∃C > 0,
∂G
∂y
· ∂A
∂k
− ∂G
∂k
· ∂A
∂y
≥ C, ∀(y, k) with detA(y, k, z0) = 0.

According to Proposition 6.2, Eeff is an ε-pseudodifferential operator. On the other hand,
the assumption (4.9) means that the classical symbol corresponding to Eeff is non-trapping.
The asymptotic expansion with respect to ε of an integral similar to the right-hand side of
the second equality in (7.16) have been studied by many authors (see [1, 9, 13, 11, 25] and
the references given therein). In particular, under the assumption (4.9), it follows from the
arguments in the proofs of Theorems 2.5 and 2.6 in [9] (see also [1]) that the left-hand side
of (7.16) has a complete asymptotic expansion in powers of ε, and

ξ′(τ, ε)g(τ) = 〈ξ′(·; ε), g(·)(−1
ε θ)(τ − ·)〉 + (ε∞),

uniformly for τ ∈]λ − 2η, λ + 2η[. This implies (4.10). The explicit formula of κ0(t) follows
from (4.8).

Remark 7.2. We will now show how to treat the case when V depends on x. The only
modification to be made is the proof of Proposition 6.1. Fix m ∈ N∗. By Taylor’s formula
we have

(7.17) V(εx, y) = V(0, y) +
m∑
|α|=1

ε |α|

α!
xα

∂α

∂xα
V(0, y) + εm+1

(1) =: V(0, y) + εW(x, y; ε),

uniformly for (x, y) ∈ Ωd. Let (y, k) and (y, k, z) be the operators given in Proposition 6.1
corresponding to the operator V(y) = V(0, y). Now, consider the Grushin problem related to
G̃(y, k, ε) = G(y, k) + εW(x, y, ε) :

̃(y, k, , ε) =
(
G̃(y, k, ε) − z R−(k)

R+(k) 0

)
= (y, k) + ε

(
W 0
0 0

)
: Λ,k × CN → L2(Λ) × CN

k .

Since W(·, y, ε) : Λ,k → L2(Λ) is uniformly bounded with respect to y ∈ Rd and ε ∈
[0, 1], it follows from Proposition 6.1 that, for ε small enough the operator ̃(y, k, , ε) is
bijective with bounded two-sided inverse

(7.18) ̃(y, k, z; ε) :=
(
ĜN(y, k, z; ε) E+(k, z, ε)

E−(k, z, ε) Eeff(y, k, z; ε)

)
=

(
I + ε(y, k, z)

(
W 0
0 0

))−1

(y, k, z).

From (7.17) and the above equality it follows that, modulo (εm+1), ̃(y, k, z; ε) has an as-
ymptotic expansion in powers of ε in S0(R2d;(L2(Λ)×CN

k ;Λ,k ×CN)). This gives Propo-
sition 6.1 when V depends on (x, y).

We can now proceed analogously to the proof of the case V = V(y).
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Appendix A Proof of Theorem 2.3

Appendix A. Proof of Theorem 2.3
Fix J = ( j1, j2, · · · , jd) ∈ Nd, and let eJ(k) = e j1 (k1) + · · · + e jd (kd) be one eigenvalue of

the operator H0(k). Set

κ(t) =
∫
{k∈Rd ;eJ(k)≤t}

dk.

Lemma A.1. The function κ is analytic in a neighborhood of R \ {eJ(0)}.
Proof. Fix t0 � eJ(0), and let ε be a small positive constant such that ∇eJ(k) � 0 when

k ∈ Σε(t0) := e−1
J (]t0 − ε, t0 + ε[). Without any loss of generality we may assume that

∂k1eJ(k) � 0 for all k ∈ Σε(t0). By the change of variable U : k �→ k̃ = (eJ(k), k2, ..., kd), we
have ∫

{k∈Σε (t0) ; eJ(k)≤t}
dk =

∫
{k̃∈U(Σε (t0)) ; k̃1≤t}

Jac(U−1(k̃))dk̃.

Clearly the right-hand side of the above equality is analytic. Combining this with the fact
that

∫
{k∈Rd\Σε (t0) ; eJ(k)≤t} dk is constant for t near t0, we get the lemma. �

Thus, the function ρ is analytic in a neighborhood of Σ = R \σ(H0(0)). The remainder of
the proof of Theorem 2.3 is a simple consequence of the following lemma.

Lemma A.2. There exists an analytic function g with g(s) ∼s→0
vol(Sd−1)

d
√

det( ∇
2eJ (0)

2 )
sd such that

κ(t) = Y(t − eJ(0))g(
√

t − eJ(0)),

for |t − eJ(0)| small enough. Here Y(t) is the Heaviside function, and Sd−1 stands for the unit
sphere in Rd.

Proof. By Morse Lemma there exist a neighborhood  of k = 0, ε > 0 and a local analytic
diffeomorphism  :  → B(0, ε) satisfying (k) = k + (k2) such that

eJ ◦−1(k) = eJ(0) +
1
2
〈∇2eJ(0)k, k〉.

On the other hand, for |t − eJ(0)| small enough we have

{k ∈ Rd; eJ(k) ≤ t} = {k ∈  ; eJ(k) ≤ t}.
Thus making the change of variable k = 

−1(ξ) and using polar coordinates, we obtain

κ(t) =
∫
{k∈ ; eJ(k)≤t}

dk =
(
det

(∇2eJ(0)
2

) )−1/2
∫
{ξ∈B(0,ε) ; |ξ|2≤t−eJ(0)}

Jac(−1(ξ))dξ

=
(
det

(∇2eJ(0)
2

) )−1/2
∫ √

max(t−eJ(0),0)

0

∫
Sd−1

Jac(−1(rω)) rd−1drdω,

which yields the lemma since Jac(−1(rω)) = 1 + (r). �

We now turn to the proof of Theorem 2.3. For t0 ∈ Σ, we let t0 := {J ∈ Nd; eJ(0) = t0}
and mt0 := #t0 be its multiplicity. Writing
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ρ(t) =
∑

( j1,··· , jd)�Σt0

∫
{k∈Rd ;e j1 (k1)+···+e jd (kd)≤t}

dk

︸����������������������������������������︷︷����������������������������������������︸
(1)

+
∑

( j1,··· , jd)∈Σt0

∫
{k∈Rd ;e j1 (k1)+···+e jd (kd)≤e}

dk

︸�����������������������������������������︷︷�����������������������������������������︸
(2)

.

It follows from Theorem 2.1 that ∇keJ(k) = ∇k(e j1 (k1) + · · · + e jd (kd)) � 0 on Ση(t0) for η
small enough and ( j1, · · · , jd) � t0 . Combining this with Lemma, we deduce that (1) is
analytic for |t − t0| small enough. Thus applying Lemma A.2 to each term of (2) we get
Theorem 2.3.
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