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Abstract
Consider the Schrodinger operator with constant magnetic field and smooth potential V :
H(e) = H + V(ex,ey), H = D* + (D, + ux)?, (x,y) € Qu, with Dirichlet boundary condi-
tions. Here Q, = H?Zl] —aj,a j[xR‘yj . The spectral properties of two operators H and H(e) are
investigated. For € small enough, we study the effect of the slowly varying potential V(ex, ey).
In particular, we derive asymptotic trace formula and we give an asymptotic expansion in pow-
ers of € of the spectral shift function corresponding to (H(e), H).

1. Introduction

The Hamiltonian for a system of d interacting electrons confined along the x-direction
and free to move along the y-direction in the presence of magnetic and electric potentials is
given by

d
1
(1.1) H(e) := ZD; +(D,, + ux;)? + Viex, ey), D, = =0,
=
where x = (x|, ,Xg) € Ay := H?zl]—aj,aj[,y eRY pu= (1, ,pa) with €,aj, ;> 0.

The potential V is assumed to be smooth and real-valued. The non-perturbed operator

d

H=D>+ (D, +ux) = ZDﬁj +(D,, + ux))?

=1
is defined on Hgd = {u € H}(Qy); ulpg, = 0}, where H?*(Q,) stands for the second order
Sobolev space on Q; = {(x,y) € R? x RY; —aj < xj < aj} = Ag X R?. The Fourier
transformation with respect to y reduces the spectral problem of H to an analysis of the
eigenvalues {e;(k)},°, depending on k = (ky,- - - , ky) of the operator

d
Ho(k) = D2 + (k+ ) = " D2+ (kj + 1))’
j=1
on Ay with Dirichlet boundary condition.
When the electron moves freely in both directions (i.e. a; = oo, He, = H on R*), the
spectrum of H,, exhibits infinitely degenerate eigenvalues, the so called Landau levels. The
two-dimensional version of (1.1) is generally considered to serve as a minimal model for the
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integer quantum Hall, and has therefore been intensively investigated by physicists, see for
instance [19, 29].

When q; is finite, the spectrum of H is absolutely continuous, and coincides with [e((0),
+oo[. The points e;(0) are thresholds in o-(H), and tends to the Landau level when u or a;
is large enough (see Proposition 3.1). The application of the H(e) spectrum in the theory
means that we take into consideration important factors like finite size of the Hall system
and the presence of a crystal lattice or impurities, and so on, in it. If the scalar potential
V tends to zero as |y| — oo, the essential spectra of H(e) and H are the same, and discrete
eigenvalues with finite multiplicities can arise in | — oo, ¢y(0)[. Moreover, it is reasonable
to expect that the electric field creates embedded eigenvalues and resonances on the second
sheet. The principal topic of this paper centers around the effect of the slowly varying
decaying perturbation V(ex, ey) on the non-perturbed operator H. Particular attention will
be paid to the asymptotic behavior of the spectrum near the thresholds e;(0).

The spectrum of the non-perturbed Hamiltonian H on a bounded domain Q c R? were
considered by many others. The asymptotic behavior of the bottom of the spectrum of H as
u tends to infinity has been treated for different geometry of Q (see [14] and the references
cited therein). When € is the semi-infinite plane or the disk, the WKB approximations of the
energies and the eigenfunctions are obtained in [28]. For the counting function of the number
of eigenvalues of the two dimensional Schrodinger operator with magnetic field we refer to
[23, 27] and the monographs [14, 16]. The nature of the spectrum of the operator H(1) on
the half plane with Dirichlet boundary condition was studied in [2]. Other exciting spectral
properties of the 2D Schrodinger operator with crossed magnetic and electrical fields have
been investigated in [4, 6, 18, 22, 26].

In [5] (see also [6]), Mourre’s theory and the spectral shift function near the thresholds
e;(0) were considered when € = 1 and Q; =] — a,a[xR. In [8], the W.K.B approximation
method is used to study the dynamics and the bottom of the spectrum of the operator H(e)
on Q. This method cannot used to describe all the spectrum of H(¢). On the other hand, the
multi-dimensional case (i.e., £; with d > 1) is more complicated, since the thresholds e;(0)
are in general degenerates when d > 1. Here we present an unified approach and derive an
explicit formula for the counting and spectral shift functions corresponding to H and H(e).
Our goal is to give a rigorous way to recover the spectrum of H(e) on €y, (d > 1) near any
energy level 4, by studying systems of pseudo-differential operators which have a principal
symbol quite close to one of e;(eD,) + V(0, y) — z, where z is the spectral parameter and e (k)
is an eigenvalue of Hy(k).

The main results of this paper are briefly summarized here. Sections 2 and 3 are devoted
to the study of the non-perturbed operators Hy(k) and H. We collect in Theorem 2.1 and
Corollary 2.2 a few properties of the eigenvalues e;(k) and their corresponding eigenfunc-
tions ¥;(-, k). We introduce some type of “density of states p”, related to H (see (2.14)),
and examine its regularity in Theorem 2.3. We show that t — p(¢) is analytic except at the
thresholds e;(0), and we give its asymptotic behavior near every point ¢;(0), j = 0, 1,---.
In section 3, we study the asymptotic behavior of e;(k) when u tends to infinity. For k = 0,
J = 0 and u large enough, it is well known that eo(0)—1 ~ 477*%512/1% oK (see [3]). In Propo-
sition 3.1, we generalize this result for j € N and |k| << p. The proof uses the parabolic
cylinder functions.
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In sections 4-7, we study the perturbed operator H(e) when € is small enough. First, we
give a complete asymptotic expansion in powers of € of tr(‘¥ f(H(¢))) where f € C(R) and
¥ is a multiplication operator by a real integrable function ¥(y) € L'(R?). In particular, we
obtain a Weyl type asymptotics with optimal remainder estimates of the counting function
of eigenvalues of H(e) in any closed interval in ] — oo, ¢p(0)[. To investigate the effect of
the perturbation on the continuous spectrum of H, it is natural to study the spectral shift
function (SSF for short). When V vanishes as ||y|| — oo (see (4.1)), the SSF &(u; €) related
to H(e) and H is well defined in the sense of distribution :

(12)  alf(H©) - fH)] = € 0 fO)) = fR £G4 O (du, f € CI(R).

The function &(u; €) is fixed up to a constant by the formula (1.2), and we normalize &(u; €)
so that &(u;€) = 0 for u < inf(o(H(e)). The spectral shift function may be considered
as a generalization of the eigenvalues counting function. It is one of important physical
quantities in scattering theory, and it plays an important role in the study of the location of
resonances in various scattering problems. We refer to [25] and references cited there for
comprehensive information on related subjects.

Under assumption (4.1), we give in Theorem 4.3 a complete asymptotic expansion in
powers of € of the left hand side of (1.2), and in Theorem 4.4, we establish a complete as-
ymptotic expansions in powers of € for &(u; €). The leading coefficients of these asymptotics
are expressed in terms of the density p and the potential V (see (4.6) and (4.11)).

Let us provide a broad outline of the proof. Spectral properties of the free operator H
follow from the direct integral decomposition (7.10). According to Theorem 2.1, we may
write

Ho(k) = ) e;(kym(h),
j=0
where 7;(k)u(x) = (u(-),¥;(-,k))¥;(x, k) is the projection on ¥;(-,k). By (2.6) and (2.7),
the operators e;(D,) and 7;(D,) are well defined as pseudo-differential operators. Thus, for
instance, if V(x,y) = V(y) is independent on x then

H(e) = Hy(Dy) + V(ey) = Y [e,(Dy) + V(ey)| m;(D,).
720

Since V is bounded, and lim;_,. e;(k) = +co uniformly with respect to k, it follows by an
elliptic argument that (e ;(D,) + V(ey) — z) is invertible for z in a bounded set and j > N, with
N large enough. This allows one to reduce the spectral study of H(e) on L*(Qy) near z to the
study of a system of e-pseudo-differential operators on LQ(RZ), whose diagonal entries are
(ej(eD,)) + V(y) —z), j=0,---,N (see Propositions 6.1-6.2). Now, the main results follow
from standard Theorems of functional calculus and micro-local analysis. When V depends
on x, we use the fact that x is confined in a box, we then treat for € small enough V(ex, ey)
as a perturbation of V(0, ey).

Notations : We shall employ the following standard notations. Given a complex function fj,
depending on a small positive parameter A, the relation f, = ©O(h") means that there exist
Cy, hy > 0 such that |f;,| < Cyh" for all h €]0, hy[. The relation f;, = O(h™) means that, for
alN e N:={0,1,2,...}, we have f, = Oh"). We write fn ~ Z;O:o ajhf if, foreach N € N,
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we have f, — Z?]:o a;h/ = O(h"*!). We adopt the notation N* := N \ {0}.

Let H be a Hilbert space. The scalar product in H will be denoted by (-, -). The set of
linear bounded operators from H; to H, is denoted by L(H,, H,) and L (H;) in the case
where H = H..

2. The non-perturbed Hamiltonians H,(k) and H

In this section we study the non-perturbed operator Hy(k) and H. In particular, we intro-
duce an integrated density of states, p, corresponding to H.
The operator H is unitarily equivalent to

(2.1) FHF*:ﬁHQ(k)dk,
R4

where F is the partial Fourier transform with respect to y given by

1 —i
P = s [ e Put iy,
and
(2.2) Hy(k) = D? + (k + ux)*,

is the operator defined on Hy, 1= {u € H*(Ay); ulga , = 0}. In what follows, we will consider
H, as a Hilbert space equipped with the standard scalar product of H*(A,).

We first consider the two dimensional case (i.e, d = 1, Q| =] —a, a[XR). From the Sturm-
Liouville theory (see [21]), it is well-known that Hy(k) has a simple discrete spectrum:
eo(k) < ej(k) < ---. The change of variable x — —x implies that ¢;(k) = e;(—k). Since
the eigenvalues are simple, an ordinary analytic perturbation theory shows that ¢;(k) (and
the corresponding eigenfunction) are analytic functions in k (see [20, 24]).

Theorem 2.1. The eigenvalue e (k) satisfies :

(2.3) ke'(k) >0 (k#0), and €0) =0, €7(0)>0.
Moreover, for every fixed j € N and any a, u > 0, the following properties hold :
(2.4) ej(k) = e;(0) + )yl (k> 0), ;>0

=1
(2.5) ej(k) = kK* = 2apk +v;2uk)*(1 + o(1)),  (k — +c0),

where 0 < vy < vy <--- <v; <--- are the eigenvalues of the operator D? + x on R*. The
normalized eigenfunctions Y, (-, k) corresponding to e (k) can be chosen real-valued and
analytic with respect to k satisfying :

a 2
(2.6)  VpeN, 3C,, such that f (60Wu(x.0)) dx < Cpo (2 B2y = 1.

For all p € N, there exists C, > 0 such that

(2.7) |87 e, (k)| < Cp(1 + kD).
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Proof. The assertion (2.3) is proved in [15] (see Theorem 2 in [15]). Formula (2.4)
follows from the fact that e;(k) is an even real analytic function with e;.’(O) > 0.
To prove (2.5), consider the operator H(k) = D? + 2uxk + k>. Replacing x by ¢ = u(x + a)
and rescaling ¢ — At/u (with A = (2uk)!'/?) we transform H(k) into A>G — 2auk + k*, where
G = D? +1: L*([0,b]) — L*([0,b]), b =21a,

is the Airy operator with Dirichlet boundary condition. The general solution of the equation
Dfu(t) + tu(t) = 0 can be written as a linear combination of the Airy functions :

u(t) = CLAIi(r) + C_Bi(¢).

We recall that Bi(f) = Ai(e*™/?x). Using the fact that v(f) = u(t — v ;) satisfies the equation
Gv = v;v, we deduce from the boundary conditions v(0) = v(b) = 0, the quantization
condition on the eiguenvalues v; of the operator G
Ai(v,) = Bi( )Ai(—vj + D)

VD= PRI v by

Since the right-hand side of the above equality tends to zero as b tends to +oo, —v; are
approximated (when k — +oc0) by the zeros of the Airy function Ai(x). Consequently, the
eigenvalues Ay(k) < A;(k) <--- of H(k) satisfies

(2.8) (k) = K = 2apk + v 2uk)**(1 + o(1))  (k — +c0).
Let A and B be self-adjoint operators that are bounded from below. We write A < B if and
only if D(B) c D(A) and

(Au,u) < (Bu,u) Yu € D(B).
Using the above inequality and the fact that x € [—a, a], we obtain

Ho(k) = i*a® < H(k) = Ho(k) = 1*x* < Ho(k),

which together with Theorem XIII.1 in [24] yields

ej(k) — pra* < (k) < ej(k).

Thus (2.5) follows from (2.8) and the above inequality.
Next we prove (2.6). Let ¥, (-, k) be the normalized real-valued analytic function corre-
sponding to e, (k). Since ¥, is real and ||'¥,,(-, k)|| = 1, it follows that

0

(2.9) 5 )

)
¥, (x, k)?dx=0=2 f ¥, (x, k)ﬁ‘l’n(x, k)dx.

Put H(k) = Ho(k) — k%, and let T, be a simple closed contour around e, (k) — k* such that
dist(I',, o(H(k))) > C > 0 uniformly on k. Let I1, (k) be the orthogonal projection onto the
eigenspace spanned by W, (-, k), that is for u(x) € Ha,

1 _
(2.10) 00 = - fr () - 27 dz = (U)ol K0 o, K.

From (2.9) we deduce that I1,(k)0;¥,(-,k) = 0. Combining this with the fact that
IL,(k)¥, (-, k) = W,(-, k) and using (2.10) as well as the fact that 9, H(k) = 2ux, we get
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-1 - -
2.11) VW, (x, k) = O I1,(k)Y,(x, k) = 2— f (H(k) — z)_IZ,ux(H(k) — z)_ldz‘l’n(x, k),
Tl T,

which yields
10k¥ (-, DIl = O, DIl = OCD).

We now proceed by induction using (2.11).
To prove (2.7), we differentiate the equality (Hy(k) — e,(k))¥,(-, k) = O with respect to k
we get

(20x + ) = €4 ()W (x, k) = (Ho(K) = €4(K))05o(x, k).

Taking the product scalar of both sides of the above equality with ¥, (-, k) and using the self
adjointeness of Hy(k), as well as well as the fact that ¥, is real valued and normalized we
obtain the formula

(2.12) oken(k) =2 f X, (x, k)2 dx + 2k,

a

which yields (2.7) for p = 1. For p > 2, we differentiate (2.12) and we use (2.6). O

We return now to the general case d > 1. Let (ej (k -)) and (‘Pj (x-,k-)) be the
N )jen P ) len
eigenvalues and eigenvectors of the operator D)zcj + (kj+ pjx j)z given by Theorem 2.1. For

J=(i, s ja) €NYand k = (ky, - - -, kg) € RY, we denote
2.13) eyl =ej (k) + -+ ed (ka), Wil k) = W] (er k) X - X (g, k)
By Theorem 2.1, we have

Corollary 2.2. Fixd > 1. The spectrum of the operator Hy(k) on {u € H*(Ay); ulga , =0}
is discrete and coincides with {e;(k); J € N?}. The family (¥,(-, k)) Jend IS an orthonormal
basis in L*(Ay).

According to Theorem 2.1, Corollary 2.2, and the theory of decomposable operators (see
Theorem XIII. 85 in [24]) the spectrum of the operator H = Di + (D, + ux)*> with domain
Hgd is absolutely continuous, and given by

o(H) = | [ esti) = [eo(0), +ool.

JeNd keRd
The points e;(0) are thresholds in o/(H). From now on we denote this set by

Y = U ¢;(0) = o(Hy(0)).

JeNd

Forty e Z, welet S, :={J € N9 ¢,(0) = 1p} and my, 1= #S,, be its multiplicity. In order to
formulate our results on the trace formula and the asymptotics of the spectral shift function,
we need to introduce the function p : R — R related to the non-perturbed H by

dk
(2.14) OEDY f

-
5 Jiesw<n 1)

Obviously, p(r) = 0 for ¢t < ep(0) = info(H). In an appendix, we shall prove that the function
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p(?) is analytic except near . More precisely, we have

Theorem 2.3. The function p is analytic except at X. Moreover, near any point ty =
e;(0) € X, there exists analytic functions f and g such that :

pt) = f(t —10) + Y(t = 10)g9(Vt = 10),

for |t — ty| small enough with

d—1
o~ S D

JeSy, d+fdet( _V2e2, @)

Here Y(t) is the Heaviside function and S°~' stands for the unit sphere in RY.

RemMaARrk 2.4. Notice that the singularity and the behavior of p near e;(0) is similar to
those of the integrated density of states, po(#), of —A on R? near ¢ = 0. We recall that

00(t) = (21)"vol(Bza(0, )Y (1)t

3. Asymptotic behavior of eigenvalues of Hy(k) for u > 1.

In this section, we investigate the asymptotic behavior of the eigenvalues of Hy(k) when
u tend to infinity. Without any loss of generality we may assume that d = 1, (i.e, Q =
[-a,a] x R). Ford > 1 we use (2.13). We set e;(k) and ¥;(k) as the j—th eigenvalue
and the j-th eigenfunction of Hy(k), respectively. In the following proposition we give the
asymptotic behavior of the eigenvalues e (k) when y tends to infinity.

Proposition 3.1. Fix j and a, we have :

2j+3
2 (a~2u
G.1)  ejk)—puj+1) ~ Le—azﬂe—“/ﬂcosh(zak}
' poe jIN2g

kYo (k2
tanh(2ak) + j(2j + 1)(@) + 0(/7)

X |1+

2

2j+ Dk
ap

uniformly for k| < u.
Proof. Change of variable x — y — k/u transforms Hy(k) to
Ho(k) = D; + 127, on Hi_ask/park/ul»

and again employ the change of variable y — z/ (\/ﬂ), we have Hy(k) is unitarily equivalent
to
2

(3.2) Ho(k) = 2u (Di +7

)’ on Hi—; 1,

where
k
3.3) Ze 1= 2u (a + —).
7

Hence the eigenvalue problem for Hy(k) can be reduced to the one for Hy(k). Here let u,(x)
be the solution of the Weber’s equation
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2
S i+ - (v + 1) y(x) = 0,

4 2

with boundary condition u,(z;) = u,(—z-) = 0. Then u,(x) can be written as a linear
combination of the parabolic cylinder functions D,(z) and D, (-z),

(3.5 uy(x) = A1Dy(x) + Ay Dy (=x).

We recall that

212214 v+ 1 v 1 2
D,(z) = r DF |-z =5 =
() [ ( > )COS(WT/) 1( 75 )

v 2
1-v 3 2
VI (14 2 )sinm/2)Fy (Tv > %)] ,
where F is the confluent hypergeometric function. For large |z] > 1, we have
1—
(3.6) D,(z) = it N v —v) +- ], 2> 1,
272
and for 7z <« —1,
1—
(3.7) Dy(2) = <1z [1 Skl ]
2z
_ V2x prigiyret [, DO+
I'(-v) 272 B ’

By the boundary condition u,(z;) = u,(—z-) = 0, we obtain from (3.5) the conditions on the
energy spectrum :

(3.8) Dy(z+)Dy(z-) = Dy(=z+)Dy(—z-) = 0.
Since z. tends to infinity as u — oo, it follows from (3.6) and (3.7) that
Dyz)Dy(z) = & DM [14 0 + -+ ]
and
Dy(~2)Dy(~2) = e 2 1+ 0 + -+ |

+ %evie@/“—zz“(m)_wl(Z—)V [1roE |

\2n

" T
( \2n

+ —_—
I'(=v)

e Ay ) [T+ o) + -

2
] e ) 1+ O + -

By (3.8), we have
623/4_ZE/4(Z+)_V_1(Z—)V [1 + O(Z;z) +.. ]
+ 623/4—23/4(Z+)V(Z7)—v—1 [l + O(Z;Z) + .. ]

V2r

s TGy o -] [1 + O + - ] = 0.
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This implies
—22/2 2v+l —22/2 2v+l -2y, = V2r mi NI
39 (P2 w2 1106+ | = . [1+0a?) +--].
Recall that,
I(1 +)(~2) = ———, Yz € C\ Z.

sin(7rz)
Combining this with (3.9) we get

(3.10) (sze—zi/z +sz+1e—z3/z) 1+0 1))\ \/Zezzrvi _ 1F(1 infiso 1 ‘
* - Zi T 2 z2

o+

Now we look for v = j + a(u, k) for some fixed j, with a;(u, k) tends to zero when u tends
to infinity. As a first approximation, it follows from (3.10) that

@.11) e E 2 4 2R = NDRT( + ), k),
where we use
20+apmi _q
£ \/]2_ ~ \/Ea](l'[’k)a as a](ﬂ, k) hd 0
i

Thus by using (3.3) and (3.11),
a@;(u, )V2aT (1 + j)

k 2j+1 k 2j+1
= (4 /Qﬂ)2j+1 [(a + _) e—/l(a+k/u)2 + (a _ _) e—u(a—k/u)z]
M M
. 2j+1 2j+1
2j+1 k k
- (a@) T @ [(1 + —) e 20k 4 (1 - ) eza"}

ap

ay
_ (a@)zjﬂ o~ @H R rjzil( 2];— 1 )(%)l (e_zak + (_1)2j—le2ak)}
=0

_ (a@)Zﬁl e_azue_kz/#

22j + Dk
au

2 2
X {2 cosh(2ak) + sinh(2ak) + (2/)(2j + 1) (%) cosh(2ak) + o (l%)} :

Consequently,
(. VAL (1 + ) = 2 (a2u) " e He M cosh(2ak)

_ 2 2
x [1 CTARL tanh(2ak) + j(2j + 1)(1) + O(k_z)}
au ap H

2j+1
e

Notice that, according to (2.2), (3.4) and the unitary equivalence of Hy(k) and Hy(k), the
eigenvalues of Hy(k) satisfy

1
ej(k) = 2y(j+ 3 +cyj(,u,k)).

Summing up and using that I'(1 + j) = j! we obtain (3.1). O
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Remark 3.2. For j =0 and k = 0, (3.1) were obtained in [3].

4. Perturbed Hamiltonian

Now, we investigate the effect of the slowly varying potential on the undisturbed operator
spectrum. First, we give a complete asymptotic expansion in powers of € of tr(‘ f(H(¢)))
where f € C7’(R) and ¥ is an L (RZ )-function. In particular, we obtain a Weyl type asymp-
totics with optimal remainder estimates of the counting function of eigenvalues of H(e)
below the essential spectra. Finally, we give a complete asymptotic expansion in powers of
€ of the spectral shift function corresponding to (H(e€), H).

We suppose that V is smooth, and there exists ¢ > 0 such that :

(4.1) Va,f €N/, 3Cop st sup,es 10702V (x,p)l < Coply)™.

By the Weyl criterion (see [17, 24]), if 6 > 0, the essential spectra of H and H(e) are the
same:

Oess(H(€)) = 0ess(H) = o(H) = [e9(0), +oo.
First, we derive a local trace formula.

Theorem 4.1. Assume (4.1) with 6 > 0, and let ¥ be a smooth function such that 8;‘1’ €
LI(RZ)for lal <2d + 1. Then for all f € CP(R), the operator (Y f(H(€))) is trace class and
the following asymptotics hold :

(&)

(4.2) r(PAHE) ~ D ae
j=0
with
(43) a=-[[ | ¥wropu-vo.par.

Here f(H(€)) is the operator given by the spectral theorem and ¥ : L*(Qy) > u —
Y(yu(x,y) € L*(Qy) is the multiplication operator.

Let N([a, b]; €) be the number of eigenvalues of H(€) in [a, b] C] — 0, e¢(0)[ counted with
their multiplicity.

Corollary 4.2. Assume that V tends to zero at infinity, and let f € C(] — 00, e9(0)[; R).
We have

(4.4) u(f(H(e) ~ iﬁb €,

with j

@5) w==[[ ropu- vy

In particular,

(4.6) lim ['N(a, bl; )] = fR [ = V(0.9 - pla = v(0.9)|dy.
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Theorem 4.3. Assume (4.1) with 6 > d. For f € C7(R) the operator f(H(¢€)) — f(H) is
trace class. Moreover, the following asymptotics holds

[ee]

(4.7) a(f(H() = f(H) ~ ) cje ™
=0
with
@8 =[] roen-pe-vop .

The above theorem, enables us to define the spectral shift function &(-, €) € D’(R), related
to the operators H(e) and H (see (1.2)). Theorem 4.3 tel us that £(-, €) converges to f p(t) —
p(t — V(0,y))dy in the sense of distribution. Under a non-trapping condition, the following
result gives a pointwise asymptotic expansion in powers of € of £'(:; €).

Theorem 4.4. Fix A > ey(0) with A ¢ {€1(0), e»(0), - - - }, and assume that
4.9) k-Veijk)—y-V,V(0,y) >c>0in {(y,k) € R, ej(k) +V(0,y) = 4}.

There exists n > O such that the following complete asymptotic expansion holds uniformly
ont€ld—n,A+n[:

(o8]

(4.10) £(t,e)~ ) ke,
=0
with
(4.11) Ko(t) = f(ﬂ'(t) = p'(t=V(0,y)dy.

Comments. Let us briefly examine the above results and their generalizations.

e By (2.3), assumption (4.9) is satisfied under the following condition :
-yV,V(0,y) > 0and —yV,V(0,y) >0, on{y € RY; V(0, y) = A —¢;(0)}.

e All results above will remain true if we substitute H by Hy := H + W(x), where W
is defined for x € A,. In this case, the p distribution of the abovementioned results
is associated with operator Hy .

o If W # 0, the properties of the p distribution corresponding to the Hy operator will
change. Indeed, it depends on the critical point of the eigenvalues e ;(k) correspond-
ing to the operator Hy (k) = Di + (k + ux)*> + W(x) on L*(Ay) (see Appendix A). In
particular, the set of p singularities is not only the defined threshold X, but contains
the critical values of the e;(k) eigenvalues. Note that statement (2.3) is generally not
true for W # 0. Critical value can occur for A = ¢;(k) with A > infie (k).

e Let u € D'(R) be the distribution on R defined by

wh = [ 1O - FOla. fecrem.

As in [10, 12], using Theorem 4.4 and the definition of resonances by the analytic
distortion method one prove that near any point ¢ € X + singsupp,(u) there are at
least O(e™?) resonances. Here singsupp,, (1) denotes the analytic singular support of
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the distribution .

5. Effective Hamiltonian

We need some basic result about pseudodifferential operators with operator-valued sym-
bol (see [11] and the references cited therein). We shall consider a family of Hilbert space
Ax, X = R satisfying :

(5.1 Ax = Ay,VX,Y € R¥,
there exist N € N and C > 0 such that for all u € A( and all X, Y € R* we have
(5.2) llullay < CX = Y)Vlull 4,

Notice that (5.1) means that only the norm of Ay depends on X, not on the space itself.
Let By be a second family with the same properties. We say that p € C®(R?*¢; L( Ao, By))
belongs to the symbol class SOR*; L( Ay, By)) if for every a € N2¢ there exists C, such
that

(5.3) 10%plleaymy) < Car VX € R*,

If p depends on a semi-classical parameter € and possibly on other parameters as well, we
require (5.3) to hold uniformly with respect to these parameters. For e-dependent symbols,
we say that p(y, k; €) has an asymptotic expansion in powers of € , and we write

Py k€ ~ D piy, e in SR L(Ax, By))
J

if for every N € N, e V! (p(y. k; €) = T pi(y. be’) € SYR: L(Ax, By)).
We can then associate to p an e—pseudo—differential operator

P"(y,eD,; eu(y) = ffeg(y Dk py k u(t )(2 d)d’

Here we use the Weyl quantization. Similarly to the scalar case, the following results hold.

e Ay.

Theorem 5.1. Let p € SO(R*?; L(Ay, By)) where Ay, By satisfy (5.1) and (5.2) then
p”(y, €Dy, €) is uniformly continuous from S(R?; Ao) into S(RY; By).

Theorem 5.2. Assume Ax = Ag and By = By for all X € R¥. If p € S’(R*; L( Ao, By))
then p“(y, €Dy; €) is bounded from L*(RY, Ay) into L*(R?, By).

Let Cx be a third Hilbert space which satisfies (5.1), (5.2).
Theorem 5.3. Let p € S°(R*; L(By, Cx)), q € S°(R*?; L(Ax, Bx)). Then
P’ (y,€eDy) 0 ¢"(y, eDy) = r'(y, €D; €),

where r is given by

1 ie .
(54) ki €) ~ ) 50Dy, Dis Doy D)y g amyae
=07
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5.1. Grushin problem: brief description. In this paragraph we recall the basic results
about Grushin problem. Let H, H, and H3 be three Hilbert spaces, and let P € L(H, H3)
be self-adjoint. Assume that there exist R, € L(H,, H,) and R_ € L(H,, H3) such that the
following operator

P-z R_

P(Z)=( R, 0

);Hlez—)H3XH2

is bijective for z € Q. Here Q is an open bounded set in C. Let

E(z) E.(2) )
E_(z) Eeq(z)

be its inverse. We refer to the problem P(z) as a Grushin problem and the operator E.q(2)
is called effective Hamiltonian. Notice that, an effective Hamiltonian is a Hamiltonian that
acts in a reduced space and only describes a part of the eigenvalue spectrum of the true
Hamiltonian P. Morally, effective Hamiltonians are much simpler than the true Hamilton-
ian and hence their eigensystems can often be determined analytically or with little effort
numerically.

The following useful properties (relating the operator P and its effective Hamiltonian) are
consequences of the identities Eo P =land Po & = I:

E(2) =(

(5.5 (P — z) is invertible if and only if E.gz(z) is invertible,
(5.6) dimker(P — z) = dimker(E.¢(2)),

(5.7) (P-2)7" = E@) - E:QE7(E-(2).

(5.8) E4() =-R.(P-2)'R..

The last two equalities hold for all 3z # 0. On the other hand, since z — (P — z) is
holomorphic, it follows that the operators E(z), E+(z) and E.(z) are also holomorphic in
z € Q. Moreover, we have

(5.9) 0:Eet(2) = E_()E(2).

This identity comes from the fact that R.. are independent of z.

6. Spectral Reduction to an e-pseudodifferential operator

Throughout this section we assume that V is independent on x. The proof of the general
case is quite similar with minor modifications (see Remark 7.2). Fix an interval I = [a, ],
and set

U={JeNe (k) <B+ V).

According to Theorem 2.1 and Corollary 2.2, e;(0) (respectively e;(k)) tends to infinity as
|J] — oo (respectively k| — oo). Therefore U is finite. In what follows, (Wo(-, k), -,
WYy-1(-, k)) denotes the family (\V;(:, k)) ey, where N = #U.

To shorten notation, we omit the index d in Q, and A,. For k € RY, let Hax = Hp be the
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Hilbert space with k-dependent norm: [[ul[3 , = Ilull>, Wt Ikl uelI7, () We denote by CY the
space CN equipped with norm (1 + [k[?)| - |c~.

By the change of variable y — y/e€, the operator H(e) is unitarily equivalent to
(6.1) Hy:=Hio+ V),

where
d
HI,O = Z Dij + (EDy/. +ujxj)2.
j=1
Let G(y, k) = Hy(k) + V(y) be the linear bounded operator from H, into L*(A), where
Hy(k) is given by (2.2). Obviously, G € S°(R*; L(H 4, L*(A)). Thus, by quantizing G we
have

G(y,eD,) = H;.

More precisely, H; can be viewed as an e-pseudo-differential operator on y with operator
valued symbol G(y, k).
For k € R?, and N € N*, define R, (k) : L*(A) — CN, R_(k) = R.(k) : CN — L*(A) by

R (u = ((u, Wo(-, b)), -+, (u, ¥n-1(-, K))),
N-1
R-(k)cr, en) = . %5, k).
j=0
According to Corollary 2.2 the family (\¥;(-, k)) e is an orthonormal basis in L*(A). Hence,
a simple computation yields

(6.2) R (K)R-_(k) = Icw,
N-1

R(OR (= > ", ¥, kY-, k) =2 Tlyu, Ve € L2(A),
Jj=0

The following proposition reduces the spectral study of the operator G(y, k) : Hax — L*(A)
near the energy z, to the study of an N X N-square matrix E.¢(y, k, 7).

Proposition 6.1. Fix a bounded interval I. There exists N € N* such that for all z € I the
operator

Gy, k) —z R-(k)

(6.3) Py, k) = ( R0 0

) t Hay x CV = LAY x CV,

is bijective with bounded two-sided inverse

Gy(y.kd)  R(k) )

(6.4) £,k 2) = ( R.(k)  Een(y.k,2)

Here Gy(y,k,2) = (G(y, k) — 27" (1 = ) and Eex(y, k,z) is the square diagonal matrix
(z—ej(k) = V(0,y))di)o<i, j<n-1- Moreover

(6.5) P e SYR*; L(Hpy x CN;L*(A) X CY)).
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(6.6) E e PR L(L*(A) X CN; Hay x CV)).
Proof. By construction, we have
e;k)+V(y)—z=2c>0,
uniformly for (z, k,y) € I x R* and J ¢ U. Thus, the operator
(G(y, k) =27 (1 = Ty) : LAA) = Hayy,

is well-defined and uniformly bounded on (z,y,k) € I x R*. Using (6.2), an easy compu-
tation shows that P(y,k) o E(y,k,z) = I and E(y,k,z) o P(y,k) = I. On the other hand,
it follows from (2.6) that (y,k) — R_(k) € S°(R*; L(CN;L*(A)) and (y,k) — R.(k) €
SOR; L(Ha g CY)). O

Proposition 6.2. The operator

G(y,eD,) —z R_(eD,)

(6.7) P = ( Ru(eD,) 0

) D HE x H*(RY; CY) — L2(Q) x LARY; CY),
is bijective with an inverse

E(ze):=E%z€) = (E W€Dy, 56 Euly, €Dy E)),

E%(y,eDy,z€) Eg(y, €Dy, z5€)

uniformly bounded with respect to z € I and € small enough. Moreover, £(z;€) depend
holomorphically on z, and E(y,k, z; €) has an asymptotic expansion in SC(R*; L(L*(A) x
CkN; HA,k X CN)), ie.,

. _(Ewkze Edykze) <, i
o fkza=( 0550 B 2,0k

In particular E.q(y, k,z; €) ~ Zj‘io Ee (y, k, 2)el in SO(R*; £(CN; CN)). The leading terms
Eo(y, k, z) and E.0(y, k, 2) are given by Proposition 6.1, i.e.,

Eo(y, k,2) = E(y, k,2,0) and Ecqo(y, k, 2) = Eer(y, k, 2 0).

Proof. The fact that P can be viewed as an e-pseudodifferential operator valued symbol
P(y, k) and Theorem 5.3 show that

(6.9) P“(y,eD,) o £"(y,eD,,z) = I + €R"(y, €D, z; €),

where R(y, k, z;€) ~ X320 Ry, k, 2)e/ in SR> L(L*(A) x CV; LA(A) x CV)). It follows
from Theorem 5.2 that R“(y, €Dy, z; €) is uniformly bounded for z € I and |e| < 1. Thus,
for € small enough the right hand side of (6.9) is invertible. On the other hand we know
that if P = p“(y, k, €) is an invertible e-pseudo-differential with p(y, k; €) ~ Z;io Py, k)€l
then its inverse ¢g" is also an e-pseudodifferential operator with g(y, k; €) ~ Z;’io q(y, k)e.
Consequently, £“(y,eD,,z;€) = £“(y,eD,,z) o (I + eR"(y,eD,, z; €))”! satisfies all the
desired properties. |

Remark 6.3. Let &)(z) be the operator given by Proposition 6.2 corresponding to the
non-perturbed operator Hy (i.e., V = 0). Since P(y, k) = P(k) is y-independent, we have
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= 0
£o(2) = Gn(eDy,z)  EL(eD,) )

E%(eD,) E’.(eD,,2)
where E) (k) = R_(k), E° (k) = R..(k) and E%(k,z) = ((z - €;(k))d;j)oxi j<n-1

7. Proof of the main results

7.1. Proof of Theorem 4.1. In the following we fix a bounded interval / containing
supp(f), and we apply Proposition 6.1 and Proposition 6.2 on /. For the simplicity of the no-
tation we ignore the dependence of E, E,, E_, E.s on (y, k, z, €). We denote by E°, EE, EY,
Egﬁ the operators given by Proposition 6.2 corresponding to the case V = 0 (see Remark
6.3). We shall sometimes use the same symbol for an e-pseudodifferential operator and for
its Weyl symbol.

Applying formulas (5.7) and (5.8) to Proposition 6.2 we obtain

(7.1) (H -2 ' =E-E.EZE_,

(7.2) 8,Eq = E_E,.

Assume that f € C7(R) is real-valued, we can construct an almost analytic extension
f € C7(C) of f satisfying the following properties (see [11]) :

(7.3) @) = f(2),Vz €R,
for all N € N there exists Cy such that

oF
(7.4) Ly < cuizar

Let H be any self-adjoint operator, the Dynkin-Helffer-Sjostrand formula reads [11]:

(7.5) f(H) = ! B—J_C(z)(z - H) ' L(dz), withz = x + iy,
nJ) 0z
which yields
1 (of
(7.6) f(H) =—— f —J_C(Z)(z - H) 'Ld?).
nJ 0z

Here L(dz) is the Lebesgue measure on the complex plane C ~ Rigy.
Inserting (7.1) in the right hand side of (7.6) and using the fact that z — E“(y, €D, z; €)
is holomorphic, we get

1 (o
(7.7) fH) = -~ f 8—];(z)E+Egﬂ‘.E_L(dz).

Here and in what follows we use the fact that f 52 f(2)K(2)L(dz) = 0 provided that K(z) is
holomorphic in a neighborhood of supp(f). We recall that the principal symbol of E.g is
given by

Eerro(y, k,2) = (z = V(y) — €;(k)d; j)o<i j<N-1,
and that e;(k) ~ |k? at infinity from (2.5) in Theorem 2.1. For j = 0,--- ,N — 1, let ej(k) be
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a smooth function such that (k) = e;(k) for |k| large enough and
(7.8) 2= V(y) = &;(k)] = co(1 + k), V¥ (z.y.k) € suppf x R x R”.
Put

Eei(y, k,z; €) = Eci(y, k, 2 €) + Eei(y, k, 2) = Eesi(y, k, 2),

where E.q(y, k,2) = (z—=V(y)—¢ (k)i jo<i, j<n—1- We conclude from (7.8) that Ei(y, k,z; €)
is elliptic for € small enough, hence that Eeg = E"Z’ﬁ(y, eD,, z; €) is invertible and holomor-
phic for z € supp(f), and finally that

3 ~_
f a—g(z)bu ELE_L(dz) = 0.

Combining the above equality with (7.7), we obtain

1 (of .
(7.9) f(HY) = — f a—];(z)E+(ng§—Egé)E-L(dz)-

Let ¥ be as in Theorem 4.1. Writing ng; - Ee‘f; = E&%(Eeff - Eeff)ng% and using the fact
that Eeg — Eer = ((e (k) — €j(k))1<i,j<nv has a compact support, we deduce that the operator
‘I’(E+E"gf% (Eoy — Eeff)Ee‘ﬁlE_) is trace class. Thus, by using the cyclicity of the trace we get

(7.10) (W f(Hl)) = —% f Z—Jg(z)tr(E;g — Eg)E_YE,)L(d2)

L (of .
=tr( - - f 8—Z(z)EeﬁE_‘I’E+L(dz)).
In the last equality we have used the fact the operator E;,}E_‘PEJr is holomorphic on z €
supp(f)-

According to Proposition 6.2 and Theorem 5.3 the operator A = E_WE, is an e-
pseudodifferential operator on L*(R?;CN) with A = A”(y, eD,,z; €) where A(y,k,z;€) ~
220A(y, k,2)el in SU(R*; £(CN; CN)). Moreover, from Proposition 6.1 we have Ag(y, k, z)
=¥(@).

The proof of the following lemma is similar to the one in [7].

Lemma 7.1. Fix 6 €]0, 1/2[. There exists r € S°(R*; £(CN,CN)) such that r(y, k; €) ~
Zjio ri(y, k)€’ and

1 of
r"(y,eDy; €) = —— f —J_C(z)Ee‘éE_‘PE+L(dz),
T Jiggze 02

with
(k) = - f %(z) (- et -vw) s f)og,,-sN
We now turn to the proof of Theorem 4.1. If we restrict the integral in the right hand side
of (7.10) to the domain |Jz] < € then we get a term (O(™) in trace norm. Here we have
used the fact that Ig—];(z)l = O(9z") for all M € N (see (7.4)). If we restrict our attention to
the domain |Jz| > €° then by Lemma 7.1 we get a complete asymptotic expansion in powers

of €, which yields (4.3). To finish the proof let us compute ay. We have

§ L(dz2)¥(y).
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dydk . ik
ap = fftr(ro(y,k))(zy ¥ fo(—— _(Z)(Z ei(k) = V() IL(dZ))‘P(y)(zyﬂ)d.

Zz = = 0(- — z0), it follows that
f L@z - ej(k) = V(y))'L(dz) = f(e;(k) + V(y)). Consequently,

N-1
dydk dydk
ap = ; f f flei)+ V)Y@ 5 5 = Z f f fleik) + VYW o .

In the above equality we have used the fact that e (k) + V(y) ¢ supp(f) for (y,k) € R? x R4
and j¢1{0,--- ,N—1}. Combining this with the obvious equality

Z f Flek) + V) (2 )d = Z f £ f vy = f F/ (Ot = V(y)r,

we get (4.3).

Here tr stands for the trace of square matrices. Since 1(9

7.2. Proof of Corollary 4.2. Let f be as in Corollary 4.2, and fix > 0 small enough such
that supp(f) C]—o0, eg(0)—n]. Put w, := {y € R%; 3(j, k) € NxR? s.t. ¢;(k)+V(y) € supp(f)}.
Since V tends to zero at infinity and e;(k) > ¢;(0) for all j, k, it follows that w;,, is a compact
set.

Let V be a smooth function such that V(y) € [-1/2,1/2] for all y € R? and V(y) = V(y)
for |y| large enough. Put

Eeq(y, k,z;€) = Ee(y. k. z:€) + (V(y) = V(y)ly.
By construction of V, we have
2= ej(k) = V(y)l = C(1 + k),

uniformly on (j,y, k) € N x R? and z in small complex neighborhood of supp(f).
Hence, the principal symbol E.q(y, k,2) = ((z— V(y) —e (k)i o<i, j<n—1 Of E.q is elliptic.
We can now proceed analogously to the proof of (7.9), and obtain

1 (af -
(7.11) f(HY) = — f a—g(z)EJr(Eef% — E_DE_L(d7).

Let y € C3(RY) be equal to one in a neighborhood of supp(V — V = E.¢ — Eeq). Writing
EE4-EE_ = E.E_[(Eef — Ee)E_4 E— and using the fact that supp(1 —y) N supp(V —
V) = 0, we deduce from (7.11) and (5.4) that (1 =) f(H)lle = O(€™). Consequently,
(7.12) tr(f(H1)) = (Y f(H)) + O€™),

which together with Theorem 4.1 yields (4.4) and (4.5). Notice that the right hand side of
(7.12) is independent modulo O(e*) of the choice of ¢, since ¥ = 1 near the characteristic
set X, of Eeg.

It remains to prove (4.6). For every small 7 > 0, choose jT,,, Jn € C(R; [0, 1]) with

Liarnb-m < fo < Liap) < fyy £ Lia—nban)-

It then suffices to observe that
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r| fy(H(e)| < Nla, bl; ©) < tr| fy(H(e)),
which yields

lim lin (@rey'tr| £ (H(e))]) < li\mO(Zﬂe)dN([a, bl:e) < limlim (@rey'tr [£,(H(e))).
and to apply Theorem 4.1.

7.3. Proof of Theorem 4.3. We only mention the steps in the proof of Theorem 4.3 which
are the same as in the proof of Theorem 4.1. Fix zo < inf(c(H;)) (j = 0, 1), and let m >
d/2 + 1. From the assumption (4.1) the operator (H; — z9)™" — (Hy — zo)™™" is trace class.
Therefore, f(H;)— f(Ho) is trace class for all f € C’(R). In contrast to the proof of Theorem
4.1, we don’t need to introduce the function ¥, since f(H;) — f(Hy) is trace class.

As in the proof of (7.7), Proposition 6.2 and Remark 6.3 yield

1 af -1
f(Ho) = — B—JZC(Z)EQ(ESH) E°L(dz),
which together with (7.7) gives
1 (of

ER
Next, analysis similar to that in the proof of (7.10) shows that

(7.14) tr(f(Hl)—f(Ho))=tr(—% %z)[Eeff—lEiEi_<E2ﬁ>‘1E9ES]L<dz>).

(7.13) tr(f(Hl)—f(Ho))=tr(—; <z>[EiEeﬁ-1E£—E3<Egﬁ>‘1E9]L<dz>).

According to (5.9), Proposition 6.2 and Remark 6.3, we have
azEeff = EiEla aZESﬂ: = E(_)Eg.

Combining this with (7.14), we obtain

1 (o _ -1
019wt - ) =u(-2 [ Lols ok - ) 0.4 ]Lao).
We now apply the same arguments after Lemma 7.1, with (7.10) replaced by (7.15), to obtain
Theorem 4.3.

7.4. Proof of Theorem 4.4. The starting point is formula (7.15). Let 6 and g be C*-
functions with compact support such that & = 1 near zero, g = 1 on J4 — 1,4 + 5[ and
supp(g) C]A-2n, A+2n[. We choose > 0 small enough so that (4.9) holds on |1—-2n, 1+27].
Applying (1.2) and (7.15) to the function f(x) = g(x)(F; 16)(1 — x), we obtain

(7.16) = (€' (5.€), g()FZ ')A = ) = tr (gCH)(FZ'0)(A — Hy) = g(Ho)(FZ'0)(A - Ho))
=tr (_l f 6—?(@(7’;19)(/1 — D)[Ee ™' 0,Eerr — (Egﬁ)_lazEgﬂ]L(dz)) :
nJ 0z

Here § is an almost analytic extension of g, and 7! is the semi-classical Fourier transform
of 6:
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1 ;
Flow = 5= fR ot

A symbol (y, k) — A(y, k,z) € L(CN;CV) is non-trapping at the energy z = z if and only
if there exists a scalar escape function G € C*(R?¢;R) such that

G 0A 4G 0A .
3c>o0, % E T C, Y(y,k) with detA(y, k, z9) = O.

According to Proposition 6.2, E.g is an e-pseudodifferential operator. On the other hand,
the assumption (4.9) means that the classical symbol corresponding to E.g is non-trapping.
The asymptotic expansion with respect to € of an integral similar to the right-hand side of
the second equality in (7.16) have been studied by many authors (see [1, 9, 13, 11, 25] and
the references given therein). In particular, under the assumption (4.9), it follows from the
arguments in the proofs of Theorems 2.5 and 2.6 in [9] (see also [1]) that the left-hand side
of (7.16) has a complete asymptotic expansion in powers of €, and

&(1,)9(1) = (€'(5€),9()F 0T =) + O™),

uniformly for 7 €]1 — 21, A + 2n[. This implies (4.10). The explicit formula of k() follows
from (4.8).

Remark 7.2. We will now show how to treat the case when V depends on x. The only
modification to be made is the proof of Proposition 6.1. Fix m € N*. By Taylor’s formula
we have

m |(Z| 101

(7.17)  V(ex,y) = V(0,y) + Z Z—'x“ﬁV(O, y) + em+1(9(1) =: V(0,y) + eW(x, y; €),

lol=1
uniformly for (x, y) € Q. Let P(y, k) and E(y, k, z) be the operators given in Proposition 6.1

corresponding to the operator V(y) = V(0, y). Now, consider the Grushin problem related to
Gy k.€) = G(y. k) + eW(x,y.€) :

G(!/? k9 E) —Z R—(k)
R (k) 0

): P(y, k) +e(‘g/ 8) t Hpx X CV — LX) x CY.

Py.k,,€) = (

Since W(-,y,€) : Hop — L*(A) is uniformly bounded with respect to y € R% and € €
[0, 1], it follows from Proposition 6.1 that, for € small enough the operator fJ(y, k,,€) is
bijective with bounded two-sided inverse

~ -1
~ .. [GNny.kzse)  Ei(k,z€) | W 0
(7.18) E(y,k,z;€) .—( Ekno)  Eu(ykoc: E))_ (I+68(y,k,z)( 0 0)) E(y, k,2).

From (7.17) and the above equality it follows that, modulo O(e"*!), E(y, k,z; €) has an as-
ymptotic expansion in powers of € in S’(R>?; L(L*(A) x C¥; Hx x CV)). This gives Propo-
sition 6.1 when V depends on (x, ).

We can now proceed analogously to the proof of the case V = V(y).
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Appendix A Proof of Theorem 2.3

Fix J = (i, jo, -+ » ja) € N¥ and let e;(k) = ej (ki) +--- +ej,(ky) be one eigenvalue of
the operator Hy(k). Set

k() = f dk.
{keRd:e, (k) <t}

Lemma A.1. The function k is analytic in a neighborhood of R \ {e;(0)}.

Proof. Fix ty # €,;(0), and let € be a small positive constant such that Ve, (k) # 0 when
k € Z(ty) = e;l(]to — &, 1y + g[). Without any loss of generality we may assume that
Ok,ej(k) # 0 for all k € Z(#p). By the change of variable U : k — k = (eyk), ko, ..., kg), we
have

f dk = f Jac(U™' (k))dk.
{keXc(to) ; es ()<t} {(keU(Zc(10)) s ki <t}

Clearly the right-hand side of the above equality is analytic. Combining this with the fact

that f{ KERNE.(10): ) (<) dk is constant for ¢ near #y, we get the lemma. |

Thus, the function p is analytic in a neighborhood of £ = R \ 0-(H(0)). The remainder of
the proof of Theorem 2.3 is a simple consequence of the following lemma.

vol(S%1)

2
dyJdet( LYy

Lemma A.2. There exists an analytic function g with g(s) ~—0 s¢ such that

k() = Y(t = e;(0)g(V1 — €;(0)),

for |t — e;(0)| small enough. Here Y(t) is the Heaviside function, and S~ stands for the unit
sphere in R%.

Proof. By Morse Lemma there exist a neighborhood V of k = 0, £ > 0 and a local analytic
diffeomorphism D : ¥ — B(0, €) satisfying D(k) = k + O(k?) such that

1
e; o D7(k) = ¢;(0) + §<V2e1<0>k, k).
On the other hand, for |t — e¢;(0)| small enough we have
(keR%Ge,k)<t)=tkeV;e k) <t

Thus making the change of variable k = D~!(¢) and using polar coordinates, we obtain

V2e;(0)\\-1/2
= [ ak = (aee[“52) ™ [ Jac(D™ (€))dé
{keV ;e (k)<t} 2 {£€B(0,€) ; |£2<t—e;(0)}

VZ 0 12 vmax(t—e;(0),0)
=(det( exl ))) [ [ a0 o - tard
2 0 Sd—l

which yields the lemma since Jac(D™!(rw)) = 1 + O(). m|

We now turn to the proof of Theorem 2.3. For fp € Z, we let S;, := {J € N9 ¢,(0) = 1)
and my, = #S,, be its multiplicity. Writing
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p(1) = Z

(s ja) 2y,

dk +
(155 ja)€Xy

dk.

;f{;ceR'/;ejl (kp)+-+e;, (kg)<t} f{;ceR";ejl (kp)++e;, (kp)<e}

(1) )

It follows from Theorem 2.1 that Ve (k) = Vi(ej (k1) + -+ + e, (kg)) # 0 on Z,(#y) for n
small enough and (ji,- -, js) ¢ S;,.- Combining this with Lemma, we deduce that (1) is
analytic for |t — #y| small enough. Thus applying Lemma A.2 to each term of (2) we get
Theorem 2.3.
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