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Abstract
Brownian motion with darning (BMD in abbreviation) is introduced and studied in [5] and [6,

Chapter 7]. Roughly speaking, BMD travels across the “darning area” at infinite speed, while it
behaves like a regular BM outside of this area. In this paper we show that starting from a single
point in its state space, BMD is the weak limit of a family of continuous-time simple random
walks on square lattices with diminishing mesh sizes. From any vertex in their state spaces,
the approximating random walks jump to its nearest neighbors with equal probability after an
exponential holding time.

1. Introduction

1. Introduction
Brownian motion with darning has been introduced and discussed in [5] and [6, Chapter

7]. Its definition can be found in, e.g., [5, Definition 1.1]. In this paper, let K ⊂ Rd be a
compact connected subset with Lipschitz-continuous boundary. At every x ∈ ∂K, K satisfies
the “cone condition” (see, e.g., [8, Proposition 1.22]), it is thus clear that every point on ∂K is
regular for K in the sense that Px[σK = 0] = 1. This allows us to define BMD by identifying
K as a singleton a∗ and equipping E := (Rd\K) ∪ {a∗} with the topology induced from Rd

(see, e.g., [5, §1.1]). In other words, the distribution of the process on Rd\K is the same
as regular Brownian motion on Rd, but the “darning area” K offers zero resistance to the
process. Diffusion processes with darning can be nicely characterized via Dirichlet forms
and have been studied with depth in recent literatures, for example, [5, 6, 7]. In particular,
we equip E with a measure m which is the same as the Lebesgue measure on Rd\K, and does
not charge a∗, Then the BMD on E described above can be characterized by the following
Dirichlet form on L2(E,m(dx)):

(1.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
() =

{
f : f ∈ W1,2(Rd\K), f is continuous on E

}
( f , g) =

1
2

∫
E
∇ f (x) · ∇g(x)m(dx).

In the classic work [13], the authors studied Markov chain approximation to a wide
class of diffusions corresponding to divergence form operators. The approximating Markov
chains live on square lattices αZd with mesh-size α tending to zero. However, in that article,
the distribution of the approximating Markov chains was only given in terms of the transi-
tion density functions of the limiting diffusion process. In other words, without knowing the
exact distribution of the limiting diffusion process, it is unclear what the explicit distribution
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of the approximating Markov chains is.
More recently, it was studied in [11, 12] how BMD can be approximated by continuous-

time random walks on square lattices. The method used in [11] was adapted from [3],
in which the authors showed that reflected Brownian motions in bounded domains can be
approximated by both continuous-time and discrete-time simple random walks, and the tran-
sition functions of the approximating random walks were given explicitly. The method in
[11, 3], however, only works for bounded domains, and the limiting continuous process has
to start with its invariant measure as the initial distribution. [12] adopted a different ap-
proach, which established the C-tightness of the approximating random walks by proving
some sort of “equi-continuity” for their transition density functions through heat kernel es-
timates. This method allows the discrete approximation to take place on an unbounded state
space, and it allows the limiting continuous process to start from an arbitrary single point.
However, the discussion in [11, 12] was only limited to a toy model of “Brownian motion
with varying dimension”. Roughly speaking, the state space of this “toy model” has to be
R

2∪R+, and the “darning point” results from identifying a disc on R2. This is a very special
case in the sense that (a) the dimension of the state space is low; (b) a disc is a symmetric
convex domain with C∞-smooth boundary. This motivates us to ask whether we can estab-
lish such discrete approximations to Brownian motion with darning in the general case. In
this paper, using the method in [12], we describe how BMD on Rd with a darning area K
satisfying Lipschitz boundary condition can be approximated by random walks on square
lattices. The results in this paper provide an intuition for the behavior of BMD upon hitting
the “darning point”, and how it is affected by the geometric properties (or intuitively, the
“shape”) of the boundary of the darning area.

Since in the state space E, K ⊂ Rd is identified with a singleton a∗ with zero diameter,
we equip E with the geodesic distance ρ. Namely, for x, y ∈ E, ρ(x, y) is the shortest geo-
desic path distance (induced from the Euclidean space) in E between x and y. For notation
simplicity, we write |x|ρ for ρ(x, a∗), which equals the shortest Euclidean distance between x
and K in Rd. We use | · | to denote the usual Euclidean norm.

We now introduce the state spaces of the approximating random walks. For every j ∈ N,
let Kj := K ∩ 2− j

Z
d. We identify all the vertices of 2− j

Z
d that are contained in the compact

set K as a singleton a∗j . Let E j := (2− j
Z

d ∩ (Rd\K)) ∪ {a∗j}.
Recall that in general, a graph G can be written as “G = {Gv,Ge}”, where Gv is its col-

lection of vertices, and Ge is its connection of edges. Given any two vertices in a, b ∈ G, if
there is unoriented edge with endpoints a and b, we say a and b are adjacent to each other
in G, written “ a↔ b in G”. One can always assume that given two vertices a, b on a graph,
there is at most one such unoriented edge connecting these two points (otherwise edges with
same endpoints can be removed and replaced with one single edge). This unoriented edge
is denoted by eab or eba (eab and eba are viewed as the same elelment in Ge). In this paper,
for notational convenience, we denote by  j := {2− j

Z
d, j}, where  j is the collection of the

edges of 2− j
Z

d.
Next we introduce the graph structure on E j. Denote by G j = {G j

v,G
j
e} the graph where

G j
v = E j is the collection of vertices and G j

e is the collection of unoriented edges over E j

defined as follows:
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G j

e :={exy : ∃ x, y ∈ 2− j
Z

d ∩ (Rd\K), | x − y| = 2− j, exy ∈  j, exy ∩ K = ∅}
∪{exa∗j : x ∈ 2− j

Z
d ∩ (Rd\K), ∃ at least one edge exy ∈  j such that exy ∩ K � ∅}.(1.2)

Note that G j = {G j
v,G

j
e} is a connected graph. We emphasize that given any x ∈ G j

v, x � a∗j ,
there is at most one unoriented edge in G j

e connecting x and a∗j . Denote by v j(x) = #{exy ∈
G j

e}, i.e., the number of vertices in G j
v adjacent to x.

In order to give definition to the approximating random walks for BMD, for every j ≥ 1,
we equip E j with the measure:

(1.3) mj(x) :=
2− jd

2d
· v j(x), x ∈ E j.

Consider the following Dirichlet form on L2(E j,mj):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
( j) = L2(E j,mj)


j( f , f ) =

2−(d−2) j

4d

∑
eo

xy: exy∈G j
e

( f (x) − f (y))2 ,(1.4)

where eo
xy denotes an oriented edge from x to y. In other words, given any pair of adjacent

vertices x, y ∈ G j
v, the edge with endpoints x and y is represented twice in the sum: eo

xy and
eo
yx. One can verify that ( j,( j)) is a regular symmetric Dirichlet form on L2(E j,mj),

therefore there is symmetric strong Markov process associated with it. We denote this pro-
cess by X j. In §2, we show that each X j is a continuous-time random walk whose tragec-
tories of X j stay at each vertex of E j for an exponentially distributed holding time with
parameter 2−2 j before jumping to one of its neighbors with equal probability. The main
result of this paper is Theoerem 4.13, which states that starting from a single point, the
distributions of {X j, j ≥ 1} converge weakly to the BMD characterized by (1.1).

The rest of this paper is organized as follows. In §2, we first describe the behavior of
X j by showing their roadmaps. Then we give a brief review on isoperimetric inequalities
for weighted graphs, especially the isoperimetric inequalities for Zd equipped with equal
weights. Using these results, in Proposition 2.7 we prove an isoperimetric inequality for X j.
With the isoperimetric inequality obtained in §2, in §3 we derive a Nash-type inequality for
the family of random walks {X j, j ≥ 1}, from which we establish heat kernel upper bounds,
first on-diagonal then off-diagonal, for the entire family of {X j, j ≥ 1}. In §4, we use the
well-known criterion of tightness presented in [9, Chapter VI, Proposition 3.21] to prove the
tightness of {X j, j ≥ 1}. The tightness criterion is verified in Propositions 4.7-4.8, which
are proved using the heat kernel upper bounds obtained in §3. Finally, the main result of
convergence is given by Theorem 4.13.

In this paper we follow the convention that in the statements of the theorems or propo-
sitions, the capital letters C1,C2, · · · or N1,N2, · · · denote positive constants or positive in-
tegers, whereas in their proofs, the lower letters c, c1, · · · or n1, n2, · · · denote positive con-
stants or positive integers whose exact value is unimportant and may change from line to
line.
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2. Preliminaries

2. Preliminaries2.1. Roadmap of the approximating random walks.
2.1. Roadmap of the approximating random walks. Suppose E is a locally compact

separable metric space and {Q(x, dy)} is a probability kernel on (E,(E)) with Q(x, {x}) = 0
for every x ∈ E. Let λ = λ(x) > 0, x ∈ E be a positive function, we can construct a pure jump
Markov process X as follows: Starting from x0 ∈ E, X remains at x0 for an exponentially
distributed holding time T1 with parameter λ(x0) (i.e., E[T1] = 1/λ(x0)), then it jumps to
some x1 ∈ E according to distribution Q(x0, dy); it remains at x1 for another exponentially
distributed holding time T2 also with parameter λ(x1) before jumping to x2 according to
distribution Q(x1, dy). T2 is independent of T1. X then continues. The probability kernel
Q(x, dy) is called the roadmap, i.e., the one-step distribution of X, and the λ(x) is its speed
function. If there is a σ-finite measure m0 on E with supp[m0] = E such that

(2.1) Q(x, dy)m0(dx) = Q(y, dx)m0(dy),

m0 is called a symmetrizing measure of the roadmap Q. The following theorem is a restate-
ment of [6, Theorem 2.2.2].

Theorem 2.1 ([6]). Given a speed function λ > 0. Suppose (2.1) holds, then the reversible
pure jump process X described above can be characterized by the following Dirichlet form
(E,F) on L2(E,m(dx)) where the underlying reference measure is m(dx) = λ(x)−1m0(dx)
and

(2.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F = L2(E, m(dx)),

E( f , g) =
1
2

∫
E×E

( f (x) − f (y))(g(x) − g(y))Q(x, dy)m0(dx).

With the theorem above, we present the following proposition which states that at every
vertex of E j, X j holds for an exponential amount of time with mean 2−2 j before jumping to
each of its nearest neighbors with equal probability.

Proposition 2.2. For every j ≥ 1, X j has constant speed function λ j = 22 j and a roadmap

Q j(x, dy) =
∑
z∈E j

z↔x in G j

q j(x, z)δ{z}(dy),

where q j(x, y) = v j(x)−1, for all x, y ∈ E j.

Proof. Define a measure m0
j(x) := λ jm j(x) = 2−(d−2) jv j(x)/(2d). The conclusion follows

immediately from (1.4) and Theorem 2.1. �

2.2. Isoperimetric inequalities for weighted graphs.
2.2. Isoperimetric inequalities for weighted graphs. In this section we summarize

some results on isoperimetric inequalities for weighted graphs in [1]. In general, let Γ be a
locally finite connected graph, and let the collection of vertices of Γ be denoted by V. If two
vertices x, y ∈ V are adjacent to each other, then the the unoriented edge connecting x and y
is assigned a unique weight μxy > 0. Set μxy = 0 if x and y are not adjacent in Γ. Denote by
μ := {μxy : x, y connected in Γ} the assignment of the weights on all the unoriented edges.
(Γ, μ) is called a locally finite connected weighted graph. A weighted graph (Γ, μ) can be
equipped with the following intrinsic measure ν on V:
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(2.3) ν(x) :=
∑

y∈V:y↔x in Γ

μxy, x ∈ V.

Given two sets of vertices A, B in V, we define

(2.4) μΓ(A, B) :=
∑
x∈A

∑
y∈B

μxy.

The following definition of isoperimetric inequality is taken from [1, Definition 3.1].

Definition 2.3. For α ∈ [1,∞), we say that a weighted graph (Γ, μ) satisfies
α-isoperimetric inequality (Iα) if there exists C0 > 0 such that

μΓ(A,V\A)
ν(A)1−1/α ≥ C0, for every finite non-empty A ⊂ V.

The following proposition follows from the combination of [1, Theorem 3.7, Lemma
3.9, Theorem 3.14] and the proofs therein. It gives the relationship between Nash-type
inequalities and isoperimetric inequalities for weighted graphs.

Proposition 2.4 ([1]). Let (Γ, μ) be a locally finite connected weighted graph satisfying
α-isoperimetric inequality with constant C0. Let ν be the measure defined in (2.3). Then
(Γ, μ) satisfies the following Nash-type inequality:

1
2

∑
x∈V

∑
y∈V,y↔x

( f (x) − f (y))2 μxy ≥ 4−(2+α/2)C2
0‖ f ‖2+4/α

L2(ν) ‖ f ‖−4/α
L1(ν), f ∈ L1(ν) ∩ L2(ν)

The next proposition follows immediately from [1, Theorem 3.26]. As a notation in [1],
given a weighted graph (Γ, μ) with collection of vertices V. We denote the counting measure
times 2− jd on 2− j

Z
d by μ j, which can be viewed as the measure “ν” in (2.3) corresponding

to weighted 2− j
Z

d with all edges weighing 2− jd/2d.

Proposition 2.5 ([1]). For j ∈ N, let all edges of 2− j
Z

d be assigned with a weight 2− jd/2d.
There exists a constant C1 > 0 independent of j such that for any finite subset A of 2− j

Z
d,

(2.5) μ2− jZd (A, 2− j
Z

d\A) ≥ C1 · 2− jμ j(A)(d−1)/d.

Before establishing the isoperimetric inequality for Xj, we need the following proposition
which will be used throughout this article.

Proposition 2.6. There exist C2 > 0 and N0 ∈ N only depending on the darning region K
such that for all j ≥ N0,

(2.6) v j(a∗j) ≤ C2 · 2 j(d−1).

Proof. In the following we denote the d- and (d − 1)-dimensional Lebesgue measures by
m(d) and m(d−1), respectively. For any two distinct x, y ∈ E j both adjacent to a∗j , the two

Euclidean balls B|·|(x, 2− j

2 ) and B|·|(y, 2− j

2 ) are disjoint. Also, for any x ↔ a∗j , the Euclidean

ball B|·|(x, 2− j

2 ) must be contained in the set {x ∈ Rd : d|·|(x, ∂K) ≤ 2 · 2− j}. Therefore,

(2.7) v j(a∗j) · m(d)
(
B|·|

(
x,

2− j

2

))
≤ m(d)

({
x ∈ Rd : d|·|(x, ∂K) ≤ 2 · 2− j

})
.

Since K has Lipschitz-continuous boundary in Rd, ∂K is (d − 1)-dimensional in the sense of
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both topological and Minkowski box dimension. This means that there exists j0 ∈ N and a
constant c > 0 such that for all j ≥ j0, ∂K can be covered by c · 2 j(d−1) many boxes with
side lenght 2− j. This further implies that set {x ∈ Rd : d|·|(x, ∂K) ≤ 2 · 2− j} can be covered
by boxes with the same centers but side length 16 · 2− j, which further implies that for some
c > 0,

m(d)
({

x ∈ Rd : d|·|(x, ∂K) ≤ 2 · 2− j
})
≤ c · 2 j(d−1) · 2− jd = c · 2− j, j ≥ j0.

The conclusion thus follows on account of (2.7) and the fact that m(d)(B|·|(x, 2− j/2)) = s(d −
1) · 2−( j+1)d for all x ∈ Rd, where s(d − 1) > 0 is a constant equal to the (d − 1)-dimensional
surface measure. �

Recall the graph structure on E j defined in (1.2). In the next proposition we establish
an isoperimetric inequality for X j on the weighted graph E j, where all the edges in G j

e are
equipped with an equal weight of 2− jd/(2d).

Proposition 2.7. For every j ∈ N, let all edges of E j be equipped with an equal weight
2− j/(2d), which is consistent with the definition of mj in the sense that

mj(x) =
2− jd

2d
· #

{
exy ∈ G j

}
.

For the N0 specified in Proposition 2.6, there exist an integer N1 ≥ N0 and a constant C2 > 0
independent of j such that for all j ≥ N1,

(2.8) μE j(A, E j\A) ≥ 2− jC2mj(A)(d−1)/d, for any finite set A ⊂ E j.

Proof. Let A be any finite subset of E j. Recall that in Section 1 we set Kj := 2− j
Z

d ∩ K
and  j := {2− j

Z
d, j}, where  j is the collection of the edges of 2− j

Z
d. Also recall that

we use “exy” to denote an edge connecting x and y, including these two endpoints. In the
following we establish (2.8) by dividing our discussion into two cases depending on whether
a∗j is in A or not.
Case (i). a∗j � A. Thus a∗j ∈ E j\A and A ⊂ 2− j

Z
d. In view of the definition of the graph

structure G j in (1.2),

μE j(A, E j\A) =
2− jd

2d

∑
x∈A

#
{
y ∈ E j\A : y↔ x in G j

}

=
2− jd

2d

∑
x∈A

#
{
y ∈

(
E j\

(
A ∪ {a∗j}

))
: y↔ x

}
+

2− jd

2d
#
{
x ∈ A : x↔ a∗j

}

=
2− jd

2d

∑
x∈A

#
{
y ∈ (2− j

Z
d\A) : y↔ x in 2− j

Z
d, exy ∩ K = ∅

}

+
2− jd

2d
#
{
x ∈ A : ∃ exy ∈  j such that exy ∩ K � ∅

}
≥ 2− jd

2d

∑
x∈A

#
{
y ∈ (2− j

Z
d\A) : ∃ exy ∈  j such that exy ∩ K = ∅

}

+
2− jd

2d
· 1

2d

∑
x∈A

#
{
y ∈ 2− j

Z
d : ∃ exy ∈  j such that exy ∩ K � ∅

}
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≥ 2− jd

4d2

∑
x∈A

#
{
y ∈ 2− j

Z
d\A : y↔ x in 2− j

Z
d
}
,

where the first inequality above is due to the fact that for every x ∈ A such that there is at
least one edge in  j with an endpoint x intersecting K, there are at most 2d many such egdes
with different other endpoint y. Now in view of (2.5) and the definition of μ j and μ2− jZd

earlier in this section, we have

μE j(A, E j\A)(2.9)

≥ 2− jd

4d2

∑
x∈A

#
{
y ∈ 2− j

Z
d\A : y↔ x in 2− j

Z
d
}

≥ 1
2d
· μ2− jZd (A, 2− j

Z
d)

(2.5)≥ C1

2d
· 2− jμ j(A)(d−1)/d =

C1

2d
· 2− jm j(A)(d−1)/d,

which the C1 above is the same as in (2.5). This establishes the desired inequality for the
current case. Before continuing to the other case, we note that by the definition of Lipschitz-
continuity, μ j(Kj) is bounded from below by a positive constant for sufficiently large j. Thus
there exists an integer j1 ≥ N0 and a constant c1 > 0 such that

(2.10) μ j(Kj) ≥ c1, for all j ≥ j1.

Now in view of Proposition 2.6, there exists an integer j2 ≥ N0 such that

(2.11) μ j(Kj) ≥ c1 ≥ 2− jd

2d
·C2 · 2 j(d−1) ≥ mj(a∗j), for all j ≥ j2.

Case (ii). a∗j ∈ A. In this case E j\A = 2− j
Z

d\A. Recall that we let Kj = K ∩ 2− j
Z

d. Thus for
all j ≥ j2 given in (2.11),

μE j(A, E j\A)(2.12)

=
2− jd

2d

∑
x∈A

#
{
y ∈ E j\A : y↔ x in G j

}

=
2− jd

2d

∑
x∈A
x�a∗j

#
{
y ∈ E j\A : y↔ x in G j

}
+

2− jd

2d
#
{
y ∈ E j\A : y↔ a∗j

}

≥ 2− jd

2d

∑
x∈A
x�a∗j

#
{
y ∈ (2− j

Z
d\A) : ∃ exy ∈  j s.t. exy ∩ K = ∅

}

+
2− jd

4d2

∑
x∈2− jZd

#
{
y ∈ (2− j

Z
d\A) : ∃ exy ∈  j s.t. exy ∩ K � ∅

}

≥ 2− jd

2d

∑
x∈A\{a∗j}

#
{
y ∈ (2− j

Z
d\A) : ∃ exy ∈  j s.t. exy ∩ K = ∅

}

+
2− jd

4d2

∑
x∈A\{a∗j}

#
{
y ∈ (2− j

Z
d\A) : ∃ exy ∈  j s.t. exy ∩ K � ∅

}

+
2− jd

4d2

∑
x∈K j

#
{
y ∈ (2− j

Z
d\A) : ∃ exy ∈  j

}
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≥ 2− jd

4d2

∑
x∈(A\{a∗j})∪K j

#
{
y ∈ 2− j

Z
d\A : y↔ x in 2− j

Z
d
}

=
1

2d
· μ2− jZd

(
(A\{a∗j}) ∪ Kj, 2− j

Z
d\A

)
(2.5) ≥ C1

2d
· μ j

(
(A\{a∗j}) ∪ Kj

)(d−1)/d (2.11)≥ C1

2d
· mj

(
(A\{a∗j}) ∪ Kj

)(d−1)/d
,

where the first inequality is due to the fact that for every y ∈ 2− j
Z

d\A such that there is at
least one edge in  j with an endpoint y intersecting K, there are at most 2d many such edges
in  j with differenet other endpoint x. The proof is complete in view of (2.9) and (2.12).

�

3. Nash-type inequality and heat kernel upper bound for random walks on lattices
with darning

3. Nash-type inequality and heat kernel upper bound for random walks on lattices
with darning

In this section, using the isoperimetric inequality obtained in Proposition 2.7, we establish
first a Nash-type inequality and then heat kernel upper bound for Xj.

Proposition 3.1. For every j ∈ N, let (Pj
t )t≥0 be the transition semigroup of X j with

respect to mj. There exists a constant C3 > 0 independent of j such that for all j ≥ N1

specified in Proposition 2.7,

(3.1) ‖Pj
t ‖1→∞ ≤

C3

td/2 , ∀t ∈ (0,+∞].

Proof. It follows from (2.8) and Proposition 2.4 that for all f ∈ L1(E j,mj) ∩ L2(E j,mj),
it holds

1
2

∑
x∈E j

∑
y∈E j,y↔x

( f (x) − f (y))2 2− jd

2d
≥ C2

2 · 2−2 j · 4−2− 2
d ‖ f ‖2+ 4

d

L2(mj)
‖ f ‖− 4

d

L1(mj)
.

In view of the definition of  j, this implies that

(3.2) 
j( f , f ) ≥ C2

2 · 4−2− 2
d · ‖ f ‖2+4/d

L2(mj)
‖ f ‖−4/d

L1(mj)
, f ∈ L1(E j,mj) ∩ L2(E j,mj).

The conclusion now follows from [4, Theorem 2.9]. �

Now for every j ∈ N, we define a metric d j(·, ·) on E j as follows:

(3.3) d j(x, y) := 2− j × smallest number of edges between x and y in G j.

With the above on-diagonal heat kernel estimate, using the standard Davies’s method, we
next derive an off-diagonal heat kernel upper bound estimate for X j. Since there is a Nash-
type inequality holds for each X j, the family of transition density function of (Pj

t )t≥0 with
respect to mj exists for every j ∈ N. We denote this by {p j(t, x, y), t > 0, x, y ∈ E j}.

Proposition 3.2. For every j ≥ 1, fix a sequence of {α j} j≥1 satisfying α j ≤ 2 j−1. There
exists C4 > 0 independent of j, such that for all j ≥ N1 specified in Proposition 2.7,

(3.4) p j(t, x, y) ≤ C4

td/2 exp
(
−α jd j(x, y) + 4tα2

j

)
, 0 < t < ∞, x, y ∈ E j.
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Proof. We prove this result using [4, Corollary 3.28]. For each j, we set

̂
j := {h + c : h ∈ ( j), h bounded, and c ∈ R}.

It is known that the regular symmetric Dirichlet form ( j,( j)) is associated with the
following energy measure Γ j:


j(u, u) =

∫
E j
Γ j(u, u)(dx), u ∈ ̂ j.

Now we define ̂
j
∞ as a subset of ψ ∈ ̂ j satisfying the following conditions:

(i) Both e−2ψΓ j(eψ, eψ) and e2ψΓ j(e−ψ, e−ψ) as measures are absolutely continuous with
respect to mj on E j.

(ii) Furthermore,

(3.5) Γ j(ψ) :=
(∥∥∥∥∥∥de−2ψ Γ j(eψ, eψ)

dmj

∥∥∥∥∥∥∞ ∨
∥∥∥∥∥∥de2ψ Γk(e−ψ, e−ψ)

dmj

∥∥∥∥∥∥∞
)1/2

< ∞.

For a fixed constant α j ≤ 2 j−1, we denote by

(3.6) ψ j,n(x) := α j ·
(
d j(x, a∗j) ∧ n

)
.

In order to apply [4, Corollary 3.28], we need to verify that ψ j,n ∈ ̂
j
∞ for every n. Notice

that ψ j,n is a constant outside of a bounded domain of E j, therefore it is in ̂ j. We first note
that

(3.7) |1 − ex| ≤ |2x|, for − 1
2
< x <

1
2
.

We now first verify conditions (i) and (ii) above for the function ψ j,n. Viewing
e−2ψ j,nΓ j(eψ j,n , eψ j,n) as a measure on E j, given any subset A ⊂ E j, we have

e−2ψ j,nΓ j(eψ j,n , eψ j,n)(A)

=
2−(d−2) j

4d

∑
x∈E j∩A

e−2ψ j,n(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ∑
y↔x in E j

(
eψ j,n(y) − eψ j,n(x)

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≤ 2−(d−2) j

4d

∑
x∈E j∩A

∑
y↔x in E j

[(
1 − eα j

(
d j(y,a∗j)∧n−d j(x,a∗j)∧n

))2
]

=
2−(d−2) j

4d

∑
x∈E j∩A

x�a∗j

∑
y↔x in E j

[(
1 − eα j

(
d j(y,a∗j)∧n−d j(x,a∗j)∧n

))2
]

+
2−(d−2) j

4d
· 1{a∗j∈A} ·

∑
y↔a∗j

[(
1 − eα j(d j(y,a∗j)∧n)

)2
]

(3.7) ≤ 2−(d−2) j

4d
· #

{
x ∈ E j ∩ A, x � a∗j

}
· 2d · (2 · α j · 2− j)2

+
2−(d−2) j

4d
· 1{a∗j∈A} · v j(a∗j) · (2 · α j · 2− j)2

≤ 2 · 2− jd · #
{
x ∈ E j ∩ A, x � a∗j

}
· α2

j +
2− jd

d
· 1{a∗j∈A} · v j(a∗j) · α2

j .



10 S. Lou

Recall that mj(x) = 2− jd

2d · v j(x). We conclude that for some c > 0 independent of j, it holds

(3.8)

∥∥∥∥∥∥de−2ψ j,n Γ j(eψ j,n , eψ j,n)
dmj

∥∥∥∥∥∥∞ ≤
√

2α j, for all j ≥ 1.

Similarly, it can be computed that

e2ψ j,nΓ j(e−ψ j,n , e−ψ j,n)(A)

≤ 2−(d−2) j

4d

∑
x∈E j∩A

x�a∗j

∑
y↔x in E j

[(
1 − eα j

(
d j(x,a∗j)∧n−d j(y,a∗j)∧n

))2
]

+
2−(d−2) j

4d
· 1{a∗j∈A} ·

∑
y↔a∗j

[(
1 − e−α j(d j(y,a∗j)∧n)

)2
]

(3.7) ≤ 2−(d−2) j

4d
· #

{
x ∈ E j ∩ A, x � a∗j

}
· (2d) · (2 · α j · 2− j)2

+
2−(d−2) j

4d
· 1{a∗j∈A} · v j(a∗j) · (2 · α j · 2− j)2

≤ 2 · 2− jd · #
{
x ∈ E j ∩ A, x � a∗j

}
· α2

j +
2− jd

d
· 1{a∗j∈A} · v j(a∗j) · α2

j .

Similar to (3.8), this shows that∥∥∥∥∥∥de2ψ j,n Γ j(eψ j,n , eψ j,n)
dmj

∥∥∥∥∥∥∞ ≤
√

2α j, for all j ≥ 1,

and thus (4.7) is verified. The desired conclusion follows immediately from [4, Theorem
3.25, Corollary 3.28]. �

Corollary 3.3. There exist C5 > 0 independent of j such that for all j ≥ N1 specified in
Proposition 2.7, all x, y ∈ E j and all t ≥ 0, it holds

p j(t, x, y) ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C5

td/2 e−d j(x,y)2/(64t), when d j(x, y) ≤ 16 · 2 jt;

C5

td/2 e−2 jd j(x,y)/4, when d j(x, y) ≥ 16 · 2 jt.

In particular, given any T > 0, there exists C5 > 0 such that

p j(t, x, y) ≤ C5

td/2

(
e−d j(x,y)2/(64t) + e−2 jd j(x,y)/4

)
, for all (t, x, y) ∈ (0, T ] × E j × E j.

Proof. To prove this, in Proposition 3.2, given any j ≥ N1, for any fixed t0 > 0 and any
pair of x0, y0 ∈ E j, we take

α j :=
d j(x0, y0)

32t0
∧ 2 j−1.

Then Proposition 3.2 yields that for all t > 0 and x, y ∈ E j,

p j(t0, x, y) ≤ c

td/2
0

exp

⎡⎢⎢⎢⎢⎢⎣−
(
d j(x0, y0)

32t0
∧ 2 j−1

)
d j(x, y) + 4t0

(
d j(x0, y0)

16t0
∧ 2 j−1

)2⎤⎥⎥⎥⎥⎥⎦ .
The desired result follows from first taking x = x0 and y = y0, then simplying the right hand
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side above by dividing it into two cases: d j(x0, y0) ≥ 32t0 · 2 j−1 and d j(x0, y0) ≤ 32t0 · 2 j−1.
�

4. Tightness of the approximating random walks

4. Tightness of the approximating random walks
The next proposition taken from [10] is a well-known criterion for tightness for càdlàg

processes. As a standard notation, given a metric d(·, ·), we denote by

wd(x, θ, T ) := inf
{ti}1≤i≤n∈Π

max
1≤i≤n

sup
s,t∈[ti,ti−1]

d(x(s), x(t)),

where Π is the collection of all possible partitions of the form 0 = t0 < t1 < · · · < tn−1 < T ≤
tn with min1≤i≤n(ti − ti−1) ≥ θ and n ≥ 1. Recall the definition of the metric ρ equipped on E
in the third paragraph of §1.

Proposition 4.1 (Chapter VI, Theorem 3.21 in [10]). Let {Yk, P
y}k≥1 be a a sequence of

càdlàg processes on state space E. Given y ∈ E, the laws of {Yk, P
y}k≥1 are tight in the

Skorokhod space D([0, T ], E, ρ) if and only if

(i). For any T > 0, δ > 0, there exist K1 ∈ N and M > 0 such that for all k ≥ K1,

(4.1) P
y

[
sup

t∈[0,T ]

∣∣∣Yk
t

∣∣∣
ρ
> M

]
< δ.

(ii). For any T > 0, δ1, δ2 > 0, there exist δ3 > 0 and K2 > 0 such that for all k ≥ K2,

(4.2) P
y
[
wρ

(
Yk, δ3, T

)
> δ1

]
< δ2.

In this section, we use the heat kernel upper bounds obtained in Corollary 3.3 to verify
the two conditions in Proposition 4.1. Since this section is long and technical, we briefly go
through the structure of the rest of this section: Condition (i) in Proposition 4.1 is established
via Lemmas 4.2 - 4.7. In Lemma 4.2, we break the left hand side of the inequality in
condition (i) into the sum of a few terms. Lemmas 4.3 - 4.6 are some delicate computations
as preparations for Lemma 4.7. Finally in Lemma 4.7, we consolidate all the computations
in Lemmas 4.3 - 4.6 and establish condition (i) using the inequality in Lemma 4.2. Condition
(ii) in Proposition 4.1 is verified in Proposition 4.8.

We begin with the following Lemma 4.2 that can be proved in the same manner as [12,
Lemma 4.2]. Indeed, this is a standard result due to the strong Markov property of X j. We
skip the proof to it.

Lemma 4.2. Given any T, M > 0, for any sufficiently large j ∈ N such that 2− j < T, it
holds for all x ∈ E j that

P
x
[

sup
t∈[0,T ]

|X j
t |ρ ≥ M

]
≤ Px

⎡⎢⎢⎢⎢⎣ sup
t∈[0,8− j]

|X j
t |ρ ≥ M

⎤⎥⎥⎥⎥⎦ + Px
[∣∣∣∣X j

T

∣∣∣∣
ρ
≥ M

2

]

+ Px
[
T − 8− j ≤ τM ≤ T,

∣∣∣∣X j
T

∣∣∣∣
ρ
≤ M

2

]
+ Px

[
8− j ≤ τM ≤ T − 8− j,

∣∣∣∣X j
T

∣∣∣∣
ρ
≤ M

2

]
,

where τM := inf{t > 0 : |X j
t |ρ ≥ M}.
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The following lemma can be proved in the same manner as that in [12, Proposition 4.3].
Essentially it results from the fact that X j makes jumps at a rate of 2−2 j, for every j ≥ 1. The
proof is also skipped here.

Lemma 4.3. For any δ > 0, any T > 0, there exists M1 > 0 such that for all j ≥ 1:

sup
y∈E j
P
y

⎡⎢⎢⎢⎢⎣ sup
t∈[0,8− j]

ρ
(
X j

0, X
j
t

)
≥ M1

⎤⎥⎥⎥⎥⎦ < δ.
Before presenting the next few lemmas, given any r > 0, we denote the boundary of a

“cube” in Rd centered at the origin with side length 2r by

(4.3) Sr :=
{
(x1, . . . , xd) ∈ Rd : max

1≤i≤d
|xi| = r

}
.

For the remaining of this paper, we fix a starting point x0 ∈ ∩ j≥1E j and a k0 ∈ N, such that
both K and x0 are contained in the set

(4.4)
{
(x1, . . . , xd) ∈ Rd : max

1≤i≤d
|xi| ≤ k0

}
.

By elementary geometry, it can be told that for all r ≥ 2k0, j ≥ 1,

(4.5) #
(
Sr ∩ E j

)
≤ (2d) · (2r · 2 j)d−1.

When k ≥ 2k0, for all j ≥ 1, the definitions of d j and ρ imply that

(4.6) d j(x0, y) ≥ ρ(x0, y) ≥ k
2
, for y ∈ Sk ∩ E j.

Lemma 4.4. Fix x0 ∈ ⋂
j≥1 E j and T > 0. For any δ > 0, there exists M2 > 0 such that

for all j ≥ N1 specified in Proposition 2.7 such that 8− j < T:

sup
8− j≤t≤T

P
x0
[
d j(X

j
t , x0) ≥ M2

]
< δ.

Proof. We use Proposition 3.3 to prove this. We first note that the sequence of metrics
{d j} j≥1 is non-increasing in j, in particular, given a fixed x0 ∈ ∩ j≥1E j, {d j(a∗j, x0)} j≥1 is an
non-increasing sequence of numbers. Therefore, for the k0 specified in (4.4), one can choose
M > 2k0 sufficiently large such that

(4.7) d j(a∗j , x0) ≤ M, for all j ≥ 1.

For M satisfying (4.7), in view of the definition of mj and the heat kernel upper bound in
Corollary 3.3, there exists some c1 > 0 independent of j such that for all j ≥ N1,

P
x0
[
d j(X

j
t , x0) ≥ M

]
(4.8)

≤
∑

d j(y,x0)≥M

c1

td/2

(
e−

d j(x0 ,y)2

64t + e−
2 jd j(x0 ,y)

4

)
mj(y).

≤
∑

d j(y,x0)≥M

c1

td/2 e−
d j(x0 ,y)2

64t · 2− jd +
∑

d j(y,x0)≥M

c1

td/2 e−
2 jd j(x0 ,y)

4 · 2− jd.

To give an upper bound for each of the two terms on the right hand side above, we first
record the following computation for a generic k ≥ 0:
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∞∑
l=k·2 j

∑
y∈E j∩S2k0+l·2− j

1
td/2 2− jd · e− d j(x0 ,y)2

64t(4.9)

(4.6) ≤
∞∑

l=k·2 j

∑
y∈E j∩S2k0+l·2− j

1
td/2 2− jd · e− (2k0+l·2− j)2

256t

(4.5) ≤
∞∑

l=k·2 j

1
td/2 2− jd · e− (2k0+l·2− j)2

256t · (2d) · (4k0 + 2l · 2− j)d−1 · 2 j(d−1)

≤
∞∑

l=k·2 j

2d · 2− j

td/2 · (4k0 + 2l · 2− j)d−1 · e− (2k0+l·2− j)2

256t

≤
∞∑

l=k·2 j

2d · 2− j · (4k0 + 2l · 2− j)d−1 · e− (2k0+l·2− j)2

512T ·
(

sup
0<t≤T

1
td/2 e−

(2k0)2

512t

)

≤ c2

∞∑
l=k·2 j

2− j · (4k0 + 2l · 2− j)d−1 · e− (2k0+l·2− j)2

512T

≤ c2

∞∑
u=k

2 j(u+1)−1∑
l=2 j·u

2− j · (4k0 + 2l · 2− j)d−1 · e− (2k0+l·2− j)2

512T

≤ c2

∞∑
u=k

(4k0 + 2u + 2)d−1e−
(2k0+u)2

512T

= c2

∞∑
u=k

(4k0 + 2u + 2)d−1e−
(2k0+u)2

1024T · e− (2k0+u)2

1024T

≤ c2

(
sup
x≥2k0

(2x + 2)d−1e−
x2

1024T

) ∞∑
u=k

e−
(2k0+u)2

1024T ≤ c2

∞∑
u=k

e−
(2k0+u)2

1024T .

We note that the last display of (4.9) can be made arbitrarily small by selecting sufficiently
large k. It now follows that for any δ > 0, there exists k1 ∈ N such that for all k ≥ k1, it holds
for the first display in (4.9) that

(4.10)
∞∑

l=k·2 j

∑
y∈E j∩S2k0+l·2− j

1
td/2 2− jd · e−

d j(x0 ,y)2

64t ≤ c2

∞∑
u=k

e−
(2k0+u)2

1024T < δ/2.

In order to handle the second term on the right hand side of (4.8), similarly, we also first
record the following computation for a generic k ≥ 0:

∞∑
l=k·2 j

∑
y∈E j∩S2k0+l·2− j

1
td/2 e−

2 jd j(x0 ,y)
4 · 2− jd(4.11)

(4.6) ≤
∞∑

l=k·2 j

∑
y∈E j∩S2k0+l·2− j

1
td/2 e−

2 j(2k0+l·2− j)
8 · 2− jd

(4.5) ≤
∞∑

l=k·2 j

1
td/2 e−

2 j(2k0+l·2− j)
8 (2d) ·

((
4k0 + 2l · 2− j

)
2 j
)d−1 · 2− jd
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=

∞∑
l=k·2 j

1
td/2 e−

2 j(2k0+l·2− j)
8 (2d) · (4k0 + 2l · 2− j)d−1 · 2− j

= 2d
∞∑

l=k·2 j

2− j(4k0 + 2l · 2− j)d−1e−
2 j(2k0+l·2− j)

16

(
1

td/2 e−
2 j(2k0+l·2− j)

16

)

≤ 2d
∞∑

l=k·2 j

2− j(4k0 + 2l · 2− j)d−1e−
2 j(2k0+l·2− j)

16

(
1

td/2 e−
2 j
16

)

(t ≥ 8− j) ≤ 2d
∞∑

l=k·2 j

2− j(4k0 + 2l · 2− j)d−1e−
2 j(2k0+l·2− j)

16

⎛⎜⎜⎜⎜⎝sup
j≥1

8
jd
2 e−

2 j
16

⎞⎟⎟⎟⎟⎠
≤ c3

∞∑
l=k·2 j

2− j(4k0 + 2l · 2− j)d−1e−
2 j(2k0+l·2− j)

16

≤ c3

∞∑
u=k

2 j(u+1)−1∑
l=2 j·u

2− j(4k0 + 2l · 2− j)d−1e−
2 j(2k0+l·2− j)

16

≤ c3

∞∑
u=k

(4k0 + 2u + 2)d−1e−
2 j(2k0+u)

16

= c3

∞∑
u=k

(4k0 + 2u + 2)d−1e−
2 j(2k0+u)

32 · e− 2 j(2k0+u)
32

≤ c3

(
sup
x≥2k0

(2x + 2)d−1e−
x

32

) ∞∑
u=k

e−
2 j(2k0+u)

32 ≤ c4

∞∑
u=k

e−
2k0+u

32 .

The last display of (4.11) can be made arbitrarily small by selecting sufficiently large k.
Therefore, for any δ > 0, there exists k2 ∈ N such that for all k ≥ k2,

(4.12)
∞∑

l=k·2 j

∑
y∈E j∩S2k0+l·2− j

1
td/2 e−

2 jd j(x0 ,y)
2 · 2− jd ≤ c4

∞∑
u=k

e−
2k0+u

16 < δ/2.

Finally, to claim that the right hand side of (4.8) can be made arbitrarily small by selecting

sufficiently large M, we note that for any j ≥ 1, (E j\{a∗j}) ⊂
∞⋃

l=0

Sl·2− j . Therefore, given the

x0, k0 fixed in (4.4), as well as the k1, k2 specified in (4.10) and (4.12), there exists M > 0
sufficiently large such that

(4.13)
{
y ∈ E j : d j(x0, y) ≥ M

}
⊂

∞⋃
l=(k1∨k2)·2 j

(
E j ∩ S2k0+l·2− j

)
for all j ≥ 1.

With such chosen M, we can rewrite (4.8) as

P
x0
[
d j(X

j
t , x0) ≥ M

]
(4.8) ≤

∑
d j(y,x0)≥M

c1

td/2 e−
d j(x0 ,y)2

64t · 2− jd +
∑

d j(y,x0)≥M

c1

td/2 e−
2 jd j(x0 ,y)

4 · 2− jd.
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(4.13) ≤
∞∑

l=k1·2 j

∑
y∈E j∩S2k0+l·2− j

1
td/2 2− jd · e− d j(x0 ,y)2

64t

+

∞∑
l=k2·2 j

∑
y∈E j∩S2k0+l·2− j

1
td/2 e−

2 jd j(x0 ,y)
2 · 2− jd

(4.10), (4.12) ≤ δ

2
+
δ

2
= δ, for all j ≥ N1.

�

The following lemma, roughly speaking, states that starting from a position y such that
ρ(y, a∗) > M, for sufficiently large M, the probability that ρ(X j

t , a
∗) ≤ M/2 is small, for all t

before a fixed time T .

Lemma 4.5. For any fixed T > 0, δ > 0, there exist M3 > 0 and an integer N2 ≥ N1

satisfying T > 2 · 8−N2 , such that for all j ≥ N2 and M > M3, it holds that

P
y
[∣∣∣X j

t

∣∣∣
ρ
≤ M

2

]
< δ, for all |y|ρ > M, t ∈ [8− j, T − 8− j].

Proof. For a generic M > 0, given |y|ρ > M and t ∈ [8− j, T − 8− j],

P
y
[∣∣∣X j

t

∣∣∣
ρ
≤ M

2

]
=

∑
ρ(x,a∗j)≤M/2

x�a∗j

p j(t, y, x)mj(x) + p j(t, y, a∗j)mj(a∗j)(4.14)

We first handle the second term on the right hand side above. In view of Proposition 2.6 as
well as the definition of mj in (1.3), we have for some c1 > 0 (depending on d) that

(4.15) mj(a∗j) ≤
2− j

2d
· c1 · 2 j(d−1) = c1 · 2− j.

In view of Corollary 3.3, since d j(y, a∗j) ≥ ρ(y, a∗j) ≥ M and t ∈ [8− j, T − 8− j],

p j(t, y, a∗j)mj(a∗j) ≤ c12− j

td/2

(
e−

M2
64t + e−

2 j M
4

)
(4.16)

t≥8− j

≤ c1

(
1

td/2 e−
M2
64t +

2− j

8− jd/2 e−
2 j M

4

)

=
c1

td/2 e−
M2
64t + c1(2 j)

3d
2 −1e−

M·2 j
2

Now we claim that the right hand side above can be made arbitrarily small by selecting
sufficiently large M. Indeed, given any δ > 0, there exists c2 > 0 such that when M ≥ c2,

(4.17) sup
0<t≤T

c1

td/2 e−
M2
64t <

δ

4
.

For the second term on the right hand side of (4.16), given any δ > 0 and the c2 > 0 chosen
in (4.17), there exist k1 ∈ N such that for all j ≥ k1 and all M > c2,

(4.18) c1(2 j)
3d
2 −1e−

M·2 j
2 < c1

(
sup
x>2 j

x
3d
2 −1e−

c2 x
2

)
<
δ

4
.
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Combining (4.17), (4.18) with (4.16), we have showed that given any δ > 0, there exist
c2 > 0 and k1 ∈ N such that for all M > c2 and all j ≥ k1 that

(4.19) p j(t, y, a∗j)mj(a∗j) <
δ

2
.

Now we take care of the first term on the right hand side of (4.14). First we note that
K ⊂ {(x1, . . . , xd) ∈ Rd : max1≤i≤d |xi| ≤ k0} per the choice of k0 indicated in (4.4). Thus{

x ∈ E j : ρ(x, a∗j) ≤
M
2

}
⊂

{
(x1, . . . , xd) ∈ Rd : max

1≤i≤d
|xi| ≤ k0 + 2M

}
.

This implies that there exists some c3 > 0 such that for M ≥ 2k0,

(4.20) #
{
x ∈ E j : ρ(x, a∗j) ≤

M
2

}
≤ #

{
(x1, . . . , xd) ∈ Rd : max

1≤i≤d
|xi| ≤ 5M

}
≤ c3 · Md · 2 jd.

In view of the assumption that ρ(y, a∗) > M, for x such that ρ(x, a∗j) ≤ M/2, triangle inequal-
ity implies

(4.21) d j(x, y) ≥ ρ(x, y) ≥ M
2
, all j ≥ 1.

Now by Corollary 3.3 as well as the fact that mj(x) ≤ 2− jd for x � a∗,∑
ρ(x,a∗j)≤M/2

x�a∗j

p j(t, y, x)mj(x) ≤
∑

ρ(x,a∗j)≤M/2
x�a∗j

c4

(
1

td/2 e−
d j(x,y)2

64t +
1

t−d/2 e−
2 jd j(x,y)

4

)
mj(x)(4.22)

(4.21) ≤
∑

ρ(x,a∗j)≤M/2
x�a∗j

c4

(
1

td/2 e−
M2
256t +

1
td/2 e−

2 j M
8

)
2− jd

(t ≥ 8− j) ≤
∑

ρ(x,a∗j)≤M/2
x�a∗j

c4

(
1

td/2 e−
M2
256t +

1
8− jd/2 e−

2 j M
8

)
2− jd

(4.20) ≤ c6 · Md · 2 jd
(

1
td/2 e−

M2
256t + 8 jd/2e−

2 j M
8

)
· 2− jd

= c4 · Md
(

1
td/2 e−

M2
256t + 8 jd/2e−

2 j M
8

)

(t ≤ T, M ≥ 2k0) ≤ c4Mde−
M2

512T

(
sup

0<t≤T

1
td/2 e−

4k2
0

512t

)
+ c6 · Md · 2 3 jd

2 e−
2 j M

8

≤ c4Mde−
M2

512T + c4 · Md · 2 3 jd
2 e−

2 j M
8 .

Now we want to claim that given any δ > 0, the last display above can be made arbitrarily
small by selecting sufficient large M and j. Indeed, for the first term in the last display of
(4.22), there exists c5 ≥ 2k0 such that for all M ≥ c5, c4 · Md · e− M2

512T < δ/4. For this chosen
c5, we first denote by c6 := supM≥c5

Mde−M/16. Now for the second term on the right hand
side of (4.22), for all M ≥ c5 and all j ≥ 1,

(4.23) c4 · Md · 2 3 jd
2 e−

2 j M
8 ≤ c4 · Md · 2 3 jd

2 e−
2 j M
16 · e− M

16 ≤ c4c6 · 2 3 jd
2 e−

2 jc5
16 .
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From the last display above, one can tell that there exists k2 ∈ N such that for all j ≥ k2 and
all M ≥ c5,

(4.24) c6 · Md · 2 3 jd
2 e−

2 j M
8 < c4c6 · 2 3 jd

2 e−
2 jc5

16 <
δ

4
.

Combining (4.24) with the previous discussion regarding the choice of c5, we have claimed
that given any δ > 0, there exist c5 > 0 and k2 ∈ N such that

(4.25)
∑

ρ(x,a∗j)≤M/2
x�a∗j

p j(t, y, x)mj(x) <
δ

4
+
δ

4
=
δ

2
, for all M ≥ c5, j ≥ k2.

Finally, combining (4.14), (4.19), and (4.25), it has been shown that for all M ≥ max{c2, c5}
and all j ≥ max{k1, k2},

P
y
[∣∣∣X j

t

∣∣∣
ρ
≤ M

2

]
< δ, for all |y|ρ > M, t ∈ [8− j, T − 8− j].

�

Recall the definition of τM in Lemma 4.2.

Lemma 4.6. Fix x0 ∈ ⋂
j≥1 E j. For every T > 0 and every δ > 0, for the N2 and M3 given

in Lemma 4.5, it holds for all j ≥ N2 and all M > M3 that

P
x0

[
8− j ≤ τM ≤ T − 8− j,

∣∣∣∣X j
T

∣∣∣∣
ρ
≤ M

2

]
< δ.

Proof.

P
x0

[
8− j ≤ τM ≤ T − 8− j,

∣∣∣∣X j
T

∣∣∣∣
ρ
≤ M

2

]
(4.26)

=

∫ T−8− j

8− j
E

x0

[
P

X j
s

[∣∣∣∣X j
T−s

∣∣∣∣ ≤ M
2

]
; τM ∈ ds

]

≤
∫ T−8− j

8− j
E

x0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sup
y:|y|ρ≥M

t∈[8− j,T−8− j]

P
y
[
|X j

t |ρ ≤
M
2

]
; τM ∈ ds

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ sup

|y|ρ≥M
t∈[8− j,T−8− j]

P
y
[
|X j

t |ρ ≤
M
2

]
.

The conclusion then follows from Lemma 4.5. �

Proposition 4.7. Given x0 ∈ ∩ j≥1E j, given any T > 0, δ > 0, there exist M4 > 0 and an
integer N3 ≥ N1 specified in Proposition 2.7, such that for all j ≥ N3,

(4.27) P
x0

[
sup

t∈[0,T ]

∣∣∣X j
t

∣∣∣
ρ
> M4

]
< δ.

Proof. On account of Lemma 4.2, it suffices to show that given any δ > 0, T > 0, there
exist c1 > 0 and n1 ∈ N with 8−n1 < T/2, such that for all M > c1 and all j ≥ n1, the
following hold:
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(i) Px0
[
supt∈[0,8− j] |X j

t |ρ ≥ M
]
< δ;

(ii) Px0

[∣∣∣∣X j
T

∣∣∣∣
ρ
≥ M

2

]
< δ.

(iii) Px0

[
T − 8−k ≤ τM ≤ T,

∣∣∣∣X j
T

∣∣∣∣
ρ
≤ M

2

]
< δ;

(iv) Px0

[
8− j ≤ τM ≤ T − 8− j,

∣∣∣∣X j
T

∣∣∣∣
ρ
≤ M

2

]
< δ.

We claim that all (i)-(iv) are satisfied for all M ≥ |x0|ρ + 2 · max1≤i≤4 Mi and j ≥
max1≤i≤3 Ni, where the Mi’s and the Ni’s are given in Lemmas 4.3, 4.4 and 4.6. Actually
it is evident that (i) and (ii) hold on account of Lemma 4.3 and 4.4, respectively, together
with triangle inequality for distances. (iv) holds in view of Lemma 4.6. To justify (iii), by
the same argument as that for [12, (4.18)] we have

P
x0

[
T − 8− j ≤ τM ≤ T,

∣∣∣∣X j
T

∣∣∣∣
ρ
≤ M

2

]
≤ sup
|y|ρ≥M

P
y

⎡⎢⎢⎢⎢⎣ sup
t∈[0,8− j]

ρ
(
X j

t , X
j
0

)
≥ M

2

⎤⎥⎥⎥⎥⎦ .(4.28)

Thus (iii) follows from Lemma 4.5. �

As a standard notation, given a metric d(·, ·), we denote by

wd(x, θ, T ) := inf
{ti}1≤i≤n∈Π

max
1≤i≤n

sup
s,t∈[ti,ti−1]

d(x(s), x(t)),

where Π is the collection of all possible partitions of the form 0 = t0 < t1 < · · · < tn−1 < T ≤
tn with min1≤i≤n(ti − ti−1) ≥ θ and n ≥ 1. It is clear from the definition that as θ decreases, wd

is nonincreasing.

Proposition 4.8. Fix any x0 ∈ ∩ j≥1E j. For any T > 0, δ1, δ2 > 0, there exist δ3 > 0 and
an integer N4 ≥ N1 such that for all j ≥ N4,

(4.29) P
x0
[
wρ

(
X j, δ3, T

)
> δ1

]
< δ2,

where

wρ(x, δ3, T ) := inf
{ti}

max
i

sup
s,t∈[ti,ti−1]

ρ(x(s), x(t)),

where {ti} ranges over all possible partitions of the form 0 = t0 < t1 < · · · < tn−1 < T ≤ tn
with min1≤i≤n(ti − ti−1) ≥ δ3 and n ≥ 1.

Proof. Using the same argument as that for [12, (4.52)-(4.54)], one can get for j ∈ N and
any δ1, δ3 > 0,

(4.30) P
x0
[
wρ

(
X j, δ3, T

)
> δ1

]
≤ 2

([
T
δ3

]
+ 1

)
sup
y∈E

0≤s≤δ3

P
y
[
ρ
(
X j

0, X
j
s

)
≥ δ1

4

]
.

For the right hand side of (4.30), we further have that for δ3 > 0 and j ∈ N satisfying
8− j < δ3,
(4.31)

sup
0<s≤δ3

P
y
[
ρ
(
X j

0, X
j
s

)
≥ δ1

4

]
≤ sup

0<s≤8− j
P
y
[
ρ
(
X j

0, X
j
s

)
≥ δ1

4

]
+ sup

8− j≤s≤δ3

P
y
[
ρ
(
X j

0, X
j
s

)
≥ δ1

4

]
.

We first handle the second term on the right hand side above. For any δ3 > 0, t > 0, j ∈ N
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such that 8− j < t < δ3, for any y ∈ E j, there exists some c1 > 0 such that

P
y
[
ρ(y, X j

t ) ≥ δ1

4

]
≤ P

y
[
d j(y, X

j
t ) ≥ δ1

4

]
(4.32)

≤
∑

x∈E j:d j(x,y)≥ δ14
x�a∗j

c1

td/2

(
e−

d j(x,y)2

64t + e−
2 jd j(x,y)

4

)
mj(x)

+
c1

td/2

(
e−

δ21
256t + e−

2 jδ1
16

)
mj(a∗j).

For the first term on the right hand side of (4.32), we first note that for a given y ∈ E j we
have {

x ∈ E j : d j(x, y) ≥ δ1

4
, x � a∗j

}
⊂
∞⋃

k=1

{
x ∈ E j : d j(x, y) ≤ δ1

4
+ k, x � a∗j

}
.

In view of the definition of k0 in (4.4), the diameter of K under Euclidean distance is at most
2k0. Thus for all j ≥ 1 and all x, y ∈ E j, it holds

d j(x, y) ≥ ρ(x, y), ρ(x, y) + 2k0 ≥ |x − y|.
Therefore,{

x ∈ E j : d j(x, y) ≤ δ1

4
+ k, x � a∗j

}
⊂

{
x ∈ 2− j

Z
d : |x − y| ≤ δ1

4
+ k + 2k0

}
.

It then follows that for any k ∈ N,

(4.33) #
{
x ∈ E j : d j(x, y) ≤ δ1

4
+ k, x � a∗j

}
≤

(
δ1

4
+ k + 2k0

)2d

2 jd.

Now for the first term on the right hand side of (4.32), noticing that mj(x) ≤ 2− jd for x � a∗j ,
we have ∑

x∈E j:d j(x,y)≥ δ14
x�a∗j

c1

td/2

(
e−

d j(x,y)2

64t + e−
2 jd j(x,y)

4

)
mj(x)(4.34)

≤
∞∑

k=0

∑
x∈E j:d j(x,y)≤ δ14 +k

x�a∗j

c1

td/2

(
e−

d j(x,y)2

64t + e−
2 jd j(x,y)

4

)
mj(x)

(4.33) ≤
∞∑

k=0

c1

td/2

(
e−

(δ+k)2
1024t + e−

2 j(δ+k)
16

)
· (δ1 + k + 2k0)2d2 jd2− jd

≤
∞∑

k=0

c1(δ1 + k + 2k0)2d

td/2 e−
(δ1+k)2

1024t +

∞∑
k=0

c1(δ1 + k + 2k0)2d

td/2 e−
2 j(δ1+k)

16 .

Now, for the first term on the right hand side of (4.34), for any 8− j < t < δ3 ≤ T where δ3 is
a generic constant,

∞∑
k=0

c1(δ1 + k + 2k0)2d

td/2 e−
(δ1+k)2

1024t ≤ e−
δ21

2048δ3

(
sup

t∈(0,T ]

c1

td/2 e−
δ21

4096t

) ∞∑
k=0

(δ1 + k + 2k0)2de−
(δ1+k)2

4096T
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≤ c2(δ1, T, k0)e−
δ21

2048δ3 .(4.35)

For the second term on the right hand side of (4.34), noticing that t ≥ 8− j,
∞∑

k=0

c1(δ1 + k + 2k0)2d

td/2 e−
2 j(δ1+k)

16 ≤ c1

(
1

td/2 e−
2 jδ1

32

) ∞∑
k=0

(δ1 + k + 2k0)2de−
2 j(δ1+k)

32(4.36)

(t ≥ 8− j) ≤ c1

(
(2 j)

3d
2 e−

2 jδ1
32

) ∞∑
k=0

(δ1 + k + 2k0)2de−
δ1+k

32

≤
(
(2 j)

3d
2 e−

2 jδ1
32

)
· c3(δ1, k0).

Before we plugging the computation above back into the right hand side of (4.32), we record
the following computation for the second term on the right hand side of (4.32). For any
8− j < t < δ3 ≤ T , noticing the upper bound for mj(a∗j) given in (4.15), we have

c1

td/2

(
e−

δ21
256t + e−

2 jδ1
16

)
mj(a∗j)(4.37)

(4.15) ≤ c4

td/2

(
e−

δ21
256t + e−

2 jδ1
16

)
2− j

(8− j < t < δ3) ≤ c4 · e−
δ21

512δ3

(
sup

t∈(0,T ]

1
td/2 e−

δ21
512t

)
+ c4 · (2 j)

3d
2 −1e−

2 jδ1
16

≤ c5(δ1, T )e−
δ21

512δ3 + c4 · (2 j)
3d
2 −1e−

2 jδ1
16 .

From here, first we replace the two terms on the right hand side of (4.34) with (4.35) and
(4.36), then plug the resulting expression together with (4.37) back into the right hand side
of (4.32). Consolidating the common terms gives us that for any pair of δ3 > 0, j ∈ N such
that 8− j < δ3,

sup
y∈E j

t∈[8− j,δ3]

P
y
[
ρ(y, X j

t ) ≥ δ1

4

]
≤ c6(δ1, T, k0)e−

δ21
2048δ3 + c7(δ1, k0)

(
(2 j)

3d
2 e−

2 jδ1
32

)
.(4.38)

From the above, given any pair of δ1, δ2 > 0, we can first choose δ3 > 0 sufficiently small
such that

(4.39) c6(δ1, T, k0)e−
δ21

2048δ3 <
δ2δ3

4(T + 2δ3)
.

With this δ3 chosen above, then we choose n1 ∈ N satisfying 8−n1 < δ3 such that for all
j ≥ n1,

c7(δ1, k0)
(
(2 j)

3d
2 e−

2 jδ1
32

)
<

δ2δ3

4(T + 2δ3)
.

Thus given any pair of δ1, δ2 > 0, there exists δ3 > 0 and n1 ∈ N with 8−n1 < δ3 such that for
all j ≥ n1,

(4.40) sup
y∈E j,

8− j≤t≤δ3

P
y
[
ρ
(
X j

0, X
j
t

)
≥ δ1

4

]
<

δ2δ3

2(T + 2δ3)
.
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The same argument as that for [12, (4.50)] yields that given any δ1, δ2 > 0 and the δ3 > 0
accordingly selected in (4.39), there exists n2 ∈ N sufficiently large such that for all j ≥ n2,

(4.41) sup
y∈E j,

0<s≤8− j

P
y
[
ρ
(
X j

0, X
j
s

)
≥ δ1

4

]
<

δ2δ3

2(T + 2δ3)
.

Finally, plugging both (4.40) and (4.41) into the right hand side of (4.30) yields that given
δ1, δ2 > 0, there exist δ3 > 0 and n1, n2 ∈ N such that for all j ≥ max{n1, n2},

P
x0
[
wρ

(
X j, δ3, T

)
> δ1

]
≤ 2

([
T
δ3

]
+ 1

)
· δ2δ3

T + 2δ3
≤ 2 · T + 2δ3

δ3
· δ2δ3

T + 2δ3
< 2δ2. �

Theorem 4.9. Fix x0 ∈ ⋂
j≥1 E j. For every T > 0, the laws of {X j, Px0 , j ≥ 1} are C-tight

in the Skorokhod space D([0, T ], E, ρ) equipped with the Skorokhod topology.

Proof. This follows immediately from [10, Chapter VI, Proposition 3.21]. In view of
Propositions 4.7-4.8. �

Remark 4.10. By the same proof as that to Theorem 4.9, it can be shown that given
any T > 0, the laws of {X j, Pa∗j , j ≥ 1} are C-tight in the Skorokhod space D([0, T ], E, ρ)
equipped with the Skorokhod topology.

Before proving the next lemma, we define the following class of functions:

 : = { f ∈ C3
c (Rd), f = constant on K.}.(4.42)

For f ∈ , we define

(4.43) 
j f (x) := 22 j

∑
y↔x in E j

( f (y) − f (x))
1

v j(x)
, for x ∈ Ek

0.

We also set

(4.44) S j := {x ∈ E j : x � a∗j , v j(x) = 2d in G j},
where G j has been defined in §1.

Lemma 4.11. For every δ > 0 and every f ∈ , there exists some nδ, f ∈ N, such that for
all j ≥ nδ, f :

(i) mj(E j\S j) < δ;
(ii) As j→ ∞,  j f converges uniformly to

(4.45)  f (x) :=
1

2d
Δ f (x) + O(1)2− j on Snδ, f .

Also, there exists some constant C7 > 0 independent of j such that for all j ≥ 1,


j f (x) ≤ C7, for all x ∈ E j.

Proof. To claim (i), we notice that {E j\S j} ⊂ {x = a∗j or x ↔ a∗j}. Thus by Proposition
2.6, there exists c1 > 0 such that for all j ≥ j0 specified in Proposition 2.6,

mj(E j\S j) ≤ mj({x = a∗j or x↔ a∗j}) ≤ mj(a∗j) + v j(a∗j) · 2− jd ≤ c1 · 2− j.
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Using Taylor’s expansion we have for any f ∈  and any j ≥ j0,

̃ j f (x) = 22 j
∑
y↔x

[ d∑
i=1

∂ f (x)
∂xi

(yi − xi) +
1
2

d∑
i,l=1

∂2 f (x)
∂xi∂xl

(yi − xi)(yl − xl) + O(1)|y − x|3
]

1
v j(x)

.

Hence

(4.46) 
j f (x) =

1
2d
Δ f (x) + O(1)2− j, for x ∈ S j.

Since {S j} j≥1 is an increasing sequence of sets in j, both (i) and (ii) have been justified. To
justify the last claim, we first note that by (4.46) and the fact that f ∈ C3

c (Rd), there exists
c2 > 0 independent of j such that

(4.47) 
j f (x) ≤ c2, for all x ∈

⋃
j≥1

S j.

We denote by cK := f |K . Given any x↔ a∗j in E j, by the definition of G j in (1.2), there must
exist a point a ∈ K such that |x − a| ≤ 2− j. Since f ∈ C3

c (Rd) and is constant on K, the first
order derivatives of f vanish on K. By Taylor expansion, there exists some constant c3 > 0
only depending on f but not j such that

(4.48) ( f (x) − cK) = | f (x) − f (a)| ≤
d∑

i=1

∣∣∣∣∣ ∂ f
∂xi

(a)
∣∣∣∣∣ · |x − a| + c2 · |x − a|2 ≤ c3 · 2−2 j.

Thus by the definition of  j and Proposition 2.6,

(4.49) 
j f (a∗j) = 22 j

∑
x↔a∗j

( f (x) − cK) · v j(a∗j)
−1 ≤ 22 j · c3 · 2−2 j ≤ c3.

To bound  j f (x) for x↔ a∗j , we first note in this case,


j f (x) = 22 j

∑
y↔x

( f (y) − f (x)) · v j(x)−1 ≤ 22 j max
x:x↔a∗j

max
y:y↔x

| f (y) − f (x)| .(4.50)

For each y in the second “ max ” in (4.50), notice that there exists a ∈ K such that |y − a| ≤
2 · 2− j. Thus by similar reasoning for (4.48), | f (y)− cK | ≤ c3 · (2 · 2− j)2. Since for all x in the
first “ max ” in (4.50), | f (x) − cK | ≤ c3 · 2−2 j, by triangle inequality it follows that for some
c4 > 0 independent of j, for all j ≥ 1,  j f (x) ≤ c4 for all x such that x ↔ a∗j . This together
with (4.49) shows


j f (x) ≤ c3 ∨ c4, for all x ∈

⋃
j≥1

(E j\S j).

This combined with (4.47) proves the last claim of this lemma. The proof is complete. �

The following lemma is used in the proof of the main result: Theorem 4.13.

Lemma 4.12. Fix T > 0. Given any δ > 0, there exist C8 > 0 and an integer Nδ ≥ N1,
such that for all j ≥ Nδ,

sup
t∈[(2 jδ)−2/d ,T ]

P
x0
[
X j

t � S j
]
≤ C8δ,
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Proof. Given any δ > 0, choose jδ ∈ N large enough such that (2 jδδ)−2/d < T . For any
t ∈ [(2 jδ)−2/d, T ] with j ≥ jδ, by Corollary 3.3 and Proposition 2.6, there exists c1, c2 > 0
such that

P
x0
[
X j

t � S j
]
≤

∑
y�S j

c1

td/2 mj(y)

≤
∑
x↔a∗j

( c1

td/2 · mj(x)
)
+

c1

td/2 · mj(a∗j)

(Proposition 2.6) ≤ c2 · 2 j(d−1) · c1t−d/2 · 2− jd + c1t−d/2 · c2 · 2 j(d−1) · 2− jd

(t > (2 jδ)−2/d) ≤ 2c1c2 · δ.
This proves the desired result by letting Nδ be the selected jδ. �

Theorem 4.13. Given x0 ∈ ∩ j≥1E j, {X j, Px0 , j ≥ 1} converges weakly to the BMD de-
scribed in (1.1) starting from x0.

Proof. Since the laws of {X j} j≥1 are C-tight in D([0, T ], E, ρ), any sequence has a weakly
convergent subsequence supported on the set of continuous paths. Denote by {X jl : l ≥ 1}
any such weakly convergent subsequence, and denote by Y its weak limit which is continu-
ous. By Skorokhod representation theorem (see, e.g., [9, Chapter 3, Theorem 1.8]), we may
assume that {X jl , l ≥ 1} as well as Y are defined on a common probability space (Ω, ,P),
so that {X jl , l ≥ 1} converges almost surely to Y in the Skorokhod topology.

For every t ∈ [0.T ], we set  jl
t := σ(X jl

s , s ≤ t) and t := σ(Ys, s ≤ t). It is obvious
that t ⊂ σ{k j

t : j ≥ 1}. By the same argument as that for [12, Theorem 5.3] with the
use of Lemma 5.2 in [12] being replaced with Lemma 4.12, it can be shown that (Y, Px0 ) is
indeed a solution to the D([0, T ], E, ρ) martingale problem (,) with respect to the filtration
{t}t≥0.

Next we claim that the BMD associated with the Dirichlet form described by (1.1) is a
strong Feller process. To see this, we denote by {Gα}α>0 the resolvent operators of X, and
denote by {Gα

E\{a∗}}α>0 the resolvent operators of XE\{a∗}, the part process of X killed hitting
a∗, which has the same distribution as regular Brownian motion on Rd killed upon hitting K.
By strong Markov property, for x ∈ E, for every bounded measurable function f : E → R,

Gα f (x) = Gα
E\{a∗} +Gα f (a∗) ·

∫ ∞

0
e−αs
P

x[σ{a∗} ∈ ds](4.51)

In the right hand side above, the map x �→ Px[σ{a∗} ∈ ds] is continuous because every point
on the boundary of K ⊂ Rd is regular for K. Therefore we concludee that X is a strong Feller
process because Gα(b(E)) ⊂ C(E). In view of [5, §1.5], the infinitesimal generator of X
can be described by (,()), where u ∈  is in () if there exists f ∈ L2(E) such that

1
2

∫
E\{a∗}

∇u(x)∇v(x)dm =
∫

E\{a∗}
f (x) · v(x)dm, for all v ∈  .(4.52)

It also holds that u = f = 1
2Δu for u ∈ (). It then is clear that the bp-closure of the

graph of (,()) is contained in the bp-closure of the graph of (,). By [2, Lemema
3.4.18], any solution to the martingale problem (,) must be a solution to the martingale
problem (,). Since X is a strong Feller process, the martingale problem (,()) must
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be well-posed with its unique solution being X. Therefore the martingale problem (,)
must be well-posed with its unique solution being X. This means that X is the sequencial
limit of any weakly convergent subsequence of {X j} j≥1, the proof is complete. �

Remark 4.14. In view of Remark 4.10, the same argument can show that {X j, Pa∗j , j ≥ 1}
converges weakly to the BMD given by (1.1) starting from a∗.
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