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Abstract
We prove the equivalence of the local property for an irreducible regular Dirichlet form and

the Markov property for the Gaussian field associated with the Dirichlet form. Moreover we
introduce a strong Markov property for Gaussian fields and present some sufficient conditions
for this to hold.

1. Introduction

1. Introduction
The Markov property is an important property for stochastic processes. Intuitively, it is

the property that the future state of the process is independent of the past state given the
present state. The Markov property has also been introduced for various other stochastic
models. In studies of random fields, for example, these include Lévy’s n-parameter Brow-
nian motion [22], Gaussian processes with a multidimensional parameter [25], and random
fields associated with reproducing kernel Hilbert spaces [20].

Markov properties for Gaussian free field (GFF, in abbreviation) has been used in litera-
tures. Nelson ([23]) proved the (massive) GFF enjoys the Markov property. For a domain
D ⊂ Rd, the GFF on D is the complete linear space of Gaussian random variables indexed
by H1

0(D) whose means are zero and covariances are given by the Dirichlet inner products,
where H1

0(D) is the completion of the space of all continuous functions with compact sup-
port in D by the Dirichlet inner product. A massive GFF is what is obtained when the
covariance is given by the sum of the Dirichlet inner product and the constant multiple of
L2-inner product. GFFs can be considered on many other spaces and play an important role
in the theory of random surfaces, quantum field theory, statistical physics, and amongst other
areas. See [4] and [29] for details. The Markov property for GFFs is applied in these areas,
for example, to establish a reflection positivity also known as Osterwalder-Schrader positiv-
ity in physics ([24]), to establish a sewing operation for manifolds ([7]), and to construct a
coupling between GFFs and occupation times of random interlacements on graphs ([30]).
Another property that is often considered is the domain Markov property ([10],[18],[27],
etc.). This property is different from the Markov property treated in this paper, and we will
note the relation between them in Remark 2.4.

As noted above, the covariance of the GFF is given by the Dirichlet inner product, which
is a regular Dirichlet form. The definition of a GFF may be generalized to Gaussian fields
whose covariances are Dirichlet forms. Before we consider these Gaussian fields, we give
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definitions and introduce some properties of Dirichlet forms.
Let E be a locally compact separable metric space and m be a positive Radon measure

satisfying supp(m) = E. Throughout this paper, for a given Borel set A, Cc(A) denotes the
family of all continuous functions with compact support contained in A. Moreover, a ∧ b
means min{a, b} and a ∨ b means max{a, b}.

Definition 1.1. Let  be a dense linear subspace of L2(E; m) and  :  ×  → R be a
non-negative definite symmetric bilinear form. The pair ( , ) is called a Dirichlet form on
L2(E; m) if the following conditions hold.
(1) The space  is complete with respect to the norm

√
1(·, ·), where 1 is the sum of  and

the L2(E; m) inner product.
(2) For any f ∈  , it holds that 0 ∨ f ∧ 1 ∈  and (0 ∨ f ∧ 1, 0 ∨ f ∧ 1) ≤ ( f , f ).
Moreover, ( , ) is regular if Cc(E) ∩  is 1-dense in  and uniformly dense in Cc(E).

Let ( , ) be a regular Dirichlet form on L2(E; m). Then there exists an m-symmetric
Markov process ({Zt}t≥0, {Px}x∈E) on E associated with ( , ). We say ( , ) is transient
if (e, ) is a real Hilbert space, and recurrent if 1 ∈ e and (1, 1) = 0. Moreover, we
say ( , ) is irreducible if, for any Borel set A satisfying the condition that 1A f ∈  and
( f , f ) = (1A f , 1A f ) + (1Ac f , 1Ac f ) for f ∈  , either m(A) = 0 or m(Ac) = 0 holds. See
[6, Section 2.1] or [17, Section 1.5], for details.

Definition 1.2. A Dirichlet form ( , ) on L2(E; m) is local if (u, v) = 0 for all u, v ∈ 
having disjoint compact support.

It is known that a regular Dirichlet form is said to be local if and only if its associated
Markov process has continuous paths, namely the process is a diffusion (see [6, Section 2.4]
or [17, Section 4.5], for details).

We now define Gaussian fields associated with Dirichlet forms, which are the main ob-
jects in this paper. For a regular Dirichlet form ( , ) on L2(E; m), there exists a Gaussian
field G() := {Xf } f∈e defined on a probability space (Ω,M , P) satisfying E(Xf ) = 0 and
E(Xf Xg) = ( f , g) for f , g ∈ e, see [16] and [8]. Here, e is the extended Dirichlet space of
 , more precisely, e is defined as the family of functions f : E → R having an -Cauchy
sequence { fn} ⊂  such that fn → f m-a.e. Moreover we define ( f , f ) := limn→∞ ( fn, fn)
for f ∈ e and an approximating sequence { fn} of f . This limit exists and independent of the
choice of an approximating sequence { fn} of f , see [6, Theorem 1.1.5] for details. We call
G() the Gaussian field on (Ω,M , P) associated with the Dirichlet form ( , ) on L2(E; m).

Throughout this paper, we may assume that M is complete and N denotes the collection
of all P-null sets. For G(), we define the σ-fields that will correspond to the filtrations of
the standard Markov property for stochastic processes, and the Markov property as follows.

Definition 1.3. For f ∈ e, we define the spectrum s( f ) of f as the complement of the
largest open set U satisfying ( f , g) = 0 for all g ∈ Cc(E) ∩  with supp(g) ⊂ U.

For A ⊂ E, we set σ(A) ⊂M to be the σ-field generated by {Xf : f ∈ e, s( f ) ⊂ A} and
N .
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Definition 1.4. For a set A ⊂ E, G() has the Markov property with respect to A if σ(Ac)
is conditionally independent of σ(A) given σ(∂A), which means that P(Γ ∩ Σ|σ(∂A)) =
P(Γ|σ(∂A))P(Σ|σ(∂A)) for Γ ∈ σ(A) and Σ ∈ σ(Ac).

The following theorem is the first main theorem of this paper concerning the Markov
property.

Theorem 1.5. Let ( , ) be an irreducible regular Dirichlet form on L2(E; m). Then the
following are equivalent:
(1) The Dirichlet form ( , ) is local;
(2) The Gaussian field G() has the Markov property with respect to any relatively compact
open set;
(3) The Gaussian field G() has the Markov property with respect to any open set;
(4) The Gaussian field G() has the Markov property with respect to any subset of E.

This equivalence was proved by Dynkin [11] when ( , ) is transient under an absolutely
continuous condition (AC), which is the condition that there exists a Borel properly excep-
tional set N ⊂ E such that the transition semigroup Pt(x, ·) is absolutely continuous with
respect to m for each t > 0 and x ∈ Nc. Moreover it was proved by Röckner [26] when
( , ) is transient without the assumption (AC). When ( , ) is recurrent, under the as-
sumption (AC), Fukushima and Oshima [15] proved the equivalence between (1), (2) and
(3). Moreover, in [16], it is proved that (3) implies (1) when ( , ) is recurrent without the
assumption (AC) (in fact, it holds that (2) implies (1) by using their proof).
So, in order to complete the proof of Theorem 1.5, it is enough to show that (1) implies (3)
and (1) is equivalent to (4) when ( , ) is recurrent without the assumption (AC). To prove
this, at first, we show that (1) implies (2) by dividing E into U and Uc for some open set
U with m(Uc) > 0, applying the equivalence for transient case proved by Röckner [26] to
the restriction of ( , ) to U, and using locality to the outside of U. Similarly, we prove (1)
implies (3). To prove (3) implies (4), we show that (3) is equivalent to the different type of
the Markov property (Theorem 2.5) by using the orthogonal decomposition of ( , ), and
apply this to A and Ac for any subset A of E. We will prove these in Section 2.

There are Gaussian fields having the same type of correlation kernels; for example, the
massive Gaussian free field on R2 and the Gaussian field G(1) on R, where ( , ) on L2(R)
is the Dirichlet form associating with the Cauchy process (1-stable process), have loga-
rithmic correlations (see [21, Section 3.2] for details). These Gaussian fields have similar
property in a view of correlations, but, by [26], the former satisfies the Markov property and
the latter does not. So, by using Theorem 1.5, we can distinguish characters of Gaussian
fields which we could not obtain only by observing their correlations.

We remark that, in general, diffusions on infinite-dimensional spaces do not satisfy (AC).
For example, (AC) fails for an infinite-dimensional Wiener process [5, p.xii].

We next consider the strong Markov property. The strong Markov property for stochastic
processes has been discussed extensively in the literatures. Moreover strong Markov prop-
erties for set-indexed processes where stopping times are replaced by “stopping sets” are
studied in [3, 12, 13, 14, 19]. Here, a set-indexed process is the Gaussian field {XA}A∈(E)

where (E) is the totality of all compact sets of E. For some special cases of the Gaussian
fields associated with Dirichlet forms ( , ), G() can be viewed as random functions on
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E not only random distributions, and can be treated as set-indexed processes. For example,
G() can be viewed as a set-indexed process if the Hunt process associated with ( , ) has a
bounded green function, which corresponds to the covariance kernel of G(). Hence we can
apply the strong Markov property of the set-indexed process to G() in this case. Indeed,
Sznitman [30] uses the strong Markov property for GFFs on graphs in order to construct
a coupling between GFFs and the occupation times of random interlacements on graphs.
However, in general cases, such as in the case of GFFs on sets of Rd for d ≥ 2, we can not
define G() as a random function. Hence we can not apply the strong Markov property for
the set-indexed process to G() in general. So we will introduce the strong Markov property
for G() on (Ω,M ,P) and state some sufficient conditions for the strong Markov property
to hold.

Recall that G() has the Markov property if σ(A) is conditionally independent of σ(Ac)
given σ(∂A). We will generalize these conditions to random sets.

Let F(E) be the collection of all closed sets in E. We consider a σ-field on F(E) given
by σ({A ∈ F(E) : A ⊂ U} : U ⊂ E is open). Next we introduce a random set α : Ω →
F(E), which is measurable. We call α a stopping set if α is a random set that satisfies
{α ⊂ A} ∈ σ(A) for any closed set A. We define filtrations of stopping sets and the strong
Markov property as follows.

Definition 1.6. For random sets α, β satisfying β ⊂ α, if α and βc are stopping sets, we
define σ-fields as follows.

σ(α) := σ({Γ ∈M ; Γ ∩ {α ⊂ A} ∈ σ(A) for any closed set A}),

σ(βc) := σ({Γ ∈M ; Γ ∩ {βc ⊂ A} ∈ σ(A) for any closed set A}),

σ(α ∩ βc) := σ(α) ∩ σ(βc).

Remark 1.7. The above definition is a generalization of the deterministic case. Suppose
that α = A for a deterministic closed set A. For any Γ ∈ σ(α), we have Γ = Γ ∩ {α =
A ⊂ A} ∈ σ(A), and so we obtain σ(α) ⊂ σ(A). Conversely, for Γ ∈ σ(A), if A ⊂ C for a
closed set C, Γ ∩ {α ⊂ C} is equal to Γ. Otherwise it is the empty set, and so it holds that
Γ ∩ {α ⊂ C} ∈ σ(C) for any closed set C. Hence we have σ(α) = σ(A). If βc = B for a
deterministic closed set B, σ(βc) = σ(B) follows by the same argument. Moreover we have
σ(α ∩ βc) = σ(α) ∩ σ(βc) = σ(A) ∩ σ(B) = σ(A ∩ B).

Definition 1.8. Let α and β be random sets satisfying β ⊂ α such that α and βc are stop-
ping sets. G() has the strong Markov property with respect to α, β if σ(α) is conditionally
independent of σ(βc) given σ(α ∩ βc).

In Theorem 2.5, we prove the Markov property is equivalent to the conditional indepen-
dence of σ(A) and σ(Bc) given σ(A ∩ Bc) for open or closed sets A, B satisfying B ⊂ A.
Hence the above definition is a generalization of the Markov property to random sets.

The following theorem is the second main theorem of this paper and concerns the strong
Markov property.
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Theorem 1.9. For closed random sets α, β satisfying β ⊂ α, suppose that {α ⊂ A, βc ⊂
B} ∈ σ(A ∩ B) for all closed sets A, B. Then G() has the strong Markov property with
respect to α, β.

The proof of Theorem 1.9 is given in Section 3.
As far as we are concerned, this is the first work that discusses the strong Markov property

for G(). Note that the strong Markov property for GFFs that appeared in [2, 28] is a strong
version of the domain Markov property (also called the spatial Markov property), and is
different from the strong Markov property treated in this paper.

2. The Markov property

2. The Markov property
In this section, we prove Theorem 1.5. We first give some preliminaries. Let ( , ) be an

irreducible regular Dirichlet form on L2(E; m). For an open set U, set U := { f ∈  : f̃ =
0 q.e. on Uc} and 

U
e := { f ∈ e : f̃ = 0 q.e. on Uc}, where f̃ is a quasi-continuous version

of f . For a Borel set A, we define the hitting time of A as τA := inf{t > 0 : Zt ∈ A} and
the hitting distribution of A as HA f (x) := Ex( f (ZτA)) for a Borel measurable function f and
x ∈ E, where Z is the Hunt process associated with ( , ) on L2(E; m).

By [6, Theorem 3.4.8.], for any f ∈ e and for any Borel set A, HA| f̃ | is finite q.e. and
HA f̃ is a quasi continuous function in e satisfying (HA f̃ , g) = 0 for any g ∈ Ac

e . By [17,
Theorem 2.3.3], for a closed set F and f ∈ e, s( f ) ⊂ F is equivalent to ( f , g) = 0 for any
g ∈ Cc(Fc) ∩  . Therefore we have s(HF g̃) ⊂ F for a closed set F and g ∈ e.

Lemma 2.1 ([16, Lemma 2.1]). For any A ⊂ E and f ∈ e, it holds that

(2.1) E(Xf |σ(A)) = XHA f̃ .

Lemma 2.2 ((2.16) in [16]). G() has the Markov property with respect to A if and only
if the following holds:

(2.2) σ(XHA f̃ : s( f ) ⊂ Ac) ⊂ σ(∂A).

Lemma 2.3 (Special case of [25, Lemma 2.1]). Let Λi ⊂ e and σi := σ(Xf : f ∈ Λi) for
i = 1, 2, 3. Suppose that σ3 ⊂ σ1. Then the conditional independence of σ1 and σ2 given σ3

is equivalent to the condition that

(2.3) σ(E(Xf |σ1) : f ∈ Λ2) ⊂ σ3.

Remark 2.4. For any irreducible regular Dirichlet form, σ(A) is conditionally indepen-
dent of σ(Ac) given σ(XHA f̃ : s( f ) ⊂ Ac) by (2.1) and (2.3). Indeed, (2.1) yields

σ(E(Xf |σ(A)) : s( f ) ⊂ Ac) = σ(XHA f̃ : s( f ) ⊂ Ac)

and, by Lemma 2.3, we have the desired conditional independence.
This conditional independence is called a pseudo Markov property in [16]. A pseudo

Markov property can be regarded as a domain Markov property and it is used in many
literatures, for example [10],[18],[27], etc.

To prove the Markov property with respect to A, it is enough to show that (2.2). By the
definition of HA, intuitively, we consider only before Z hits A, and the restriction of ( , )
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to A is transient if m(Ac) > 0. So, in order to prove Theorem 1.5 when ( , ) is recurrent,
we use the equivalence of the transient case proved by Röckner [26].

Proof of the equivalence between (1), (2), (3) of Theorem 1.5. When the Dirichlet form
( , ) is transient, the equivalence was proved by Röckner [26], so we assume that ( , ) is
recurrent. (3) implies (2) clearly, and (2) implies (1) by [16].

We show that (1) implies (2). Suppose that ( , ) is local. For a relatively compact open
set A ⊂ E, by Lemma 2.2, it is enough to show that s(HA f ) ⊂ ∂A for f ∈ e with s( f ) ⊂ Ac.
Fix f ∈ e with s( f ) ⊂ Ac.

If (A)c is the empty set, it holds that HA f = f a.e. and Cc((∂A)c) ∩  = Cc(A) ∩  , so
there is nothing to prove.

If (A)c is not the empty set, we take an open set U satisfying A ⊂ U and m(Uc) >

0. Indeed, since E is a metric space, there exist non-empty open sets U and V such that
U ∩ V = ∅ and A ⊂ U. Since m is full-support, we have m(V) > 0 and m(Uc) > 0.

Since s( f ) ⊂ Ac, we have ( f − HUc f , g1) = 0 for g1 ∈ Cc(A) ∩ 
U . Since ( ,U) on

L2(U; m|U) is an irreducible transient regular local Dirichlet form, the equivalence of local
properties and Markov properties for transient cases and Lemma 2.2 yield

(2.4) (HU
A

( f −HUc f ), g) = 0

for g ∈ Cc((∂A)c) ∩ 
U , where HU

A
f (x) := Ex( f (ZτA

); τA < τUc).
For g ∈ Cc((∂A)c) ∩ 

U , HUcHU
A
g vanishes on Uc, so we have

(HU
A

HUc f , g) = (HUc f ,HU
A
g) = (HUc f ,HUcHU

A
g) = 0.(2.5)

The equalities (2.4) and (2.5) yield, for g ∈ Cc((∂A)c) ∩ 
U ,

(2.6) (HU
A

f , g) = 0.

Take h ∈ Cc((∂A)c)∩ . Let K be the compact set defined by supp(h)∩A. By [17, Exercise
1.4.1], since Cc(E) ∩  is a special standard core, there exists a non-negative function ψ ∈
Cc(E) ∩  such that ψ = 1 on K and ψ = 0 on Ac. Moreover it holds that hψ ∈ Cc(E) ∩  ,
hψ = 0 on Uc and supp(hψ) ⊂ supp(h) ⊂ (∂A)c.

By setting g := hψ in (2.6), we have

(2.7) (HU
A

f , hψ) = 0.

Now we have HA f − HU
A

f ∈ e and HA f − HU
A

f = 0 on A, so this is in 
(A)c

e . By [6,

Theorem 3.4.9], there exists an -Cauchy sequence { fn} ⊂ 
A

c

such that fn convergent to
HA f − HU

A
f a.e. Since fn · hψ = 0, we have ( fn, hψ) = 0 by the locality of ( , ), and

(HA f −HU
A

f , hψ) = 0. By combining this with (2.7), we obtain

(2.8) (HA f , hψ) = 0.

Since h = 0 on A \ K and 1 − ψ = 0 on K, we have h(1 − ψ) = 0 on A, and we obtain

(2.9) (HA f , h(1 − ψ)) = 0.

Thus, by (2.8) and (2.9), we have

(HA f , h) = 0
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This means s(HA f ) ⊂ ∂A.
Next, we prove that (1) implies (3). Suppose that ( , ) is local. Let B be an open set. It is

enough to show that s(HB f ) ⊂ ∂B for f ∈ e with s( f ) ⊂ Bc. We fix f ∈ e with s( f ) ⊂ Bc.
Take h ∈ Cc((∂B)c) ∩  and set K := supp(h) ∩ B, which is compact. Since E is locally
compact separable, there is a relatively compact open set A satisfying K ⊂ A ⊂ A ⊂ B. Since
Cc(E)∩ is a special standard core, there exists a non-negative function ϕ ∈ Cc(E)∩ such
that ϕ = 1 on K, ϕ = 0 on Ac and 0 ≤ ϕ ≤ 1. As s( f ) ⊂ Bc ⊂ Ac, by the Markov property
with respect to relatively compact open set A, we have

(2.10) (HA f , g) = 0

for g ∈ Cc((∂A)c) ∩  . Since hϕ ∈ Cc(E) ∩  and hϕ = 0 on Ac = Ac, we have hϕ ∈
Cc((∂A)c) ∩  . By (2.10), it holds that

(2.11) (HA f , hϕ) = 0.

Since HB f −HA f = 0 on A, by the local property of ( , ) and (2.11), we have

(2.12) (HB f , hϕ) = (HA f , hϕ) = 0.

Since h(1 − ϕ) ∈ B
c

, it holds that

(2.13) (HB f , h(1 − ϕ)) = 0.

By (2.12) and (2.13), we have (HB f , h) = 0. Thus (3) is proved. �

In order to prove the equivalence of (1) and (4) in Theorem 1.5, we prove the following
theorem.

Theorem 2.5. (1), (2), (3) of Theorem 1.5 are equivalent to the following:
(3∗) σ(A) is conditionally independent of σ(Bc) given σ(A ∩ Bc) for any open or closed set
A and any open or closed set B satisfying B ⊂ A.

Remark 2.6. Sometimes the above type of the Markov property is adopted as the defini-
tion of the Markov property for set-indexed processes. See [19] and [13] for examples.

In order to prove Theorem 2.5, we use the following lemma.

Lemma 2.7. For any sets A and B satisfying B ⊂ A, it holds that

σ(Ac) ∨ σ(A ∩ Bc) = σ(Bc).

Proof. Ac ⊂ Bc and A ∩ Bc ⊂ Bc yield that σ(Ac) ∨ σ(A ∩ Bc) ⊂ σ(Bc). We will show the
opposite inclusion. Fix f ∈ e satisfying s( f ) ⊂ Bc.

For any g ∈ Cc((A∩Bc)c), there exist g1, g2 ∈  ∩Cc(E) such that g = g1+g2, supp(g1) ⊂
Ac and supp(g2) ⊂ (Bc)c by the similar way as the proof of Theorem 1.5. In fact, for a

relatively compact open set U satisfying K := supp(g) ∩ Bcc ⊂ U ⊂ U ⊂ A, there exists
ϕ ∈  ∩ Cc(E) with ϕ|K = 1, ϕ|(A)c = 0 and 0 ≤ ϕ ≤ 1, and we set g1 := g(1 − ϕ) and
g2 := gϕ. Then we have

( f −HAc f , g) = ( f −HAc f , g1) + ( f −HAc f , g2)
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= ( f −HAc f , g1) + ( f , g2) − (HAc f , g2)

= 0.

In the last equality, we used the local property of ( , ), s( f ) ⊂ Bc and HAcg2 = 0. Therefore
we have s( f −HAc f ) ⊂ A ∩ Bc.

For any h ∈  , it holds that E((Xf − Xf−HAc f − XHAc f )Xh) = 0, so we have Xf − XHAc f =

Xf−HAc f and (Xf )−1(I) ∈ σ(Xf−HAc f , XHAc f ) for a Borel set I ⊂ R. Since s(HAc f ) ⊂ Ac

and s( f − HAc f ) ⊂ A ∩ Bc, it holds that (Xf )−1(I) ∈ σ(Ac) ∨ σ(A ∩ Bc). Thus we have
σ(Bc) ⊂ σ(Ac) ∨ σ(A ∩ Bc). �

Proof of the Theorem 2.5. The equivalence of (1), (2) and (3) is already proved. (3∗)
cleary implies (3) by setting A = B. We now show that (3) implies (3∗). For open or closed
sets A and B with B ⊂ A, it is enough to show that

(2.14) P(Γ|σ(A)) = P(Γ|σ(A ∩ Bc))

for any Γ ∈ σ(Bc). By Lemma 2.7, we may assume that Γ ∈ σ(Ac) or Γ ∈ σ(A ∩ Bc).
For Γ ∈ σ(Ac), since A or Ac is an open set, by the Markov property with respect to

an open set, we have P(Γ|σ(A)) = P(Γ|σ(∂A)), and (2.14) follows from the fact σ(∂A) ⊂
σ(A ∩ Bc) ⊂ σ(A).

For Γ ∈ σ(A ∩ Bc), we have Γ ∈ σ(A), and P(Γ|σ(A)) = Γ = P(Γ|σ(A ∩ Bc)). Thus the
proof is completed. �

Proof of the equivalence between (3) and (4) of Theorem 1.5. It is clear that (4) implies
to (3). Suppose that (3) holds. Then (3∗) holds by Theorem 2.5. For any subset A ⊂ E, since
Ac ⊃ Ac ⊃ (A)c , we have Acc ⊂ A. By (3∗), σ(A) is conditionally independent of σ(Ac)
given σ(∂A). Thus the proof is completed. �

3. The Strong Markov property

3. The Strong Markov property
In this section, we prove Theorem 1.9. Throughout this section, we assume that ( , )

is an irreducible regular local Dirichlet form on L2(E; m). By Theorem 1.5, G() has the
Markov property.

In Section 1, we defined the filtrations for stopping sets and the strong Markov property.
These can be viewed as analogues to those for a Markov process. Indeed, for a Markov
process Z = {Zt}t≥0, let {Ft}t≥0 be a filtration to which Z is adapted, and τ be a stopping
time. Z has the strong Markov property if {Zτ+s}s≥0 is conditionally independent of Fτ

given σ(Zτ), where Fτ := σ({Γ ; Γ ∩ {τ ≤ t} ∈ Ft for all t}). By letting σ(αc) correspond
to the σ-field generated by {Zτ+s}s≥0, we can regard the definitions of filtrations for stopping
sets as the correspondences to those for a process.

Remark 3.1. For set-indexed processes, there are other definitions of σ-fields for random
sets. For example, Evstigneev [12, 13] and Kinateder [19] defined the correspondence to
σ(α ∩ βc) as that includes the σ-field generated by α and β.

Remark 3.2. In Definition 1.6, we consider the σ-fields of random sets if these are stop-
ping sets. Under the assumption of Theorem 1.9, α and βc are stopping random sets. Indeed,
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for any closed sets A and B, we have

{α ⊂ A} = {α ⊂ A, βc ⊂ E} ∈ σ(A ∩ E) = σ(A),

{βc ⊂ B} = {α ⊂ E, βc ⊂ B} ∈ σ(E ∩ B) = σ(B).

Hence we can define σ(α), σ(βc) and σ(α ∩ βc), and consider the strong Markov property
for α and βc.

To prove Theorem 1.9, we approximate σ-fields of random sets by those of discrete ran-
dom sets. We need some properties for these approximating σ-fields σ(αn), σ(βcn

) such
as the monotonicity for n and the conditional independence of σ(αn) and σ(βcn

) given
σ(αn ∩ βcn

). This is because the strong Markov property follows from the strong Markov
properties for approximating sequences by taking the limit as n goes to infinity. So we first
define discrete random sets αn, βcn

to approximate α, βc, respectively.
Since E is a separable metric space, there exists a countable open basis {Ui}∞i=1. For a

closed set F, we set Fn :=
⋂

i∈Λn
F

Ui
c where Λn

F := {1 ≤ i ≤ n ; F ⊂ Ui
c}. Then it holds that

Fn ⊃ Fn+1 and F =
⋂∞

n=1 Fn.

Lemma 3.3. Under the assumption of Theorem 1.9, it holds that {αn ⊂ A, βcn ⊂ B} ∈
σ(A ∩ B) for all closed sets A, B and n ≥ 1.

Proof. If A or B is not the form of
⋂

i∈ΛUc
i for any Λ ⊂ {1, · · · , n}, then {αn = A, βcn

= B}
is the empty set and so is in σ(A ∩ B). If A =

⋂
i∈ΛUc

i and βc =
⋂

i∈ΣUc
i for some Λ,Σ ⊂

{1, · · · , n}, by the definition of αn, we have {αn = A} = {α ⊂ A} ∩ ⋂ j�Λ{α � A ∩ Uc
j }.

Combining this with elementary computations, we have

{αn = A, βcn
= B}

= {α ⊂ A, βc ⊂ B} ∩
⋂
j�Λ

{α � A ∩ Uc
j }∩
⋂
j�Σ

{βc � B ∩ Uc
j }

= {α ⊂ A, βc ⊂ B} ∩
⋂
j�Λ

(
{α ⊂A, βc ⊂ B} ∩ {α ⊂ A ∩ Uc

j }
)c

∩
⋂
j�Σ

(
{α ⊂ A, βc ⊂ B} ∩ {βc ⊂ B ∩ Uc

j }
)c

= {α ⊂ A, βc ⊂ B}

\
⎛⎜⎜⎜⎜⎜⎜⎝
⋃
j�Λ

{α ⊂ A ∩ Uc
j , β

c ⊂ B} ∪
⋃
j�Σ

{α ⊂ A, βc ⊂ B ∩ Uc
j }
⎞⎟⎟⎟⎟⎟⎟⎠ .

Hence {αn = A, βcn
= B} belongs to σ(A∩ B)∨∨ j�Λ σ(A∩Uc

j ∩ B)∨∨ j�Σ σ(A∩ B∩Uc
j) ⊂

σ(A ∩ B). Moreover, for any closed sets A, B, we have {αn ⊂ A, βcn⊂ B} = ⋃Ã⊂A, B̃⊂B{αn =

Ã, βcn
= B̃} ∈ σ(A∩B). Note that the last union is indeed countable because {αn= Ã, βcn

= B̃}
is the empty set except for finite many Ã, B̃. �
By this lemma and Remark 3.2, the following holds.

Corollary 3.4. Under the assumption of Theorem 1.9, αn and βc are stopping sets.

Remark 3.5. The assumption of Theorem 1.9 is not needed for αn to be a stopping set.
By the similar proof as that of Lemma 3.3, we know it is sufficient to assume that α is a
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stopping set. The same statement holds for βcn
.

Next, we obtain the following lemma about the monotonicity.

Lemma 3.6. If α is a stopping set, then σ(αn) is decreasing to σ(α).

Corollary 3.7. Under the assumption of Theorem 1.9, σ(αn) is decreasing to σ(α), and
σ(βcn

) is decreasing to σ(βc).

Proof of Lemma 3.6. For any n and Γ ∈ σ(αn+1), since αn+1 ⊂ αn and αn is a stopping set,
we have Γ ∩ {αn ⊂ A} = (Γ ∩ {αn+1 ⊂ A}) ∩ {αn ⊂ A} ∈ σ(A). So we have σ(αn+1) ⊂ σ(αn).
By the same way, we have σ(α) ⊂ σ(αn) for any n, and we have σ(α) ⊂ ⋂∞n=1 σ(αn).
Conversely, for Γ ∈ ⋂∞n=1 σ(αn), any closed set A and any n, since {α ⊂ A} ⊂ {αn ⊂ An}, we
have

Γ ∩ {α ⊂ A} = Γ ∩ {αn ⊂ An} ∩ {α ⊂ A} ∈ σ(An) ∨ σ(A) ⊂ σ(An).

By the similar proof of [26, Theorem 5.6.] with μA replaced by HA f for f ∈ e, it holds that
σ(A) =

⋂∞
n=1 σ(An) and we have Γ ∩ {α ⊂ A} ∈ σ(A). �

In the following lemmas, we show that other types of definitions about σ-fields are the
same as what we defined.

Lemma 3.8. If α is a discrete stopping set, then it holds that

σ(α) = σ(Γ ; Γ ∩ {α = A} ∈ σ(A) for any closed set A)

=
∨

A: closed

σ(Γ ∩ {α = A} ; Γ ∈ σ(A)).

Proof. Set α =
∑∞

i=1 1Γi Ai for Γi ⊂M which are pairwise disjoint, and closed sets Ai ⊂ E.
We show the first equality. For Γ ∈ σ(α) and any closed set A, we have

Γ ∩ {α = A} = (Γ ∩ {α ⊂ A}) \
⋃
Ai�A

(Γ ∩ {α ⊂ Ai}) ∈ σ(A).

Conversely, take Γ satisfying Γ ∩ {α = A} ∈ σ(A) for any closed set A. For any closed set A,
we have

Γ ∩ {α ⊂ A} =
⋃
Ai⊂A

(Γ ∩ {α = Ai}) ∈ σ(A).

So the first equality holds.
Next we show the second equality. For Γ ∈ σ(α), we have

Γ =

∞⋃
i=1

((Γ ∩ {α = Ai}) ∩ {α = Ai}) ,

and so we have

σ(α) ⊂
∨

A: closed

σ(Γ ∩ {α = A} ; Γ ∈ σ(A)).

Conversely, fix any closed set A and Γ ∈ σ(A). If A = Ai = B for some i, Γ ∩ {α =
A} ∩ {α = B} is equal to Γ ∩ {α = B} ∈ σ(B). Otherwise it is the empty set. Hence we have
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σ(α) ⊃ ∨A: closed σ(Γ ∩ {α = A} ; Γ ∈ σ(A)). Thus the second equality holds. �

To state the following corollary, we define

σ̃(αn) :=
∨

A: closed

σ(Γ ∩ {αn = A} ; Γ ∈ σ(A)),

σ̃(βcn
) :=

∨
A: closed

σ(Γ ∩ {βcn
= A} ; Γ ∈ σ(A)).

Corollary 3.9. Under the assumption of Theorem 1.9, it holds that σ(αn) = σ̃(αn) and
σ(βcn

) = σ̃(βcn
).

Remark 3.10. For the case of set-indexed processes, Evstigneev, Ovseevič [14] and Balan
[3] used the definitions of the forms σ̃(αn) and σ̃(βcn

).

In Lemmas 3.6 and 3.8, it is only assumed that α and βc are stopping sets. As in Remark
3.5, if α and βc are simply stopping sets, αn and βcn

are also stopping sets, so Corollaries
3.7 and 3.9 also hold. On the other hand, the assumption {α ⊂ A, βc ⊂ B} ∈ σ(A ∩ B) in
Theorem 1.9 is needed to prove the following lemma.

Lemma 3.11. Under the assumption of Theorem 1.9, it holds that

σ̃(αn ∩ βcn
) ⊂ σ(αn ∩ βcn

),

where

σ̃(αn ∩ βcn
) :=

∨
A,B:closed

σ
(
Γ ∩ {αn = A, βcn

= B} ; Γ ∈ σ(A ∩ B)
)
.

Proof. For any closed sets A, B and Γ ∈ σ(A ∩ B), by Lemma 3.3, we have Γ ∩ {αn =

A, βcn
= B} ∈ σ(A ∩ B). If A = Ã for some closed set Ã, we have

Γ ∩ {αn = A, βcn
= B} ∩ {αn = Ã} = Γ ∩ {αn = Ã, βcn

= B} ∈ σ(Ã).

Otherwise it is the empty set. Hence we have σ̃(αn ∩ βcn
) ⊂ σ(αn), and by the same way as

above, it hods that σ̃(αn ∩ βcn
) ⊂ σ(βcn

). �

Remark 3.12. In the set-indexed processes, Evstigneev [12, 13] and Kinateder [19] do
not assume the correspondence to {αn ⊂ A, βcn ⊂ B} ∈ σ(A ∩ B). However, as in Remark
3.1, they defined the correspondence to σ(α ∩ βc) to include the σ-field generated by α and
β. Because of this definition, the correspondence to σ̃(αn ∩ βcn

) is decreasing for n under
the only assumption that α and βc are stopping sets. So, by taking limit, the strong Markov
property follows from the strong Markov properties for approximating sequences.

Proposition 3.13. Under the assumption of Theorem 1.9, σ(αn) is conditionally indepen-
dent of σ(βcn

) given σ(αn ∩ βcn
).

Proof. Set αn =
∑∞

i=1 1Γi Ai and βcn
=
∑∞

j=1 1Σ j B j for Γi,Σ j ∈M and closed sets {Ai}, {Bj}
satisfying Ai � Aj, Bi � Bj for i � j.

For Γ ∈ σ(Bk), we have

P(Γ ∩ {βcn
=Bk} |σ(αn))(3.1)



590 T. Ooi

=
∑∞

i=1 P(Γ ∩ {βcn
=Bk} |σ(Ai)∨{αn=Ai})1{αn=Ai}

=
∑∞

i=1 P(Γ ∩ {βcn
= Bk} | σ(Ai))1{αn=Ai}

=
∑∞

i, j=1 P(Γ ∩ {βcn
= Bk} | σ(Ai))1{αn=Ai,βcn

=Bj}

Since {αn = Ai, βcn
= Bj} ∈ σ(Ai ∩ Bj) ⊂ σ(Ai), The equality (3.1) is equal to

∞∑
i=1

P(Γ ∩ {βcn
= Bk} | σ(Ai))1{αn=Ai,βcn

=Bk}.

On {αn = Ai, βcn
= Bk}, we have Bc

k = (βcn
)c ⊂ βcc ⊂ β ⊂ α ⊂ αn = Ai. Hence σ(Ai)

is conditionally independent of σ(Bc
k

c) = σ(Bk) given σ(Ai ∩ Bk) by the Markov property.
Since Γ ∩ {βcn

= Bk} ∈ σ(Bk), it holds that

P(Γ∩{βcn
=Bk} |σ(αn))

=
∑∞

i=1 P(Γ ∩ {βcn
=Bk} |σ(Ai ∩ Bk))1{αn=Ai,βcn

=Bk}
=
∑∞

i, j=1 P(Γ ∩ {βcn
= Bk} | σ(Ai ∩ Bk))1{αn=Ai,βcn

=Bk ,βcn
=Bj}

=
∑∞

i, j=1 P(Γ ∩ {βcn
= Bk} | σ(Ai ∩ Bj))1{αn=Ai,βcn

=Bj}
=P
(
Γ ∩ {βcn

= Bk} | σ̃(αn ∩ βcn
)
)
.

where

σ̃(αn ∩ βcn
) :=

∨
A,B:closed

σ(Γ ∩ {αn = A, βcn
= B} ; Γ ∈ σ(A ∩ B)).

By Lemma 3.11 and the tower property, we have

P(Γ ∩ {βcn
= Bk} | σ(αn)) = P(Γ ∩ {βcn

= Bk} | σ(αn ∩ βcn
)).

By combining this with Corollary 3.9, the proof is completed. �

Proof of Theorem 1.9. Take Γ ∈ σ(α). For any n, by Proposition 3.13 and Γ ∈ σ(α) ⊂
σ(αn), we have P(Γ|σ(βcn

)) = P(Γ|σ(αn ∩ βcn
)). By Lemma 3.7 and [9, Theorem 5.6.3.], it

holds that σ(α) is conditionally independent of σ(βc) given σ(α ∩ βc). �

4. Examples

4. Examples
In this section, we give some examples.

Example 4.1. Let us consider the closed ball E := {x ∈ R2 ; |x| ≤ 1} and the Lebesgue
measure m on E. We define the irreducible regular Dirichlet form ( , ) on L2(E; m) as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

 := H1(E) :=
{
f ∈ L2(E; m) ; ∇ f (x) ∈ L2(E; m)

}
,

( f , g) :=
1
2

∫
E
∇ f (x) · ∇g(x)dm(x) for f , g ∈  ,

and G() be the Gaussian field associated with ( , ). We may treat  as the family of
quasi-continuous versions of the functions belonging to H1(E). We can identify ∂E with
[0, 2π) by considering x = (cos(θ), sin(θ)) ∈ ∂E. Let m̌ be the uniform measure on ∂E
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and set H f := H∂E f for f ∈  . We define the irreducible regular Dirichlet form (̌ , ̌ ) on
L2(∂E; m̌) as ⎧⎪⎪⎨⎪⎪⎩

̌ :=  |∂E ∩ L2(∂E; m̌),

̌( f , g) := (H f ,Hg) for f , g ∈ ̌ .
Then, by [6, Section 5.3], it holds that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

̌ =
{
ϕ ∈ L2(∂E; m̌) ; ̌(ϕ, ϕ) < ∞

}
,

̌(ϕ, ϕ) =
1
2

∫ 2π

0

∫ 2π

0

(ϕ(x) − ϕ(y))2

4π(1 − cos(x − y))
dm̌(x)dm̌(y) for ϕ ∈ ̌ .

Remark that ( , ) associates with the reflecting Brownian motion on E and (̌ , ̌ ) asso-
ciates with the time-changed process of the reflecting Brownian motion by m̌, which is the
symmetric 1-stable process on ∂E. We set Ǧ() := {XH f ∈ G() ; f ∈  } and σ̌(·) be the
σ-field replaced ( , ) by (̌ , ̌ ) in the definition of σ(·).

Let A := {x = (x1, x2) ∈ E ; x2 ≥ 0}. Since ( , ) is local, σ(A) is conditionally
independent of σ(Ac) given σ(∂A) by Theorem 1.5. However, σ̌(A ∩ ∂E) = σ̌([0, π]) is not
conditionally independent of σ̌(Ac ∩ ∂E) = σ̌([π, 2π]) given σ̌({0, π}) by checking that (2.2)
fails. It can be checked by computing a spectrum of a function such as the function f =
ȞAc∩∂E1(π,3π/2), where Ȟ is the hitting distribution for (̌ , ̌ ). Since (̌ , ̌ ) is not local, this
result is consistent to Theorem 1.5. In this case, it holds that σ̌(A ∩ ∂E) ⊂ σ(A) and σ̌(Ac ∩
∂E) ⊂ σ(Ac), but σ̌({0, π}) is too small amount of information to make them conditionally
independent.

We remark that G() enjoys the strong Markov property with respect to the stopping sets
satisfying the assumption in Theorem 1.9.

Example 4.2. Let M be a continuous semimartingale on a filtered probability space (Ω,
M , {Ft}t≥0, P), which is the sum of a continuous local martingale and a càdlàg adapted
process with locally bounded variation. Assume that the quadratic variation 〈M〉· of M is
deterministic and absolutely continuous with respect to the Lebesgue measure. We write
d〈M〉s = h(s)ds for some positive function h. We set⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

 := { f : R→ R ; E(
∫ ∞

0
| f (s)|2d〈M〉s) < ∞},

( f , g) := E(
∫ ∞

0
f (s)g(s)d〈M〉s) =

∫ ∞
0

f (s)g(s)h(s)ds for f , g ∈  ,

and Xf denotes
∫ ∞

0 f (s)dMs. Then ( , ) is an irreducible local regular Dirichlet form on
L2([0,∞)). Fix t > 0, then it holds that σ({t}) = {Ω, φ} ∨ σ(N ). Indeed, for f satisfying
s( f ) = {t}, we have E(

∫ ∞
0 f (s)g(s)d〈M〉s) = 0 for g ∈ Cc({t}c). By the fundamental lemma

of calculus of variations, we have f (s)h(s) = 0 for almost every s. Since h is positive, we
have f (s) = 0.

By Theorem 1.5, σ([0, t]) is conditionally independent ofσ([t,∞)) givenσ({t}) = {Ω, φ}∨
σ(N ). Since {Ω, φ} ∨ σ(N ) is independent of any set, this conditional independence is
independence. Combining this with the fact that Mu =

∫
1[0,u](s)dMs ∈ σ([0, t]) for u ≤ t

and Mt+r − Mt =
∫

1[t,t+r](s)dMs ∈ σ([t,∞)) for r ≥ 0, M has independent increments.
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Next we consider the strong Markov property. Let τ be a [0,∞)-valued random variable
satisfying {s ≤ τ ≤ t} ∈ σ([s, t]) for any s, t. Then s(1[0,τ]) = [0, τ] holds. For closed sets
A, B ⊂ E, we have

{s(1[0,τ]) ⊂ A, s(1[0,τ])c ⊂ B} = {[0, τ] ⊂ A, [τ,∞) ⊂ B}
Let [0, a0] ⊂ A be the connected component of 0 and [b∞,∞) ⊂ B be the connected
component of ∞ if it exists. If it does not exist, let b∞ := ∞ and [b∞,∞) := ∅. Then
{[0, τ] ⊂ A, [τ,∞) ⊂ B} = {b∞ ≤ τ ≤ a0} ∈ σ([b∞, a0]) ⊂ σ(A ∩ B). By Theorem 1.9,
σ(s(1[0,τ])) is independent of σ(s(1[0,τ])c) given σ(∂s(1[0,τ])).

Example 4.3. In this example, we show that the Markov property for Gaussian fields
yields that for some processes induced by the field and Dirac measures. Let E be the half
line (0,∞), m be the positive Radon measure with supp(m) = E. Let ( , ) be an irreducible
transient local regular Dirichlet form on L2(E; m) and G() be a Gaussian field associated
with ( , ). Let Z be the Hunt process associated with ( , ) on L2(E; m) and suppose Z
admits no killing inside. For any t > 0, we write δt for the Dirac measure at t. Assume that,
for almost all t > 0, δt is a measure of finite energy integral, that is there exists C > 0 such
that
∫

E |g(x)|dδt(x) ≤ C
√
(g, g) for any g ∈  ∩ Cc(E). By [6, p.87], there exists Uδt ∈ e

such that

(4.1) (Uδt, g) =
∫

E
g̃(x)dδt(x)

for any g ∈ e and its quasi-continuous version g̃. We have s(Uδt) = {t} because (Uδt, g) =
g(t).

Noting that ( , ) is local, we see that σ((0, t]) is conditionally independent of σ([t,∞))
given σ({t}) by Theorem 1.5. Since s(Uδt) = {t}, XUδs is σ((0, t])-measurable for 0 < s ≤ t
and XUδt+r is σ([t,∞))-measurable for r ≥ 0.

Proposition 4.4. It holds that σ({t}) = σ(XUδt ) ∨ σ(N ).

Proof. Recall that, by the definition, σ({t}) contains N . By (4.1), we have σ({t}) ⊃
σ(XUδt ) ∨ σ(N ).

We next prove σ({t}) ⊂ σ(XUδt ) ∨ σ(N ) by using the method of one-point extensions
in [6, section 7]. Let E0 := E \ {t}, Z0 be the part process of Z on E0 and (0,0) be
a Dirichlet form on L2(E0; m) associated with Z0. Then Z0 admits no killing inside and
ϕ(x) := P0

x(ζ0 < ∞, Z0
ζ0− = t) is positive for any x ∈ E0, where P0

x is a distribution of Z0

starting at x and ζ0 is a lifetime of Z0. By [6, Theorem 7.5.4], e is spanned by 
0
e and ϕ.

Take f ∈ e with s( f ) = {t}. For g ∈ e, there exist g0 ∈ 0
e and a constant c0 such that

g = g0 + c0ϕ, and we have

( f , g) = ( f , g0) + ( f , c0ϕ) = ( f , c0ϕ)

=
( f , ϕ)
ϕ(t)

c0ϕ(t) =
( f , ϕ)
ϕ(t)

g(t).

Hence we have f = cUδt q.e. for c := ( f , ϕ)/ϕ(t), and σ({t}) ⊂ σ({XcUδt }c∈R) holds. For
c ∈ R and u, v ∈ e, we have E((Xcu − cXu)Xv)) = 0 and so Xcu = cXu a.s. Thus it holds that
σ({XcUδt }c∈R) = σ(XUδt ) and σ({t}) ⊂ σ(XUδt ) ∨ σ(N ). �
Thus XUδs is conditionally independent of XUδt+r given σ(XUδt ) for 0 < s ≤ t and r ≥ 0.
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This is the Markov property for {XUδt }t>0 as a stochastic process.
Next we consider the strong Markov property. Let τ be a random variable satisfying

{τ = t} ∈ σ(XUδt ) for all t > 0. By Proposition 4.4, we have {s ≤ τ ≤ t} ∈ σ(XUδu ; s ≤ u ≤
t) = σ([s, t]) for s, t > 0. By the same way as Example 4.2, for closed sets A, B, we have
{[0, τ] ⊂ A, [τ,∞) ⊂ B} ∈ σ(A∩ B). By Theorem 1.9, σ((0, τ]) is conditionally independent
of σ([τ,∞)) given σ(XUδτ).

Remark 4.5. Consider the following special case in Example 4.3;⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
 := H1

0(E) :=
{

f ∈ L2
loc(R) ;

d f
dx
∈ L2(R), f = 0 q.e. on R \ E

}
,

( f , g) :=
1
2

∫
R

d f
dx

(x)
dg
dx

(x)dx for f , g ∈  .

By [29, Proposition 2.13], G() is the Gaussian free field on E = (0,∞) ⊂ R. By some
standard computation, we have (Uδt/2,Uδs/2) = t ∧ s and there exists a modification W of
{XUδt/2}t>0 having continuous paths, which has the same law as that of Brownian motion.

Remark 4.6. We can consider the multidimensional version of the state space of Example
4.3. Let E ⊂ R2 be a domain, m be a positive Radon measure with supp(m) = E, ( , )
be an irreducible regular transient local Dirichlet form on L2(E; m), Z be the Hunt process
associated with ( , ), and G() be a Gaussian field associated with ( , ). Fix z ∈ E and
a continuous decreasing function r : (0,∞) → (0,∞). μt denotes a uniform measure on the
circle of radius r(t) around z, and assume that μt is a measure of finite energy integral for all
t > t0 := r−1(dist(z, ∂E)). For fixed t, by Theorem 1.5, σ(A) is conditionally independent of
σ(Ac) given σ(∂A) where A is the closed ball of radius r(t) around z. It is easy to check that
XUμs is σ(Ac)-measurable and XUμt+r is σ(A)-measurable for t0 ≤ s ≤ t and r ≥ 0. However,
σ(∂A) is not equal to σ(XUμt ) because it holds that σ(∂A) � σ(XUμ) for μ, a non-uniform
measure on the circle of radius r(t) around z. Therefore we can not obtain the Markov
property for {XUμt }t>t0 directly from that of G() in the multidimensional case by this way.
However there is a case that {XUμt }t>t0 has the Markov property. For example, for GFF on a
domain of R2 and r(t) = exp (−t), the continuous modification of {XUμt }t>t0 has the same law
as Brownian motion ([4, Theorem 1.35]).
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(2019), 1797–1813.
[29] S. Sheffield: Gaussian free fields for mathematicians, Probab. Theory Related Fields 139 (2007), 521–541.
[30] A.-L. Sznitman: Coupling and an application to level-set percolation of the Gaussian free field, Electron.

J. Probab. 21 (2016), Paper No. 35, 1–26.



Markov Properties for Gaussian Fields 595

Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606–8502
Japan
e-mail: ooitaku@kurims.kyoto-u.ac.jp


