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Abstract
In this paper, we consider the semilinear elliptic problem −Δu = a(x)|u|p−2u+λb(x)|u|q−2u in a

bounded domain Ω with Neumann boundary condition. We show the existence infinitely many
solutions by applying critical point theory with a suitable decomposition of the Sobolev space
W1,2(Ω). Also we prove the Cα regularity of the solutions.

1. Introduction

1. Introduction
Let Ω ⊂ Rn, n ≥ 2 be an open bounded domain with smooth boundary. We consider the

following semilinear elliptic problem

−Δu = λa(x)|u|p−2u + μb(x)|u|q−2u in Ω,(1.1)

∂u
∂η
= 0 on ∂Ω,

where 1 < p < 2 < q < 2∗ = 2n/(n − 2), λ, μ are positive real parameters and a, b : Ω → R
are functions satisfying the following hypotheses:

(H1) a ∈ L∞(Ω) and
∫
Ω

a(x) dx � 0;
(H′1) a ∈ L∞(Ω) and α := infx∈Ω a(x) > 0;
(H2) b ∈ L∞(Ω) and β := infx∈Ω b(x) > 0;
(H′2) b ∈ L∞(Ω) and

∫
Ω

b(x) dx � 0.
Since the work of Ambrosetti et al. [3], semilinear elliptic problems with concave-convex
nonlinearities have been investigated widely. We refer to [1, 2, 9, 12, 10] for more concave-
convex problems with Dirichlet boundary conditions. In [3], the authors studied the exis-
tence of solutions of the following problem

−Δu = |u|p−2u + λ|u|q−2u in Ω,(1.2)

u = 0 on ∂Ω,

and proved that there exists λ∗ > 0 such that for all λ ∈ (0, λ∗) there exist sequences of
solutions {un}, {vn} such that I(un) < 0 and I(vn) > 0. The authors also studied the existence
of positive solutions and proved that there exists Λ > 0 such that the problem (1.2) has at
least two positive solutions for λ < Λ, at least one positive solution for λ = Λ and no positive
solution for λ > Λ. In [8], De Figueiredo et al. extended these previous results to a problem
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with variable coefficients whose prototype is

−Δu = a(x)|u|p−2u + λb(x)|u|q−2u in Ω,(1.3)

u = 0 on ∂Ω.

The function b(x) is assumed to be non-negative and a(x) may change sign. Recently in
[15], Quoirin and Umezu considered a problem similar to (1.1) and studied the existence
of positive solutions. However the authors did not discuss the existence of infinitely many
solutions. We refer to [5, 11, 16] where the existence of infinitely many solutions are studied
for some major concave-convex problems with nonlinear boundary conditions. In these
papers, the left hand side of the problems involve −Δu + u, which corresponds to the term
(1/2)

∫
Ω
|∇u|2+u2 in the energy functional. The map u 
→ (

∫
Ω
|∇u|2+u2)(1/2), defines a norm

in the space W1,2(Ω). In this paper, we consider (1.1), which does not involve the extra term
u. This makes the problem more challenging and the methods in [5, 11, 16] for studying the
existence of solutions are not applicable to (1.1). We use some ideas from [10] and consider
a suitable decomposition of the space W1,2(Ω). To the best of our knowledge the existence
of infinitely many solutions of (1.1) is not yet addressed. In this paper we address this aspect
of (1.1) and prove the following:

Theorem 1.1. Assume that (H1), (H2) hold and 1 < p < 2 < q < 2∗. Then there exists
Λ > 0 such that for all λ ∈ (0,Λ) and μ > 0 there exists an unbounded sequence of solutions
(un) of (1.1) such that I(un)→ ∞ as n→ ∞.

Theorem 1.2. Assume that (H′1), (H′2) hold and 1 < p < 2 < q < 2∗. Then for all λ > 0
and μ > 0 there exists a sequence of solutions (vn) of (1.1) such that I(vn) < 0 and I(vn)→ 0
as n→ ∞.

The paper is organized as follows: In Section 2, we prove some preliminary results re-
quired for the proof of the main theorems. In Section 3, we give the proofs of the Theorems
1 and 2. We also prove some regularity results for the solution. More precisely, we prove
that the H1(Ω) solutions of (1.1) are Holder continuous. This is discussed in Section 4.

2. Preliminaries

2. Preliminaries
Let E = W1,2(Ω) be the usual Sobolev space with the norm given by

‖u‖1,2 =
(∫
Ω

|∇u|2 + u2
) 1

2

.

Definition 2.1. We say a function u ∈ E a weak solution of (1.1) if for every ϕ ∈ E we
have ∫

Ω

∇u∇ϕ dx − λ
∫
Ω

a(x)|u|p−2uϕ dx − μ
∫
Ω

b(x)|u|q−2uϕ dx = 0.(2.4)

For u ∈ E we define the energy functional for problem (1.1) by

I(u) =
1
2

∫
Ω

|∇u|2 dx − λ
p

∫
Ω

a(x)|u|p dx − μ
q

∫
Ω

b(x)|u|q dx.

Since 1 < p < 2 < q < 2∗ we have that I ∈ C1(E,R) and the critical points of I are the weak
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solutions of (1.1). Hence the existence of solutions of (1.1) is equivalent to the existence of
critical points of I.

We consider the following decomposition of the space E (see [10]) which is crucial in the
proof of the main results.

Lemma 2.1. (i) Let X = {u ∈ W1,2(Ω) :
∫
∂Ω

u dσx = 0}. Then the poincare’s inequality
holds in X, that is, there exists a constant C = C(n,Ω) such that

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω), for any u ∈ X.

(ii) For any u ∈ E there exists a unique tu ∈ R and u⊥ ∈ X such that u = tu + u⊥, that is,
E = 〈1〉 ⊕ X and for any u, v ∈ E(Ω)

〈u, v〉 = tu · tv +
∫
Ω

∇u · ∇v

defines an inner product in E. Moreover, the corresponding norm is equivalent to
the usual norm in E.

Next we prove a technical lemma which we need in the proof of Theorem 1.2.

Lemma 2.2. Assume that (H′1) holds and p > 1. Then there exists γ > 0 such that for any
u = tu + u⊥ ∈ 〈1〉 ⊕ X with ‖∇u‖L2(Ω) ≤ γ|tu|, we have∫

Ω

a(x)|tu + u⊥|p dx ≥ |tu|
p

2

∫
Ω

a(x) dx.

Proof. Arguing by contradiction, we suppose that there exists a sequence (un) ⊂ W1,2(Ω)
such that ‖∇un‖L2(Ω) ≤ |tu |n and

(2.5)
∫
Ω

a(x)|tun + u⊥n |q dσx <
|tun |q

2

∫
Ω

a(x) dx.

Now set vn := u⊥n /tun , then vn ∈ X and by our assumption ‖∇vn‖L2(Ω) → 0 as n → ∞. Since,
the Poincare’s inequality holds in X, vn → 0 in X. Also X is continuously embedded in
Lq(Ω), hence vn → 0 in Lq(Ω). Consequently, we have vn → 0 a.e. on Ω. Now dividing both
sides of (2.5) by |tun | and using Lebesgue theorem we obtain∫

Ω

a(x) dx < 0,

which contradicts that a(x) > 0 on Ω. �

3. Proofs of the main results

3. Proofs of the main results
The following abstract results on existence of critical points will be used.

Theorem 3.1. Let E be an infinite dimensional Banach space and, I ∈ C1(E,R) be even
and I(0) = 0. If E = V ⊕ X, where V finite dimensional, and I satisfies

(PS) any sequence {un} ⊂ E for which I(un) → c and I′(un) → 0 possesses a convergent
subsequence,

(I1) there are constants r, α > 0 such that I|∂Br∩X ≥ α, and
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(I2) for each finite dimensional subspace E ⊂ E, there is an R = R(E) such that I ≤ 0 on
E \ BR(E),

then I possesses an unbounded sequence of critical values.

Theorem 3.2. Let X be a Banach space and I ∈ C1(X,R) satisfies

(I1) there exists an admissible representation V of G, a compact lie group, such that
X = ⊕ j∈AX( j) with A = N or A = Z and X( j) � V for every j ∈ A. The space X is
then a Banach space with isometric linear G−action. The functional I : X → R is
invariant under this action: I(gu) = I(u) for g ∈ G and u ∈ X,

(I2) for every k ≥ k0 there exists Rk > 0 such that I(u) ≥ 0 for every u ∈ Xk := ⊕ j≥kX( j)
with ‖u‖ = Rk,

(I3) bk := infu∈Bk I(u)→ 0 as k → ∞ where Bk := {u ∈ Xk : ‖u‖ ≤ Rk},
(I4) for every k ≥ 1 there exists rk ∈ (0,Rk) and dk < 0 such that I(u) ≤ dk for every

u ∈ Xk := ⊕ j≤kX( j) with ‖u‖ = rk, and
(I5) every sequence un ∈ Xn−n := ⊕n

j=−nX( j) with I(un) < 0 bounded and
(
I|Xn−n

)′
(un)→ 0

as n→ ∞ has a subsequence which converges to a critical point of I.

Then for each k ≥ k0, I has a critical value ck ∈ [bk, dk], hence ck → 0 as k → ∞.

For the proof of Theorem 3.1 we refer to [14, Theorem 9.12] and for the proof of Theorem
3.2 we refer to [6, Theorem 2].

3.1. Proof of Theorem 1.1.
3.1. Proof of Theorem 1.1. Let E = 〈1〉 ⊕ X where X is given by Lemma 2.1. We show

that I satisfies hypotheses of Theorem 3.1. Clearly I(0) = 0 and I is even.
Let u ∈ E then there exists tu and u⊥ ∈ X such that u = tu + u⊥. By using the embeddings

Lp ↪→ X, Lq ↪→ X and since Poincares inequality holds in X we have

I(u⊥) =
1
2

∫
Ω

|∇u⊥|2 dx − λ
p

∫
Ω

a(x)|u⊥|p dx − μ
q

∫
Ω

b(x)|u⊥|q dx

≥ 1
2
‖u⊥‖2 − λc1‖u⊥‖p − μc2‖u⊥‖q

=
1
2
ρ2 − λc1ρ

p − μc2ρ
q

= ρ2
(
1
2
− λc1ρ

p−2 − μc2ρ
q−2

)
.

Let ρ = (1/(8μc2))1/(q−2). There exists Λ > 0 such that for λ ∈ (0,Λ) we have λc1ρ
p−2 ≤ 1/8

and

I(u⊥) ≥ ρ
2

4
:= α,

for all u ∈ X with ‖u‖ = ρ. This shows that I satisfies (I1).
Let E ⊂ E be any finite dimensional subspace of E and let u ∈ E \ {0}. Let t > 0. Since,

E is finite dimensional and all norms in finite dimensional spaces are equivalent, we have

I(tu) =
t2

2

∫
Ω

|∇u|2 − λt
p

p

∫
Ω

a(x)|u|p − μt
q

q

∫
Ω

b(x)|u|q

≤ t2

2
‖u‖2 − λc1tp‖u‖p − μc2tq‖u‖q.
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Since q > 2 and b > 0, we get I(tu)→ −∞ as t → ∞. Hence (I2) holds.
Next, we show that I satisfies the Palais-smale condition (PS). Let (un) ⊂ E be a sequence

and I(un)→ c, I′(un)→ 0 as n→ ∞. Since the operators A, B : E → R defined by

A(u) =
∫
Ω

a(x)|u|p dx and B(u) =
∫
Ω

b(x)|u|q dx

are weakly continuous and their derivatives A′, B′ are compact it is sufficient to show that
(un) is bounded in E. Suppose by contradiction, there exists a subsequence denoted by (un)
with ‖un‖ → ∞ as n → ∞. Set vn := un/‖un‖. Then ‖vn‖ = 1 for all n. Hence up to
subsequence vn ⇀ v weakly in E and vn → v in Lp(Ω) and Lq(Ω). By simple calculations
we get

I(un) − 1
2

I′(un)un = λ

(
1
2
− 1

p

) ∫
Ω

a(x)|un|p + μ
(
1
2
− 1

q

) ∫
Ω

b(x)|un|q.

Thus we can write ∫
Ω

b(x)|u|q ≤ c + c1‖un‖p.

Also since I(un)→ c we have

1
2

∫
Ω

|∇un|2 = λp
∫
Ω

a(x)|un|p + μq
∫
Ω

b(x)|un|q + c + on(1).

Thus
∫
Ω
|∇vn|2 ≤ on(1) + c3‖un‖p−2 → 0 as n → ∞. If vn = tvn + v

⊥
n , then v⊥n → 0 in X. Also

up to a subsequence tvn → tv in R and

|tv| = ‖tv‖ = ‖v‖ = lim
n→∞ ‖vn‖ = 1.

Hence vn → 1 strongly in E. Now from ‖un‖1−qI′(un)tvn = on(1) we get∣∣∣∣∣
∫
Ω

b(x)|vn|q−2vntvn

∣∣∣∣∣ ≤ λ

μ‖un‖q−p

∫
Ω

a(x)|vn|p−1|tvn | + on(1).

Since q > p and vn → 1 strongly in E the right hand side tends to 0. Hence by Lebesgue
theorem we obtain ∫

Ω

b(x) = 0,

which is a contradiction. Thus (un) is bounded in E. That is I satisfies (PS) condition. Hence
by Theorem 3.1 problem (1.1) has an unbounded sequence of solutions such that I(un)→ ∞
as n→ ∞.

3.2. Proof of Theorem 1.2.
3.2. Proof of Theorem 1.2. We show that I satisfies the hypotheses of Theorem 3.2.

Consider the Neumann eigenvalue problem

−Δu = λu in Ω,

∂u
∂η
= 0 on ∂Ω.

Then applying the theory of compact self-adjoint operators, one gets that there exists a se-
quence of eigenvalues λ j → ∞ and the corresponding eigenfunctions {e j} form an orthonor-
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mal basis of X (see [4, 7]). Moreover, the eigenvalues has the following characterization

λ j = max
u∈span{e1,··· ,e j}

∫
Ω
|∇u|2 dx∫
Ω

u2 dx
.(3.6)

Let E = 〈1〉 ⊕ ⊕ j≥1X( j), where X( j) = span{e j}. Since I is even, hypothesis (I1) is satisfied
taking G = Z/2 and V = R. For (I2) we set

δk := sup
Xk\{0}

‖u‖Lp(Ω)

‖u‖ .

Then by Rellich’s embedding theorem, δk → 0 as k → ∞. Hence for u ∈ Xk using the
embedding Lp ↪→ X, we obtain

I(u) ≥ 1
2

∫
Ω

|∇u⊥|2 − λc1

p
(δk)p‖u‖p − μc2

q
‖u‖q = 1

2
‖u‖2 − λc1

p
(δk)p‖u‖p − μc2

q
‖u‖q.

Since q > 2 choosing R > 0 small enough we have μc2‖u‖q/q ≤ ‖u‖2/4 if ‖u‖ ≤ R. Thus

I(u) ≥ 1
4
‖u‖2 − λc1

p
(δk)p‖u‖p.

Let Rk = (4λc1(δk)p/p)1/(2−p). Then Rk → 0. Hence one can find k0 such that Rk ≤ R for
k ≥ k0. Now for u ∈ Xk with ‖u‖ = Rk we obtain

I(u) ≥ 1
4
‖u‖2 − λc1

p
(δk)p‖u‖p = 0.

That is (I2) holds. Since Bk is weakly compact and I is weakly lower semicontinous (I3)
follows from Rk → 0. Next we show (I4) in two cases.

Case 1: ‖∇u⊥‖ ≤ γ|tu|.
Let ‖u‖ = r. Then ‖u‖2 = t2

u + ‖∇u⊥‖22 =⇒ tu ≥ r√
1+γ2
. Now using Lemma 2.2 we get

I(u) ≤ 1
2
‖u‖2 + c3‖u‖q − |tu|

p

2

∫
Ω

a(x) dx ≤ r2
(
1
2
+ c3rq−2 − 1

2
c4(1 + γ2)−p/2rp−2

)
.

Since 1 < p < 2, rp−2 → ∞ as r → 0. Thus choosing rk small enough we get (1/2) +
c3rq−2 − (c4/2)(1 + γ2)−p/2rp−2 ≤ −1/2. Hence

I(u) ≤ −r2
k

2
:= dk < 0.

Case 2: ‖∇u⊥‖ > γ|tu|.
In this case for ‖u‖ = r we have r2 = t2

u + ‖∇u⊥‖22 =⇒ ‖∇u⊥‖2 > β−1r, where β =√
1 + γ−2. Now since Xk is finite dimensional, we have ‖u‖L2(Ω) ≤ c‖u‖Lp(Ω). Hence using

(3.6) we obtain ∫
Ω

|u|p ≥ c3

(∫
Ω

|u|2
) p

2

≥ ck

(∫
Ω

|∇u⊥|2
) p

2

≥ ckβ
−prp,

for some ck > 0 depending on k. Thus we have

I(u) ≤ 1
2
‖u‖2 + c3‖u‖q − αp

∫
Ω

|u|p ≤ r2

2
+ c3rq − ckβ

−prp.
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Again similar to Case 1 we can find rk > 0 small enough so that

I(u) ≤ −r2
k

2
= dk < 0.

Hence (I4) holds. Finally the Palais-smale condition I5 can be shown as in the proof of part
(a).

4. Cα regularity of solutions

4. Cα regularity of solutions
In this section we show that the solutions of (1.1) are in Cα(Ω). We follow the method

used in [11, Lemma 4.2] to prove our result. We prove the following.

Proposition 4.1. Let 1 < p < 2 < q < 2∗. Then any H1(Ω) solution u of (1.1) is in Cα(Ω)
and satisfies

‖u‖Cα(Ω) ≤ C
(
‖u‖L2(Ω) + ‖u‖p−1

L∞(Ω) + ‖u‖q−1
L∞(Ω)

)
.

Proof. Let u ∈ H1(Ω) be any solution of (1.1). We first show that u ∈ L∞(Ω). We use a
bootstrap argument. Let ν > 1 be a parameter to be chosen later. Multiplying both sides of
(1.1) by |u|ν−1u, and integrating we obtain

ν

∫
Ω

|∇u|2 |u|ν−1 = λ

∫
Ω

a(x) |u|p+ν−1 + μ

∫
Ω

b(x) |u|q+ν−1.

Since, a, b ∈ L∞(Ω) we have

ν

∫
Ω

|∇u|2 |u|ν−1 ≤ c
(
‖u‖ν+p−1
ν+p−1 + ‖u‖ν+q−1

ν+q−1

)
.(4.7)

Using the identity

|∇(|u| ν+1
2 )|2 = (ν + 1)2

4
|∇u|2 |u|ν−1,

and putting w = |u| ν+1
2 we obtain

4ν
(ν + 1)2

∫
Ω

|∇w|2 ≤ c
(
‖u‖ν+p−1
ν+p−1 + ‖u‖ν+q−1

ν+q−1

)
.(4.8)

Without loss of generality we can assume

q − p =
2

n − 2
.(4.9)

Indeed, set q1 such that p+ 2/(n− 2) < q1 < 2n/(n− 2) and q < q1. Let p1 = q1 − 2/(n− 2).
Then p < p1 < (n − 1)/(n − 2). Then (4.7) and (4.8) are satisfied with p1, q1.

The Sobolev embedding shows that

‖w‖22n
n−2
≤ c‖w‖2H1(Ω).(4.10)

Combining (4.8) and (4.10) and using w = |u| ν+1
2 we get

‖u‖ν+1
(ν+1)n

n−2
≤ (ν + 1)2

4ν
c
(
‖u‖ν+p−1
ν+p−1 + ‖u‖ν+q−1

ν+q−1

)
+

∫
Ω

|u|ν+1 ≤ νc
(
‖u‖ν+p−1
ν+p−1 + ‖u‖ν+q−1

ν+q−1 +

∫
Ω

|u|ν+1
)
.

Now using the Holder’s inequality
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‖u‖ν+p−1
ν+p−1 ≤ |Ω|

q−p
ν+q−1 ‖u‖ν+p−1

ν+q−1 ≤ c‖u‖ν+p−1
ν+q−1 ,∫

Ω

|u|ν+1 ≤ |Ω| q−2
ν+q−1 ‖u‖ν+1

ν+q−1 ≤ c‖u‖ν+1
ν+q−1,

for some constant c > 0. Thus we can write

‖u‖ν+1
(ν+1)n

n−2
≤ νc

(
‖u‖ν+p−1
ν+q−1 + ‖u‖ν+q−1

ν+q−1 + ‖u‖ν+1
ν+q−1

)
.(4.11)

Now define the sequences ak, bk by

b1 := 2r, bk := (bk−1 − p + 2)r, r :=
n − 1
n − 2

,(4.12)

ak := (bk−1 − p + 2)
n

n − 2
=

n
n − 1

bk.(4.13)

Then

bk = rk + (2 − p)r
rk − 1
r − 1

, ∀k ∈ N.(4.14)

There exist constants c,C > such that

(4.15) crk ≤ bk ≤ Crk.

Since r > 1, ak → ∞ and bk → ∞ as k → ∞. Putting ν = bk − p + 1 in (4.11) we get

‖u‖bk−p+2
ak+1 ≤ cbk

(
‖u‖bk

bk+
2

n−2
+ ‖u‖bk+

2
n−2

bk+
2

n−2
+ ‖u‖bk−p+2

bk+
2

n−2

)
,(4.16)

where we have used (4.9). Since bk is increasing it holds that bk ≥ 2(n − 1)/(n − 2). This
implies

bk +
2

n − 2
≤ ak.

Let δk be such that 1/δk = 1− ((bk + 2/(n − 2))/ak). Then 1/δk → 1/n as k → ∞. Using this
and the Holder inequality implies

‖u‖bk+
2

n−2

bk+
2

n−2
≤ |Ω| 1

δk ‖u‖bk+
2

n−2
ak ≤ c‖u‖bk+

2
n−2

ak .

By a similar calculation we also have

‖u‖bk

bk+
2

n−2
≤ c‖u‖bk

ak
,

‖u‖bk−p+2
bk+

2
n−2
≤ c‖u‖bk−p+2

ak .

Substituting this in (4.16) we have

‖u‖bk−p+2
ak+1 ≤ cbk

(
‖u‖bk+

2
n−2

ak + ‖u‖bk
ak
+ ‖u‖bk−p+2

ak

)
.(4.17)

Define θk := max{‖u‖ak , 1}. Then (4.17) implies

θ
bk−p+2
k+1 ≤ cbkθ

bk+
2

n−2
k .(4.18)

Set

αk = (cbk)
1

bk−p+2 , βk =
bk +

2
n−2

bk − p + 2
.
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Then (4.18) can be written as

θk+1 ≤ αkθ
βk
k .(4.19)

Now repeated use of (4.19) produces

θk ≤ αk−1α
βk−1
k−2α

βk−1βk−2
k−3 · · ·αβk−1···β2

1 θ
βk−1···β2
1 .(4.20)

We wish to show that θk ≤ c for all k ∈ N. For this we first show that

0 <
∞∏

k=1

βk < ∞.(4.21)

By (4.14) there exists a constant c > 0 such that bk − p + 2 ≥ crk for all k ∈ N. Since

q − p = 2/(n − 2), βk = 1 +
q − 2

bk − p + 2
,

(4.21) follows from the fact that
∞∑

k=1

q − 2
bk − p + 2

< ∞.

Put σ =
∏∞

k=1 βk. Then 1 < σ < ∞. Since βk > 1, it follows that

βk−1 · · · βi ≤ σ for i ≤ k − 1.

Since αk > 1, we can write

αk−1α
βk−1
k−2α

βk−1βk−2
k−3 · · ·αβk−1···β2

1 ≤ (α1 · · ·αk−1)σ.

Next, we show that

0 <
∞∏

k=1

αk < ∞.(4.22)

Using (4.15) and the definition of αk, we get

log

⎛⎜⎜⎜⎜⎜⎝
m∏

k=1

αk

⎞⎟⎟⎟⎟⎟⎠ =
m∑

k=1

logαk ≤
∞∑

k=1

logαk < ∞.

Hence (4.22) holds. Thus there exists a constant c > 0 such that

θk ≤ cθσ1 , ∀k ∈ N.
Taking k → ∞ we obtain

‖u‖L∞(Ω) ≤ cθσ1 < ∞.
Thus u ∈ L∞(Ω).

Now using [13, Proposition 3.6] we obtain u ∈ Cα(Ω) and u satisfies

‖u‖Cα(Ω) ≤ C
(
‖u‖L2 + ‖u‖p−1

L∞(Ω) + ‖u‖q−1
L∞(Ω)

)
.

�
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