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Abstract
The group TL(2, 5) is a nontrivial double covering of S5 with the center of order 2, where

S5 is the symmetric group on five letters. In addition, TL(2, 5) has a free irreducible real rep-
resentation of dimension 8 and contains SL(2, 5) as a normal subgroup up to isomorphisms,
where SL(2, 5) is the special linear group of degree 2 over the field consisting of five elements.
TL(2, 5) has been denoted by SL(2, 5).C2 as well as TL2(5). In this paper, we show that there
never exists an effective smooth action of TL(2, 5) on a homology sphere of dimension 21, with
exactly one fixed point.

1. Introduction

1. Introduction
Let Z and N denote the ring of integers and the set of natural numbers, respectively, let

Sn denote the standard sphere of dimension n, and let R be a principal ideal domain. For
integers m and n, let [m..n] denote the set {k ∈ Z | m ≤ k ≤ n}. Let [m..∞) denote the union⋃

n[m..n], where n ranges over N. For a compact smooth manifold Σ of dimension n without
boundary, we call Σ an R-homology sphere if the homology groups Hi(Σ; R), i ∈ [0..∞),
are isomorphic to Hi(Sn; R), respectively. By a homology sphere we mean a Z-homology
sphere. Let TL(2, 5) denote the group of order 240 with IdGroup = [240, 89] in the GAP
SmallGroup library [1]. The center of TL(2, 5) has order 2, therefore we denote the center
by Z2, and TL(2, 5) is a nontrivial double covering of S5:

(1.1) E �� Z2 �� TL(2, 5) π �� S5 �� E,

where S5 is the symmetric group on the set [1..5] and E is the trivial group. On the other
hand, TL(2, 5) contains SL(2, 5) as a normal subgroup up to isomorphisms, where SL(2, 5)
is the special linear group of degree 2: each element of it is 2 × 2-matrix with determinant 1
over the field consisting of five elements. Therefore we have another exact sequence

E �� SL(2, 5) �� TL(2, 5) �� C2 �� E,

where C2 is a group of order 2. The group TL(2, 5) is denoted by SL(2, 5).C2 in [4] as
well as TL2(5) in [3]. It is remarkable that SL(2, 5) and TL(2, 5) have free irreducible real
representations of dimension 4 and 8, respectively. As it is explained in [4, 6, 8], vari-
ous topologists (e.g. E. Stein, T. Petrie, E. Laitinen–P. Traczyk, M. Morimoto, M. Furuta,
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N. Buchdahl–S. Kwasik–R. Schultz, S. Demichelis, A. Borowiecka, S. Tamura, P. Mizerka,
. . . ) have studied smooth actions with exactly one fixed point on spheres of finite groups G.
Recently, P. Mizerka has presented the next result.

Theorem (P. Mizerka [4, Theorem 0.1]). Let G be TL(2, 5) and Σ a homology sphere of
dimension n. If n ∈ [0..13]∪ {15, 16, 17}, then G cannot act effectively on Σ with exactly one
fixed point.

In the present paper, we give the following two additional results.
First remark that Mizerka’s theorem above resembles the theorem [6, Theorem 4.2]:

S5 does not admit a smooth action on Sn with exactly one fixed point if n lies in [0..5] ∪
{7, 8, 9, 13}. Comparing it with Mizerka’s theorem, (because 21 = 13 + 8) we are interested
in showing the following fact.

Theorem 1.1. Let G be TL(2, 5) and Σ a homology sphere of dimension 21. Then G
cannot act effectively on Σ with exactly one fixed point.

Next recall the theorem [6, Theorem 4.1]: for G = S5 and a homology sphere Σ with a
smooth G-action, if ΣG = {x0} then the tangential G-representation Tx0 (Σ) at x0 in Σ contains
an irreducible G-subrepresentation of dimension 6. It is interesting to show an analogous
fact for G = TL(2, 5).

Theorem 1.2. Let G be TL(2, 5) and Σ a homology sphere with an effective smooth G-
action. If ΣG = {x0} then the tangential G-representation Tx0 (Σ) contains an irreducible
G-subrepresentation of dimension 6.

This research was also motivated by the following conjecture.

Conjecture. For the finite groups G and the sets IG of integers given below, the standard
sphere Sn of dimension n has an effective smooth G-action with exactly one fixed point if
and only if n belongs to IG.

(1) G = S5 and IG = {6, 10, 11, 12} ∪ [14..∞).
(2) G = TL(2, 5) and IG = {14, 18, 19, 20} ∪ [22..∞).

By [6, Theorem 4.2], [4, Theorem 0.1] and Theorem 1.1, the ‘only if part’ of the conjec-
ture is valid. By [2, Theorem B], for an arbitrary Oliver group G and for an arbitrary integer
k ≥ 6, there is an effective smooth G-action on Sn with exactly one fixed point such that

n = k

⎛⎜⎜⎜⎜⎜⎜⎝(|G| − 1) −
∑

p

(|G/G{p}| − 1)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where p ranges over the set of primes dividing |G| and G{p} is the smallest normal subgroup
of G such that |G/G{p}| is a power of p. The author does not know any other established
results concerned with the ‘if part’ of the conjecture.

It should be remarked that the particles necessary to our proof of the two theorems above
can be found in P. Mizerka [4].



Appendix to P. Mizerka’s Theorem 379

2. Preliminary

2. Preliminary
Let G be a finite group. Recall the following elementary fact.

Proposition 2.1. Let R be a principal ideal domain and let Σ be an R-homology sphere
with a smooth G-action and x0 a fixed point of Σ, i.e. x0 ∈ ΣG. Let D be a small (closed)
disk G-neighborhood of x0 in Σ. Then X = Σ � Int(D) is R-acyclic.

The proof of this fact is straightforward.
The family 

q
p of finite groups is defined in R. Oliver [7], where each of p and q is a prime

or 1: q
p is the family of finite groups G possessing a normal series

P � H � G such that |P| is a power of p,(2.1)

H/P is cyclic, and |G/H| is a power of q.

Let p =
⋃

q∈ 
q
p and  =

⋃
p,q∈ 

q
p, where  is the set of all primes. A finite group G is

called an Oliver group if G � . According to Oliver [7], there exists a smooth G-action on a
disk without fixed points if and only if G is an Oliver group. In addition, by [2, Theorem A],
there exists a smooth G-action on a sphere with exactly one fixed point if and only if G is an
Oliver group.

Proposition 2.2 (cf. [7, Proposition 2]). Let p and q be primes, G ∈ 
q
p, and Σ a Zp-

homology sphere with a smooth G-action. If ΣG � ∅ then the congruence formula

χ(ΣG) ≡ χ(Sm) mod q

holds, where χ(−) is the Euler characteristic and m = dim Tx0 (Σ)G for an arbitrary x0 ∈ ΣG.

Proof. Let P and H be as in (2.1), let x0 ∈ ΣG, and let D and X be as in Proposition 2.1.
Since ΣG = DG ∪∂ XG, the equality

(2.2) χ(ΣG) = χ(XG) + (−1)m

holds for m = dim Tx0 (Σ)G. Note that XG = ((XP)H/P)G/H . Since |P| is a power of p,
the Smith theory implies that XP is Zp-acyclic and hence Q-acyclic. Since H/P is cyclic,
the Lefschetz fixed point formula implies the equality χ((XP)H/P) = 1, see [7, Lemma 1,
Proposition 1]. Since |G/H| is a power of q, we readily get χ(((XP)H/P)G/H) ≡ χ((XP)H/P) (=
1) mod q, see [7, p.157, �.7]. Therefore we obtain

χ(ΣG) = χ(XG) + (−1)m ≡ 1 + (−1)m = χ(Sm) mod q. �

Corollary 2.3. Let G and Σ be as in the above proposition. Then ΣG is not a singleton,
i.e. |ΣG | � 1.

Proposition 2.4. Let G be a finite group, let p be a prime, let P be a subgroup of G such
that |P| is a power of p, let H be a subgroup of G containing P, and let Σ be a Zp-homology
sphere with x0 ∈ ΣG. Set V = Tx0 (Σ) and suppose dim VP = dim VH. In each of the following
cases (1)–(3), it holds that ΣP = ΣH (a Zp-homology sphere) and hence |ΣH | ≥ 2.

(1) dim VP > 0.
(2) There is a sequence P = K0 � K1 � · · · � Km−1 � Km = H.
(3) H ∈ p.
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Proof. By the Smith theory, ΣP is a Zp-homology sphere and dimΣP = dim VP. Let
ΣH

0 be the connected component of ΣH such that x0 ∈ ΣH
0 . We have Tx0 (Σ

H
0 ) = VH as real

NG(H)-representations.
Firstly consider the case (1), i.e. dim VP > 0. In this case, we get dim VH = dim VP ≥ 1.

Since ΣH
0 and ΣP are connected closed manifolds of same dimension, the property ΣH

0 ⊂
ΣH ⊂ ΣP implies ΣH

0 = Σ
H = ΣP.

In the rest of the proof, we can assume dim VP = 0 without loss of generality. Then we
have |ΣP| = 2 and hence we write ΣP as {x0, x1}.

Secondly consider the case (2). In the case m = 0, i.e. P = K0 = H, the equality
ΣP = ΣK0 = ΣH obviously holds. For the case m ≥ 1, by induction on i, it suffices to show
that ΣP = ΣKi under the hypothesis ΣKi−1 = ΣP = {x0, x1}. Since Ki−1 � Ki, Ki acts on
ΣKi−1 = {x0, x1}. The point x0 is a Ki-fixed point and therefore x1 must be a Ki-fixed point.
This shows ΣKi = {x0, x1} = ΣP.

Now consider the case (3). Since H ∈ p, by Corollary 2.3, we get |ΣH | � 1. Since
x0 ∈ ΣH ⊂ ΣP = {x0, x1}, we conclude ΣH = ΣP. �

The soul of the next proposition and the corollary to it is due to S. Tamura [8, Proof of
Lemma 3.1, Proof in Case 2] and P. Mizerka [4, Lemma 2.3].

Proposition 2.5. Let G be a finite group, let p be a prime, let P be a subgroup of G such
that |P| is a power of p, let H1 and H2 be subgroups of G such that P ⊂ H1 ∩ H2, and let
Σ be a Zp-homology sphere with x0 ∈ ΣG. Set V = Tx0 (Σ) and suppose dim VP = dim VH1 .
Further suppose the following two conditions are fulfilled.

(C1) ΣH1 � {x0}.
(C2) The elements of H1 ∪ H2 generate G, i.e. 〈H1,H2〉 = G.

Then ΣP = ΣH1 (a Zp-homology sphere) and ΣH2 = ΣG.

Proof. We know that ΣP is a Zp-homology sphere and ΣP ⊃ ΣHi for i = 1, 2. Once
ΣP = ΣH1 was proved, we would have

ΣG = Σ〈H1,H2〉 = ΣH1 ∩ ΣH2 = ΣP ∩ ΣH2 = ΣH2 .

Firstly consider the case dim VP ≥ 1. Then by Proposition 2.4 (1), we obtain ΣP = ΣH1 .
Next consider the case dim VP = 0. Then we have |ΣP| = 2. Since 2 ≤ |ΣH1 | ≤ |ΣP| = 2,

we get ΣP = ΣH1 . �

Corollary 2.6. In Proposition 2.5, further suppose that H2 ∈ p. Then ΣG is not a
singleton, i.e. ΣG � {x0}.

Proof. Since H2 ∈ p, by Corollary 2.3, we get (|ΣG | =) |ΣH2 | � 1. �

Proposition 2.7. Let X be a connected closed manifold with a smooth G-action. Suppose
XG = {x0} and set V = Tx0 (X). Then the real G-representation V does not contain an
irreducible summand of dimension 1.

Proof. The hypothesis XG = {x0} immediately implies VG = {0}.
Recall the fact that VL = {0} for any subgroup L of G with index 2, which has been used

in various papers. For the sake of readers’ convenience, we give a proof of the fact here.
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Assume that L is a subgroup of G such that |G/L| = 2 and VL � {0}. Let XL
0 be the connected

component of XL containing x0. Then we get dim XL
0 = dim VL ≥ 1. Note that the group G/L

(of order 2) acts on the connected closed manifold XL
0 . Since (XL

0 )G/L ⊃ {x0}, Lemma 2.1 of
[5] implies |XG | ≥ |(XL

0 )G/L| ≥ 2. This contradicts the hypothesis that XG = {x0}. Therefore
VL = {0} holds for any subgroup L of G with index 2.

Now we are going to prove that V does not contain an irreducible summand of dimension
1. Assume that U is a 1-dimensional irreducible summand of V . Let ρU : G → {1,−1}
be the group homomorphism associated with U. Set K = Ker(ρU). Since VG = {0}, we
have UG = {0}. Therefore K is a subgroup of G with index 2. Since dim UK = 1, we have
dim VK ≥ dim UK = 1, which contradicts the fact VK = {0}. �

Next recall the subgroup lattices of S5 and TL(2, 5), see e.g. [4, Figures 1 and 2].

Proposition 2.8. The symmetric group S5 contains subgroups

D4 = 〈(2, 3), (2, 3)(4, 5)〉, D8 = 〈(2, 4, 3, 5), (2, 3)〉, and

S3C2 = 〈(1, 2), (1, 2, 3), (4, 5)〉.
The subgroup D4 is contained in D8 and subconjugate to S3C2. The subgroups Q8,A,
Q16, Dic6 in [4] are conjugate to π−1(D4), π−1(D8), and π−1(S3C2), respectively, where
π : TL(2, 5)→ S5 is the projection in (1.1).

The proof of this proposition is straightforward.

3. Proof of Theorem 1.2

3. Proof of Theorem 1.2
Let G be TL(2, 5) and Σ a homology sphere with an effective smooth G-action. Suppose

ΣG = {x0} and set V = Tx0 (Σ).
As it is described in [4], the irreducible real G-representations of dimension ≥ 2, up to

isomorphisms, are
U4,1, U4,2, U5,1, U5,2, U6, W8,1, W8,2, W8,3, W12,1, and W12,2.

The characters of these real G-representations are given in [4, Table 1.1].

Claim 3.1. V contains an irreducible summand isomorphic to W8,i or W12, j, where i and
j can range in [1..3] and {1, 2}, respectively.

Proof. This follows from the hypothesis that the G-action on Σ is effective. �

In the rest of this section, assuming that
V does not contain an irreducible summand of dimension 6,

we will argue to find a contradiction.

Claim 3.2. The following holds.

(1) V does not contain a summand isomorphic to U4,2 nor U5,2.
(2) V contains a summand isomorphic to U5,1.
(3) Any irreducible summand of V is isomorphic to U4,1, U5,1, W8,i, or W12, j, where i

and j can range in [1..3] and {1, 2}, respectively.
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Proof. By hypothesis, V does not contain a summand isomorphic to U6. The first assertion
is valid by [4, Theorem 2.5 (1)]. The second assertion is valid by [4, Theorem 2.5 (2)]. The
third assertion is clearly valid. �

By Proposition 2.8, we can choose generating subgroups H1 and H2 of G, i.e. 〈H1, H2〉 =
G, such that H1, H2, and H1 ∩ H2 are conjugate to Q16, Dic6, and Q8,A, respectively. Set
H = H1 ∩ H2.

Claim 3.3. If k is the multiplicity of U5,1 in V up to isomorphisms, then dim VH = k,
dim VH1 = k, and VH2 = 0.

In this claim, k ≥ 1 by Claim 3.2 (2).

Proof. The above claim follows from [4, Table 2.1]. �

Claim 3.4. The following holds.

(1) H and H1 are 2-groups and H2 ∈ 2
2.

(2) ΣH = ΣH1 (a connected Z2-homology sphere).
(3) ΣH2 = ΣG (= {x0}).

Proof. It is clear that H and H1 have order 23 and 24, respectively. Recall that H2/Z2 is
isomorphic to S3 × C2, where Z2 is the center of G and S3 is the symmetric group on three
letters. Therefore there is a normal series

Z2 � T � H2

such that |Z2| = 2, T/Z2 is a cyclic group of order 6, and |H2/T | = 2, which shows H2 ∈ 2
2.

This proves the first conclusion.
We have already showed that dim VH = dim VH1 = k ≥ 1, where V = Tx0 (Σ). By

Proposition 2.5, we obtain the second and third conclusions. �

Claim 3.5. ΣH2 cannot be a singleton.

Proof. This follows from Corollary 2.6. �

We have seen that Claim 3.5 contradicts Claim 3.4 (3), and established the proof of The-
orem 1.2.

4. Proof of Theorem 1.1

4. Proof of Theorem 1.1
Let G be the group TL(2, 5) and Σ a homology sphere of dimension 21. In order to prove

Theorem 1.1, we assume that Σ has an effective smooth G-action with exactly one fixed point
x0 and will argue to find a contradiction. Let V be the tangential G-representation Tx0 (Σ).

The decomposition of V to irreducible summands,

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm,

gives the partition of 21, i.e. 21 = d1 + d2 + · · · + dm, where di = dim Vi.

Claim 4.1. In the partition 21 = d1 + d2 + · · · + dm, any member di is not equal to 6.
Therefore V does not contain a summand isomorphic to U6.
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Proof. Assume d1 = 6. Then we get the partition 15 = d2 + · · · + dm.
In the case V ⊃ W8,i up to isomorphisms for some i ∈ [1..3], supposing d2 = 8, we get the

partition 7 = d3 + · · · + dm such that d3, . . . , dm ∈ {4, 5, 6}, which is impossible. In the case
V ⊃ W12, j up to isomorphisms for some j ∈ {1, 2}, supposing d2 = 12, we get the partition
3 = d3 + · · · + dm such that d3, . . . , dm ∈ {4, 5, 6}, which is impossible.

The argument shows that any member di of the partition 21 = d1 + d2 + · · · + dm is not
equal to 6. �

Since Claim 4.1 contradicts Theorem 1.2, G cannot act effectively on Σ with exactly one
fixed point.
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