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Abstract
Extended affine Lie superalgebras are super versions of extended affine Lie algebras and, more

generally, invariant affine reflection algebras. By employing a method known as “affinization”,
we construct several classes of extended affine Lie superalgebras of arbitrary nullity.

1. Introduction

1. Introduction
Kac-Moody Lie algebras are grouped into three classes; finite dimensional simple Lie

algebras, affine Lie algebras and indefinite Kac-Moody Lie algebras [14]. Extended affine
Lie algebras are certain generalizations of finite dimensional simple Lie algebras and affine
Lie algebras.

This class was introduced in 1990 by two mathematical physicists [12] and was system-
atically studied in [1], since then it has drawn a considerable amount of attention. In recent
years, a super version of extended affine Lie algebras named extended affine Lie superalge-
bras (EALSA for short) has been introduced and investigated [22].

To each extended affine Lie superalgebra one associates a notion of “nullity”, see Defini-
tion 2.3. Finite dimensional basic classical Lie superalgebras and affine Lie superalgebras
are nullity 0 and nullity 1 extended affine Lie superalgebras, respectively. The class of
extended affine Lie (super)algebras are introduced axiomatically, so one asks about the real-
ization and then classification of this class. The method of realizing affine Kac-Moody Lie
algebras given in [14] is known in the literature as “twisting” by automorphisms or “affiniza-
tion”. To realize extended affine Lie algebras, people tried to use the idea of affinization by
iterating it to higher nullities. The first remarkable achievement in this direction is due to
U. Pollman [18] in realization of nullity 2 extended affine Lie algebras, known also as el-
liptic Lie algebras. This idea was later extended to higher nullities by S. Azam [5]. The
“affinization method” for extended affine Lie algebras and, more generally, invariant affine
reflection algebras [17] was put in a machinery framework in [3] and [7]. It is now known
that centerless cores of almost all extended affine Lie algebras can be realized through the
affinization method [2, 4].

For a classification of simple finite-dimensional complex Lie superalgebras, see [13]. In
1985, V. Serganova [19] described the automorphisms of complex finite dimensional simple

2020 Mathematics Subject Classification. 17B67, 17B70, 17B60.
1 This work is based upon research funded by Iran National Science Foundation (INSF) under project No.

4001480. The research was in part carried out in the IPM-Isfahan Branch
2 This research was in part supported by a grant from IPM (No. 1400810045).



614 S. Azam and A. Darehgazani

Lie superalgebras. Using the latter results, J. Van de Leur [20, 21] and L. Frappat et al. [10]
applied the affinization method in order to realize affine Kac-Moody Lie superalgebras. In
[6], the authors provide a solid framework for realizing EALSAs through the affinization
method, and using this we consider the realization of low nullity EALSAs.

The paper is arranged as follows. In Section 2, we develop some preliminaries and facts
about EALSAs which are needed in the sequel. In particular a method of construction of new
EALSAs from old, called affinization, is explained. In Section 3, we consider an automor-
phism of the ground EALSA and show that its set of fixed points is an EALSA, with respect
to a canonical Cartan matrix. In particular the root system of the fixed point subalgebra is
an extended affine root supersystem. Also, in this section we consider automorphisms of
extended affine root supersystems and investigate conditions under which a natural canon-
ical induced set is again an extended affine root supersystem. In Section 4, we employ the
affinization method in order to construct new extended affine Lie superalgebras of arbitrary
nullity. In each case we provide a description of the corresponding root system in the form
given in [23], which will be crucial in further study of EALSAs. Considering the classifi-
cation of this class of Lie superalgebras, we should mention that even in the level of root
system, the classification of the corresponding root supersystems is not yet completed [23].

2. Preliminaries

2. Preliminaries
Throughout this work, K is a field of characteristic zero, and K contains a primitive m-th

root of unity for m ∈ N. Unless otherwise mentioned, all vector spaces are defined over K.
For an automorphism σ of period m of a vector space  , we set ( j) = {x ∈  | σ(x) = ζ jx},
j ∈ Z. Since ( j) = (k) if j = k (mod m), ( j) is also denoted by ( j̄), j̄ ∈ Zm. We
have  =

⊕
j̄∈Zm

( j̄), and then the projection of  onto ( j̄) under this direct sum will be
denoted by π j. One sees that

π j(x) =
1
m

m−1∑
i=0

ζ− jiσi(x).

For simplicity of notations, we often denote π0 by π. For a group A and a subset S, the
subgroup generated by S in A will be denoted by 〈S〉. If  is a graded algebra, by an
automorphism of , we mean a graded automorphism; an automorphism which preserves
homogeneous spaces.

Definition 2.1. A triple (, T, (·, ·)) consisting of a nonzero Lie superalgebra  = 0 ⊕
1, a non-trivial subalgebra T of 0 and a non-degenerate invariant even super-symmetric
bilinear form (·, ·) on , is called a super-toral triple if

(i)  has a weight space decomposition  =
⊕
α∈T� 

α with respect to T via the adjoint
representation, namely α = {x ∈  | [t, x] = α(t)x for all t ∈ T }, α ∈ T�, where T� is the
dual of T ,

(ii) the restriction of the form (·, ·) to T is non-degenerate.
The subalgebra T is called a toral subalgebra of . It can be easily verified that toral
subalgebras are abelian. A toral subalgebra T satisfying T = 0 ∩ 0 is called a splitting
Cartan subalgebra. The set of roots of  with respect to T , defined by R := {α ∈ T� | α �
{0}}, is decomposed as R = R0 ∪ R1 in accordance with the even and odd roots. We transfer
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the form on T to the image of T in T� via the injection v : t �→ (t, ·). If condition (E1) of the
below definition holds, then R is contained in the image of the latter map, so the term (α, β)
makes sense for α, β ∈ R (see [16, Remark 1.4]). We denote by tα, the unique element in T
that represents α ∈ v(T ) through the form (·, ·); i.e. (tα, t) = α(t) for all t ∈ T .

Definition 2.2. A super-toral triple (, T, (·, ·)) with root system R = R0 ∪ R1 is called an
extended affine Lie superalgebra (EALSA) if

(E1) for α ∈ Ri\{0}, i = 0, 1, there is a pair x±α ∈ ±αi with 0 � [xα, x−α] ∈ T ,
(E2) for α ∈ R with (α, α) � 0 and x ∈ α, the map adx :  −→  is locally nilpotent.
An extended affine Lie superalgebra (, T, (·, ·)) is called division if (E1) is replaced by

the below stronger axiom:
(E1)′ for each α ∈ Ri\{0}, i = 0, 1, and any 0 � xα ∈ αi , there exists x−α ∈ −αi such that

0 � [xα, x−α] ∈ T .

Finite dimensional basic classical simple Lie superalgebras and affine Lie superalgebras
are examples of extended affine Lie superalgebras.

Let A denote the Z-span of R in T�, for the root system R of an EALSA (, T, (·, ·)). Set

A0 := {α ∈ A | (α, A) = {0}}, R0 := R ∩ A0, R× := R\R0,

R×re := {α ∈ R× | (α, α) � 0}, Rre := R×re ∪ {0},
R×ns := {α ∈ R×\R0 | (α, α) = 0}, Rns := R×ns ∪ {0}.

By [22, Corollary 3.9], R satisfies the following conditions:
(S1) 0 ∈ R, and 〈R〉 = A,
(S2) R = −R,
(S3) for α ∈ R×re and β ∈ R, there are non-negative integers d, u with 2(α,β)

(α,α) = d − u such
that (β + Zα) ∩ R = {β − dα, . . . , β + uα},

(S4) for α ∈ Rns and β ∈ R with (α, β) � 0, {β − α, β + α} ∩ R � ∅.
Definition 2.3. A triple (A, (·, ·),R) consisting of an abelian group A, a non-trivial sym-

metric map (·, ·) : A × A → K which is additive on both components, and a subset R of A
satisfying (S1)-(S4), is called an extended affine root supersystem (in short, EARSS). For
the sake of simplicity, we often call R an extended affine root supersystem. An extended
affine root supersystem R is called tame if its elements are non-isolated, in the sense that
for each η ∈ R0, there exists α ∈ R× such that α + η ∈ R. It is called indecomposable if R×

cannot be decomposed into a disjoint union of two nonempty subsets which are orthogonal
with respect to the form. In this work for the root systems under consideration A is always
a free abelian group of finite rank. In this case the rank of A0 is called the nullity of R. The
nullity of an EALSA is by definition the nullity of its root system.

Definition 2.4. An extended affine root supersystem (A, (·, ·),R) is called null if R× = ∅;
irreducible if R is indecomposable and R×re � ∅; locally finite root supersystem if A0 = {0};
locally finite root system if R is a locally finite root supersystem with Rns = {0}. Also, if a
locally finite root (super)system R is finite, then R is called a finite root (super)system.

For an extended affine root supersystem (A, (·, ·),R), it is known that R̄, the image of R
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under the canonical epimorphism − : A −→ Ā := A/A0, endowed with the induced form is a
locally finite root supersystem in Ā (see [23, Proposition 1.11]). If R is irreducible, the type
of R is by definition the type of R̄, see [25, Proposition 4.31 and Theorem 4.39]. Since Ā is
torsion free, it can be identified as a subgroup of the K-vector space K ⊗Z Ā and the from
on Ā can be extended naturally to a bilinear form (·, ·)K. When R is indecomposable, then
1 ⊗ R̄ (resp. 1 ⊗ R̄re) is a locally finite root supersystem (resp. locally finite root system)
in K ⊗ Ā (resp. K ⊗ 〈R̄re〉) (see [25, Lemma 3.21 and Lemma 3.5]). It terms out that for a
certain subgroup Ȧ of A0 with A = Ȧ ⊕ A0, the set Ṙ := {α̇ ∈ Ȧ | ∃η ∈ A0; α̇ + η ∈ R} is a
locally finite root supersystem isomorphic to R̄.

In what follows we describe irreducible locally finite root supersystems, up to isomor-
phism.

Suppose V is a vector space with a basis {η1, η2, η3} or {εi, δ j | i ∈ I, j ∈ J} in which I and
J are two index sets such that I ∪ J � ∅. Define a symmetric bilinear form (·, ·) on V by

(η1, η1) = 1, (η2, η2) = −(1 + λ), (η3, η3) = λ (λ ∈ K \ {0,−1}),
(ηi, η j) = 0 (i � j),

or

(εi, εr) = δi,r, (δ j, δs) = −δ j,s, (εi, δ j) = 0,

respectively. Set

Ȧ(I, I) := ±{εi − εr, δi − δr, εi − δr − 1
|I|

∑
k∈I

(εk − δk) | i, r ∈ I}(2.1)

(|I| ∈ Z≥2),

Ȧ(I, J) := ±{εi − εr, δ j − δs, εi − δ j | i, r ∈ I, j, s ∈ J}
(|I| � |J| if I, J are finite sets),

B(I, J) := ±{εi, δ j, εi ± εr, δ j ± δs, εi ± δ j | i, r ∈ I, j, s ∈ J, i � r},
C(I, J) := ±{εi ± εr, δ j ± δs, εi ± δ j | i, r ∈ I, j, s ∈ J},

D(I, J) := ±{εi ± εr, δ j ± δs, εi ± δ j | i, r ∈ I, j, s ∈ J, i � r},
BC(I, J) := ±{εi, δ j, εi ± εr, δ j ± δs, εi ± δ j | i, r ∈ I, j, s ∈ J},
F(4) := ±{0, ε, δi ± δ j, δi,

1
2 (ε ± δ1 ± δ2 ± δ3) | 1 ≤ i � j ≤ 3}

(ε :=
√

3ε1, I = {1}, J = {1, 2, 3}),
G(3) := ±{0, δ, 2δ, εi − ε j, 2εi − ε j − εt, δ ± (εi − ε j) | {i, j, t} = {1, 2, 3}}

(δ :=
√

2δ1, I = {1, 2, 3}, J = {1}),
D(2, 1; λ) := {0,±2ηi,±η1 ± η2 ± η3 | 1 ≤ i ≤ 3}.

In the above sets if I or J is an empty set, by convention the terms corresponding to these
indices disappear. When the sets I and J in the types above are finite, we replace them with
their cardinalities, for example we write B(|I|, |J|) instead of B(I, J). To be compatible with
some references which we use, we also denote the type Ȧ(|I|, |J|) by A(|I| − 1, |J| − 1).

Either the sets given in (2.1) or an irreducible locally finite root system, provide a com-
plete list of irreducible locally finite root supersystems, up to isomorphism ([25, Theorem
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4.37]).

Remark 2.5. EARSS, except types X � A(l, l),C(1, 2),C(I, 2), BC(1, 1), are described in
[23, Theorem 2.2] in terms of a locally finite root supersystem Ṙ, and certain symmetric
(pointed) reflection subspaces of A0. We consider the decomposition Ṙre = ⊕n

i=1Ṙi
re of Ṙre

into irreducible supersystems. We also recall that we denote the short, long and extra long
roots of a locally finite root supersystem by Ṙsh, Ṙlg and Ṙex, respectively. The description is
quite delicate and varies depending on the type. Below, we have summarized the given de-
scription without further details on inter relations between the involved symmetric (pointed)
reflection subspaces E1, E2, L, L2 (resp. S, L1) and a subgroup F of A0:

- If X � A(l, l), BC(I, J),C(I, J),C(1, J),

R = (S − S) ∪ (Ṙsh + S) ∪ ((Ṙ \ Ṙsh) + F).

- If X = BC(1, J), BC(I, J); |I|, |J| > 1,

R = (S − S) ∪ (Ṙsh + S) ∪ (Ṙ1
ex + E1) ∪ (Ṙ2

ex + E2) ∪ ((Ṙlg ∪ Ṙns) + F).

- If X = C(1, J); |J| > 2,

R = (S − S) ∪ (Ṙ1
sh + S) ∪ ((Ṙ2

sh ∪ Ṙns) + F) ∪ (Ṙ2
lg + L).

- If X = C(I, J); |I| ≥ 2, |J| > 2,

R = F ∪ ((Ṙsh ∪ Ṙns) + F) ∪ ((Ṙ1
re)lg + L1) ∪ ((Ṙ2

re)lg + L2).

For more details we refer the reader to [23]. As it can be seen from the above description of
R, we always have R0 = S − S or R0 = F.

Remark 2.6. Let R be an EARSS.
(i) It follows from (S3) and (S4) that for any α ∈ R× and β ∈ R with (α, β) � 0, we have

{α + β, α − β} ∩ R � ∅.
(ii) For k ∈ K and α ∈ R×re, kα ∈ R implies (by (S3)) that k ∈ {0,±1,±2,± 1

2 }.
(iii) In the case that R is the root system of an EALSA, α ∈ R×re ∩ R1 implies 2α ∈ R0.

Indeed by condition (E1) of Definition 2.2, there exists x±α ∈ ±α1 for which 0 � [xα, x−α] ∈
T , whence

[[xα, xα], [x−α, x−α]] = −4α(tα)[xα, x−α](xα, x−α) � 0.

So we have 0 � [xα, xα] ∈ 2α
0 .

Lemma 2.7. Let R be an EARSS. If R×ns � ∅ then R×re � ∅.
Proof. For α ∈ R×ns there exists by definition, β � ±α in R such that (α, β) � 0. If β ∈ R×re,
then we are done. Otherwise, we get from (S4) that α + β or α − β is in R. Without loss of
generality, we assume that α + β ∈ R. Since (α + β, α + β) = 2(α, β) � 0, α + β ∈ R×re. �

From now on, we fix a 6-tuple (, σ,Λ,, ε, ρ) with the following conditions:
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- (, T, (·, ·)) is an EALSA with indecomposable root system R = R0 ∪ R1,
- σ is an automorphism of  satisfying (A1)-(A4) below:
(A1) σm = id,
(A2) σ(T ) = T ,
(A3) (σ(x), σ(y)) = (x, y) for all x, y ∈ ,
(A4) C(0)(T (0)) ⊆ 0 (0 contains the centralizer of T (0) in (0)).
- Λ is a torsion free abelian group,
-  = ⊕λ∈Λλ is a unital associative commutative predivision Λ-graded algebra with

supp() = Λ, (predivision, means for every λ ∈ supp(), there are a±λ ∈ ±λ such that
a+λa−λ = 1)

- ε :  × → K is a non-degenerate symmetric invariant Λ-graded bilinear form with
ε(1, 1) � 0,

- ρ : Λ→ Zm, λ �→ λ̄ is a group epimorphism.
For the rest of this work, we assume that T (0) � {0}. We impose this assumption in

order to guarantee that π(R) � {0}. We note that if (0) � {0} and 0 = T , or if m is a
prime number then the assumption T (0) � {0} follows from (A4) (see [6, Lemma 4.2]). We
also mention here that in all examples which we provide in this work either m is prime or
(0) � {0} and 0 = T .

In what follows we recall a construction and some results from [6, §6] which will be used
in the sequel, we encourage the reader to consult the mentioned reference for details.

Let  be the K−vector space K ⊗Z Λ and denote its dual space by �. Since Λ is torsion
free, we may consider Λ ⊆  . Then ̂ := ( ⊗ ) ⊕  ⊕ � together with the following
multiplication;

[d, x] = −[x, d] = d(λ)x, d ∈ �, x ∈  ⊗λ,(2.2)

[ , ̂] = [̂,] = {0},
[�,�] = {0},
[x ⊗ a, y ⊗ b] = [x, y] ⊗ ab + (x, y)ε(a, b)λ,

x⊗a ∈ ⊗λ, y⊗b ∈ ⊗, forms a Lie superalgebra. The form (·, ·) on  can be extended
to ̂, denoted again by (·, ·), as follows:

(x ⊗ a, y ⊗ b) = (x, y)ε(a, b), (x, y ∈ , a, b ∈ ),(2.3)

(d, v) := d(v), (d ∈ �, v ∈ ),

( ,) = (�,�) = ( , ⊗) = (�, ⊗) := {0}.
Then (̂, T̂ , (·, ·)) is a super-toral triple (see [6, Lemma 6.2]) where T̂ := (1 ⊗ T ) ⊕  ⊕ �.

The automorphism σ can be extended to ̂ by acting as identity on  ⊕� and σ(x⊗a) =
ζ−λ̄σ(x) ⊗ a, for x ∈  and a ∈ λ. Our desired algebra under this construction is the fixed
point subalgebra ̃ =

∑
λ∈Λ (λ̄) ⊗ Aλ ⊕  ⊕ � of ̂ under σ. The process of obtaining ̃

from  under the above construction is called an affinization process. Starting from , any
change in either of the involved data (σ,, ε, ρ) results in a new, sometimes isomorphic, Lie
superalgebra ̃. In what follows we discuss certain situations under which ̃ is again an
EALSA. This procedure can be used to construct EALSAs of higher nullity starting from
EALSAs of lower nullities. The goal of this paper is to construct, using the above method,
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some EALSAs of nullity 2 over field C of complex numbers.

Remark 2.8. The automorphism σ : T −→ T induces an automorphism of T� denoted
again by σ, defined by σ(α)(t) = α(σ−1(t)) for t ∈ T and α ∈ T�. Then as we have
mentioned before the projection map of T� into the subspace of its fixed points is given by
π(α) = 1

m
∑m−1

i=0 σ
i(α). Note that


π(α) := {x ∈ |[t, x] = α(t)x, for all t ∈ T (0)} =

∑
{β∈R|π(β)=π(α)}


β,

and

σ(π(α)) = 
π(α).

Lemma 2.9 ([6, Lemma 3.2]). (A4) holds if and only if π(α) = {0} for all α ∈ R \ {0}
satisfying π(α) = 0. In particular, if m is prime then (A4) holds if and only if π(α) � 0 for
all 0 � α ∈ R.

Lemma 2.10 ([26, Lemma 2.4]). 　
(i) If α ∈ R×re, β ∈ R and α + β ∈ R then [α,β] � {0}.
(ii) If α, β ∈ Rns and α + β ∈ R× then [α,β] � {0}.
From [6, Theorem 5.3 and Proposition 6.3] we have the following.

Proposition 2.11. If  is division, then π(R) is an indecomposable extended affine root
supersystem.

To recall the main result concerning affinization process, we need the following, “tame-
ness condition”:

(A5) π[0
i ,

0
i ] ⊆ T (0); for i=0,1.

We note that if T is a splitting Cartan subalgebra of , then (A5) holds automatically.

Theorem 2.12 ([6, Theorem 8.4]). Suppose σ satisfies (A1)-(A5).
(i) If  is division, then the triple (̃, T̃ , (·, ·)) is an EALSA with root system R̃ =

∪λ∈Λ(π(R(λ̄)) + λ) where R(λ̄) = {α ∈ R | (λ̄)π(α) � {0}}. In particular, if  is an EALSA
satisfying [0

1,
0
1] ⊆ T then (̂, T̂ , (·, ·)) is an EALSA with root system R̂ = R ⊕ Λ.

(ii) If R is indecomposable then so is R̃.

3. Induced root systems

3. Induced root systems
The aim of this section is to study the set π(R) for an extended affine root supersystem R

under an automorphisms σ of R satisfying certain conditions, see (AR1)-(AR3) below.
Suppose (, T, (·, ·)) is an EALSA with an indecomposable root system R. Let A be the

Z-span of R in T�. Let σ be an automorphism of  satisfying (A1)-(A4). As we have seen
before σ induces an automorphism of T� by σ(α)(t) = α(σ−1(t)) for α ∈ T� and t ∈ T . In
this case we have

(AR1) σ ∈ Aut(A), σm = 1,
(AR2) σ(R) = R,
(AR3) (σ(α), σ(β)) = (α, β) for α, β ∈ A.
In other words, σ is a finite order automorphism of R. Note that we have two interesting
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sets which naturally appear here, namely π(R) and

Rσ := {π(α) | α ∈ R, π(α)(0) � {0}}.
In general we have Rσ ⊆ π(R). However, in many examples the equality Rσ = π(R) occurs,
in which cases the type of the corresponding Lie superalgebra ̃ can be recognized from
π(R). As we have seen in Proposition 2.11, if  is division, then π(R) is an indecomposable
extended affine root supersystem. However, if we consider σ as an “abstract” finite order
automorphism of root system, namely an automorphism of 〈R〉 satisfying (AR1)-(AR3), the
structure of π(R) is not fully understood even in the case of extended affine root systems.
The structure of π(R) under an abstract finite order automorphism of an irreducible extended
affine root system is investigated in [9].

Suppose R is an extended affine root supersystem and σ is an automorphism of R satis-
fying (AR1)-(AR3). For each α ∈ R×re, the automorphism wα ∈ Aut(A) given by wα(β) =
β−(2(α, β)/(α, α))α, satisfies conditions (AR1)-(AR3). Any such reflection is called an even
reflection and the subgroup  of Aut(A) generated by all even reflections is called the Weyl
group of R. One knows that for α ∈ R×re, the reflection wα preserves the form on R.

Proposition 3.1. Let R be an irreducible EARSS of type X � A(l, l), C(1, 2), C(I, 2),
BC(1, 1) such that π(R)× � ∅. Then π(R)0 is non-isolated.

Proof. Suppose that α ∈ R with π(α) ∈ π(R)0. It is enough to show that there exists β ∈ R
such that α + β ∈ R and π(β) ∈ π(R)×. Since R is irreducible, we have from Step 2 of [6,
Proposition 6.3] that

R× = {γ ∈ R | ∃γ′ ∈ R s.t. (γ, γ′) � 0 and π(γ′) ∈ π(R)×}.
Therefore if α ∈ R× = R×re ∪ R×ns, then there exists β ∈ R× such that (α, β) � 0 and π(β) ∈
π(R)×. Now by root string property or (S4), we have either α + β ∈ R or α − β ∈ R, and we
are done. Next we assume that α ∈ R0. By Remark 2.5, R0 is equal to F or S − S, where
F is a subgroup of A0 and S is a pointed reflection subspace of A0. Thus either α ∈ F or
α = δ1 + δ2 with δ1, δ2 ∈ S.

It is clear that π(A0) ⊆ π(A)0. Since π(R)× � ∅, π(Ṙ)× � ∅. Then for some β ∈ Ṙ,
π(β) ∈ π(Ṙ)×. Now we proceed with the proof by considering the two cases, (I) π(Ṙre)× � ∅,
or (II) π(Ṙre)× = ∅ and π(Ṙns)× � ∅.

I) Since the group 〈Ṙre〉 is generated by short roots, there exists β ∈ Ṙsh with π(β) ∈
π(Rre)×. Note that Ṙsh ⊆ R. One knows that Ṙre = S1 � · · · � Si in which i ∈ {1, 2, 3} and for
1 ≤ t ≤ i, St’s are locally finite root systems, see [25, Theorem 1.9 and Theorem 1.9]. Let
β ∈ St0 for 1 ≤ t0 ≤ i. Now if α ∈ F, we have

β + α = Ṙsh + F ⊆ R,

and if α = δ1 + δ2, then β̃ := β + δ1 ∈ Ṙsh + S ⊆ R and

β̃ + α = β + 2δ1 + δ2 = Ṙsh + 2S + S ⊆ Ṙsh + S ⊆ R,

and we are done.
II) In this case there exists β ∈ Ṙns such that π(β) ∈ π(Ṙns)×. If R is of real type, i.e.

spanQṘre = Q ⊗Z Ȧ, then π(R)× = ∅ which is a contradiction. If R is of imaginary type (that
R is not of real type) then by [23, Theorem 2.2], S = F = A0. In this case, we have:
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β + α ∈ Ṙns + F ⊂ R.

So, we are done. �

Proposition 3.2. Let (, T, (·, ·)) be an EALSA with root system R, and σ be an auto-
morphism of  satisfying (A1)-(A3). If further, π(R)× � ∅ and C(0)(T (0)) = T (0), then
(, T (0), (·, ·)) is an EALSA with root system π(R). In particular, π(R) is an EARSS.

Proof. Considering Remark 2.8, we have  =
⊕
π(α)∈π(R) 

π(α). As π(R)× � ∅, T (0) � {0}.
By (A3), the form (·, ·) restricted to T (0) is non-degenerate. Therefore (, T (0), (·, ·)) is a
super-toral triple. For α ∈ R = R0 ∪ R1 and j̄ ∈ Zm, we have [π(α)( j̄),π(−α)(− j̄)] ⊆
(0) ∩ π(0) = C(0)(T (0)) = T (0). Now fix π(α) ∈ π(R)i \ {0} (i ∈ {0, 1}), we have
σ(π(α)

i ) = 
π(α)
i . So, for some j̄ ∈ Zm, π(α)

i ( j̄) � {0}. Since the form (·, ·) restricted
to 

π(α)
i ( j̄) ⊕ 

π(−α)
i (− j̄) is non-degenerate, we see that there exists x± ∈ 

±π(α)
i (± j̄) with

(x+, x−) � 0 such that

[x+, x−] = (x+, x−)tπ(α).

Thus 0 � [x+, x−] ∈ T (0) and (E1) holds. An argument similar to [6, Theorem 5.3] shows
that (E2) also holds. Thus (, T (0), (·, ·)) is an EALSA, and so by [22, Corollary 3.9], its
root system π(R) is an EARSS. �

Recall that for σ ∈ Aut(T�) with σm = 1, we have already defined the map π(α) =
(1/m)

∑m−1
i=0 σ

i(α), α ∈ T�. When working with σ ∈ Aut(A), A an abelian group, instead of
the vector space T�, the map π does not make sense because of the scalar 1/m. In this case
we normalize π by considering mπ instead of π, using the same notation π.

Corollary 3.3. Let (A, (·, ·),R) be a finite root supersystem corresponding to one of the
finite dimensional basic classical simple Lie superalgebras, except A(1, 1). Suppose σ ∈
Aut(A) satisfies (AR1)-(AR3). Further suppose that π(α) � 0 for α � 0. Then π(R) is a
finite root supersystem in π(A).

Proof. Let  be a complex finite dimensional basic classical Lie superalgebra with Cartan
subalgebra T and root system R. Let (·, ·) be the standard non-degenerate bilinear form on
. We transfer the from on T to T� in the natural way. We may assume that the form on
T� restricted to A coincides with the form on (A, (·, ·),R). The automorphism σ of R can be
lifted to an automorphism σ, of period m, of  with σ(tα) = tσ(α), for every α ∈ R (see [24,
Theorem 4.5 and Lemma 4.6]).

Next, we show that the form on  is invariant under the extended automorphism σ. Con-
sider the invariant bilinear form (·, ·)′ := (σ(·), σ(·)). Then (·, ·) and (·, ·)′ are the same up
to a multiple nonzero scalar (see [15, Proposition 1.2.4]). Since 0 = T is spanned by tα,
α ∈ R, and the form on T is non-degenerate, there exist α, β ∈ R such that (tα, tβ) � 0. Then,
by (AR3),

0 � (tα, tβ) = (α, β) = (σ(α), σ(β)) = (tσ(α), tσ(β)) = (σ(tα), σ(tβ)) = (tα, tβ)′.

This gives (·, ·) = (·, ·)′. Therefore σ is an automorphism of  satisfying (A1)-(A3).
Identifying (T (0))� with T�(0), we conclude that T (0) � {0}. Since by assumption π(R \

{0}) ⊆ R \ {0}, C(0)(T (0)) = T (0). Thus using Proposition 3.2, we get that (, T (0), (·, ·)) is
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an EALSA with root system π(R). In particular, π(R) is an extended affine root supersystem
in π(A). Also, by (AR2) and (AR3), for α, β ∈ R, we have

(π(α), π(β)) = (π(α),
m−1∑
i=0

σi(β)) =
m−1∑
i=0

(π(α), β) = m(π(α), β).

So (π(α), π(β)) = m(π(α), β). This implies that the non-degenerate form (·, ·) on A restricted
to π(A) is non-degenerate. Since π(R) is finite, it is a finite root supersystem in π(A). �

Definition 3.4. A subset Π = {α1, . . . , αn} of the root supersystem R is called a set of
simple roots for R, if any nonzero root α ∈ R can be written uniquely as a linear combination
α = k1α1 + · · · + knαn such that either all ki are non-negative or all ki are non-positive.
Elements of Π are called simple roots.

Remark 3.5. We note that for each root supersystem of basic classical Lie superalgebras,
except the type A(m,m), there exists a set of simple roots. For type A(m,m) the set

Π := {α1 = ε1 − ε2, . . . , αm := εm − εm+1, αm+1 = εm+1 − δ1, . . . , α2m+1 = δm − δm+1}

is usually considered as a set of simple roots. This set is not Z-linearly independent as

α1 + 2α2 + · · · + mαm + (m + 1)αm+1 + mαm+2 + · · · + 2α2m + α2m+1 = 0,

(see [11, Table 3.53]). So a proof similar to [9, Corollary 3.2] does not work in Corollary
3.3.

Let (A, (·, ·),R) be a tame irreducible EARSS of type X � A(�, �), C(1, 2), C(T, 2),
BC(1, 1) satisfying (AR1) and (AR2). Then we have the following lemma.

Lemma 3.6. Let σ be an automorphism of R satisfying (AR1)-(AR2). Then σ(R0) = R0.
Also, if σ(Rns) = Rns and Rre is indecomposable then (σ(x), σ(y)) = (x, y) for all x, y ∈ Rre.

Proof. By [23, Theorem 2.2], we have R0 = S − S where S is a pointed reflection subspace
of A0. It follows that if α ∈ R0, then we have Zα ⊆ R0. By (AR2), Zσ(α) ⊆ R and so
Zσ(α) ⊆ R. But this can happen only if σ(α) = 0, as R̄ is a locally finite root supersystem.
Thus σ(α) ∈ R0.

Next assume σ(Rns) = Rns. From this and σ(R0) = R0, we get σ(Rre) = Rre. We extend
σ to the vector space K ⊗Z Ā in the natural manner and identify R̄ by 1 ⊗ R̄. As we have
seen before, R̄re is a locally finite root system in K⊗ 〈R̄re〉. Now a similar argument as in [9,
Lemma 2.1], shows that (σ(x), σ(y)) = (x, y), for all x, y ∈ Rre. �

4. Construction of higher nullity EALSAs

4. Construction of higher nullity EALSAs
In this section we provide new examples of EALSAs of nullity ν (ν ∈ Z>0). Roughly

speaking, we start with a finite dimensional basic classical simple Lie superalgebra  and a
finite order automorphism σ of . We then extend this automorphism to

̂ = ( ⊗C ) ⊕  ⊕ �,
where  is the algebra of Laurent polynomials in ν variables, and  is a ν-dimensional
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vector space consisting of central elements. Its dual space � is then interpreted as the
space of degree derivations. The fixed points ̃ of ̂ under the extended automorphism
is our required Lie superalgebra. Almost all of our starting automorphisms are diagram
automorphisms of basic classical simple Lie superalgebras, therefore from the type of the
diagram automorphism one can guess the type of the resulting EALSA. In our examples we
fully describe the resulting root system by giving a description of it in terms of the involved
pointed reflection subspaces, see Remark 2.5. Here is an overview of what is done in each
example:

Example Type of  order of σ Type of ̃
4.1 G(3) 2 G(3)
4.2 C(0, n) 2 B(0, n)
4.3 D(m, n) 2 B(m − 1, n)
4.5 A(2k, 2l − 1) 2 BC(k, l)
4.5 A(2k − 1, 2l − 1) 2 C(k, l)
4.5 A(2k, 2l) 4 BC(k, l)
4.6 A(1, 1) 2 A(1, 1)

The notation (M, τ) will be used for a contragredient Lie superalgebra associated to a
matrix M = (ai j) ∈ Mn×n(C) and a set τ ⊆ I := {1, . . . , n}. For (M, τ) we fix a minimal
realization (Π,Π∨, T ), where Π = {α1, . . . , αn} ⊆ T�, and Π∨ = {α∨1 , . . . , α∨n } ⊆ T . Also we
fix a set of Chevalley generators X := {ei, fi| i ∈ I} associated with this realization. We recall
that dim(T ) = n + corank(M), α j(α∨i ) = ai j,

[ei, f j] = δi, jα∨i , [t, t′] = 0, [t, ei] = αi(t)ei, [t, fi] = −αi(t) fi,(4.4)

deg(t) = 0 and deg(ei) = deg( fi) =
{

0 if i ∈ τ,
1 if i � τ,

for t, t′ ∈ T and i, j ∈ I. Note that if (M′, τ′) is another pair as above for which there
exists an invertible diagonal matrix D such that after a suitable renumbering of I we get
(M, τ) = (DM′, τ′) then, (M, τ) � (M′, τ′).

If (M, τ) satisfies:
• {i | aii = 0} ⊆ τ,
• if aii � 0, then 2ai j/aii (resp. ai j/aii) is a non-positive integer for i ∈ I \ τ (resp.

i ∈ τ) with i � j,
• ai j = 0 implies a ji = 0,

then (M, τ) is called a Kac-Moody Lie superalgebra associated to the generalized Cartan
matrix M and the subset τ.

In all examples below the algebra of Laurent polynomials  = C[t±1
1 , . . . , t

±1
ν ] is equipped

with the Zν-grading

 =
⊕

(n1,...,nν)∈Zν


n1,...,nν , 
n1,...,nν := Ctn1

1 . . . t
nν
ν ,

and the non-degenerate Zν-graded bilinear form

ε(tn1
1 . . . t

nν
ν , t

n′1
1 . . . t

n′ν
ν ) = δn1,−n′1 . . . δnν,−n′ν .
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Example 4.1. Let  := (M, τ) be the simple finite dimensional complex Kac-Moody
Lie superalgebra  = G(3);

where the generalized Cartan matrix M and the set τ are given by:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
1 −2 3
0 3 −6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and τ = {1}.

Let (·, ·) be the standard super-symmetric invariant non-degenerate bilinear form on , see
[21, Proposition 4.2]. Consider a 3-dimensional C-vector space T :=

⊕3
i=1 Chi. We con-

sider elements ε1, ε2, ε3, δ ∈ T� defined by

ε1(h1) = 1 ε1(h2) = −2 ε1(h3) = 3
ε2(h1) = 1 ε2(h2) = 1 ε2(h3) = −3
ε3(h1) = −2 ε3(h2) = 1 ε3(h3) = 0
δ(h1) = 2 δ(h2) = 0 δ(h3) = 0

Let Π := {α1 := δ + ε3, α2 := ε1, α3 := ε2 − ε1} ⊆ T� and Π∨ := {h1, h2, h3}. Then (Π,Π∨, T )
is a minimal realization for M. Note that we have ε1 + ε2 + ε3 = 0. Also note that the form
(·, ·) restricted to T satisfies (hi, h j) = αi(h j). As tαi = hi, i ∈ {1, 2, 3}, we have

tε1 = h2, tε2 = tε1 + tε2−ε1 = h2 + h3, tε3 = −tε1 − tε2 = −2h2 − h3,

tδ = tα1 − tε3 = h1 + 2h2 + h3.

Transferring this form to T� by (α, β) := (tα, tβ), we get:

(εi, ε j) = −3δi, j + 1, (δ, δ) = 2, (εi, δ) = 0, (1 ≤ i, j ≤ 3).

Let R = R0 ∪ R1 be the root system of . Then

R0 = {0,±2δ,±εi, εi − ε j|1 ≤ i � j ≤ 3}
= ±{0, α2, α3, α2 + α3, 2α2 + α3, 3α2 + α3, 3α2 + 2α3, 2α1 + 4α2 + 2α3},

and

R1 = {±δ,±εi ± δ|1 ≤ i ≤ 3} = ± {α1, α1 + α2, α1 + α2 + α3, α1 + 2α2 + α3,

α1 + 3α2 + α3, α1 + 3α2 + 2α3, α1 + 4α2 + 2α3}.
The group homomorphism σ :

∑3
i=1 Zαi → C \ {0}, defined by σ(α1) = σ(α2) = 1,

σ(α3) = −1, induces the automorphism σ ∈ Aut() given by σ(x) = σ(α)x for all x
belonging to the root space corresponding to root α. In fact, σ is an automorphism of  of
order 2 which stabilizes T pointwise, forcing π(α) = α for every α ∈ R. The automorphismσ
satisfies (A3), in fact if we consider the bilinear form (x, y)′ := (σ(x), σ(y)) on , it follows
from [15, Proposition 1.2.4], that (·, ·)′ is a nonzero multiple scalar of (·, ·), but σ acts as
identity on some plus minus root spaces forcing the scalar to be 1. The above discussion
shows that (A1) to (A5) hold.

Next, we consider the Lie superalgebra ̂ = ( ⊗ ) ⊕  ⊕ �, see (2.2) and (2.3) for
details. We consider the epimorphism ρ : Zν −→ Z2, (n1, . . . , nν) �→ n̄1 + · · · + n̄ν. By
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Theorem 2.12 and Lemma 2.10, the fixed point subalgebra ̃ of ̂, under σ, is an extended
affine Lie superalgebra of nullity ν with extended affine root supersystem R̃ = R̃0∪ R̃1 where

R̃0 = {
ν∑

i=1

niδi,

ν∑
i=1

niδi ± (ε2 − ε3),
ν∑

i=1

niδi ± 2δ,
ν∑

i=1

niδi ± ε1,
ν∑

i=1

miδi ± (ε1 − ε3),

ν∑
i=1

miδi ± (ε1 − ε2),
ν∑

i=1

miδi ± ε2,
ν∑

i=1

miδi ± ε3|
ν∑

i=1

ni ∈ 2Z,
ν∑

i=1

mi ∈ 2Z + 1},

and

R̃1 = {
ν∑

i=1

niδi ± ε2 ± δ,
ν∑

i=1

niδi ± ε3 ± δ,
ν∑

i=1

miδi ± ε1 ± δ,
ν∑

i=1

miδi ± δ|
ν∑

i=1

ni ∈ 2Z,
ν∑

i=1

mi ∈ 2Z + 1}.

In what follows, we provide a description of R̃ in the form given in Remark 2.5. For this
we set Ṙ := Ṙre ∪ Ṙns, where

Ṙre := {0,±(ε2 − ε3 + 2δ1)),±2(δ + δ1),±ε1,±(δ1 + ε1 − ε3),±(−δ1 + ε1 − ε2)

±(δ1 + ε2),±(ε3 − δ1),±(δ1 + δ)},
and

Ṙns := {0,±(ε2 − δ),±(ε2 + δ + 2δ1),±(ε3 + δ),±(δ − ε3 + 2δ1),±ε1 ± (δ + δ1)}.
One can see that Ṙ is an irreducible finite root supersystem of type G(3). In fact as {ε1 − δ,
ε2 − ε1, δ} is a set of simple roots for G(3), the assignment

φ : ε1 − δ �→ ε1 − δ − δ1, ε2 − ε1 �→ ε2 − ε1 + δ1, δ �→ δ + δ1,
induces R � Ṙ. We see that R̃ = (Ṙ, S, F) is an EARSS of type G(3) in which Ṙre = S1 � S2

with

S1 = φ({0,±δ,±2δ}), S2 = φ({0,±εi, εi − ε j|1 ≤ i � j ≤ 3}),
and

S = F = {n1δ1 + · · · nνδν|n1 · · · + nν ∈ 2Z}.
We note that S1 and S2 are finite root systems of types BC1 and G2, respectively.

Example 4.2. Let  := (M, τ) be the finite dimensional complex Kac-Moody Lie super-
algebra  = osp(2, 2n);

with corresponding generalized Cartan matrix M where
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1

−1
. . .

. . . 0
. . . 2 −1 −1

0 −1 0 2
−1 2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, τ = {n, n + 1}.

Consider an (n + 1)-dimensional vector space T =
∑n+1

i=1 Chi with basis {hi | 1 ≤ i ≤ n + 1}
and set

Π := {αi := δi − δi+1, αn := δn − ε, αn+1 := δn + ε | 1 ≤ i ≤ n − 1},

Π∨ := {α∨i := hi − hi+1, α
∨
n+1 = hn + hn+1 | 1 ≤ i ≤ n},

where

δi(h j) = δi, j, ε(hi) = 0, ε(hn+1) = −1; 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1.

The triple (Π,Π∨, T ) is a minimal realization for M with 0 = T . Let {ei, fi|1 ≤ i ≤ n + 1}
be a set of Chevalley generators for this realization such that ei ∈ αi , fi ∈ −αi . One knows
that the root system of  with respect to T is

R = {0,±δi ± δ j,±2δi | 1 ≤ i � j ≤ n}︸�������������������������������������︷︷�������������������������������������︸
R0

∪ {±ε ± δi|1 ≤ i ≤ n}︸�����������������︷︷�����������������︸
R1

.

One knows that there exists a super-symmetric invariant non-degenerate bilinear form on 

in which (α∨i , α
∨
j ) = αi(α∨j ) = Mi j, see [15, Theorem 5.4.1]. Since tαn+1 = hn + hn+1 and

tαn = hn − hn+1, we have

tδn =
1
2

(tαn + tαn+1 ) = hn, tε = tδn+ε − tε = hn+1.

Similarly, we can see that tδi = hi, i ∈ {1, . . . , n − 1}. Therefore the induced form on T�

satisfies

(δi, δ j) = δi, j, (ε, ε) = −1 and (δi, ε) = 0.

Now, we consider the period 2 diagram automorphism σ of  induced by

σ(en) = en+1, σ( fn) = fn+1, σ(ek) = ek and σ( fk) = fk, (1 ≤ k ≤ n − 1),

see [20, Proposition 7.5.5]. An argument similar to the previous example, shows that the
automorphism σ preserves T and is invariant on the form. It follows that

π(R) = {0,±δi ± δ j,±2δi | 1 ≤ i � j ≤ n} ∪ {±δi|1 ≤ i ≤ n}.
Moreover, it can be seen that for α ∈ R, π(α) = 1

2 (α + σ(α)) = 0 if and only if α = 0, and
so by Lemma 2.9, (A4) holds. The above argument shows that conditions (A1) to (A5) are
established. In particular, by Proposition 3.2, (, T (0), (·, ·)) is an EALSA with root system
π(R).

As in Section 2, we extend σ to ̂ = ( ⊗ C[t±1
1 , . . . , t

±1
ν ])⊕ ⊕ �. We consider the

epimorphism ρ : Λ := Zν −→ Z2 given by ρ(n1, . . . , nν) = n̄1 + · · · + n̄ν. By Theorem
2.12, the Lie superalgebra ̃ together with the Cartan subalgebra T̃ and the form (·, ·) is an
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extended affine Lie superalgebra of nullity ν with root system R̃ = {π(α) + λ|π(α)(λ̄) � 0}.
Using this, we can see that

R̃0 = (
ν⊕

i=1

Zγi) ∪ {
ν∑

i=1

niγi ± δi ± δ j,

ν∑
i=1

niγi ± 2δi |
ν∑

i=1

ni ∈ 2Z, 1 ≤ i � j ≤ n},

and

R̃1 = {m1γ1 + · · · + mνγν ± δi | mi ∈ Z, 1 ≤ i ≤ ν},
(see [21, Table 5]). So, the root system R̃ = R̃0 ∪ R̃1 is a root supersystem of type B(0, n).

It is worth mentioning here that the root system R̃ of the Lie superalgebra ̃ coincides with
an extended affine root system of type BCn, not necessarily reduced. In fact in the notation
of [8, Theorem 1.13], we have R̃ = (Ṙ, S, L, E) where

Ṙ = {±δi ± δ j,±δi|1 ≤ i, j ≤ n},
S =

⊕ν

i=1 Zγi, E = L = {∑νi=1 niγi | ∑νi=1 ni ∈ 2Z}.
Example 4.3. Let  := (M, τ) be the finite dimensional complex Kac-Moody Lie super-

algebra  = D(m, n) = osp(2m, 2n),

with corresponding generalized Cartan matrix M where

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1

−1
. . .

. . . 0
. . . 2 −1
−1 0 1

1 −2 1

0
. . .

. . . 1 1
1 −2 0
1 0 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, τ = {n}.

Consider the (m + n)-dimensional vector space T =
∑m+n

i=1 Chi and set

Π := {
αi︷���︸︸���︷

δi − δi+1,

αn︷�︸︸�︷
δn − ε1,

αn+ j︷���︸︸���︷
ε j − ε j+1,

αm+n︷�����︸︸�����︷
εm−1 + εm| 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1},

Π∨ := {α∨i := hi − hi+1, α
∨
m+n = hm+n−1 + hm+n | 1 ≤ i ≤ m + n − 1},

where

δi(ht) = δi,t, ε j(ht) = −δ j+n,t; 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ t ≤ m + n.

The triple (Π,Π∨, T ) is a minimal realization for the matrix M with 0 = T . Let {ei, fi|1 ≤
i ≤ m + n} be a set of Chevalley generators for this realization such that ei ∈ αi , fi ∈ −αi .
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One knows that the root system of  with respect to T is

R = {0,±εi ± ε j,±δr ± δt,±2δr}︸�����������������������������︷︷�����������������������������︸
R0

∪ {±εi ± δr}︸�����︷︷�����︸
R1

,

where 1 ≤ i � j ≤ m, 1 ≤ r � t ≤ n.
Let (·, ·) be the standard super-symmetric invariant non-degenerate bilinear form on 

satisfying (α∨i , α
∨
j ) = αi(α∨j ) = Mi j. Then we have tδr = hr, tεi = hn+i. Therefore the induced

form on T� satisfies

(δr, δt) = δr,t, (εi, ε j) = −δi, j and (δr, εi) = 0.

We consider the automorphism σ on  induced by

σ(em+n) = em+n−1, σ( fm+n) = fm+n−1, σ(ek) = ek, σ( fk) = fk,
(1 ≤ k ≤ m + n − 2).

Now we have

π(R) = {0,±εi ± ε j,±εi,±δr ± δt,±2δr,±εi ± δr,±δr |
1 ≤ i � j ≤ m − 1, 1 ≤ r � t ≤ n}.

Also, by Proposition 3.2, (, T (0), (·, ·)) is an EALSA with root system π(R). As in the
previous examples, letΛ = Zν,  = C[t±1

1 , . . . , t
±1
ν ] and ε(·, ·) be the standard non-degenerate

Zν-graded bilinear form on . Also let ρ : Λ → Z2 be the epimorphism ρ(n1, . . . , nν) =
n̄1 + · · ·+ n̄ν. By Theorem 2.12, (̃, T̃ , (·, ·)) is an extended affine Lie superalgebra of nullity
ν. For the sake of notation, we proceed by specifying ν = 2. Then we have

R̃0 = {m1γ1 + m2γ2, n1γ1 + n2γ2 ± εi ± ε j,m1γ1 + m2γ2 ± εi, n1γ1 + n2γ2 ± δr ± δt,
n1γ1 + n2γ2 ± 2δt |m1,m2 ∈ Z, n1 + n2 ∈ 2Z, 1 ≤ i � j ≤ m − 1, 1 ≤ r � t ≤ n},

and odd roots

R̃1 = {n1γ1 + n2γ2 ± εi ± δr,m1γ1 + m2γ2 ± δr |
m1,m2 ∈ Z, n1 + n2 ∈ 2Z, 1 ≤ i ≤ m − 1, 1 ≤ r ≤ n}.

So, R̃ = R̃0 ∪ R̃1 is an extended affine root supersystem of type B(m− 1, n). In the notation of Remark
2.5, we have R̃ = (Ṙ, S, F) where

Ṙsh = {±εi | 1 ≤ i ≤ m − 1} ∪ {±δr | 1 ≤ r ≤ n},
Ṙex = {±2δr | 1 ≤ r ≤ n},

Ṙlg = {εi ± ε j | 1 ≤ i � j ≤ m − 1} ∪ {δr ± δt | 1 ≤ r � t ≤ n},
Ṙns = {±εi ± δr | 1 ≤ i ≤ m − 1, 1 ≤ r ≤ n},

S = {m1γ1 + m2γ2|m1,m2 ∈ Z},
F = {n1γ1 + n2γ2|n1, n2 ∈ Z, n1 + n2 ∈ 2Z}.

Remark 4.4. The automorphism σ in Examples 4.2 and 4.3 can be given another de-
scription in terms of adjoint action. Namely, we have σ = Ad(Nσ) :  →  given by
Ad(Nσ)(z) = NσzN−1

σ , where
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Nσ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Im−1
... 0

0 · · · 0 · · · 0 1

0
... Im−1 0

1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

0 I2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

see [20, §7.5.9].

Example 4.5. Let s := (Ms, τs); 1 ≤ s ≤ 3, be the finite dimensional complex Kac-
Moody Lie superalgebra A(2k, 2l− 1), A(2k− 1, 2l− 1) ((k, l) � (1, 1)) and A(2k, 2l), respec-
tively,

in which τ1 = {l, 2k + l + 1}, τ2 = {l, 2k + l}, τ3 = {l, k + l, k + l + 1, 2k + l + 2}, and

(M1)2k+2l, (M2)2k+2l−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1
. . .

. . .
. . . 0

1 0 −1
−1 2 −1

. . .
. . .

. . .

0 −1 0 1
1 −2 1
. . .

. . .
. . .

1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(M3)2k+2l+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1
. . .

. . .
. . . 0

1 0 −1
−1 2 −1

. . .
. . .

. . .

−1 0 1
1 0 −1

0 −1 2 −1
. . .

. . .
. . .

−1 0 1
1 −2 1
. . .

. . .
. . .

1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Consider the bs−dimensional C-vector space s =
∑bs

t=1 Cht, 1 ≤ s ≤ 3, in which b1 =

2k + 2l + 1, b2 = 2k + 2l, and b3 = 2k + 2l + 2. Let

Π1 = {δ1 − δ2︸�︷︷�︸
α1

, . . . , δl−1 − δl︸���︷︷���︸
αl−1

, δl − ε1︸�︷︷�︸
αl

, ε1 − ε2︸�︷︷�︸
αl+1

, . . . , ε2k − ε2k+1︸������︷︷������︸
α2k+l

, ε2k+1 − δl+1︸�������︷︷�������︸
α2k+l+1

,

δl+1 − δl+2︸������︷︷������︸
α2k+l+2

, . . . , δ2l−1 − δ2l}︸�������︷︷�������︸
α2k+2l

,

in which δi’s and εi’s are defined by, for 1 ≤ t ≤ 2k + 2l + 1;

δi(ht) = −δi,t if 1 ≤ i ≤ l, εi(ht) = δl+i,t if 1 ≤ i ≤ 2k + 1, δi(ht)

= −δ2k+1+i,t if l + 1 ≤ i ≤ 2l,

Π2 = {δ1 − δ2︸�︷︷�︸
α1

, . . . , δl−1 − δl︸���︷︷���︸
αl−1

, δl − ε1︸�︷︷�︸
αl

, ε1 − ε2︸�︷︷�︸
αl+1

, . . . , ε2k−1 − ε2k︸������︷︷������︸
α2k+l−1

, ε2k − δl+1︸����︷︷����︸
α2k+l

,

δl+1 − δl+2︸������︷︷������︸
α2k+l+1

, . . . , δ2l−1 − δ2l︸�����︷︷�����︸
α2k+2l−1

},

in which, for 1 ≤ t ≤ 2k + 2l;

δi(ht) = −δi,t if 1 ≤ i ≤ l,
εi(ht) = δl+i,t if 1 ≤ i ≤ 2k,
δi(ht) = −δ2k+i,t if l + 1 ≤ i ≤ 2l,

Π3 = {δ1 − δ2︸�︷︷�︸
α1

, . . . , δl−1 − δl︸���︷︷���︸
αl−1

, δl − ε1︸�︷︷�︸
αl

, ε1 − ε2︸�︷︷�︸
αl+1

, . . . , εk−1 − εk︸���︷︷���︸
αk+l−1

, εk − δl+1︸���︷︷���︸
αk+l

, δl+1 − εk+1︸������︷︷������︸
αk+l+1

,

εk+1 − εk+2︸������︷︷������︸
αk+l+2

, . . . , ε2k − ε2k+1︸������︷︷������︸
α2k+l+1

, ε2k+1 − δl+2︸�������︷︷�������︸
α2k+l+2

, δl+2 − δl+3︸������︷︷������︸
α2k+l+3

, . . . , δ2l − δ2l+1︸�����︷︷�����︸
α2k+2l+1

},

in which, for 1 ≤ t ≤ 2k + 2l + 2;

δi(ht) = −δi,t if 1 ≤ i ≤ l, εi(ht) = δl+i,t if 1 ≤ i ≤ k, δl+1(ht) = −δk+l+1,t,

εi(ht) = δl+1+i,t if k + 1 ≤ i ≤ 2k + 1, δi(ht) = −δ2k+1+i,t if l + 2 ≤ i ≤ 2l + 1.

We also set

Π∨1 = {α∨t = ht − ht+1|1 ≤ t ≤ 2k + 2l},
Π∨2 = {α∨t = ht − ht+1|1 ≤ t ≤ 2k + 2l − 1},
Π∨3 = {α∨t = ht − ht+1|1 ≤ t ≤ 2k + 2l + 1}.

Then the triple (Πs,Π
∨
s , Ts) is a minimal realization for Ms, 1 ≤ s ≤ 3, where Ts :=∑bs

t=1 C(ht − ht+1). Also we have 0
s = Ts (1 ≤ s ≤ 3). In what follows, when there is

no ambiguity we often drop the range of indices. Consider a set of Chevalley generators
X = {ei, fi} for this realization such that ei ∈ αi and fi ∈ −αi . One knows that

R = R0 ∪ R1, where R0 = {0, εi − ε j, δi − δ j|i � j} and R1 = {±(εi − δ j)},
is the root system of s. Consider the automorphism σ on s induced by
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Case 1: 1 = A(2k, 2l − 1);

σ(el) = (−1)le2k+l+1, σ(e2k+l+1) = (−1)lel, σ(ei) = e2k+2l+1−i,

σ( fl) = (−1)l+1 f2k+l+1, σ( f2k+l+1) = (−1)l+1 fl, σ( fi) = f2k+2l+1−i

(i � l, 2k + l + 1).

Case 2: 2 = A(2k − 1, 2l − 1), (k, l) � (1, 1);

σ(el) = (−1)k+l+1e2k+l, σ(e2k+l) = (−1)k+l+1el, σ(ei) = e2k+2l−i,

σ( fl) = (−1)k+l f2k+l, σ( f2k+l) = (−1)k+l fl, σ( fi) = f2k+2l−i (i � l, 2k + l).

Case 3: 3 = A(2k, 2l);

σ(el) = (−1)le2k+l+2, σ(e2k+l+2) = (−1)lel,

σ(ek+l) = (−1)k+1i[ek+l+1, ek+l+2], σ( fl) = (−1)l+1 f2k+l+2,

σ( f2k+l+2) = (−1)l+1 fl, σ( fk+l) = −(−1)k+1i[ fk+l+1, fk+l+2],
σ(ek+l+1) = (−1)ki fk+l+1, σ(ek+l+2) = [ek+l, ek+l+1],
σ(ei) = e2k+2l+2−i, σ( fk+l+1) = (−1)kiek+l+1,

σ( fk+l+2) = [ fk+l, fk+l+1], σ( fi) = f2k+2l+2−i.

Clearly σ preserves T1, T2. In addition, the following relations show that σ preserves T3:

σ(α∨k+l+2) = σ[ek+l+2, fk+l+2] = [[ek+l, ek+l+1], [ fk+l, fk+l+1]] = −(α∨k+l + α
∨
k+l+1),

σ(α∨k+l) = σ[ek+l, fk+l] = [[ek+l+1, ek+l+2], [ fk+l+1, fk+l+2]] = −(α∨k+l+1 + α
∨
k+l+2),

σ(α∨k+l+1) = σ[ek+l+1, fk+l+1] = [i fk+l+1, iek+l+1] = −α∨k+l+1.

We note that, in the above three cases, σ is of order 2, 2 and 4, respectively. We also note
that the automorphism σ can realized as the composition of an adjoint automorphism and
the supertranspose, namely suppose that “st” is the supertranspose of the block matrices of

desired size; st
([

A B
C D

])
=

[
At −Ct

Bt Dt

]
. Set

Fn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0 −1

1
−1 0
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×n

.

Then σ = Ad(Nσ) ◦ (−st), see [20, §7.5.6 - 7.5.8 ], in which Ad(g) : s → s,Ad(Nσ)(z) =
NσzN−1

σ for every z ∈ s with:

Case 1: Nσ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
F2k+1 0

0 F2l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ gl(2k + 1, 2l),

Case 2: Nσ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
0 Fk

Ft
k 0

]
0

0 F2l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ gl(2k, 2l),
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Case 3: Nσ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
F2k+1 0

0
[
F2l 0
0 −i

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ gl(2k + 1, 2l + 1).

A standard argument shows that σ leaves the form invariant. In fact the form (x, y)′ :=
(σ(x), σ(y)), x, y ∈ s, is a super-symmetric invariant bilinear form on s, then as s is
simple this form is a scalar multiple of the standard form. But since there exist x± ∈ s

with (σ(x+), σ(x−)) = (x+, x−) � 0, the scalar must be 1, see [15, Proposition 1.2.4]. More
precisely, we have (α∨1 , α

∨
1 ) = (α∨2k+2l, α

∨
2k+2l) = −2 = (σ(α∨1 ), σ(α∨1 )) in case 1, (ek+l, fk+l) =

(σ(ek+l), σ( fk+l)) in case 2, and (ek+l+1, fk+l+1) = (σ(ek+l+1), σ( fk+l+1)) in case 3.
To describe the root system, we proceed case by case:
Case 1: Taking δ′r := δr−δ2l+1−r

2 and ε′i := εi−ε2k+2−i
2 , we can see that

π(R) = {0,±ε′i ± ε′j,±ε′i ,±2ε′i ,±δ′r ± δ′t ,±δ′r,±2δ′r,±δ′r ± ε′i |
i � j, r � t, 1 ≤ i, j ≤ k, 1 ≤ r, t ≤ l}.

Case 2: Taking δ′r := δr−δ2l+1−r
2 and ε′i := εi−ε2k+1−i

2 , we obtain

π(R) = {0,±ε′i ± ε′j,±2ε′i ,±δ′r ± δ′t ,±2δ′r,±δ′r ± ε′i |i � j, r � t, 1 ≤ i, j ≤ k, 1 ≤ r, t ≤ l}.

Case 3: Taking δ′t =
δr−δ2l+2−r

2 and ε′i =
εi−ε2k+2−i

2 , we get

π(R) = {0,±ε′i ± ε′j,±ε′i ,±2ε′i ,±δ′r ± δ′t ,±δ′r,±2δ′r,±δ′r ± ε′i |
i � j, r � t, 1 ≤ i, j ≤ k, 1 ≤ r, t ≤ l}.

The above computations show that in cases 1 and 2, π(α) = 0 for α ∈ R if and only if
α = 0 and in case 3, π(α) � 0 for every α ∈ R \ {0, αk+l+1}, and π(αk+l+1 ) = {0}, in fact
π(ek+l+1) = 1

4 (ek+l+1 + (−1)ki fk+l+1 − ek+l+1 − (−1)ki fk+l+1) = 0. Therefore by Lemma 2.9,
(A4) holds. Moreover, by Proposition 3.2, (, T (0), (·, ·)) is an EALSA with root system
π(R).

Next consider the epimorphism

ρi : Λ −→ Zmi , (n1, . . . , nν) �→ n̄1 + · · · + n̄ν (mod mi),

where mi = 2, if i = 1 or 2 and m3 = 4. Now, based on Theorem 2.12, we can see that
(̃s, T̃s, (·, ·)) is an EALSA of nullity ν. As in the previous example, we specify ν = 2. We
now describe the root system R̃ of ̃s, see [20, §7.5.6 - §7.5.8], 1 ≤ i � j ≤ k, 1 ≤ r � t ≤ l,
(c1, c2, c′1, c

′
2,m1,m2, n1, n2 ∈ Z):

Case 1:

R̃0 ={c1γ1 + c2γ2, c1γ1 + c2γ2 ± ε′i ± ε′j, c1γ1 + c2γ2 ± ε′i ,m1γ1 + m2γ2 ± 2ε′i ,

c1γ1 + c2γ2 ± δ′r ± δ′t , n1γ1 + n2γ2 ± 2δ′r |n1 + n2 ∈ 2Z,m1 + m2 ∈ 2Z + 1},

R̃1 = {c1γ1 + c2γ2 ± δ′r, c1γ1 + c2γ2 ± δ′r ± ε′i },
Case 2:

R̃0 = {c1γ1 + c2γ2,c1γ1 + c2γ2 ± ε′i ± ε′j,m1γ1 + m2γ2 ± 2ε′i , c1γ1 + c2γ2 ± δ′r ± δ′t ,
n1γ1 + n2γ2 ± 2δ′r |n1 + n2 ∈ 2Z,m1 + m2 ∈ 2Z + 1},
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R̃1 = {c1γ1 + c2γ2 ± δ′r ± ε′i },
Case 3:

R̃0 = {n1γ1 + n2γ2, n1γ1 + n2γ2 ± ε′i ± ε′j, n1γ1 + n2γ2 ± ε′i , n1γ1 + n2γ2 ± δ′r ± δ′t ,
m1γ1 + m2γ2 ± δ′r, c′1γ1 + c′2γ2 ± 2ε′i , c1γ1 + c2γ2 ± 2δ′r | n1 + n2 ∈ 2Z,

m1 + m2 ∈ 2Z + 1, c1 + c2 ∈ 4Z, c′1 + c′2 ∈ 4Z + 2},

R̃1 = {m1γ1 + m2γ2,m1γ1 + m2γ2 ± ε′i , n1γ1 + n2γ2 ± δ′r, n1γ1 + n2γ2 ± εi ± δ′r
n1 + n2 ∈ 2Z,m1 + m2 ∈ 2Z + 1}.

Now considering the notations of Remark 2.5, we have R̃ = R̃0∪R̃1 is equal to (Ṙ, S, F, E1, E2)
or (Ṙ, F, L1, L2), in which Ṙ, S, F, E1, E2, L1, L2 are described in the following tables

Ṙ Ṙsh Ṙlg Ṙ1
ex Ṙ2

ex Ṙ×ns
Case 1 or 3 {±ε′i } ∪ {±δ′r} {±δ′r ± δ′t} ∪ {±ε′i ± ε′j} {±2ε′i } {±2δ′r} {±ε′i ± δ′r}

BC(k, l) S F
Case 1 Zγ1 + Zγ2 Zγ1 + Zγ2

Case 3 Zγ1 + Zγ2 Z(γ1 + γ2) + Z(γ1 − γ2)

BC(k, l) E1 E2

Case 1 γ1 + Z(γ1 + γ2) + Z(γ1 − γ2) Z(γ1 + γ2) + Z(γ1 − γ2)
Case 3 {c′1γ1 + c′2γ2|c′1 + c′2 ∈ 4Z + 2} {c1γ1 + c2γ2|c1 + c2 ∈ 4Z}

Ṙ Ṙsh (Ṙ1
re)lg (Ṙ2

re)lg Ṙ×ns

Case 2 {±δ′r ± δ′t } ∪ {±ε′i ± ε′j} {±2ε′i } {±2δ′r} {±ε′i ± δ′r}

C(k, l) F L1 L2

Case 2 Zγ1 + Zγ2 γ1 + Z(γ1 + γ2) + Z(γ1 − γ2) Z(γ1 + γ2) + Z(γ1 − γ2)

Example 4.6. Let  be the Lie superalgebra of type A(1, 1) with the standard Cartan
subalgebra T = spanC{e11 − e22, e33 − e44}. We have

e11 + e33 = 1/2(e11 − e22) + 1/2(e33 − e44) + 1/2(e11 + e22 + e33 + e44)

and

e22 + e44 = −1/2(e11 − e22) − 1/2(e33 − e44) + 1/2(e11 + e22 + e33 + e44).

Since the following brackets lie in T \ {0},  is division;

[ae23, e32] = a(e22 + e33), [ae41, e14] = a(e11 + e44), [ae23 + be41, e32] = a(e22 + e33),

[ae31, e13] = a(e11 + e33), [ae24, e42] = a(e22 + e44), [ae24 + be31, e42] = a(e22 + e44),

[ae12, e21] = a(e11 − e22), [ae34, e43] = a(e33 − e44),

for every nonzero a, b ∈ C. Let σ be the automorphism on  which acts as identity on 0

and minus identity on 1, see [15, Theorem 5.5.22]. Then σ is an automorphism of order
2 with T (0) = T (T ⊆ 0). Also, σ preserves the non-degenerate invariant even super-



634 S. Azam and A. Darehgazani

symmetric bilinear form (x, y) = str(xy). On the other hand, we have π(α) = α for every
α ∈ R. Hence conditions (A1) to (A5) are established. Choose , ρ,Λ, ε(·, ·), as in Example
4.1. Again, we specify ν = 2. By Theorem 2.12, we have (̃, T̃ , (·, ·)) is an EALSA with
EARSS R̃ = R̃0 ∪ R̃1 of type A(1, 1), where

R̃0 = {n1γ1 + n2γ2, n1γ1 + n2γ2 ± (δ1 − δ2), n1γ1 + n2γ2 + ±(ε1 − ε2)|n1 + n2 ∈ 2Z},

R̃1 = {m1γ1 + m2γ2 ± (εi − δ j)|m1,m2 ∈ 2Z + 1, 1 ≤ i, j ≤ 2}.
It should be noted that in [23, Theorem 2.2], the type A(l, l) is excluded from the list of root
systems described in terms of pointed reflection subspaces.
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