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Abstract
We analyze the structure of spinor coordinates on resolutions of Gorenstein ideals of codimen-

sion four. As an application we produce a family of such ideals with seven generators which
are not specializations of the Kustin-Miller model.

1. Introduction

1. Introduction
In this paper we investigate spinor structures on free resolutions of Gorenstein ideals of

codimension 4. Such structures were first described by Reid in [21].
Let R be a Gorenstein local ring in which 2 is a unit and I ⊂ R be a Gorenstein ideal of

codimension 4. Let

(1) F : 0→ F4
d4−−→ F3

d3−−→ F2
d2−−→ F1

d1−−→ R

be a minimal free resolution of R/I. For the minimal free resolution F of a Gorenstein ideal
I of codimension 4, there is a quadratic form on F2 of F; see [17, Theorem 2.4]. It is also
shown that this quadratic form on F2 can be reduced to a hyperbolic form; see [17, Theorem
5.3].

In this setting, we show in our main result (see Theorem 4.2) that there is a spinor structure
on F. We give an explicit relation between spinor coordinates of im(d3) and the Buchsbaum-
Eisenbud multipliers. In particular, the spinor coordinates are square roots of some special
Buchsbaum-Eisenbud multipliers; see Remark 4.3.

We calculate the spinor coordinates for some well-known examples of Gorenstein ideals
of codimension 4 with few generators; see Section 5. For ideals with 7 generators, Kustin
and Miller constructed a family of ideals associated to a 3 × 4 matrix, a 4-vector, and a
variable. This family is also known as the Kustin-Miller model (KMM); see [16, 18]. We
discuss a generic doubling of an almost complete intersection of codimension 3 that leads
to a specialization of the KMM; see Subsection 6.3.

Reid asks if every case of 7 × 12 resolution is the known KMM in [21, page 29]. In this
paper, we construct a new family in Subsection 7.2 using a resolution of a perfect ideal with
5 generators, of Cohen-Macaulay type 2 which was described in [7]. As an application of
our main result (Theorem 4.2), we show that the new family given in Subsection 7.2 is not a
specialization of the Kustin-Miller model; see Theorem 7.2. This answers Reid’s question.

Our calculations uncover a nice structure of Buchsbaum-Eisenbud multipliers and also
reveal an interesting pattern. Assume we look at a resolution of a Gorenstein ideal I of
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codimension 4 in a local ring (R,m). In all the examples we know, the spinor coordinates
belong to the ideal I; see Remark 4.6. Furthermore, for all known examples of ideals I with
6, 7, and 8 generators, some spinor coordinates are not in mI, and hence they can be taken
as minimal generators of I. However, for 9 or more generators, we find an example when all
spinor coordinates are in mI. This suggests that Gorenstein ideals of codimension 4 with up
to 8 generators are easier to classify than those with more than 8 generators; see Remark 7.3.

This paper is organized as follows. As the intended audience are commutative algebraists,
we include an extended Section 2 on representations of general linear groups and special or-
thogonal groups. In Subsection 2.2, while working with orthogonal spin groups, we first
deal with characteristic zero case, and then indicate which results stay true in arbitrary char-
acteristic different from 2. In Section 3 we recall the Buchsbaum-Eisenbud First Structure
Theorem for finite free resolutions and the results of Kustin-Miller on the resolutions of
Gorenstein ideals of codimension 4.

In Section 4 we prove the existence of spinor structures on resolutions of Gorenstein
ideals of codimension 4. We also apply results from Section 2.3 to explicitly calculate the
relation between the Buchsbaum-Eisenbud multipliers and the spinor coordinates.

Section 5 contains the computations of the spinor coordinates for complete intersections,
for hyperplane sections of codimension 3 Gorenstein ideals, and for the KMM with 7 gen-
erators.

In Section 6 we analyze the resolutions of “doublings” of almost complete intersection
ideals of codimension 3. We show that these ideals are closely related to the KMM model.
Finally, in Section 7.1, we show that a Gorenstein ideal of codimension 4 which is a doubling
of a resolution of a perfect ideal of codimension 3 with 5 generators of Cohen-Macaulay type
2 is not a specialization of the KMM.

2. Background in representation theory

2. Background in representation theory
In this section we give all the representation theory framework used in the paper.

2.1. Representation Theory of GL(V).
2.1. Representation Theory of GL(V). Let V be a vector space over a field K (or a free

module over a ring R). We will use the following notation for the representations of the group
GLn(V). For the dominant integral weight (a1, · · · , an) where ai ∈ Z and a1 ≥ a2 ≥ · · · ≥ an,
S(a1,··· ,an)V denotes the corresponding Schur module. We denote the Lie algebras of GL(V)
and SL(V) as gl(V) and sl(V), respectively.

Next we recall the definition of a perfect pairing of a bilinear map.

Definition 2.1. A bilinear map Q : V ⊗K V → K is called a perfect pairing if it is a
symmetric bilinear map such that the induced map Q̃ : V → V∗ defined by f �→ Q(−, f ) is
an isomorphism. A perfect pairing is in the hyperbolic form if rank(V) is even and we can
write it as a direct sum of hyperbolic two-dimensional pairings with matrices of the form[

0 1
1 0

]
.

In this case, the corresponding basis of V is called a hyperbolic basis.

2.2. Preliminaries on representations of the spin groups.
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2.2. Preliminaries on representations of the spin groups. In this section we collect the
material involving representation theory of the spin group. We will work over a field K of
characteristic different from 2. However, for the convenience of the reader we first recall the
basic facts over a field of characteristic zero, and then indicate what needs to be modified in
finite characteristics different than 2.

2.2.1. Representations of the spin group over an algebraically closed field of charac-
teristic zero. We work over an algebraically closed field K of characteristic zero. Most of
the material in this section can be found in [11, Lectures 18–20]. Other references are [13,
Chapters 2,3,6], [14, Section 2.15], and [10, Chapter 2]. Let K be an algebraically closed
field of characteristic zero and let V be an orthogonal space of dimension 2m over K. We put
the symmetric bilinear map Q in the hyperbolic form. More precisely, let W be an isotropic
space in V of dimension m. We can identify V with W ⊕W∗ and the symmetric bilinear map
Q with the duality

Q : W ⊗W∗ → K,

also requiring W and W∗ being isotropic.
Throughout we deal with the representations of the special orthogonal Lie algebra so(V),

as it is well known that the categories of rational representations of the spin group Spin(2m)
and of so(V) are equivalent. The maximal toral subalgebra in the Lie algebra so(V) is the
maximal toral subalgebra of diagonal matrices in gl(W). It consists of matrices(

A 0
0 −A

)
where A is an m × m diagonal matrix. We denote the basis of V as follows. Vectors
{e1, . . . , em} form a basis of W, and {e−1 = e∗1, . . . , e−m = e∗m} form the dual basis in W∗.
Their weights are εi and −εi for 1 ≤ i ≤ m, respectively.

Since the symmetric bilinear map Q is in hyperbolic form in any characteristics different
from 2, we can use the representation of Spin(2m) as well. For the representation of the spin
group, we use the following notation. In this case, a maximal torus T of Spin(2m) and the
Lie algebra of T , denoted t, are

T = {diag[x1, · · · , xm, x−1
m , · · · , x−1

1 ] : xi ∈ K \ {0}},

t = {diag[a1, · · · , am,−am, · · · ,−a1] : ai ∈ K}.
For i = 1, . . . ,m, define 〈εi,D〉 = ai, where D = diag[a1, · · · , am,−am, · · · ,−a1] is in t.
Then {ε1, . . . , εm} is a basis for t∗. All representations of Spin(2m) are restricted to T so they
decompose into weights with respect to T . The simple roots are given by εi − εi+1 for i < m
along with the element εm−1 + εm.

Let us recall that when K is an algebraically closed field of characteristic zero, then irre-
ducible representations of so(V) are parametrized by dominant integral weights

λ =

m∑
i−1

λiωi,

where
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ωi = ε1 + · · · + εi

for 1 ≤ i ≤ m − 2, ωm−1 =
1
2 (ε1 + · · · + εm−1 + εm), and ωm =

1
2 (ε1 + · · · + εm−1 − εm) are

so-called fundamental weights, and λi ∈ Z≥0.
We denote V(λ) the irreducible representation corresponding to the highest weight λ.
The fundamental representations of Spin(2m) are V(ωi) =

∧i V for 1 ≤ i ≤ m − 2, and
the fundamental representations are the half-spinor representations for i = m − 1 and i = m.
To define them, we need a Clifford algebra

C(V,Q) = T (V)/I(V),

where T (V) is a tensor algebra of V and I(V) is the two-sided ideal in T (V) generated by the
elements

v1 ⊗ v2 + v2 ⊗ v1 − 2Q(v1, v2)

for v1, v2 ∈ V . Note that since the ideal I(V) has generators with components in the 0th and
2nd graded component of T (V), the Clifford algebra decomposes into its even part C(V)+
and its odd part C(V)−. Additively we have decompositions

C(V)+ =
⊕
i even

i∧
V,

C(V)− =
⊕
i odd

i∧
V.

Let f = e1 ∧ . . . ∧ em.
We have the following result (see [11, Lecture 20] for more details, note that our conven-

tion interchanges W and W∗).

Proposition 2.2. The left ideal

S = C(Q). f

is additively isomorphic to the exterior algebra
∧•W∗. It is therefore a representation of

so(V). It decomposes into even and odd parts S+ :=
∧even W∗ and S− :=

∧odd W∗. Here the
left ideal S is called a Clifford module, and S+ and S− are called half-spinor modules.

We also have

V(ωm−1) = S+ and V(ωm) = S−.

Both half-spinor representationsV(ωm−1) and V(ωm) have dimension 2m−1. Let  ⊂ [1,m]
be a subset, and let c be its complement. We denote a coset of the tensor ∧i∈w−i by u.
This is a weight vector of weight 1

2 (−∑i∈ εi +
∑

i∈c εi).
Note that Clifford algebra is then identified with EndC(Q)(S) and the spin group appears

as certain subset of invertible elements of C(Q). However, we do not need this description,
so we refer the reader to [11, Lecture 20].

For the convenience of the reader we describe the action of the Lie algebra so(V) on
half-spinor representations. Strictly speaking, it will not be needed but it explains weight
decompositions of half-spinor representations.
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For a, b ∈ V , define Ra,b ∈ End(V) as Ra,bv = Q(b, v)a−Q(a, v)b. By [10, Section 2.4], Ra,b

spans so(V) for a, b ∈ V . Then Rei,e j = e−i, j−e− j,i where ei, j be an elementary transformation
on V that carries ei to e j and others to 0.

For y∗ ∈ W∗, the exterior product ε(y∗) and the interior product operator i(y) on
∧

W are
defined as ε(y∗)x∗ = y∗ ∧ x∗ and

i(y)(y∗1 ∧ · · · ∧ y∗k) =
k∑

j=1

(−1) j−1Q(y, y∗j)y
∗
1 ∧ · · · ∧ ŷ∗j ∧ · · · ∧ y∗k,

where y∗i ∈ W∗, x∗ ∈ ∧W∗ and ŷ∗j means to omit y∗j .
Define linear maps γ : V → End(

∧
W∗) as γ(y + y∗) = i(y) + ε(y∗) for y ∈ W and

y∗ ∈ W∗, and ϕ : so(V) → Cliff2(V,Q) as ϕ(Ra,b) = 1
2 [γ(a),γ(b)] for a, b ∈ V where

[γ(a),γ(b)] = γ(a)γ(b) − γ(b)γ(a). By [10, Chapter 2], ϕ is injective, and the Lie algebra
of Spin(V) is ϕ(so(V)).

Let us also look at other exterior powers of V . We have

m−1∧
V = V(ωm−1 + ωm),

m∧
V = V(2ωm−1)

⊕
V(2ωm).

To see the decomposition in the second formula, we proceed as follows. Let Q̃ : V → V∗

be an so(V)-equivariant isomorphism defined by the formula

Q̃(v1)(v2) := Q(v1, v2).

This isomorphism defines a similar so(V)-equivariant isomorphism
m∧

Q̃ :
m∧

V →
m∧

V∗.

We also have an sl(V)-equivariant isomorphism

φ :
m∧

V∗ →
m∧

V,

using e∗1 ∧ . . . ∧ e∗m ∧ e1 ∧ . . . ∧ em as a volume form. We define an so(V)-equivariant
isomorphism

τ = φ ◦ (
m∧

Q̃) :
m∧

V →
m∧

V.

One proves easily that τ2 = 1. The representation V(2ωm−1) can be identified with the
1-eigenspace of τ and V(2ωm) can be identified with the −1-eigenspace of τ. Thus the
operators 1

2 (τ − 1) and 1
2 (τ + 1) are the projections on both direct summands.

Let us also mention the tensor product decompositions that will be useful. They go back
at least to 1967 Cartan’s book [6], but, for our purposes, we refer to [1] and [10].

Proposition 2.3 ([1, Theorem 4.6]). Let K be an algebraically closed field of character-
istic zero.
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(1)
2∧

V(ω1) = V(ω2)

(2) S2V(ω1) = V(2ω1)
⊕

K

(3)
2∧

V(ωm−1) =
⊕

i

V(ωm−2−4i)

(4) S2V(ωm−1) = V(2ωm−1)
⊕⊕

i

V(ωm−4i)

(5)
2∧

V(ωm) =
⊕

i

V(ωm−2−4i)

(6) S2V(ωm) = V(2ωm)
⊕⊕

i

V(ωm−4i)

with the convention that V(ω0) = K.

2.2.2. Representations of the spin group over an algebraically closed field of arbi-
trary characteristic. Let K be an algebraically closed field of characteristic different than
2.

In what follows we apply the results of [20] to the fundamental weights ωm−1 and ωm of
the root system Dm. The most relevant part of [20] is the Appendix (sections A.2, A.4, A.5
and A.9), and references therein.

Let (V,Q) be a quadratic space where dim(V) = 2m and Q is in the hyperbolic form. Con-
sider the isotropic Grassmannian IGrass(m, 2m). It consists of two connected components
IGrass(m, 2m)+ and IGrass(m, 2m)−. The homogeneous coordinate rings of these varieties
are respectively

(2) K[IGrass(m, 2m)+] =
⊕
d≥0

V(dωm−1), K[IGrass(m, 2m)−] =
⊕
d≥0

V(dωm).

For the root system Dm, both fundamental weights ωm−1 and ωm are minuscule, so the re-
sults from [20] apply and all admissible pairs defined in [20, A.2, A.5] are trivial, as the
irreducible module V(ωm−1) (respectively V(ωm)) has only extremal weights. Therefore it
has only one Z-form, i.e. its Schur module and Weyl module are the same (see [20, A.2,
A.5]). So there are modules VZ(ωm−1) and VZ(ωm) defined over Z such that after tensoring
with any field we get over K the simple modules over the spin group, which are also Schur
and Weyl modules.

Our definition of V(dωm−1) (respectively V(dωm)) is as the d-th homogeneous compo-
nents of the rings in equation (2) above, tensored with K. The identification of the coordinate
rings in (2) describes two components of IGrass(m, 2m) as closed subvarieties of projective
spaces P(V(ωm−1)) and P(V(ωm)), respectively. We refer to these embeddings as half-spinor
embeddings.

The Plücker embedding of the Grassmannian Grass(m, 2m) restricted to either of the con-
nected components of IGrass(m, 2m) is a double of the corresponding half-spinor embed-
ding.

In order to make everything explicit, let us choose a hyperbolic basis
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{e1, . . . , em, e−m, . . . , e−1}
in V . Consider a subspace U in IGrass(m,V) whose Plücker coordinate corresponding to
e1, . . . , em is nonzero (this contains a choice of connected component of IGrass(m,V) in
which U is contained). Then the subspace U has a unique basis whose expansions in our
hyperbolic basis give rows of a matrix

M =
(
J X

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 . . . 0 1 x1,1 x1,2 . . . x1,m

0 0 . . . 1 0 x2,1 x2,2 . . . x2,m

. . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0 . . . 0 0 xm,1 xm,2 . . . xm,m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The subspace U is isotropic which makes the matrix X skew-symmetric. So the big cell

Z in Spin(2m)/Pm−1 is isomorphic to the space of skew-symmetric matrices, where Pm−1

denote maximal parabolic subgroup corresponding to the simple roots εm−1 + εm.
The Plücker coordinates restrict on Z to the maximal minors of the matrix M, and the

spinor coordinates restrict to Pfaffians of all sizes of all submatrices of X which are them-
selves skew symmetric. Each such Pfaffian can be described by even number of columns of
X (taking also the same rows), and it is the spinor coordinate (i.e. weight vector in V(ωm−1))
whose weight has minus signs precisely at these places. This includes identity which corre-
sponds to empty subset of columns.

So the quadratic relations defining our homogeneous space IGrass(m, 2m)+ are the qua-
dratic identities among Pfaffians of all sizes of the matrix X.

Example 2.4. Let us write explicitly the case of n = 5 where we have 10 quadratic rela-
tions, going back to Cartan; see [6]. Let  ⊂ [1,m] be a subset of even cardinality. We write
p f () for the Pfaffian of a submatrix of X on the rows and columns from . The Cartan
equations are

p f (∅)p f (1234) − p f (12)p f (34) + p f (13)p f (24) − p f (14)p f (23)

p f (12)p f (1345) − p f (13)p f (1245) + p f (14)p f (1235) − p f (15)p f (1234)

and eight others which we get by permuting the numbers 1, 2, 3, 4, 5.

2.3. Certain Spin(V)-equivariant map P and its properties.
2.3. Certain Spin(V)-equivariant map P and its properties. Let V be an orthogonal

space of rank 2m over an algebraically closed field K of characteristic different from 2.
The discussion in subsection 2.2.2 implies the existence of a Spin(V)-equivariant map

(3) P : V(2ωm−1)→
m∧

V (or P : V(2ωm)→
m∧

V).

Notice also that since the weights in our representations are integral combinations of εi, in
fact this is the map of SO(V)-modules.

Remark 2.5. The map P will be very important in our application as it will give poly-
nomial formula expressing arbitrary Buchsbaum-Eisenbud multipliers by quadratic expres-
sions involving spinor coordinates.

Before we start we need some notation. The signature of a permutation of the set [1,m],
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denoted by sgn, is a multiplicative map from the group of permutations Sm to ±1. Permu-
tations with signature +1 are even and those with sign -1 are odd. Also c denotes the
complement of a subset  of [1,m]. For a subset  of [1,m] of even cardinality we denote
u the weight vector of V(ωm−1) of weight with 1

2 on coordinates from c and −1
2 on the

coordinates from .

Lemma 2.6. Set q =
⌊

m
2

⌋
. There is an equivariant map P : S2(V(ωm)) → m∧

V which is
defined as

P(u2k uφ) =
1

2�(2k)−1

∑
⊂2k ,

�(2k)=2�()

sgn(2k,)e− ∧ e c
2k
∧ e(4)

such that P(uφuφ) = e1∧ e2∧ · · ·∧ em. Here 2k = {γ1, . . . , γ2k} with 1 ≤ γ1 < · · · < γ2k ≤ m,
1 ≤ k ≤ q,

e− =
∧
i∈

e−l,

u2k = e−γ1 ∧ e−γ2 ∧ · · · ∧ e−γ2k ,

e =
∧
i∈

el,

sgn(2k,) is the signature of permutations of 2k, and �( ) is the length of any indexing
set  ⊂ [1,m].

Proof. We prove formula (4) by reverse induction on k. For k = q,

P(u2quφ) =
1

2�(2q)−1

∑
⊂2q

�(2q)=2�()

sgn(2q,)e− ∧ e c
2q
∧ e.

Using the action of internal operator on V(2ωm) we see that

i(eγi)i(eγ j)(u2quφ) = (−1)i+ ju2q\{γi,γ j}uφ.

The map P is equivariant, and hence, by [13, Lemma 6.2.1], the following diagram

V(2ωm) P ��

i(ei)i(e j)
��

m∧
V
Rei ,e j

��

V(2ωm) P ��
m∧

V

commutes. Therefore P(uJ2q\{γi,γ j}uφ) is of the form

1
22q−3

∑
⊂2q\{γi,γ j}
�()=q−1

sgn(2q \ {γi, γ j},)e− ∧ e(2q\{γi,γ j})c ∧ e.

Applying interior operator successively, one gets expression for k = 1 as

P(u{γi,γ j}uφ) =
sgn({γi, γ j}, γi, γ j)

2
(e−γi ∧ e{γi,γ j}c ∧ eγi + e−γ j ∧ e{γi,γ j}c ∧ eγ j).

Again, by applying internal operator, we obtain
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P(uφuφ) = e1 ∧ · · · ∧ em.

We extend the map P : V(2ωm) → ∧m V to P : S2(V(ωm)) → m∧
V by setting P|V(ωm−4i) = 0

for i ≥ 1. �

It remains to show that the formula for the map P is valid in any characteristic different
from 2. The reason is that we derive the formula using the action of Lie algebra so(2m) but
this comes from using the one parameter subgroup corresponding to a given root in SO(V).

Remark 2.7. Let , ⊂ [1,m] of even cardinality. Set  � = ( \) ∪ ( \ ).
Assume that  � is nonempty. Note that  � is of even cardinality. Using Lemma
2.6, one can evaluate the map P by permuting indices of the monomial uu as

1
2�(�)−1

∑
⊂�

�(�)=2�( )

sgn( ∪, )e−(∩) ∧ e− ∧ ec∩c ∧ e .

Moreover, P(uu) = sgn(,c)e− ∧ ec .

Corollary 2.8. For  ⊂ [1,m], let  = ∪ {p} and  = ∪ {q} where p, q ∈ [1,m] and
p � q. Then P(uu) is

1
2

(sgn(�{p, q}, {p})e−∧e−p∧e(�{p,q})c∧ep+sgn(�{p, q}, {q})e−∧e−q∧e(�{p,q})c∧eq).

2.4. Arbitrary ring R with 2 invertible in R.
2.4. Arbitrary ring R with 2 invertible in R. The constructions of fundamental repre-

sentations
∧i V , V(ωm−1) and V(ωm) are also valid over any commutative ring R such that 2

is invertible in R. One assumes that V is a free orthogonal R-module, i.e. V has a symmetric
bilinear form which in some basis is hyperbolic. Note that Definition 2.1 is still valid if K is
replaced by any arbitrary ring R with 2 invertible in R.

Remark 2.9. The formulas for the map P remain valid over any commutative ring R with
2 invertible in R and any orthogonal module V in the sense of Definition 2.1. One can just
apply the formulas from Lemma 2.6 and they remain true in any hyperbolic basis of V .

3. Background on free resolutions

3. Background on free resolutions
Throughout the rest of the paper R and S denote Noetherian commutative rings unless

otherwise stated, μ(I) denotes the minimal number of generators of an ideal I of R, and In

denotes the n × n identity matrix. For an R-module M, we use M∗ to denote HomR(M,R).
Moreover, ker( f ) and im( f ) denote the kernel and the image of a ring map f : R → S,
respectively.

Buchsbaum and Eisenbud gave a structure theorem (also known as the First Structure
Theorem) that describes an arithmetic structure of free resolutions as follows:

Theorem 3.1 ([3, Theorem 3.1]). (The First Structure Theorem) Let R be a Noetherian
ring and let I be an ideal of R. Let

0 −→ Fn
dn−−→ Fn−1

dn−1−−−→ · · · d3−−→ F2
d2−−→ F1

d1−−→ F0

be a free R-resolution of R/I and ri = rank(di). Then there exists a unique sequence of
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homomorphisms ak : R →
rk∧

Fk−1 for 1 ≤ k ≤ n such that an :=
rn∧

dn and the following
diagram commutes:

rk∧
Fk

rk∧
dk

��

�
��

rk∧
Fk−1

rk+1∧
F∗k

a∗k+1 �� R

ak

��

We refer to maps ak in Theorem 3.1 as the Buchsbaum-Eisenbud multiplier maps. Their
coordinates are called the Buchsbaum-Eisenbud multipliers.

The next remark reveals the structure of a minimal free resolution of R/I where R is a
complete regular local ring and I is a Gorenstein ideal of codimension four.

Remark 3.2 ([17]). Let R be a Gorenstein local ring in which 2 is a unit and let I ⊂ R be
a Gorenstein ideal of codimension four with μ(I) = n. Let

(5) F : 0→ F4
d4−−→ F3

d3−−→ F2
d2−−→ F1

d1−−→ R

be a minimal free resolution of R/I. Then we have the following:
(a) By Gorenstein duality, F4−i � F∗i .
(b) rank(F1) = n and rank(F2) = 2n − 2.
(c) By [17, Theorem 2.4], for a minimal resolution F of R/I

F : 0→ R
d∗1−−→ F∗1

d3−−→ F2
d2−−→ F1

d1−−→ R,

there exist a symmetric isomorphism Q̃ and an isomorphism ρ : F→ F∗ of the form:

0 �� R
d∗1 �� F∗1

d3 �� F2
d2 ��

Q̃
��

F1
d1 �� R

0 �� R
d∗1 �� F∗1

d∗2 �� F∗2
d∗3 �� F1

d1 �� R

(d) If R is a complete regular local ring, then the dualizing matrix Q̃ is of the form[
0 In−1

In−1 0

]
,

and, by part (c), the resolution of R/I is

F : 0→ R
dt

1−−→ F∗1
Q̃dt

2−−−→ F2
d2−−→ F1

d1−−→ R.

(e) Let 〈 , 〉 : F1 ⊗R F∗1 → R be the evaluation map and let Q : F2 ⊗R F2 → R be the
symmetric bilinear map induced by Q̃. Then

〈d2x2, x3〉 = Q(x2, d3x3) for all x2 ∈ F2, x3 ∈ F∗1.

(f) F has a multiplicative structure which makes it an associative differential graded R-
algebra.
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(g) The module F2 has a structure of an even orthogonal module of rank 2n − 2 according
to Definition 2.1.

Remark 3.3. Let R be a regular local ring or a polynomial ring over a field and let I ⊂ R
be a Gorenstein ideal of codimension four with μ(I) = n. Let

(6) F : 0→ F4
d4−−→ F3

d3−−→ F2
d2−−→ F1

d1−−→ R

be a minimal free resolution of R/I. Then, by Theorem 3.1, we have a4 = d4 and there is a

map a3 : R→ n−1∧
F2 such that the following diagram commutes

n−1∧
F3

n−1∧
d3

��

�
��

n−1∧
F2

F∗3
d∗4 �� R

a3
��

3.1. Generic doubling of perfect ideals.
3.1. Generic doubling of perfect ideals. Let R be a regular local ring, let J be a perfect

ideal of R of codimension 3, and let S := R/J. Assume S is generically Gorenstein with a
canonical module ωS. It is known that one can identify ωS with an ideal of S and S/ωS is a
Gorenstein ring, [2, Proposition 3.3.18].

Let (F, d) be a minimal free resolution of S over R. Then (F∗, d∗) is a minimal free
resolution of ωS as J is perfect. Take the minimal generators f1, . . . , f� of HomS(ωS, S), and
let R̃ := R[τ1, . . . , τ�]. Now we consider the injective map ψ : ωS̃ → S̃ where ψ =

∑�
i=1 τi fi,

S̃ := R̃/JR̃, and ωS̃ is a canonical module of S̃. Then ωS̃ � im(ψ) since ψ is injective. Next
ψ lifts to a map of complexes φ : F̃∗ → F̃ which gives us a resolution of a Gorenstein ring
S̃/ωS̃ of codimension 4. In this case, we say that the resolution of S̃/ωS̃ is obtained by a
generic doubling of F.

4. Spinor structures on resolutions of Gorenstein ideals of codimension four

4. Spinor structures on resolutions of Gorenstein ideals of codimension four
In this section we show the existence of a spinor structure on a length four minimal

resolution of a Gorenstein ideal over a complete regular local rings and a polynomial ring
over a field; see Theorem 4.2. This is the main result of our paper. Throughout this section,
let K be an algebraically closed field.

Definition 4.1. Let (R,m,K) be a regular local ring (respectively a polynomial ring over
K) in which 2 is a unit and let I ⊂ R be a Gorenstein ideal (respectively a graded Gorenstein
ideal) of codimension four with μ(I) = n. Let

F : 0→ F4
d4−−→ F3

d3−−→ F2
d2−−→ F1

d1−−→ R

be a minimal free resolution of R/I. We say that the resolution F has a spinor structure if
there exists a map ã3 : R→ V(ωn−1) ⊗K R such that the following diagram commutes

R

a3
�����������������������

S2(ã3)
�� S2(V(wn−1)) ⊗K R

P⊗R
��

n−1∧
F2



914 E. Celikbas, J. Laxmi and J. Weyman

where a3 is the map given by the First Structure Theorem of Buchsbaum and Eisenbud in
Theorem 3.1 and P is the map described in Section 2.3.

Now we are ready to show the existence of a spinor structure on a length four minimal
resolution of a Gorenstein ideal over a complete regular local rings and a polynomial ring
over a field.

Theorem 4.2.
(1) Let (R,m,K) be a regular local ring in which 2 is a unit and K is algebraically

closed. Let I ⊂ R be Gorenstein ideal of codimension 4 and let F be a minimal free
resolution of R/I of the form

F : 0→ F4
d4−−→ F3

d3−−→ F2
d2−−→ F1

d1−−→ R→ 0.

Assume that the multiplication Q : F2⊗F2 → F4 defined in Remark 3.2.(e) is in the
hyperbolic form. Then there exists a spinor structure on F.

(2) The same conclusion holds when R is a polynomial ring over an algebraically closed
field K of characteristic different from 2 and I is a homogeneous Gorenstein ideal
of codimension 4.

Before we prove Theorem 4.2, let us explain its meaning more precisely.

Remark 4.3.
(1) Assume the hypothesis of Theorem 4.2 and let μ(I) = n. The Buchsbaum-Eisenbud

multiplier a3, is the square of the spinor coordinate ã3, for  = − ∪  c, where
 ⊂ [1, n − 1] with �( ) even, i.e when the multiindex  ⊂ {±1, . . . ,±(n − 1)}
of cardinality n − 1 contains all the numbers 1, 2, . . . , n − 1 (with arbitrary signs).
The Buchsbaum-Eisenbud multipliers for  = − ∪  c, where  ⊂ [1, n − 1]
with �( ) odd are all zero. Note that we already made a choice that im(d3) is in
the connected component Spin(2(n − 1))/Pn−2. If we make another choice, then
the opposite happens: the multiplier a3, is the square of the spinor coordinate ã3,

for  = − ∪  c, where  ⊂ [1, n − 1] with �( ) odd, i.e when the multi-index
 ⊂ {±1, . . . ,±(n − 1)} of cardinality n − 1 contains all the numbers 1, 2, . . . , n − 1
(with arbitrary signs). The Buchsbaum-Eisenbud multipliers for  = − ∪  c,
where  ⊂ [1, n − 1] with �( ) even are all zero.

(2) For other indices  (i.e. those where some numbers ±i are missing for some 1 ≤
i ≤ n − 1), the multiplier a3, is given by the expression from Lemma 2.6.

(3) As a consequence of Corollary 2.8 and Theorem 4.2, we see that

a3, = ã3,∪{p} ã3,∪{q}

where  = − ∪ {±p} ∪ ( ∪ {p, q})c or  = − ∪ {±q} ∪ ( ∪ {p, q})c.

We need the following lemma for the proof of Theorem 4.2.

Lemma 4.4. Let R be a polynomial ring over an algebraically closed field K of charac-
teristic different than 2 and let I be a codimension four homogeneous Gorenstein ideal of R
with μ(I) = n. Let
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F : 0→ R(−d)
d4−→ F

d3−→ G � G∗
d2−→ F∗

d1−→ R

be a graded free resolution of R/I. Then G has a hyperbolic basis.

Proof. Let

G = (
n−1⊕
i=1

R(−ai))
⊕

(
n−1⊕
i=1

R(−ai + d))

where a1 ≤ · · · ≤ an−1 ≤ d − an−1 ≤ · · · ≤ d − a1. Let Q̃ : G → G∗ be a symmetric
isomorphism that induces a bilinear map Q : G ⊗G → R. Now choose a basis element e1 of
highest degree d − a1 of G. Then there exists a complementary e′1 of lowest degree a1 such
that Q(e1, e′1) = 1 since Q is non-degenerate; and, for any basis element e j in G, we have
Q(e1, e j) is a constant. Let W1 = Re1 + Re′1, and let W⊥1 denote the orthogonal complement
of W1 in G.

If d − a1 = a1, then the entries of the matrix with respect to the map Q̃ belong to K.
Then, by the change of basis, one can transform Q̃ into a hyperbolic form. In the case that
d − a1 � a1, there exists a 2 × 2 submatrix of Q̃ with respect to the basis {e1, e′1} of the form

Q̃1 =

[
0 1
1 z

]
, where z ∈ R is of positive degree.

Next choose a 2×2 matrix A =
[
1 − 1

2 z
0 1

]
such that AT Q̃1A =

[
0 1
1 0

]
. Then AT Q̃1A restricted

to W1 is in the hyperbolic form.
If the basis elements of W⊥1 are of the same degree, then we are done. Otherwise, repeat-

ing the argument above for Q̃1, we can always construct an hyperbolic pair using the highest
and the lowest degree basis elements of W⊥1 .

Continuing in this way, we get Wk = Wk−1 ⊕ Rek + Re′k for some k ≤ n − 1 such that the
lowest and highest degree basis elements of Wk can be transformed into a hyperbolic pair
and the basis elements of W⊥k are of the same degree. Then the entries of the matrix with
respect to the map ϕ restricted to W⊥k belong to K, and, by the change of basis, one can
transform this matrix into the hyperbolic form. This finishes the proof of the lemma. �

Proof of Theorem 4.2. We first prove part (1). Note that, by the hypothesis in part (1)
and Remark 3.2.(d), a minimal free resolution of R/I is of the form

F : 0→ R
dt

1−−→ F∗1
Q̃dt

2−−−→ F2
d2−−→ F1

d1−−→ R.

Let μ(I) = n and let {g1, . . . , gn} be a basis of F1. Let {e1, . . . , en−1, e−n+1, . . . , e−1} be a
hyperbolic basis of F2. By the Leibniz formula, we see that the image of d3 = Q̃dt

2 is an
isotropic submodule.

Let R(0) be the field of fractions of R. The complex F⊗RR(0) is split exact. We can choose a
hyperbolic basis {e′1, . . . , e′n−1, e

′
−n+1, . . . , e

′
−1} of F2⊗R R(0) such that im(d3⊗R R(0)) is the span

of e′1, . . . , e
′
n−1. This subspace is in the connected component of the isotropic Grassmannian

IGrass(n − 1, F2 ⊗R R(0)) corresponding to Spin(2n − 2)/Pn−2. The subspace im(d3 ⊗R R(0))
is also isotropic, and it has spinor coordinates in V(ωn−2).

The Plücker coordinates of im(d3 ⊗R R(0)) are Buchsbaum-Eisenbud multipliers, i.e., the
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coordinates of the map a3. The Buchsbaum-Eisenbud multipliers must therefore have ex-
pressions given by Lemma 2.6 in terms of spinor coordinates. By equivariance, such rela-
tions have to be satisfied for every choice of hyperbolic basis of F2 ⊗R R(0), and for every
choice of basis in F1 ⊗ R(0).

The only remaining thing is to check that in our original bases {g1, . . . , gn} and
{e1, . . . , en−1, e−1, . . . , e−n+1} the spinor coordinates are not just in R(0) but in R. But for each
of them its square is the appropriate Buchsbaum-Eisenbud multiplier which is in R. Since
R is normal, we conclude that all spinor coordinates are in R. This means all the relations
from Lemma 2.6 are satisfied in R since they hold in R(0). This proves part (1).

In case of polynomial rings over fields, F2 has a hyperbolic basis by Lemma 4.4. Thus,
the proof of part (2) of the theorem follows the same as in part (1). �

As a consequence of Remark 3.2.(d) and Theorem 4.2, we get the following corollary.

Corollary 4.5. If R is a complete regular local ring in which 2 is a unit and I is a Goren-
stein ideal of codimension 4, then there exists a spinor structure on a minimal free resolution
of R/I.

Remark 4.6.
(1) The hypotheses of R being a domain could probably be dropped. It would follow by

localizing at the set of non-zero divisors in R, but probably requires some additional
work on half-spinor representations over commutative rings.

(2) The normality assumption also might not be necessary.
(3) As the examples in the next section show, often spinor structures exist even without

characteristic different from 2 assumptions. However this involves finding a hy-
perbolic basis for F2 which was established by Kustin and Miller only under this
assumption.

(4) Spinor coordinates are in the radical of the ideal I. If I is a radical ideal, then spinor
coordinates are in I. We do not know any Gorenstein ideal I of codimension 4 for
which the spinor coordinates are not in the ideal I.

5. Examples of spinor coordinates on resolutions of codimension four Gorenstein
ideals

5. Examples of spinor coordinates on resolutions of codimension four Gorenstein
ideals

In this section, we give explicit calculations of spinor coordinates on resolutions of well-
known Gorenstein ideals with 4, 6, and 9 generators. In some of these examples, we can
find the spinor coordinates even under weaker assumptions on R than claimed in Theorem
4.2. The first two examples are also discussed in Reid’s paper, see [21].

Example 5.1. Let R be an arbitrary commutative ring and (x1, x2, x3, x4; R)• be the
Koszul complex resolving a complete intersection in codimension 4 on elements x1, x2, x3, x4

from R. Let F = R4 and R = Sym(F). Then (x1, x2, x3, x4; R) is a resolution of R/I of the
form

(x1, x2, x3, x4; R) : 0→
4∧

F
dt

1−−→
3∧

F
Q̃dt

2−−−→
2∧

F
d2−−→

1∧
F

d1−−→
0∧

F
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with

d1 = [x1 x2 x3 x4], d2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−x4 0 0 0 x3 −x2

0 −x4 0 −x3 0 x1

0 0 −x4 x2 −x1 0
x1 x2 x3 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Our calculation of the matrices d1 and d2 gives us the map Q̃ :
2∧

F → 2∧
F∗ in the

hyperbolic form, that is, Q̃ =
[

0 I3
I3 0

]
. Note that the quadratic form Q :

2∧
F ⊗R

2∧
F → 4∧

F
is just the exterior multiplication.

For the integral weight (3, 1, 1, 1), Schur module is S(3,1,1,1)F =
∧4 F ⊗ S2F as rank(F) =

4. Then the following diagram

∧4 F ⊗ S2F

Δ⊗Δ
��

�� �� 3∧
(

2∧
F)

F ⊗ 3∧
F ⊗ F ⊗ F

Λ
��

2∧
F ⊗ 2∧

F ⊗ 2∧
F

��

commutes where Δ :
i∧

F → F ⊗ i−1∧
F is the diagonal map and Λ is the composition of

interchange of the first and second, diagonalization of the second, and then multiplication of
the second and third components.

Since F = R4, the maps
4∧

F⊗ 2∧
F → 3∧

(
2∧

F),
5∧

F⊗F → 3∧
(

2∧
F), and

6∧
F → 3∧

(
2∧

F)

are zero. Thus S(2,2,2,0)(F) = S2F ⊗ 3∧
F ⊗ 3∧

F. For char(K) � 2,

3∧
(

2∧
F) � S(2,2,2,0)(F) ⊕ S(3,1,1,1)(F).

Note that R =
4∧

F⊗ 4∧
F and there is a map (m13⊗1⊗1)◦(Δ⊗Δ) : R→ S2F⊗ 3∧

F⊗ 3∧
F

where m13 : F ⊗ F → S2F is a multiplication map (for details; see [22, Section 1.1.1]). We
use the diagonal map

Δ ⊗ Δ :
3∧

F ⊗
3∧

F → F ⊗
2∧

F ⊗ F ⊗
2∧

F

and the map Ω : F ⊗ 2∧
F ⊗ F ⊗ 2∧

F → 2∧
F ⊗ 2∧

F ⊗ 2∧
F which interchanges the first and

second, and then multiplies the second and third components to get the map

p24 :
3∧

F ⊗
3∧

F �
3∧

(
2∧

F)

by the commutativity of the following diagram
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3∧
F ⊗ 3∧

F

Δ⊗Δ
��

p24 �� �� 3∧
(

2∧
F)

F ⊗ 2∧
F ⊗ F ⊗ 2∧

F

Ω
��

2∧
F ⊗ 2∧

F ⊗ 2∧
F

��

Thus there is a map (1 ⊗ p24) ◦ σ : R→ S2F ⊗ 3∧
(

2∧
F), where σ = (m13 ⊗ 1 ⊗ 1) ◦ (Δ ⊗ Δ).

Now we set a3 = (1 ⊗ p24) ◦ σ.
Therefore a3 goes to the summand S(2,2,2,0)(F) as in the diagram below:

3∧
F ⊗ 3∧

F
p24

�� �������������
��

��

2∧
F ⊗ 2∧

F ⊗ 2∧
F

��

S(2,2,2,0)(F) �� 3∧
(

2∧
F)

In fact, a3 is the second symmetric power of the map

ã3 : R→
3∧

F

sending 1 to x1e2 ∧ e3 ∧ e4 − x2e1 ∧ e3 ∧ e4 + x3e1 ∧ e2 ∧ e4 − x4e1 ∧ e2 ∧ e3. This last map
ã3 gives us the spinor structure.

Let us interpret this in terms of the root systems. Here we deal with a root system D3

which is just A3. So the vector representation G of rank 6 can be considered as the second

fundamental representation
2∧

H where H is the 4-dimensional space. Finding the structure

map a3, we see that it is given by R → 3∧
(

2∧
H). The map ã3 is just the map from R to H

and it allows us to identify H and F.

Next we look at a hyperplane section of a codimension three Gorenstein ideal of Pfaffians
of a skew-symmetric matrix.

Example 5.2. Let R be a polynomial ring over Z on the entries of (2n + 1) × (2n + 1)
skew-symmetric matrix X = (xi j) with xi j = −x ji, and an additional variable y. Consider the
resolution given by

(7) F : (0→ R
y−→ R→ 0) ⊗ (0→ R

∂∗1−→ R2n+1 ∂2−→ R2n+1 ∂1−→ R→ 0)

where ∂1 =
[
(−1)iPf([1, 2n + 1] \ {i}, X)

]
where [1, 2n + 1] = {1, . . . , 2n + 1} and ∂2 = X.

Here Pf(, X) denotes the Pfaffian of the submatrix of X on rows and columns from  where
 be an index set of [1, 2n + 1]. Note that the resolution F in (7) is a hyperplane section of a
codimension 3 Gorenstein ideal of Pfaffians of a skew-symmetric matrix X.

The matrix of the differential d2 : R2n+1 ⊕ R2n+1 → R ⊕ R2n+1 of F is given by

d2 =

[
∂1 0

−yI2n+1 X

]
.
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Our calculation directly gives

Q̃ : R2n+1 ⊕ R2n+1 → (R2n+1 ⊕ R2n+1)∗

which is in the hyperbolic form up to permutation, that is, Q̃ =
[

0 I2n+1
I2n+1 0

]
. Note that, by

Theorem 4.2, a spinor structure exists on F.
Denote the ith column of d2 by ei. Set e−i = e2n+1+i. Hence the associated hyperbolic

basis of the middle module R2n+1 ⊕ R2n+1 of F is {e1, . . . , e2n+1, e−1, . . . , e−(2n+1)}.
Let  = − ∪ ([1, 2n + 1] \ ). Let  be an index set of [1, 2n + 2] = {1, . . . , 2n + 2}

where the cardinality of  is equal to 2n + 1, and let (d2) , denote the (2n + 1) × (2n + 1)
minors d2 on rows  and columns  . Note that (2n+ 1)× (2n+ 1) minors of the matrix d2

corresponding to  rows and  columns are of the form:

(d2) , =

⎧⎪⎪⎨⎪⎪⎩y
2n+1−�()(Pf(, X))2, if  = [1, 2n + 2] \ {1},

Pf([1, 2n + 1] \ {i}, X)y2n−�()(Pf(, X))2, if  = [1, 2n + 2] \ {i}.
By Remark 3.3, we have a3, = y2n−�()(Pf(, X))2. Then the spinor coordinates ã3, 

corresponding to  are ±yn−�()/2Pf(, X) by Remark 4.3.(1). If the cardinality of  is 2n,
then Pf(, X) is the spinor coordinate.

Example 5.3. In the 9-generator case, we have two examples of resolutions where none
of the minimal generators are spinor coordinates. Note that we cannot explicitly get a hy-
perbolic basis over Q, but, over C, we can by Theorem 4.2.(2).

(1) The ring R is a polynomial ring in 9 variables on the entries of 3 × 3 generic matrix
X over a field K of characteristic different than 2. The ideal I is generated by 2 × 2-
minors of the matrix X.

(2) The ring R is a polynomial ring in 8 variables over a field K of characteristic different
from 2 and I is the ideal of the generated by the equation of the Segre embedding
P1 × P1 × P1 into P7.

We observe that degree of all spinor coordinates is 3 whereas minimal generators of I are of
degree 2. Hence none of the minimal generators of I are spinor coordinates.

6. A generic doubling of an almost complete intersection and Kustin-Miller model

6. A generic doubling of an almost complete intersection and Kustin-Miller model
In this section, we discuss a generic doubling of an almost complete intersection of codi-

mension 3 which leads to a specialization of Kustin-Miller model given in Section 6.1.
Throughout all polynomial rings are over a field K of characteristic different from two.

6.1. Kustin-Miller model (KMM).
6.1. Kustin-Miller model (KMM). We recall the well-known Kustin-Miller family of

ideals associated to a 3 × 4 matrix, a 4-vector, and a variable. For details, see [16, 18].
Let R be a polynomial ring over K with indeterminates v, xi, and amn where i = 1, . . . , 4,
m = 1, . . . , 3, and n = 1, . . . , 4.

Let

(8) X =
[ x1

x2
x3
x4

]
and M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
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We set qi =
∑4

j=1 ai jx j = ai1x1 + ai2x2 + ai3x3 + ai4x4 and

(9) I = 〈q1, q2, q3, x1v + M123;234, x2v − M123;134, x3v + M123;124, x4v − M123;123〉,
where M; is the minor of the submatrix of M involving  rows and  columns. Let s be
a 12 × 12 exchange matrix with entries of the form

si j =

⎧⎪⎪⎨⎪⎪⎩1, j = 12 − i + 1

0, j � 12 − i + 1.

Note that s can be put in the form
[
0 I6

I6 0

]
up to permutation of columns. Then a minimal

free resolution for I is given by

(10) 0→ R
dt

1−−→ R7 sDt

−−→ R12 D−→ R7 d1−−→ R→ R/I → 0

where

d1 =
[
q1 q2 q3 x1v + M123;234 x2v − M123;134 x3v + M123;124 x4v − M123;123

]
,

and the matrix D is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q2 −q3 0 M23;34 M23;24 M23;23 M23;14 M23;13 M23;12 −v 0 0
q1 0 −q3 −M13;34 −M13;24 −M13;23 −M13;14 −M13;13 −M13;12 0 −v 0
0 q1 q2 M12;34 M12;24 M12;23 M12;14 M12;13 M12;12 0 0 −v
0 0 0 −x2 x3 −x4 0 0 0 a11 a21 a31
0 0 0 x1 0 0 −x3 x4 0 a12 a22 a32
0 0 0 0 −x1 0 x2 0 −x4 a13 a23 a33
0 0 0 0 0 x1 0 −x2 x3 a14 a24 a34

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

6.2. Spinor coordinates of the Kustin-Miller model.
6.2. Spinor coordinates of the Kustin-Miller model. Next we calculate the spinor co-

ordinates on the Kustin-Miller model. Let us assume the notation in Section 6.1 and denote
the ith column of the matrix D by ei and e−i = e6+i.

Remark 6.1. By Theorem 4.2, a spinor structure exists on the resolution (10) and hence
we get spinor coordinates. Let us discuss the computation of spinor coordinates displayed
in Table 1: We first find the Buchsbaum-Eisenbud map a3 with the help of Remark 3.3. For
 = {1}, a3, = −x2

1q2
3 where  = − ∪  c. By Remark 4.3(1), we get ã3,{1} = ιx1q3 where

ι ∈ C denotes the imaginary part of a complex number. Let us consider  = {±1, 3, 4, 5, 6}.
Then a3, = −x2

1q2q3. By using Remark 4.3(3), we have ã3,{±1,3,4,5,6} = ã3,{1} ã3,{2}. Then
ã3,{2} = ιx1q2. A repeated application of Remark 4.3(3) gives

−x1x2q2
3 = a3,{−1,2,3,4,±5} = ã3,{1} ã3,{1,5,6}.

Hence we get ã3,{1,5,6} = ιx2q3. Using the relations in Remark 4.3(3), one can similarly
calculate the rest of the nonzero spinor coordinates given in Table 1. Also we observe that
four minimal generators of the ideal I in (9) are among the spinor coordinates in Table 1.

6.3. Generic doubling of an almost complete intersection.
6.3. Generic doubling of an almost complete intersection. In this subsection, we recall

a resolution of an almost complete intersection ideal of codimension 3 given in [9]. We
start with a generic doubling of an almost complete intersection of codimension 3. Next in
Theorem 6.3 we see that such doubling is a specialization of the KMM. In Theorem 6.4 we
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get a resolution of the deformation of the ideal given in (17). Finally, in Corollary 6.5, we
conclude that resolutions of such deformed ideals are specializations of the KMM given in
Section 6.1. For generic doubling computations, we use Macaulay2 software [12].

Remark 6.2. Let R = K[ci j, ukl] be a polynomial ring over K where the variables ci j are
skew-symmetric in i, j and variables ukl are generic variables for 1 ≤ k, l ≤ 3. Consider a
3 × 3 generic skew-symmetric matrix C = (ci j) and a generic matrix N as

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−u11 u12 −u13

−u21 u22 −u23

−u31 u32 −u33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Let J = 〈q1, q2, q3,−N123;123〉 be an ideal of R where q1 = c23u11 − c13u12 + c12u13, q2 =

c23u21 − c13u22 + c12u23, q3 = c23u31 − c13u32 + c12u33, and N ; is the submatrix of N
involving  rows and  columns. By [9, Proposition 2.4], a minimal free resolution of R/J
is

(11) F : 0→ R3 d3−−→ R6 d2−−→ R4 d1−−→ R→ R/J → 0,

where

d1 =
[
q1 q2 q3 −N123;123

]
,

d2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−q2 −q3 0 N23;12 N23;13 N23;23

q1 0 −q3 −N13;12 −N13;13 −N13;23

0 q1 q2 N12;12 N12;13 N12;23

0 0 0 −c12 c13 −c23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

d3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −c12 c13

c12 0 −c23

−c13 c23 0
−u11 u12 −u13

−u21 u22 −u23

−u31 u32 −u33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Next we study a generic doubling of the resolution F given in (20) above. Applying
HomR(−,R) to F, one gets an acyclic complex

F∗ : 0→ R
d∗1−−→ R4 d∗2−−→ R6 d∗3−−→ R3 → ωR/J → 0,

where d∗3 = −dT
3 , d∗2 = −dT

2 and d∗1 = −dT
1 . By using Macaulay2 software [12], we compute

HomR/J(ωR/J ,R/J) which is generated by the image of the following matrix

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−c23 N23;23 N13;23 N12;23

−c13 −N23;13 −N13;13 −N12;13

−c12 N23;12 N13;12 N12;12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Let R̃ = R[τ1, τ2, τ3, τ4]. Note that

(12) F̃ : 0→ R̃3 d3−−→ R̃6 d2−−→ R̃4 d1−−→ R̃→ R̃/JR̃→ 0,
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and

(13) F̃∗ : 0→ R̃
d∗1−−→ R̃4 d∗2−−→ R̃6 d∗3−−→ R̃3 → ωR̃/JR̃ → 0

are minimal free resolutions of R̃/JR̃ and ωR̃/JR̃, respectively.
We set

s1 = τ4c23 + τ1N23;23 + τ2N13;23 + τ3N12;23,

s2 = τ4c13 − τ1N23;13 − τ2N13;13 − τ3N12;13,

s3 = τ4c12 + τ1N23;12 + τ2N13;12 + τ3N12;12.

Let

(14) M′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−u11 u12 −u13 τ1

−u21 u22 −u23 −τ2

−u31 u32 −u33 τ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Take ψ1 =

[
s1 s2 s3

]
, and

ψ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M′23;14 M′23;24 M′23;34 −τ4 0 0
−M′13;14 −M′13;24 −M′13;34 0 −τ4 0
M′12;14 M′12;24 M′12;34 0 0 −τ4

0 0 0 −τ1 τ2 −τ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where M′

; denotes the minor of M′ involving  rows and  columns.
Set ψ3 = −ψT

2 and ψ4 = −ψT
1 . Then ψ1 : R̃3 → R̃ lifts to the chain map ψ : F̃∗ → F̃ of

complexes as follows:

F̃ : 0 �� R̃3
d3 �� R̃6

d2 �� R̃4
d1 �� R̃

F̃∗ : 0 �� R̃
d∗1 ��

ψ4

��

R̃4
d∗2 ��

ψ3

��

R̃6

ψ2

��

d∗3 �� R̃3

ψ1

��

Let

(15) I = JR̃ + 〈s1, s2, s3〉.
Then the mapping cone with respect to ψ gives us a complex of the form

(16) (ψ) : 0→ R̃
δ4−→ R̃7 δ3−→ R̃12 δ2−→ R̃7 δ1−→ R̃→ R̃/I → 0

where

δ1 =
[
d1 ψ1

]
, δ2 =

[
d2 ψ2
0 −dT

3

]
, δ3 =

[
d3 −ψT

2
0 −dT

2

]
, δ4 =

[−ψT
1

−dT
1

]
.

Theorem 6.3. The resolution given in (16) is a specialization of the KMM after substi-
tuting x1 = −c23, x2 = −c13, x3 = −c23, x4 = 0, v = τ4, and then sending M in (8) to M′ in
(14).

In the next theorem, we give a minimal free resolution of the following deformed ideal

(17) I(t) = 〈q1 + tτ1, q2 − τ2t, q3 + τ3t,− det(N) − τ4t, s1, s2, s3〉
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in the bigger polynomial ring S = R̃[t]. Further, we show that the resolution of I(t) is a
KMM.

Theorem 6.4. The ideal I(t) of S in (17) above is a Gorenstein ideal of codimension 4.
Moreover, a minimal resolution of S/I(t) is

(18) 0→ S
δ4(t)−−−→ S7 δ3(t)−−−→ S12 δ2(t)−−−→ S7 δ1(t)−−−→ S→ S/I(t)→ 0.

Proof. Set λ =
[
τ1 −τ2 τ3 −τ4 0 0 0

]
. Then the deformation of the ideal I, given

in (15), along λ is I(t) = im(δ1(t)), where

δ1(t) = δ1 + tλ, δ2(t) =
[
d2 ψ2
φ2 −dT

3

]
, δ3(t) =

[
d3 −ψT

2
−φT

2 −dT
2

]
,

δ4(t) =
[ −ψT

1
−dT

1 − tλT

]
, and φ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 −t 0 0
0 0 0 0 t 0
0 0 0 0 0 −t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
By computation in Macaulay2, we see that im([δ1(t)]T ) = ker([δ2(t)]T ). Now we use

Buchsbaum-Eisenbud exactness criteria given in [5]. The rank condition is immediately
satisfied. We claim that depth(I(δi(t))) ≥ 4 where I(δi(t)) denotes the ideal generated by
ri × ri minors of δi(t) for 1 ≤ i ≤ 4. By construction, we see that the ideals (I(δi(t)), t) and
(I(δi), t) are the same. Thus depth of I(δi(t), t) is at least 5 and the claim follows. �

As an application of Theorem 6.4, we have the following result.

Corollary 6.5. The resolution (18) in Theorem 6.4 is a specialization of the KMM after
substituting x1 = −c23, x2 = −c13, x3 = −c23, x4 = t, v = τ4, and then sending M in (8) to
M′ in (14).

7. Generic doubling of resolutions of the format (1,5,6,2)

7. Generic doubling of resolutions of the format (1,5,6,2)
In our last section, we use the resolution of the format (1, 5, 6, 2) studied in [7, Section

3] to construct a generic doubling of a resolution (22) of such format. In Theorem 7.2, we
show that the resolution (22) is not a specialization of the Kustin-Miller family.

7.1. Resolution of the format (1, 5, 6, 2).
7.1. Resolution of the format (1, 5, 6, 2). We recall a minimal free resolution of a perfect

ideal of codimension 3 with 5 generators of Cohen-Macaulay type 2. This subsection is from
[7, Section 3].

Let K be a field of characteristics different from two. Let R be a polynomial ring over K
with variables xi, j, yi, j (1 ≤ i < j ≤ 4), and zi, j,k (1 ≤ i < j < k ≤ 4).

We use Δ(i j, kl) to denote the 2 × 2 minors of the matrix[
x1,2 x1,3 x1,4 x2,3 x2,4 x3,4

y1,2 y1,3 y1,4 y2,3 y2,4 y3,4

]
corresponding to the columns labeled by (i, j) and (k, l). The cubic generators are u1,2,3,
u1,2,4, u1,3,4 and u2,3,4, where

u1,2,3 = −2z2,3,4Δ(12, 13) + 2z1,3,4Δ(12, 23) − 2z1,2,4Δ(13, 23) + z1,2,3(Δ(13, 24) − Δ(12, 34) + Δ(14, 23)),

u1,2,4 = 2z2,3,4Δ(12, 14) − 2z1,3,4Δ(12, 24) + z1,2,4(Δ(12, 34) + Δ(13, 24) + Δ(14, 23)) − 2z1,2,3Δ(14, 24),
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u1,3,4 = 2z2,3,4Δ(13, 14) + z1,3,4(−Δ(12, 34) − Δ(13, 24) + Δ(14, 23)) + 2z1,2,4Δ(13, 34) − 2z1,2,3Δ(14, 34),

u2,3,4 = z2,3,4(−Δ(12, 34) − Δ(13, 24) − Δ(14, 23)) − 2z1,3,4Δ(23, 24) + 2z1,2,4Δ(23, 34) − 2z1,2,3Δ(24, 34).

Let u = b2 − 4ac, where

a = x1,2x3,4 − x1,3x2,4 + x1,4x2,3,

b = x1,2y3,4 − x1,3y2,4 + x1,4y2,3 + x3,4y1,2 − x2,4y1,3 + x2,3y1,4,

c = y1,2y3,4 − y1,3y2,4 + y1,4y2,3.

Consider the ideal

J(t) = 〈u2,3,4(t), u1,3,4(t), u1,2,4(t), u1,2,3(t), u(t)〉
in the bigger polynomial ring S = R[t], where

u1,2,3(t) = −u1,2,3 + z1,2,3t

u1,2,4(t) = −u1,2,4 + z1,2,4t

u1,3,4(t) = −u1,3,4 + z1,3,4t

u2,3,4(t) = −u2,3,4 + z2,3,4t

u(t) = u − t2.

It is shown in [7, Theorem 3.1] that J(t) is a perfect ideal and S/J(t) has a minimal free
resolution over S of the form

(19) F : 0 −→ S2 d3(t)−−−→ S6 d2(t)−−−→ S5 d1(t)−−−→ S

with differentials

d2(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 u1 −δ1 + δ2 − δ3 + t 2Δ(13, 14) −2Δ(12, 14) −2Δ(12, 13)
−v2 −u2 −2Δ(23, 24) −δ1 − δ2 + δ3 + t 2Δ(12, 24) 2Δ(12, 23)
v3 u3 2Δ(23, 34) 2Δ(13, 34) −δ1 − δ2 − δ3 − t −2Δ(13, 23)
v4 u4 2Δ(24, 34) 2Δ(14, 34) −2Δ(14, 24) δ1 − δ2 − δ3 + t
0 0 −z2,3,4 −z1,3,4 z1,2,4 z1,2,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

d3(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b + t 2a
−2c −b + t
−v1 −u1

v2 u2

v3 u3

−v4 −u4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where u j =
∑

i� j(−1)i xi, jzî, v j =
∑

i� j(−1)iyi, jzî, δ1 = Δ(12, 34), δ2 = Δ(13, 24), and δ3 =

Δ(14, 23).

7.2. Generic doubling of resolutions of the format (1,5,6,2).
7.2. Generic doubling of resolutions of the format (1,5,6,2). Let us construct a generic

doubling of the resolution F stated in (19) of the format (1,5,6,2).
We apply HomS(−, S) to F to get the complex
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F∗ : 0→ S
d1(t)∗−−−−→ S5 d2(t)∗−−−−→ S6 d3(t)∗−−−−→ S2 → ωS/J(t) → 0,

where d3(t)∗ = −d3(t)T , d2(t)∗ = −d2(t)T , and d1(t)∗ = −d1(t)T . Here F∗ is acyclic as J(t) is
a perfect ideal in S.

Consider the bigger polynomial ring S̃ = S[τ1, τ2, τ3, τ4, τ5, τ6]. Note that

(20) F̃ : 0→ S̃2 d3(t)−−−→ S̃6 d2(t)−−−→ S̃5 d1(t)−−−→ S̃→ S̃/JS̃→ 0

(21) F̃∗ : 0→ S̃
d5(t)∗−−−−→ S̃6 d2(t)∗−−−−→ S̃6 d1(t)∗−−−−→ S̃3 → ωS̃/JS̃ → 0

are minimal free resolutions of S̃/JS̃ and ωS̃/JS̃, respectively.
Then we compute HomS/J(t)(ωS/J(t), S/J(t)) by Macaulay2 [12], which is generated by the

image of the matrix [
u4 u3 u2 u1 b − t 2a
−v4 −v3 −v2 −v1 −2c −b − t

]
.

Let ψ1(t) =
[
f1(t) f2(t)

]
, where

f1(t) = −τ1u4 − τ2u3 − τ3u2 − τ4u1 + τ5b + 2aτ6 − τ5t

f2(t) = τ1v4 + τ2v3 + τ3v2 + τ4v1 − 2cτ5 − bτ6 − τ6t,

and take ψ2(t) to be the transpose of the matrix given in Figure 1 at the end of this paper.
Then ψ1(t) : S̃2 → S̃ lifts to the chain map ψ(t) : F̃∗ → F̃ such that

F̃ : 0 �� S̃2
d3(t)

�� S̃6
d2(t)

�� S̃5
d1(t)

�� S̃

F̃∗ : 0 �� S̃
d1(t)∗

��

−ψ1(t)T

��

S̃5
d2(t)∗

��

−ψ2(t)T

��

S̃6

ψ2(t)

��

d3(t)∗
�� S̃2

ψ1(t)

��

Let I(t) = J(t)̃S + 〈 f1(t), f2(t)〉. Then the mapping cone with respect to ψ(t) gives a
complex of the form

(22) (ψ(t)) : 0→ S̃
δ4(t)−−−→ S̃7 δ3(t)−−−→ S̃12 δ2(t)−−−→ S̃7 δ1(t)−−−→ S̃→ S̃/I(t)→ 0

with differentials

δ1(t) =
[
d1(t) ψ1(t)

]
, δ2(t) =

[
d2(t) ψ2(t)

0 −d3(t)T

]
,

δ3(t) =
[
d3(t) −ψ2(t)T

0 −d2(t)T

]
, δ4(t) =

[−ψ1(t)T

−d1(t)T

]
.

Note that δ3(t) = sδ2(t)T where s is a 12 × 12 exchange matrix with entries given by

si j =

⎧⎪⎪⎨⎪⎪⎩1, j = 12 − i + 1

0, j � 12 − i + 1,
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and s can be put in the form
[
0 I6

I6 0

]
up to permutation of columns.

In the next remark, we provide spinor coordinates of the minimal free resolution (ψ(t))
stated in (22).

Remark 7.1. By Theorem 4.2, spinor coordinates of the resolution in (22) exist and we
display these coordinates in Table 2. Let us briefly discuss the computation used in Table 2.

By applying column operations on resolution (22), one gets differentials as

δ1(t) =
[
d1(t) ψ1(t)

]
, δ2(t) =

[
d2(t) ψ2(t)

0 −d3(t)T

]
,

δ3(t) =
[−ψ2(t)T d3(t)
−d2(t)T 0

]
, δ4(t) = δ1(t)T .

We denote the ith column of δ2(t) by ei with e−i = e6+i. Then {e1, . . . , e6, e−1, . . . , e−6} is
the associated hyperbolic basis of S̃12. Computing 6 × 6 minors of δ2(t), we see that the
coordinates of a3 corresponding to the multi-index − ∪  c are squares where  ⊂ [1, 6]
are of even cardinality. Therefore a(t)3, = ã(t)2

3, by Remark 3.3. For each  ⊂ [1, 6], we
record ã(t)3, in Table 2. Note that ī in Table 2 denotes the column corresponding to e−i.

We conclude with our main application. Using spinor coordinates, we show that the
resolution (22), which is a generic doubling of a resolution of the format (1, 5, 6, 2), is not a
specialization of the Kustin-Miller family in Section 6.1.

Theorem 7.2. The resolution given in (22) is not a specialization of the Kustin-Miller
family in Section 6.1.

Proof. Suppose the resolution (22) is a specialization of the KMM given in Section 6.1.
Then a3, for  ⊂ [1, 6] of the resolution (22) corresponds to a3, for some  ⊂ [1, 6] of
the KMM. Therefore spinor coordinates in Table 2 go to spinor coordinates in Table 1 of
the KMM. In Table 2, we see that only one of the spinor coordinates is among the minimal
generators of the ideal in resolution (22). Then, by specialization, the KMM can have at most
one spinor coordinate among minimal generators of I in Section 6.1. This is not possible as
Table 1 displays four spinor coordinates among minimal generators of I in Section 6.1. �

Remark 7.3. Calculations in Examples 5.1, 5.2, Remark 6.1, and Theorem 7.1 show that
at least one of the minimal generators of a Gorenstein ideal with 4, 6, or 7 generators are
among the spinor coordinates. However, in case of a Gorenstein ideal with 9 generators,
we see in Example 5.3 that none of the minimal generators of the ideal comes from spinor
coordinates. This suggests that Gorenstein ideals of codimension 4 with up to 8 generators
are easier to classify than those with more than 8 generators.
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Table 1. Spinor coordinates of the KMM with 7 generators

Cases ã3,

 = {i} for i = 1, 2, 3 x1q4−i

 = {5, 6} ∪ {i} for i = 1, 2, 3 x2q4−i

 = {4, 6} ∪ {i} for i = 1, 2, 3 x3q4−i

 = {4, 5} ∪ {i} for i = 1, 2, 3 x4q4−i

 = {1, 2, 3} x1v + M123;234

 = {1, 2, 3, 5, 6} x2v − M123;134

 = {1, 2, 3, 4, 6} x3v + M123;124

 = {1, 2, 3, 4, 5} x4v − M123;124

 = {1, 2, 4} a22q3 − a32q2

 = {1, 2, 5} a23q3 − a33q2

 = {1, 2, 6} a24q3 − a34q2

 = {1, 3, 4} a12q3 − a32q1

 = {1, 3, 5} a13q3 − a33q1

 = {1, 3, 6} a14q3 − a34q1

 = {2, 3, 4} a22q3 − a32q2

 = {2, 3, 5} a23q3 − a33q2

 = {2, 3, 6} a24q3 − a34q2
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⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

−x
14
τ 4
−

x 2
4τ

3
−

x 3
4τ

2
x 1

3τ
4
+

x 2
3τ

3
−

x 3
4τ

1
−x

12
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Fig.1. The Matrix ψ2(t)
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Table 2. Spinor coordinates of resolution (22)

Cases for ã(t)3,

ã(t)3,{φ} = 0
ã(t)3,{1,2} = ιu(t)
ã(t)3,{1,3} = ι(x24u1,3,4(t) − x34u1,2,4(t) − x14u2,3,4(t))
ã(t)3,{1,4} = ι(x23u1,3,4(t) − x34u1,2,3(t) − x13u2,3,4(t))
ã(t)3,{1,5} = −x24u1,2,3(t) + x23u1,2,4(t) − x12u2,3,4(t)
ã(t)3,{1,6} = x13u1,2,4(t) − x14u1,2,3(t) − x12u1,3,4(t)
ã(t)3,{2,3} = ι(y34u1,2,4(t) − y24u1,3,4(t) + y14u2,3,4(t))
ã(t)3,{2,4} = ι(y34u1,2,3(t) − y23u1,3,4(t) + y13u2,3,4(t))
ã(t)3,{2,5} = −y24u1,2,3(t) + y23u1,3,4(t) − y12u2,3,4(t)
ã(t)3,{2,6} = −y14u1,2,3(t) + y13u1,2,4(t) − y12u1,3,4(t)
ã(t)3,{3,4} = 1

2 [ι(z2,3,4u1,3,4(t) − z1,3,4u2,3,4(t))]
ã(t)3,{3,5} = 1

2 [z2,3,4u1,2,4(t) − z1,2,4u2,3,4(t)]
ã(t)3,{3,6} = 1

2 [z1,3,4u1,2,4(t) − z1,2,4u1,3,4(t)]
ã(t)3,{4,5} = 1

2 [z2,3,4u1,2,3(t) − z1,2,3u2,3,4(t)]
ã(t)3,{4,6} = 1

2 [z1,3,4u1,2,3(t) − z1,2,3u1,3,4(t)]
ã(t)3,{5,6} = 1

2 [ι(z1,2,4u1,2,3(t) − z1,2,3u1,2,4(t))]
ã(t)3,{1,2,3,4} = 1

2 [ι(τ4u1,3,4(t) + τ3u2,3,4(t) + 2y34 f1(t) + 2x34 f2(t))]
ã(t)3,{1,2,3,5} = 1

4 [−τ4u1,2,4(t) + τ2u(t)2,3,4 − 2y24 f1(t) − 2x24 f2(t)]
ã(t)3,{1,2,3,6} = 1

2 [τ3u1,2,4(t) + τ2u1,3,4(t) − 2y14 f1(t) − 2x14 f2(t)]
ã(t)3,{1,2,4,5} = 1

4 [−τ4u1,2,3(t) − τ1u2,3,4(t) − 2y23 f1(t) − 2x23 f2(t)]
ã(t)3,{1,2,4,6} = 1

2 [τ3u1,2,3(t) − τ1u1,3,4(t) − 2y13 f1(t) − 2x13 f2(t)]
ã(t)3,{1,2,5,6} = 1

4 [ι(−τ2u1,2,3(t) − τ1u1,2,4(t) − 2y12 f1(t) − 2x12 f2(t))]
ã(t)3,{1,3,4,5} = 1

2 [−τ5u2,3,4(t) + z2,3,4 f1(t)]
ã(t)3,{1,3,4,6} = 1

4 [ι(−τ5u1,3,4(t) + z1,3,4 f1(t))]
ã(t)3,{2,3,4,5} = 1

2 [τ6u2,3,4(t) − z2,3,4 f2(t)]
ã(t)3,{2,3,4,6} = 1

2 [τ6u1,3,4(t) − z1,3,4 f2(t)]
ã(t)3,{2,3,5,6} = 1

2 [ι(τ6u1,2,4(t) − z1,2,4 f2(t))]
ã(t)3,{2,4,5,6} = 1

2 [ι(−τ6u1,2,3(t) − z1,2,3 f2(t))]
ã(t)3,{1,3,4,5} = 1

2 [ι(−τ5u1,2,3(t) + z1,2,3 f1(t))]
ã(t)3,{1,3,5,6} = 1

2 [ι(−τ5u1,2,4(t) + z1,2,4 f1(t))]
ã(t)3,{1,4,5,6} = 1

2 [ι(−τ5u1,2,3(t) + z1,2,3 f1(t))]
ã(t)3,{1,2,3,4,5,6} = 1

2 [ι(τ6 f1(t) − τ5 f2(t))]
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Kraków 30-348
Poland
e-mail: jerzy.weyman@uj.edu.pl


