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Abstract
The restricted Feynman path integrals (RFPIs) have been proposed to study continuous quan-

tum measurements in physics. The RFPIs are heuristically determined in terms of the usual
probability amplitude multiplied by weight for each path, which contains information about the
results and the resolution of the measuring device. In the present paper we will consider the
RFPIs particularly for the position measurements and will prove rigorously that these RFPIs are
well defined in the L2 space and are the solutions to the non-self-adjoint Schrödinger equations.
Our results in the present paper give a generalization of the results on the usual Feynman path
integrals for the Schrödinger equations. Furthermore, our results are extended to quantum spin
systems.

1. Introduction

1. Introduction
Let T > 0 be an arbitrary constant, 0 ≤ t ≤ T and x = (x1, . . . , xd) ∈ Rd. First, we consider

a one-particle system with mass m > 0 and charge q ∈ Rmoving in Rd with electric strength
E(t, x) = (E1, . . . , Ed) ∈ Rd and a magnetic strength tensor B(t, x) = (Bjk(t, x))1≤ j<k≤d ∈
R

d(d−1)/2. Let (V(t, x), A(t, x)) = (V, A1, . . . , Ad) ∈ Rd+1 be an electromagnetic potential, i.e.

E = −∂A
∂t
− ∂V
∂x
, Bjk =

∂Ak

∂x j
− ∂Aj

∂xk
(1 ≤ j < k ≤ d),(1.1)

where ∂V/∂x = (∂V/∂x1, . . . , ∂V/∂xd). Then the Lagrangian function and the classical action
are given by

(1.2) (t, x, ẋ) =
m
2
|ẋ|2 + qẋ · A(t, x) − qV(t, x), ẋ ∈ Rd

and

(1.3) S(t, s; q) =
∫ t

s
(θ, q(θ), q̇(θ))dθ, q̇(θ) =

dq(θ)
dθ

for a path q(θ) ∈ Rd (s ≤ θ ≤ t), respectively. The corresponding Schrödinger equation is
defined by

i�
∂u
∂t

(t) = H(t)u(t) :=

⎡⎢⎢⎢⎢⎢⎢⎣ 1
2m

d∑
j=1

(
�

i
∂

∂x j
− qAj(t, x)

)2

+ qV(t, x)

⎤⎥⎥⎥⎥⎥⎥⎦ u(t),(1.4)
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where � is the Planck constant. Throughout this paper we always consider solutions to the
Schrödinger equations in the sense of distribution. Let L2 = L2(Rd) denote the space of all
square integrable functions on Rd with the inner product ( f , g) :=

∫
f (x)g(x)∗dx and the

norm ‖ f ‖, where g(x)∗ denotes the complex conjugate of g(x).
Consider a continuous quantum measurement of the position of the particle in the time

interval [0, T ]. Let {a(t) ∈ Rd; 0 ≤ t ≤ T } be its result and δ > 0 its resolution or error
of the measuring device. The measurement gives a change of the probability amplitude
of the particle, called wave-function reduction (cf. §17.5 of [10] and §1.4 of [28]). Let
f ∈ L2 be a probability amplitude of the particle at an initial time t = 0. Then, if we follow
Feynman’s postulates I and II on p. 371 of [7], the probability amplitude in the continuous
measurement is heuristically given by the “sum” of ei�−1S(t,0;q) f (q(0)) over a set Γ(t, x; δ) of
all paths q satisfying q(t) = x and |q(θ) − a(θ)| ≤ δ for all θ ∈ [0, t], i.e.

(1.5)
∫
Γ(t,x;δ)

ei�−1S(t,0;q) f (q(0))q.

An alternative Feynman path integral description has been proposed by Mensky in §4.2 of
[22] and §5.1.3 of [23], written formally as

(1.6)
∫
Γ(t,x)

ei�−1S(t,0;q)−c
∫ t

0 |q(θ)−a(θ)|2dθ/δ2
f (q(0))q

with a constant c > 0 , where Γ(t, x) is a set of all paths q satisfying q(t) = x. See also
§10.5.4 of [1], [6], §3.2 of [8], §5.1 of [21] and [24]. Both of (1.5) and (1.6) are called the
restricted Feynman path integrals (RFPIs).

Our purpose in the present paper is to give a rigorous meaning in the L2 space to each of
(1.6) and a more general formula with a weight function W(t, x) ∈ R replacing c|x−a(t)|2/δ2.
Furthermore, we will show that each of (1.6) and the more general formula stated above is
the solution to the non-self-adjoint Schrödinger equation with f at t = 0.

As far as the author knows, we have been able to give a rigorous meaning to (1.6) only
for A = 0 and V = C|x|2 with a constant C ∈ R, where we can directly calculate (1.6) by
using Gaussian integrals (cf. §4.4 and §5.4 of [22]).

We also note that there is another approach to continuous quantum position measurements
of the particle. We begin by considering a sequence of n instantaneous position measure-
ments separated by a time Δt = T/n and then, determine the evolution of the measured
system in the continuous limits n → ∞ and so Δt → 0 (cf. [3, 4, 5], Chapter 3 in [19],
Chapter 2 in [22] and Chapter 2 in [23]).

Let W(t, x) be a weight function and define the effective Lagrangian function under the
measurement by

(1.7) w(t, x, ẋ) = (t, x, ẋ) + i�W(t, x)

and the effective classical action by

Sw(t, s; q) =
∫ t

s
w(θ, q(θ), q̇(θ))dθ = S(t, s; q) + i�

∫ t

s
W(θ, q(θ))dθ(1.8)

for a path q(θ) ∈ Rd as in §4.2 of [22]. In the present paper we will prove for W(t, x) =
c|x − a(t)|2/δ2 and more general weight functions that the RFPIs
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(1.9) K(t, 0) f :=
∫
Γ(t,x)

ei�−1Sw(t,0;q) f (q(0))q

are well defined in L2 for f ∈ L2. K(t, 0) f defined by (1.9) gives a generalization of (1.6).
Furthermore, we will prove that K(t, 0) f satisfy the non-self-adjoint Schrödinger equations,
derived from (1.7) through the Legendre transformation,

i�
∂u
∂t

(t) = Hw(t)u(t) :=

⎡⎢⎢⎢⎢⎢⎢⎣ 1
2m

d∑
j=1

(
�

i
∂

∂x j
− qAj(t, x)

)2

+ qV(t, x) − i�W(t, x)

⎤⎥⎥⎥⎥⎥⎥⎦ u(t)(1.10)

with u(0) = f , which was suggested for (1.6) in §4.3.1 of [23].
Next, we will generalize the above results to a one-particle spin system, where all spin

components or directions may move separately in Rd as in the Stern–Gerlach experiment
(cf. Chap. 12 of [10] and §1.1 of [28]). We generally suppose that a particle has l spin
components (cf. p. 12 in [2] and §2.2 of [9]) and consider a continuous position measurement
for all spin components in [0, T ], where l ≥ 0 is an integer. Although we don’t know the
physical meaning precisely, we will study the effective Lagrangian function given by

(1.11) sw(t, x, ẋ) = w(t, x, ẋ) − �Hs(t, x) + i�Ws(t, x)

as a generalization of (1.7), where w(t, x, ẋ) is the Lagrangian function defined by (1.7),
Hs(t, x) an l × l Hermitian matrix denoting the spin term and Ws(t, x) an l × l Hermitian
matrix denoting the weight term acting on the spin components. The corresponding non-
self-adjoint Schrödinger equation is written as

(1.12) i�
∂u
∂t

(t) =
[
Hw(t)I + �Hs(t, x) − i�Ws(t, x)

]
u(t),

where Hw(t) is the Hamiltonian operator defined by (1.10). We will prove that the RFPI for
(1.11) can be defined rigorously in (L2(Rd))l and is the solution to the equation (1.12). It is
noted that for Ws(t, x) we assume

(1.13) |∂αxwsi j(t, x)| ≤ Cα, i, j = 1, 2, . . . , l

in [0, T ] × Rd for all α, where wsi j(t, x) denotes the (i, j)-component of Ws(t, x).
Finally, we consider a quantum spin system consisting of N particles with l spin compo-

nents each, under a continuous position measurement for all spin components of all particles
in [0, T ].

We note that if W(t, x) = 0 and Ws(t, x) = 0 in (1.7) and (1.11), all results in the present
paper give the same results as for the usual Feynman path integrals in [14, 16, 18].

In the present paper the RFPIs are defined by the time-slicing method in terms of piece-
wise free moving paths or broken line paths. This approach to the Feynman path integrals
are widely used in the physics literature (cf. §2.4 in [8], §3.2 in [22], Appendix A3 in [23],
§9.1 in [25] and §5.1 in [27]).

We will prove the main theorems in the present paper, following the proofs in [13, 14,
16, 18], where the usual Feynman path integrals, i.e. with W(t, x) = 0 and Ws(t, x) = 0 were
studied. More specifically, we first introduce the fundamental operator (t, s) in §3, and
then prove its stability and consistency. Combining these results and the results in [17] con-
cerning the non-self-adjoint Schrödinger equations (1.10) and (1.12), we can complete the
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proofs of our results. In particular, we define the RFPIs for the spin system, following [16].
We also note that in the present paper we will use the following delicate result concerning
the L2-boundedness of pseudo-differential operators, which follows from Theorem 13.13 on
p. 322 in [29].

Theorem 1.A. Suppose p(x, ξ, x′) ∈ S0(R3d), i.e.

(1.14) sup
x,ξ,x′
|∂αξ ∂βx∂γx′ p(x, ξ, x′)| ≤ Cαβγ < ∞

for all multi-indices α, β and γ, where ∂αξ denotes (∂/∂ξ1)α1 · · · (∂/∂ξd)αd for α = (α1, . . . , αd).
Let P(X, hDx, X′) be the pseudo-differential operator defined by

(1.15)
∫

eix·ξd̄ξ
∫

e−ix′·ξp(x, hξ, x′) f (x′)dx′, d̄ξ = (2π)−ddξ

for f ∈ (Rd), where x · ξ = ∑d
j=1 x jξ j, h > 0 is a constant and (Rd) denotes the Schwartz

space of all rapidly decreasing functions on Rd. Then we have

(1.16) ‖P(X, hDx, X′)‖L2→L2 = sup
x,ξ
|p(x, ξ, x)| + O(h),

where ‖P‖L2→L2 denotes the operator norm from L2 into L2.

The delicate estimate (1.16) in Theorem 1.A will be essentially used as h = t − s to prove
(3.28) in the present paper.

The plan of the present paper is as follows. In §2 all main results are stated in Theorems
2.1–2.6. In §3 and §4 we will prove the stability and the consistence of (t, s) respectively.
In §5 Theorems 2.1 and 2.2 will be proved. In §6 Theorems 2.3–2.6 will be proved. In the
appendix we will give a proof of Theorem 1.A by means of Theorem 13.13 in [29].

2. Main theorems

2. Main theorems
Hereafter we suppose � = 1 and q = 1 for simplicity. We first consider (1.9). Let t

in [0, T ]. For an arbitrary integer ν ≥ 1 we take τ j ∈ [0, t] ( j = 1, 2, . . . , ν − 1) satisfy-
ing 0 = τ0 < τ1 < · · · < τν−1 < τν = t, set Δ := {τ j}ν−1

j=1 and write |Δ| := max{τ j+1 −
τ j; j = 0, 1, . . . , ν − 1}. Let x ∈ Rd be fixed. We take arbitrary points x( j) ∈ Rd ( j =
0, 1, . . . , ν − 1) and determine the piecewise free moving path or the piecewise straight line
qΔ(θ; x(0), . . . , x(ν−1), x) ∈ Rd (0 ≤ θ ≤ t) by joining x( j) at τ j ( j = 0, 1, . . . , ν, x(ν) = x) in
order. Let Sw(t, s; q) be the effective classical action defined by (1.8). Take χ ∈ C∞0 (Rd),
i.e. an infinitely differentiable function on Rd with compact support, such that χ(0) = 1 and
fix it through the present paper. For simplicity we suppose that χ is real-valued. We will
determine the approximation of the RFPI expressed as (1.9) by

KΔ(t, 0) f = lim
ε→0+

ν−1∏
j=0

(
m

2πi(τ j+1 − τ j)

) d
2
∫
Rd
· · ·

∫
Rd

eiSw(t,0;qΔ)(2.1)

× f (x(0))
ν−1∏
j=1

χ(εx( j))dx(0)dx(1) · · · dx(ν−1)



Restricted Feynman Path Integrals 109

for f ∈ C∞0 (Rd). The right-hand side of (2.1) is called an oscillatory integral and will be
denoted by

ν−1∏
j=0

(
m

2πi(τ j+1 − τ j)

) d
2

Os-
∫
Rd
· · ·

∫
Rd

eiSw(t,0;qΔ) f (x(0))dx(0)dx(1) · · · dx(ν−1)

(cf. p. 45 of [20]).
For a multi-index α = (α1, . . . , αd) and x ∈ Rd we write |α| = ∑d

j=1 α j, xα = xα1
1 · · · xαd

d

and 〈x〉 = √
1 + |x|2. In the present paper we often use symbols C,Cα,Cαβ, Ca and δα to

write down constants, though these values are different in general.

Throughout the present paper we assume that ∂αx E j(t, x) ( j = 1, 2, . . . , d), ∂αx Bjk(t, x) (1 ≤
j < k ≤ d) and ∂αx W(t, x) are continuous in [0, T ] × Rd for all α. Then, ∂αx∂tB jk(t, x) (1 ≤
j < k ≤ d) are also continuous in [0, T ] × Rd for all α, because of Faraday’s law ∂tB jk =

−∂Ek/∂x j + ∂E j/∂xk, which follows from (1.1).

Assumption 2.A. We assume

(2.2) |∂αx E j(t, x)| ≤ Cα, |α| ≥ 1, j = 1, 2, . . . , d,

(2.3) |∂αx Bjk(t, x)| ≤ Cα〈x〉−(1+δα), |α| ≥ 1, 1 ≤ j < k ≤ d

in [0, T ] × Rd with constants Cα ≥ 0 and δα > 0.

Assumption 2.B. We assume (2.2) and

(2.4) |∂αx∂tB jk(t, x)| ≤ Cα〈x〉−(1+δα), |α| ≥ 1, 1 ≤ j < k ≤ d

in [0, T ] × Rd with constants Cα ≥ 0 and δα > 0.

Assumption 2.C. We assume that ∂αx A j(t, x) ( j = 1, 2, . . . , d) and ∂αx V(t, x) are continuous
in [0, T ] × Rd for all α and satisfy

(2.5) |∂αx A j(t, x)| ≤ Cα, |α| ≥ 1, j = 1, 2, . . . , d,

(2.6) |∂αx V(t, x)| ≤ Cα〈x〉, |α| ≥ 1

in [0, T ] × Rd with constants Cα ≥ 0.

Assumption 2.D. We assume

(2.7) W(t, x) ≥ −CW ,

(2.8) |∂αx W(t, x)|pα ≤ Cα
{
1 +CW +W(t, x)

}
, |α| ≥ 1,

(2.9) |∂αx W(t, x)| ≤ Cα〈x〉, |α| ≥ 1

in [0, T ] × Rd with constants CW ≥ 0,Cα ≥ 0 and pα ≥ 1.

Example 2.1. The function c|x−a(t)|2/δ2 in (1.6) with a continuous path a(t) ∈ Rd satisfies
Assumption 2.D.
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Theorem 2.1. Suppose that Assumptions 2.A and 2.D are satisfied. Then, there exists
a constant ρ∗ > 0 such that the following statements hold for arbitrary potentials (V, A)
with continuous V, ∂V/∂x j, ∂Aj/∂t, ∂Aj/∂xk ( j, k = 1, 2, . . . , d) in [0, T ]×Rd, all Δ satisfying
|Δ| ≤ ρ∗ and all t ∈ [0, T ]:

(1) KΔ(t, 0) f defined on f ∈ C∞0 (Rd) by (2.1) is determined independently of the choice of
χ and KΔ(t, 0) f can be uniquely extended to a bounded operator on L2.

(2) For all f ∈ L2, as |Δ| → 0, KΔ(t, 0) f converges in L2 uniformly in t ∈ [0, T ] to an
element K(t, 0) f ∈ L2, which we call the RFPI of f .

(3) For all f ∈ L2, K(t, 0) f belongs to C0
t ([0, T ]; L2), where C j

t ([0, T ]; L2) denotes the
space of all L2-valued, j-times continuously differentiable functions in t ∈ [0, T ]. In addi-
tion, K(t, 0) f is the unique solution in C0

t ([0, T ]; L2) to (1.10) with u(0) = f .
(4) Let ψ(t, x) ∈ C1([0, T ] × Rd) be a real-valued function such that ∂x j∂xkψ(t, x) and

∂t∂x jψ(t, x) ( j, k = 1, 2, . . . , d) are continuous in [0, T ] × Rd and consider the gauge trans-
formation

(2.10) V ′ = V − ∂ψ
∂t
, A′j = Aj +

∂ψ

∂x j
( j = 1, 2, . . . , d).

We write (2.1) for this (V ′, A′) as K′
Δ
(t, 0) f . Then we have the formula

(2.11) K′Δ(t, 0) f = eiψ(t,·)KΔ(t, 0)
(
e−iψ(0,·) f

)
for all f ∈ L2 as in the case of W(t, x) = 0 (cf. (6.16) in [14]), and we have the analogous
relation between the limits K′(t, 0) f and K(t, 0) f .

Let us introduce the weighted Sobolev spaces

Ba(Rd) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ f ∈ L2(Rd); ‖ f ‖a := ‖ f ‖ +
∑
|α|=a

(‖xα f ‖ + ‖∂αx f ‖) < ∞
⎫⎪⎪⎪⎬⎪⎪⎪⎭(2.12)

(a = 1, 2, . . . )

as in [14]. We denote the dual space of Ba by B−a (cf. Lemma 2.4 in [12]) and the L2 space
by B0.

Theorem 2.2. Suppose that either Assumption 2.A or 2.B is satisfied. In addition, we
suppose Assumptions 2.C and 2.D. Then there exists another constant ρ∗ > 0 such that
the same statements (1)–(4) as in Theorem 2.1 hold for all Δ satisfying |Δ| ≤ ρ∗ and all
t ∈ [0, T ]. In addition, for all f ∈ Ba(Rd) (a = 1, 2, . . . ) KΔ(t, 0) f belongs to Ba and as
|Δ| → 0, KΔ(t, 0) f converges in Ba uniformly in t ∈ [0, T ] to K(t, 0) f , which belongs to
C0

t ([0, T ]; Ba).

Next, we consider a one-particle spin system (1.11) with l spin components. Throughout
the present paper we assume that ∂αx hsi j(t, x) and ∂αxwsi j(t, x) are continuous in [0, T ]×Rd for
all α and i, j = 1, 2, . . . , l, where hsi j denotes the (i, j)-component of Hs. For a continuous
path q(θ) ∈ Rd (s ≤ θ ≤ t) we define an l × l matrix  (θ, s; q) (s ≤ θ ≤ t) by the solution
 (θ) to

(2.13)
d
dθ

 (θ) = −{iHs(θ, q(θ)) +Ws(θ, q(θ))
}
 (θ),  (s) = I
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with the identity matrix I.
Let Δ = {τ j}ν−1

j=1 be a subdivision of [0, t] and qΔ = qΔ(θ; x(0), . . . , x(ν−1), x) ∈ Rd (0 ≤ θ ≤ t)
the piecewise free moving path defined in the early part of this section. We define the
probability amplitude by

(2.14) exp ∗iSsw(t, 0; qΔ) :=
(
exp iSw(t, 0; qΔ)

)
 (t, 0; qΔ)

as in the case of Ws(t, x) = 0 (cf. §2 in [16]), where Sw(t, 0; qΔ) is the classical action defined
by (1.8). For f = t( f1, . . . , fl) ∈ C∞0 (Rd)l we determine the approximation of the RFPI for
this system under the measurement by

KsΔ(t, 0) f = lim
ε→0+

ν−1∏
j=0

(
m

2πi(τ j+1 − τ j)

) d
2
∫
Rd
· · ·

∫
Rd

(
exp ∗iSsw(t, 0; qΔ)

)
(2.15)

× f (x(0))
ν−1∏
j=1

χ(εx( j))dx(0)dx(1) · · · dx(ν−1)

as in [16]. The L2-norm of f = t( f1, . . . , fl) ∈ (L2)l is defined by ‖ f ‖ :=
√∑l

j=1 ‖ f j‖2.

Theorem 2.3. Besides Assumptions 2.A and 2.D we suppose that Hs(t, x) and Ws(t, x)
satisfy

(2.16) |∂αx hsi j(t, x)| ≤ Cα, i, j = 1, 2, . . . , l

and (1.13) for all α, respectively. Let ρ∗ > 0 be the constant determined in Theorem
2.1. Then the same statements for KsΔ(t, 0) f as for KΔ(t, 0) f in Theorem 2.1 hold, where
Ks(t, 0) f := lim|Δ|→0 KsΔ(t, 0) f ∈ C0

t ([0, T ]; (L2)l) for f ∈ (L2)l is the unique solution in
C0

t ([0, T ]; (L2)l) to (1.12) with u(0) = f .

Example 2.2. We consider a continuous quantum measurement of the positions of all
spin components of a particle. Let a( j)(t) ∈ Rd ( j = 1, 2, . . . , l) be the result for the j-th spin
component and δ > 0 the resolution of the measuring device. Then in Theorem 2.3 we take
W(t, x) = 0 and the diagonal matrix Ws(t, x) with

ws j j(t, x) = Ω
(
c|x − a( j)(t)|2

δ2

)
, j = 1, 2, . . . , l,

where Ω(θ) ∈ C∞([0,∞)) is an increasing function such that Ω(θ) = θ if 0 ≤ θ ≤ 1 and
Ω(x) = L if θ ≥ 2 with a sufficiently large constant L > 0. These W(t, x) and Ws(t, x) satisfy
the assumptions of Theorem 2.3.

The Ba-norm of f = t( f1, . . . , fl) ∈ (Ba)l is defined by ‖ f ‖a :=
√∑l

j=1 ‖ f j‖2a.

Theorem 2.4. We suppose that either Assumption 2.A or 2.B is satisfied. In addition, we
suppose Assumptions 2.C, 2.D, (1.13) and (2.16). Let ρ∗ > 0 be the constant determined in
Theorem 2.2. Then the same statements for KsΔ(t, 0) f as for KΔ(t, 0) f in Theorem 2.2 hold,
where we replace Ba with (Ba)l.

Finally, we consider a quantum spin system consisting of N particles which have l spin
components each. We perform a continuous quantum measurement of the positions of all
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spin components of all particles in [0, T ]. Denoting the coordinates of the j-th particle by
x j ∈ Rd ( j = 1, 2, . . . ,N) , we write x = (x1, x2, . . . , xN) ∈ RdN . Let Wj(t, x j) ∈ R and set


�
w(t, x, ẋ) =

N∑
j=1

{m
2
|ẋ j|2 + ẋ j · A j(t, x j) − Vj(t, x j) + iWj(t, x j)

}
(2.17)

−
N∑

j,k=1, j�k

V jk(t, x j − xk),

where A j(t, x j) ∈ Rd,Vj(t, x j) ∈ R and Vjk(t, x j − xk) ∈ R. The effective Lagrangian function
we consider is


�
sw(t, x, ẋ) = 

�
w(t, x, ẋ)(2.18)

+

N∑
j=1

I1 ⊗ · · · ⊗ I j−1 ⊗ {−Hs j(t, x j) + iWs j(t, x j)
} ⊗ I j+1 ⊗ · · · ⊗ IN ,

generalizing (1.11), where Hs j(t, x j) and Ws j(t, x j) are l × l Hermitian matrices.
For a continuous path q j(θ) ∈ Rd ( j = 1, 2, . . . ,N, s ≤ θ ≤ t), we define  j(θ, s; q j) (s ≤

θ ≤ t) by the solution to (2.13) where Hs = Hs j and Ws = Ws j. For the piecewise free moving
path qΔ =

(
q1Δ(θ; x(0)

1 , . . . , x(ν−1)
1 , x1), . . . , qNΔ(θ; x(0)

N , . . . , x(ν−1)
N , xN)

) ∈ RNd (0 ≤ θ ≤ t), we
define the probability amplitude by

exp ∗iS�sw(t, 0; qΔ) :=
(
exp iS�w(t, 0; qΔ)

)
1(t, 0; q1Δ) ⊗ · · · ⊗ N(t, 0; qNΔ)(2.19)

in terms of the tensor product of matrices, where S�w(t, 0; qΔ) is the classical action defined
from (2.17). Then we determine the approximation K�

sΔ(t, 0) f of the RFPI by (2.15), where
exp ∗iSsw(t, 0; qΔ) and f ∈ C∞0 (Rd)l are replaced with exp ∗iS�sw(t, 0; qΔ) and f = f1 ⊗ · · · ⊗ fN(
f j ∈ C∞0 (Rd)l, j = 1, 2, . . . ,N

)
, respectively.

Writing A(t, x) =
(
A1(t, x1), . . . ,AN(t, xN)

) ∈ RdN and V(t, x) =
∑N

j=1 Vj(t, x j) +∑
j,k=1, j�k V jk(t, x j − xk) ∈ R, we define E(t, x) ∈ RdN and Bjk(t, x) ∈ R (1 ≤ j < k ≤ dN) by

(1.1). Then we have the following.

Theorem 2.5. Suppose that Assumptions 2.A is satisfied. In addition, we assume that
each Wj(t, x j) ( j = 1, 2, . . . ,N) satisfies 2.D and that each Ws j(t, x j) and Hs j(t, x j) satisfies
(1.13) and (2.16), respectively. Let (L2)l⊗· · ·⊗ (L2)l denote the tensor product of N copies of
L2(Rd)l. Then, there exits a constant ρ′∗ > 0 such that the same statements for K�

sΔ(t, 0) f as
for KΔ(t, 0) f in Theorem 2.1 hold, where K�

s(t, 0) f := lim|Δ|→0 K�
sΔ(t, 0) f ∈ C0

t ([0, T ]; (L2)l⊗
· · · ⊗ (L2)l) for f ∈ (L2)l ⊗ · · · ⊗ (L2)l is the unique solution in C0

t ([0, T ]; (L2)l ⊗ · · · ⊗ (L2)l) to

i
∂u
∂t

(t) =
[ N∑

j=1

{
1

2m

∣∣∣∣∣∣1i ∂

∂x j
− A j(t, x j)

∣∣∣∣∣∣
2

+ Vj(t, x j) − iWj(t, x j)(2.20)

+ I1 ⊗ · · · ⊗ I j−1 ⊗ {
Hs j(t, x j) − iWs j(t, x j)

}⊗I j+1 ⊗ · · · ⊗ IN

}

+

N∑
j,k=1, j�k

V jk(t, x j − xk)
]
u(t)
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with u(0) = f .

We see that the N-fold tensor product L2(Rd)l ⊗ · · · ⊗ L2(Rd)l is equal to
(
L2(Rd) ⊗ · · · ⊗

L2(Rd)
)lN

because we have

(
g1(x1)
g2(x1)

)
⊗
(
h1(x2)
h2(x2)

)
=

2∑
i, j=1

gi(x1)h j(x2)ei ⊗ e j

with e1 =
t(1, 0) and e2 =

t(0, 1), for example, when N = 2 and l = 2. This shows

L2(Rd)l ⊗ · · · ⊗ L2(Rd)l = L2(RdN)lN

because of L2(Rd) ⊗ · · · ⊗ L2(Rd) = L2(RNd) (cf. II.10 on p. 52 in [26]). In the same way we
can define a subspace Ba(RdN)lN

(a = 1, 2, . . . ) in L2(Rd)l ⊗ · · · ⊗ L2(Rd)l. Then we have the
following.

Theorem 2.6. Suppose that either Assumption 2.A or 2.B is satisfied. In addition,
we suppose Assumptions 2.C for (V(t, x), A(t, x)) and that each Wj(t, x j),Ws j(t, x j) and
Hs j(t, x j) satisfies the assumptions stated in Theorem 2.5. Then, there exists another con-
stant ρ ′∗ > 0 such that the same statements for K�

sΔ(t, 0) f as for KΔ(t, 0) f in Theorem 2.2
hold, where we replace Ba(Rd) with Ba(RdN)lN

.

Remark 2.1. We consider polynomially growing potentials

(2.21) V(t, x) = |x|2(l0+1) +
∑

|α|≤2l0+1

aα(t)xα,

(2.22) Aj(t, x) =
∑
|α|≤l0

b jα(t)xα ( j = 1, 2, . . . , d)

with an integer l0 ≥ 1 and functions aα(t) ∈ R, b jα(t) ∈ R in C1([0, T ]). These potentials
V(t, x) and A(t, x) do not satisfy either Assumption 2.A, 2.B or 2.C. We suppose Assumption
2.D, (1.13) and (2.16) for W(t, x),Ws(t, x) and Hs(t, x) respectively, where we replace (2.9)
with

(2.23) |∂αx W(t, x)| ≤ Cα〈x〉l0+1, |α| ≥ 1.

We define KΔ(t, 0) f and KsΔ(t, 0) f by (2.1) and (2.15) respectively. Then we have the same
statements (1)–(4) as in Theorems 2.1 and 2.3, following the proofs of Theorems 2.1 and
2.3 (cf. [18]). In the present paper we don’t prove their statements. Their proofs will be
published elsewhere in the general form.

3. Stability of (t, s)

3. Stability of (t, s)
Let S(t, s; q) and Sw(t, s; q) be the classical actions defined by (1.3) and (1.8), respectively.

Let qt,s
x,y and γt,s

x,y be the straight lines defined by

(3.1) qt,s
x,y(θ) = y +

θ − s
t − s

(x − y), s ≤ θ ≤ t

and
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(3.2) γt,s
x,y(θ) = (θ, qt,s

x,y(θ)) ∈ Rd+1, s ≤ θ ≤ t,

respectively. Throughout the present paper we often write ρ = t − s. Then we have

S(t, s; qt,s
x,y) =

m|x − y|2
2(t − s)

+

∫
γt,s

x,y

(
A · dx − Vdt

)
(3.3)

=
m|x − y|2
2(t − s)

+ (x − y) ·
∫ 1

0
A(s + ϑρ, y + ϑ(x − y))dϑ

−
∫ t

s
V
(
θ, y +

θ − s
t − s

(x − y)
)

dθ

=
m|x − y|2
2(t − s)

+ (x − y) ·
∫ 1

0
A(t − ϑρ, x − ϑ(x − y))dϑ

− ρ
∫ 1

0
V(t − ϑρ, x − ϑ(x − y))dϑ,

Sw(t, s; qt,s
x,y) = S(t, s; qt,s

x,y) + i
∫ t

s
W

(
θ, y +

θ − s
t − s

(x − y)
)

dθ(3.4)

= S(t, s; qt,s
x,y) + iρ

∫ 1

0
W(t − ϑρ, x − ϑ(x − y))dϑ.

Let M ≥ 0 be an integer and suppose that p(x, w) ∈ C∞(R2d) satisfies

(3.5) |∂αw∂βx p(x, w)| ≤ Cαβ〈x;w〉M, (x, w) ∈ R2d

for all α and β, where 〈x;w〉 = √
1 + |x|2 + |w|2. For f ∈ C∞0 (Rd) we define

(3.6) P(t, s) f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
m

2πiρ

) d
2
∫ (

exp iSw(t, s; qt,s
x,y)

)
× p(x, (x − y)/

√
ρ) f (y)dy, s < t,( m

2πi

) d
2

Os-
∫

(exp im|w|2/2)

× p(x, w)dw f (x), s = t.

Then the formal adjoint operator P(t, s)† of P(t, s) on C∞0 (Rd) is given by

P(t, s)† f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
im

2πρ

) d
2
∫ (

exp iSw(t, s; qt,s
y,x)

)∗
× p(y, (y − x)/

√
ρ)∗ f (y)dy, s < t,( im

2π

) d
2

Os-
∫

(exp−im|w|2/2)

× p(x, w)∗dw f (x), s = t.

We can prove the following as in the proof of Lemma 2.1 of [14].

Lemma 3.1. Let p(x, w) be a function satisfying (3.5). We assume (2.7). In addition, we
assume that ∂αx V(t, x) and ∂αx A j(t, x) ( j = 1, 2, . . . , d) are continuous in [0, T ] × Rd for all α
and that there exists a constant M′ ≥ 0 satisfying
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|∂αx V(t, x)| +
d∑

j=1

|∂αx A j(t, x)| + |∂αx W(t, x)| ≤ Cα〈x〉M′

in [0, T ] × Rd for all α. Then, for f ∈  ∂αx (P(t, s) f ) are continuous in 0 ≤ s ≤ t ≤ T and
x ∈ Rd for all α.

In particular, when p(x, w) = 1, we write P(t, s) f as (t, s) f . That is,

(3.7) (t, s) f =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(

m
2πiρ

) d
2
∫ (

exp iSw(t, s; qt,s
x,y)

)
f (y)dy, s < t,

f , s = t.

Then, from (2.1) we can write

(3.8) KΔ(t, 0) f = lim
ε→0+

(t, τν−1)χ(ε·)(τν−1, τν−2)χ(ε·) · · ·χ(ε·)(τ1, 0) f

for f ∈ C∞0 (Rd).
For a weight function W(t, x) we set

(3.9) cw(t, s; x, y) = exp
(
−ρ

∫ 1

0
W(t − θρ, x − θ(x − y))dθ

)
, ρ = t − s.

Lemma 3.2. Let p(x, w) be a function satisfying (3.5). We assume that ∂αx V(t, x),
∂αx A j(t, x) and ∂αx∂tA j(t, x) are continuous in [0, T ] × Rd for |α| ≤ 1 and j = 1, 2, . . . , d.
Let f ∈ C∞0 (Rd). Then for any 0 < ε ≤ 1 and 0 ≤ s < t ≤ T we have

P(t, s)†χ(ε·)2P(t, s) f =
(

m
2π(t − s)

)d ∫
f (y)dy

∫
χ(εz)2(3.10)

×
(
exp i(x − y) · mΦ

t − s

)
cw(t, s; z, x)cw(t, s; z, y)

× p
(
z,

z − x√
t − s

)∗
p
(
z,

z − y√
t − s

)
dz,

Φ = Φ(t, s; x, y, z) = (Φ1, . . . ,Φd),

Φ j = z j − x j + y j

2
+

t − s
m

∫ 1

0
Aj(s, x + θ(y − x))dθ(3.11)

− (t − s)2

m

∫ 1

0

∫ 1

0
σ1E j(τ(σ), ζ(σ))dσ1dσ2

− t − s
m

d∑
k=1

(zk − xk)
∫ 1

0

∫ 1

0
σ1Bjk(τ(σ), ζ(σ))dσ1dσ2

or
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Φ j = z j − x j + y j

2
+

t − s
m

∫ 1

0
Aj(s, x + θ(y − x))dθ(3.12)

− (t − s)2

m

∫ 1

0

∫ 1

0
σ1E j(τ(σ), ζ(σ))dσ1dσ2 − (t − s)2

m

∫ 1

0
dθ

d∑
k=1

(zk − xk)

×
∫ 1

0

∫ 1

0
σ1(1 − σ1)

∂Bjk

∂t
(s + θ(1 − σ1)ρ, ζ(σ))dσ1dσ2,

where

(3.13)
(
τ(σ), ζ(σ)

)
=

(
t − σ1(t − s), z + σ1(x − z) + σ1σ2(y − x)

) ∈ Rd+1.

Proof. From (3.4), (3.6) and (3.9) we can write

P(t, s) f =
(

m
2πiρ

) d
2
∫ (

exp iS(t, s; qt,s
x,y)

)
cw(t, s; x, y)(3.14)

× p
(
x,

x − y√
t − s

)
f (y)dy, ρ = t − s > 0.

Hence, we can easily prove Lemma 3.2 from Lemma 5.2 in [18]. �

Lemma 3.3. We assume that ∂αx A j(t, x) ( j = 1, 2, . . . , d) are continuous for all α and
satisfy (2.5) in [0, T ] × Rd.

(1) Suppose that Assumption 2.A is satisfied. Let Φ j(t, s; x, y, z) ( j = 1, 2, . . . , d) be the
functions defined by (3.11). Then, there exist a constant ρ∗ > 0 such that for all fixed 0 ≤
t − s ≤ ρ∗ and (x, y) ∈ R2d, the map: Rd � z→ ξ = Φ(t, s; x, y, z) ∈ Rd is a homeomorphism,
whose inverse will be denoted by the map: Rd � ξ → z = z(t, s; x, ξ, y) ∈ Rd, and we have

(3.15)
d∑

j=1

|∂αξ ∂βx∂γyz j(t, s; x, ξ, y)| ≤ Cαβγ, |α + β + γ| ≥ 1,

(3.16) det
∂z
∂ξ

(t, s; x, ξ, y) = 1 + (t − s)h(t, s; x, ξ, y) > 0,

(3.17) |∂αξ ∂βx∂γyh(t, s; x, ξ, y)| ≤ Cαβγ < ∞
for all α, β and γ in 0 ≤ t − s ≤ ρ∗ and (x, ξ, y) ∈ R3d.

(2) Suppose that Assumption 2.B is satisfied. Let Φ j(t, s; x, y, z) ( j = 1, 2, . . . , d) be the
functions defined by (3.12). Then we have the same statements as in (1).

Proof. We have already proved (1) in Lemma 3.2, (3.9) and (3.10) of [14] (cf. Lemma
3.6, (3.18) and (3.19) of [13]).

We will prove (2). Let us write the 5-th term on the right-hand side of (3.12) as −(t −
s)2B′(t, s; x, y, z)/m. Then, from the assumption (2.4) we can prove

(3.18) |∂αx∂βy∂γz B′j(t, s; x, ξ, y)| ≤ Cαβγ, |α + β + γ| ≥ 1

in 0 ≤ s ≤ t ≤ T and (x, y, z) ∈ R3d as in the proof of (3.15) of [13], where B′ =
(B′1, · · · , B′d) ∈ Rd. Thereby we can prove (2) as in the proof of (1). �
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From now on we fix ρ∗ > 0 determined in Lemma 3.3 throughout the present paper. The
following lemma is crucial in the present paper.

Lemma 3.4. Assume (2.7) and (2.8) where we take CW = 0. Let cw(t, s; x, y) be the
function defined by (3.9). Then we have

(3.19) 0 ≤ cw(t, s; x, y) ≤ 1, |∂αx∂βycw(t, s; x, y)| ≤ Cαβ, |α + β| ≥ 1

for 0 ≤ s ≤ t ≤ T and (x, y) ∈ R2d with constants Cαβ ≥ 0.

Proof. It is clear from (2.7) and (3.9) that the first inequality of (3.19) holds. For a ≥ 0
we can easily see

(3.20) sup
r≥0

e−r(T + r)a = C′a < ∞

with constants C′a ≥ 0. Let |α| ≥ 1. We note pα ≥ 1. Using Hölder’s inequality in the case
of pα > 1 and (2.8), we have

ρ

∫ 1

0
|(∂αx W)(t − θρ, x − θ(x − y))|dθ(3.21)

≤ ρ
(∫ 1

0
|(∂αx W)(t − θρ, x − θ(x − y))|pαdθ

)1/pα

≤ C1/pα
α ρ

[∫ 1

0

{
1 +W(t − θρ, x − θ(x − y))

}
dθ

]1/pα

= C1/pα
α ρ1−1/pα

{
ρ + ρ

∫ 1

0
W(t − θρ, x − θ(x − y))dθ

}1/pα

≤ C1/pα
α ρ1−1/pα

{
T + ρ

∫ 1

0
W(t − θρ, x − θ(x − y))dθ

}1/pα
.

Hence, letting α = (1, 0, . . . , 0) ∈ Rd, by (2.7) and (3.20) we have

|∂x1cw(t, s; x, y)| ≤
(
exp−ρ

∫ 1

0
W(t − θρ, x − θ(x − y))dθ

)
(3.22)

×C1/pα
α T 1−1/pα

{
T + ρ

∫ 1

0
W(t − θρ, x − θ(x − y))dθ

}1/pα

≤ C1/pα
α T 1−1/pαC′1/pα < ∞.

In the same way we can complete the proof of the second inequality of (3.19), using (3.20)
and (3.21). �

Proposition 3.5. Suppose that either Assumption 2.A or 2.B is satisfied. In addition, we
suppose Assumption 2.C, (2.7) and (2.8), where we take CW = 0 and (2.6) is replaced with

(3.23) |∂αx V(t, x)| ≤ Cα〈x〉M1 , |α| ≥ 1

with an integer M1 ≥ 1 independent of α. Let ρ∗ > 0 be the constant determined in Lemma
3.3 and (t, s) the operator defined by (3.7). Then there exists a constant K0 ≥ 0 such that

(3.24) ‖(t, s) f ‖ ≤ eK0(t−s)‖ f ‖, 0 ≤ t − s ≤ ρ∗

for all f ∈ L2.
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Proof. We first suppose that Assumption 2.A is satisfied. Then, letting Φ j be defined by
(3.11), from (3.10) we have

(t, s)†χ(ε·)2
(t, s) f =

(
m

2π(t − s)

)d ∫
f (y)dy

∫
χ(εz)2

×
(
exp i(x − y) · mΦ

t − s

)
cw(t, s; z, x)cw(t, s; z, y)dz

for f ∈  . We will use (1) in Lemma 3.3. Letting 0 ≤ t − s ≤ ρ∗ and making the change of
variables: Rd � z→ ξ = Φ(t, s; x, y, z) ∈ Rd in the above equation, we have

(t, s)†χ(ε·)2
(t, s) f =

(
m

2π(t − s)

)d ∫
f (y)dy

∫
χ(εz)2

×
(
exp i(x − y) · mξ

t − s

)
cw(t, s; z, x)cw(t, s; z, y) det

∂z
∂ξ

(t, s; x, ξ, y)dξ

with z = z(t, s; x, ξ, y), which shows

(t, s)†χ(ε·)2
(t, s) f =

(
1

2π

)d ∫
ei(x−y)·ηdη

∫
χ(εz)2cw(t, s; z, x)(3.25)

× cw(t, s; z, y) det
∂z
∂ξ

(t, s; x, (t − s)η/m, y) f (y)dy, 0 ≤ t − s ≤ ρ∗

with z = z(t, s; x, (t − s)η/m, y). Hence, noting (3.15) and (3.19), we can easily prove

lim
ε→0+

(t, s)†χ(ε·)2
(t, s) f(3.26)

=

(
1

2π

)d ∫
ei(x−y)·ηdη

∫
cw(t, s; z, x)cw(t, s; z, y)

× det
∂z
∂ξ

(t, s; x, (t − s)η/m, y) f (y)dy, 0 ≤ t − s ≤ ρ∗

with z = z(t, s; x, (t − s)η/m, y) in the topology of  , which we write as (t, s)† (t, s) f
formally.

Let z = z(t, s; x, (t − s)η/m, y). Then from (3.16) we can write

cw(t, s; z, x)cw(t, s; z, y) det
∂z
∂ξ

(t, s; x, (t − s)η/m, y)(3.27)

= cw(t, s; z, x)cw(t, s; z, y) + (t − s)cw(t, s; z, x)cw(t, s; z, y)h(t, s; x, (t − s)η/m, y)

≡ p1(t, s; x, (t − s)η, y) + (t − s)p2(t, s; x, (t − s)η, y).

Noting (3.15), (3.17) and (3.19), apply Theorem 1.A in the introduction as h = t − s to
P1(t, s; X, (t − s)Dx, X′). Then we have

(3.28) ‖P1(t, s; X, (t − s)Dx, X′) f ‖ ≤ {1 + K(t − s)}‖ f ‖, 0 ≤ t − s ≤ ρ∗

with a constant K ≥ 0. In the same way we have

(3.29) ‖P2(t, s; X, (t − s)Dx, X′) f ‖ ≤ K′‖ f ‖, 0 ≤ t − s ≤ ρ∗

with a constant K′ ≥ 0. Thus, from (3.26) and (3.27) we obtain
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‖(t, s)† (t, s) f ‖ ≤ {
1 + 2K0(t − s)

}‖ f ‖ ≤ e2K0(t−s)‖ f ‖, 0 ≤ t − s ≤ ρ∗(3.30)

with a constant K0 ≥ 0. Consequently we have

‖(t, s) f ‖2 ≤ lim
ε→0+

(
χ(ε·)(t, s) f , χ(ε·)(t, s) f

)
= lim

ε→0+

(
(t, s)†χ(ε·)2

(t, s) f , f
)

=
(
(t, s)† (t, s) f , f

) ≤ e2K0(t−s)‖ f ‖2

for f ∈  by using Fatou’s lemma, which shows (3.24).
Next we suppose that Assumption 2.B is satisfied. Letting Φ j be defined by (3.12), we

can also prove (3.26) and (3.30) as in the proof of the first case. Consequently we can prove
(3.24). �

Proposition 3.6. Let p(x, w) be a function satisfying (3.5) and P(t, s) the operator defined
by (3.6). Then, under the assumptions of Proposition 3.5 we have

(3.31) ‖P(t, s) f ‖a ≤ Ca‖ f ‖M+aM1 , 0 ≤ t − s ≤ ρ∗

for a = 0, 1, 2, . . . and all f ∈ BM+aM1 with constants Ca ≥ 0, where M1 is the integer in
(3.23).

Proof. Setting

(3.32) p′(t, s; x, w) := p(x, w)cw(t, s; x, x − √ρw),

from (3.14) we have

P(t, s) f =
(

m
2πiρ

) d
2
∫ (

exp iS(t, s; qt,s
x,y)

)
p′

(
t, s; x,

x − y√
t − s

)
f (y)dy,(3.33)

ρ = t − s > 0

and also from (3.19)

(3.34) |∂αw∂βx p′(t, s; x, w)| ≤ Cαβ〈x;w〉M

for all α and β.
At first we suppose that Assumption 2.A is satisfied. Then, using (3.33) and (3.34), we

can prove (3.31) from Theorem 4.4 of [14]. We can also prove (3.31) under Assumption
2.B, noting (3.18) and following the proof of Theorem 4.4 in [14]. �

4. Consistency of (t, s)

4. Consistency of (t, s)Lemma 4.1. Let Hw(t) be the operator defined by (1.10). We assume that for all α
∂αx V(t, x), ∂αx A j(t, x) ( j = 1, 2, . . . , d) and ∂αx∂tA j(t, x) are continuous in [0, T ]×Rd and satisfy

|∂αx V(t, x)| +
d∑

j=1

(|∂αx A j(t, x)| + |∂αx∂tA j(t, x)|) + |∂αx W(t, x)| ≤ Cα〈x〉M′

with constants Cα ≥ 0 and M′ ≥ 0, where M′ is independent of α. Then, there exists
a function r(t, s; x, w) satisfying (3.5) for an integer M ≥ 0 such that ∂αw∂

β
xr(t, s; x, w) are



120 W. Ichinose

continuous in 0 ≤ s ≤ t ≤ T and (x, w) ∈ R2d for all α, β and we have

(4.1)
{

i
∂

∂t
− Hw(t)

}
(t, s) f =

√
t − sR(t, s) f

for f ∈ C∞0 (Rd).

Proof. We note (1.8) and (3.7). Then, replacing V(t, x) with V(t, x)− iW(t, x) in the proof
of Lemma 4.1 of [15], we can complete the proof of Lemma 4.1. �

Proposition 4.2. Besides the assumptions of Proposition 3.5 we assume

|∂αx W(t, x)| ≤ Cα〈x〉M′′

in [0, T ] × Rd for all α with constants Cα ≥ 0 and M′′ ≥ 0, where M′′ is independent of α.
Then, there exists a function r(t, s; x, w) satisfying the properties stated in Lemma 4.1 and
we have

(4.2) ‖R(t, s) f ‖a ≤ Ca‖ f ‖M+aM1 , 0 ≤ t − s ≤ ρ∗

for a = 0, 1, 2, . . . and all f ∈ BM+aM1 , where M1 is the integer in (3.23).

Proof. From (1.1) we have ∂tA j = −E j − ∂x jV . Hence we see that ∂αx∂tA j(t, x) are
continuous in [0, T ] × Rd for all α from the assumptions. In addition, from (2.2) and (3.23)
we have

|∂αx∂tA j(t, x)| ≤ |∂αx E j(t, x)| + |∂αx∂x jV(t, x)| ≤ Cα〈x〉M1 , |α| ≥ 1.

Consequently the assumptions of Lemma 4.1 are satisfied. Then, applying Proposition 3.6
to R(t, s) f in Lemma 4.1, we get (4.2). �

Making the change of variables: Rd � y → w = (x − y)/
√
ρ ∈ Rd in (3.6), from (3.3) and

(3.4) we have

(4.3) P(t, s) f =
( m
2πi

) d
2
∫

eiφ(t,s;x,w) p(x, w) f (x − √ρw)dw, ρ = t − s > 0

for f ∈ C∞0 (Rd) as in the proof of (2.9) of [14], where

φ(t, s; x, w) =
m
2
|w|2 + √ρw ·

∫ 1

0
A(t − θρ, x − θ√ρw)dθ(4.4)

− ρ
∫ 1

0
V(t − θρ, x − θ√ρw)dθ + iρ

∫ 1

0
W(t − θρ, x − θ√ρw)dθ.

Lemma 4.3. Suppose Assumption 2.C and (2.9). Let (t, s) be the operator defined by
(3.7). Then, for an arbitrary multi-index κ both of commutators [∂κx,(t, s)] f and
[xκ,(t, s)] f for f ∈ C∞0 (Rd) are written in the form

(t − s)
∑
|γ|�|κ|

P̃γ(t, s)(∂γx f )(4.5)

:= (t − s)
∑
|γ|�|κ|

( m
2πi

) d
2 ×

∫
eiφ(t,s;x,w) pγ(t, s; x,

√
ρw)(∂γx f )(x − √ρw)dw,
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where pγ(t, s; x, ζ) satisfy

(4.6) |∂αζ ∂βx pγ(t, s; x, ζ)| ≤ Cαβ〈x; ζ〉|κ|−|γ|

for all α and β.

Proof. We note (2.9). Then we can prove Lemma 4.3 as in the proof of Lemma 3.2 of
[15], replacing V(t, x) with V(t, x) − iW(t, x). �

Proposition 4.4. Suppose that the assumptions of Theorem 2.2 are satisfied, where we
take CW = 0. Then, for a = 0, 1, 2, . . . there exist constants Ka ≥ 0 such that

(4.7) ‖(t, s) f ‖a ≤ eKa(t−s)‖ f ‖a, 0 ≤ t − s ≤ ρ∗

for all f ∈ Ba.

Proof. Let |κ| = a. Using Proposition 3.6 and Lemma 4.3, we have

‖xκ((t, s) f )‖ ≤ ‖(t, s)(xκ f )‖ + (t − s)
∑
|γ|�a

‖P̃γ(t, s)(∂γx f )‖

≤ ‖(t, s)(xκ f )‖ +C(t − s)
∑
|γ|�a

‖∂γx f ‖a−|γ|

≤ ‖(t, s)(xκ f )‖ +C′(t − s)‖ f ‖a.
Here we used ‖∂γx f ‖a−|γ| ≤ Const. ‖ f ‖a from (4.21) in [14]. Hence from Proposition 3.5 we
have

(4.8) ‖xκ((t, s) f )‖ ≤ eK0(t−s)‖xκ f ‖ +C′(t − s)‖ f ‖a.
In the same way we have

(4.9) ‖∂κx((t, s) f )‖ ≤ eK0(t−s)‖∂κx f ‖ +C′′(t − s)‖ f ‖a.
Since ‖ f ‖a is defined by (2.12), from (3.24), (4.8) and (4.9) we obtain

‖(t, s) f ‖a = ‖(t, s) f ‖ +
∑
|κ|=a

(
‖xκ((t, s) f )‖ + ‖∂κx((t, s) f )‖

)
≤ eK0(t−s)‖ f ‖a + K′0(t − s)‖ f ‖a =

(
eK0(t−s) + K′0(t − s)

)
‖ f ‖a

≤ e(K0+K′0)(t−s)‖ f ‖a,
which shows (4.7). �

Theorem 4.5. Suppose Assumption 2.C, (2.7) and (2.9). Then for any u0 ∈ Ba (a =
0,±1,±2, . . . ) there exists the unique solution u(t) in C0

t ([0, T ]; Ba) ∩ C1
t ([0, T ]; Ba−2) with

u(0) = u0 to the equation (1.10). This solution u(t) satisfies

(4.10) ‖u(t)‖a ≤ Ca‖u0‖a, 0 ≤ t ≤ T.

Proof. The results corresponding to Theorem 4.5 have been proved in (1) of Theorem
2.1 of [17], where ‖ f ‖a was defined by ‖ f ‖+∑

|α|=2a
(‖xα f ‖+ ‖∂αx f ‖) differently from (2.12).

Following the proof of (1) of Theorem 2.1 of [17], we can prove Theorem 4.5 as below. We
set χε(x, ξ) := χ

(
ε(〈x〉 + 〈ξ〉)) (0 < ε ≤ 1) and λ(x, ξ) := μ + 〈x〉 + 〈ξ〉, where μ > 0 is the
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constant such that there exist a function w(x, ξ) satisfying

W(X,Dx) f = (μ + 〈X〉 + 〈Dx〉)−1 f

for f ∈  and

|∂αξ ∂βxw(x, ξ)| ≤ Cαβ(1 + 〈x〉 + 〈ξ〉)−1

for all α and β (cf. Lemma 2.3 of [12]).
We set

Qε(X,Dx) =
[
Λ(X,Dx), Xε(X,Dx)†Hw(t)Xε(X,Dx)

]
Λ(X,Dx)−1

as in (4.3) of [17]. Then, noting Assumption (2.C) and (2.9), we can prove

|∂αξ ∂βxqε(x, ξ)| ≤ Cαβ < ∞
for all α and β with constants Cαβ independent of 0 < ε ≤ 1 as in the proof of Lemma 4.1 of
[17] and Lemma 3.1 of [12]. Therefore we obtain the results corresponding to Lemma 4.1
of [17]. Then we can complete the remaining proof of Theorem 4.5, following the proof of
Theorem 2.1 of [17]. �

Proposition 4.6. We suppose the same assumptions as in Proposition 4.4. Let U(t, s) f be
the solution to (1.10) found in Theorem 4.5. Then there exists an integer M ≥ 0 such that
we have

(4.11) ‖(t, s) f − U(t, s) f ‖a ≤ Caρ
3/2‖ f ‖M+a, 0 ≤ t − s ≤ ρ∗

for a = 0, 1, 2, . . . .

Proof. Using (4.1), we can write

i
{
(t, s) f − f

}
= i

{
(s + ρ, s) f − f

}
= iρ

∫ 1

0

∂

∂t
(s + θρ, s) f dθ

= ρ

∫ 1

0

{
Hw(s + θρ)(s + θρ, s) f +

√
θρR(s + θρ, s) f

}
dθ

and so

i
(t, s) f − f

ρ
− Hw(s) f =

√
ρ

∫ 1

0

√
θR(s + θρ, s) f dθ

+

∫ 1

0
Hw(s + θρ) · {(s + θρ, s) f − f

}
dθ

+

∫ 1

0

{
Hw(s + θρ) f − Hw(s) f

}
dθ.

Using

(s + θρ, s) f − f = θρ
∫ 1

0

∂

∂t
(s + θ′θρ, s) f dθ′

=
θρ

i

∫ 1

0

{
Hw(s + θ′θρ)(s + θ′θρ, s) f +

√
θ′θρR(s + θ′θρ, s) f

}
dθ′,
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we have

i
(t, s) f − f

ρ
− Hw(s) f =

√
ρ

∫ 1

0

√
θR(s + θρ, s) f dθ +

ρ

i

∫ 1

0
θHw(s + θρ)dθ(4.12)

·
∫ 1

0

{
Hw(s + θ′θρ)(s + θ′θρ, s) f +

√
θ′θρR(s + θ′θρ, s) f

}
dθ′

+

∫ 1

0

{
Hw(s + θρ) f − Hw(s) f

}
dθ.

In the same way

i
U(t, s) f − f

ρ
− Hw(s) f =

ρ

i

∫ 1

0
θHw(s + θρ)dθ(4.13)

·
∫ 1

0

{
Hw(s + θ′θρ)U(s + θ′θρ, s) f

}
dθ′

+

∫ 1

0

{
Hw(s + θρ) f − Hw(s) f

}
dθ.

Taking difference between (4.12) and (4.13), we have

i {(t, s) f − U(t, s) f } = ρ3/2
∫ 1

0

√
θR(s + θρ, s) f dθ +

ρ2

i

∫ 1

0
θHw(s + θρ)dθ(4.14)

·
∫ 1

0

{
Hw(s + θ′θρ)(s + θ′θρ, s) f +

√
θ′θρR(s + θ′θρ, s) f

}
dθ′

− ρ
2

i

∫ 1

0
θHw(s + θρ)dθ

∫ 1

0
Hw(s + θ′θρ)U(s + θ′θρ, s) f dθ′.

Consequently, noting (2.5), (2.6) and (2.9), and applying (4.2) with M1 = 1, (4.7) and (4.10)
to (4.14), we obtain

‖(t, s) f − U(t, s) f ‖a ≤ C1ρ
3/2‖ f ‖M+a +C2ρ

2(‖ f ‖4+a + ‖ f ‖M+2+a) +C3ρ
2‖ f ‖4+a(4.15)

with constants C j ( j = 1, 2, 3), which shows (4.11). �

5. Proofs of Theorems 2.1 and 2.2

5. Proofs of Theorems 2.1 and 2.2Lemma 5.1. We suppose the same assumptions as in Proposition 3.5. Let KΔ(t, 0) f and
(t, s) f be the operators defined by (2.1) and (3.7) respectively. Then we have

(5.1) KΔ(t, 0) f = (t, τν−1)(τν−1, τν−2) · · ·(τ1, 0) f

for all f ∈ L2 and all Δ such that |Δ| ≤ ρ∗.
Proof. From (3.8) we could write

KΔ(t, 0) f = lim
ε→0

(t, τν−1)χ(ε·)(τν−1, τν−2)χ(ε·) · · ·χ(ε·)(τ1, 0) f

for f ∈ C∞0 (Rd). Then from (3.24) we have
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‖(t, τν−1)χ(ε·)(τν−1, τν−2)χ(ε·) · · ·χ(ε·)(τ1, 0) f(5.2)

− (t, τν−1)(τν−1, τν−2) · · ·(τ1, 0) f ‖

=

∥∥∥∥∥
ν−1∑
j=1

(t, τν−1)χ(ε·)(τν−1, τν−2)χ(ε·) · · ·χ(ε·)(τ j+1, τ j)

· {χ(ε·) − 1}(τ j, τ j−1)(τ j−1, τ j−2) · · ·(τ1, 0) f
∥∥∥∥∥

≤ C
ν−1∑
j=1

‖{χ(ε·) − 1}(τ j, τ j−1)(τ j−1, τ j−2) · · ·(τ1, 0) f ‖

for f ∈ L2 with a constant C ≥ 0 independent of 0 < ε ≤ 1, which shows (5.1) for f ∈ L2.
�

Now we will prove Theorems 2.1 and 2.2. We can easily see that we may assume CW = 0
in Assumption 2.D without loss of generality, because we have only to take W(t, x) +CW in
place of W(t, x) in (1.10) and (2.1). Hence we assume CW = 0 hereafter in this section.

We will first prove Theorem 2.2. Using (5.1), we write

KΔ(t, 0) f−U(t, 0) f(5.3)

=(t, τν−1)(τν−1, τν−2) · · ·(τ1, 0) f−U(t, τν−1)U(τν−1, τν−2) · · ·U(τ1, 0) f

=

ν∑
j=1

(t, τν−1)(τν−1, τν−2) · · ·(τ j+1, τ j)

·{(τ j, τ j−1)−U(τ j, τ j−1)}U(τ j−1, τ j−2) · · ·U(τ1, 0) f

=

ν∑
j=1

(t, τν−1)(τν−1, τν−2) · · ·(τ j+1, τ j){(τ j, τ j−1)−U(τ j, τ j−1)}U(τ j−1, 0) f .

Hence, using (4.7), (4.10) and (4.11), we have

‖KΔ(t, 0) f − U(t, 0) f ‖a ≤
ν∑

j=1

CaeKat(τ j − τ j−1)3/2‖U(τ j−1, 0) f ‖M+a(5.4)

≤ C′a
√
|Δ|eKaT T‖ f ‖M+a.

Let f ∈ Ba be arbitrary. For any ε > 0 we take a g ∈ Ba+M such that

(5.5) ‖g − f ‖a < ε.
Using (4.7), (4.10) and (5.5), we have

‖KΔ(t, 0) f − U(t, 0) f ‖a ≤ ‖KΔ(t, 0)g − U(t, 0)g‖a(5.6)

+ ‖KΔ(t, 0)( f − g)‖a + ‖U(t, 0)( f − g)‖a
≤ C′a

√
|Δ|eKaT T‖g‖M+a +

(
eKaT +Ca

)
ε.

Hence

lim
|Δ|→0
‖KΔ(t, 0) f − U(t, 0) f ‖a ≤ (

eKaT +Ca
)
ε,
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which shows

(5.7) lim
|Δ|→0
‖KΔ(t, 0) f − U(t, 0) f ‖a = 0.

Now consider the gauge transformation (2.10). From (1.2), (1.7) and (1.8) we can easily
see

(5.8) S′w(t, s; qt,s
x,y) = Sw(t, s; qt,s

x,y) + ψ(t, x) − ψ(s, y)

(cf. p. 1024 in [14]), which shows

(5.9) 
′(t, s) f = eiψ(t,·)

(t, s)e−iψ(s,·) f .

Consequently we can prove (2.11) from (5.1). Thus we could complete the proof of Theorem
2.2.

Next we will prove Theorem 2.1 by using Theorem 2.2, where we will use only the results
in L2. We are supposing Assumption 2.A. Consequently, using Lemma 6.1 in [14], we can
find a potential (V ′, A′) satisfying (2.5) and (2.6). From Theorem 2.2 we have (5.7) with
a = 0 for K′

Δ
(t, 0) f and U′(t, 0) f with this potential (V ′, A′). Let (V, A) be an arbitrary

potential stated in Theorem 2.1. Then, from the proof of Theorem in [14] on p. 1023 we can
find a real-valued function ψ(t, x) with continuous ∂x j∂xkψ and ∂t∂x jψ ( j, k = 1, 2, . . . , d) in
[0, T ] × Rd satisfying (2.10). Then from Theorem 2.2 we have

(5.10) KΔ(t, 0) f = e−iψ(t,·)K′Δ(t, 0)eiψ(s,·) f ,

which shows

(5.11) lim
|Δ|→0

KΔ(t, 0) f = e−iψ(t,·)U′(t, 0)eiψ(s,·) f = U(t, 0) f in L2

for f ∈ L2 because of U(t, 0) f = e−iψ(t,·)U′(t, 0)eiψ(s,·) f .
Next consider the gauge transformation

V ′′ = V − ∂ϕ
∂t
, A′′j = Aj +

∂ϕ

∂x j
( j = 1, 2, . . . , d)

stated in Theorem 2.1. Then we have

V ′ = V ′′ − ∂(ψ − ϕ)
∂t

, A′j = A′′j +
∂(ψ − ϕ)
∂x j

together with (2.10). Hence from (5.10) we have

K′′Δ (t, 0) f = e−iψ(t,·)+iϕ(t,·)K′Δ(t, 0)eiψ(s,·)−iϕ(s,·) f

= eiϕ(t,·)KΔ(t, 0)e−iϕ(s,·) f ,

which shows (2.11). Thus we could complete the proof of Theorem 2.1.

6. Proofs of Theorems 2.3–2.6

6. Proofs of Theorems 2.3–2.6
Let CW be the constant in Assumption 2.D and Ws(t, x) the Hermitian matrix in Theorems

2.3 and 2.4. As in the proofs of Theorems 2.1 and 2.2 we may assume

(6.1) CW = 0, Ws(t, x) ≥ 0
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in the proofs of Theorems 2.3 and 2.4, because we are assuming (1.13).
Using  (t, s; qt,s

x,y) defined by the solution to (2.13), we define

(6.2) s(t, s) f =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(

m
2πiρ

) d
2
∫ (

exp iSw(t, s; qt,s
x,y)

)
 (t, s; qt,s

x,y) f (y)dy, s < t,

f , s = t

for f ∈ C∞0 (Rd)l, which is corresponding to (t, s) defined by (3.7). Then we can write
KsΔ(t, 0) f defined by (2.15) as

(6.3) KsΔ(t, 0) f = lim
ε→0+

s(t, τν−1)χ(ε·)s(τν−1, τν−2)χ(ε·) · · ·χ(ε·)s(τ1, 0) f

for f ∈ C∞0 (Rd)l in the same way as we did (3.8), using

 (t, 0; qΔ) = 
(
t, τν−1; qt,τν−1

x,x(ν−1)

)

(
τν−1, τν−2; qτν−1,τν−2

x(ν−1),x(ν−2)

) · · ·(
τ1, 0; qτ1,0

x(1),x(0)

)
(6.4)

which has been easily proved in Lemma 2.1 of [16].

Lemma 6.1. (1) Assume Ws(t, x) ≥ 0 in [0, T ] × Rd. Let q(θ) ∈ Rd (s ≤ θ ≤ t) be a
continuous path. Then we have

(6.5) 0 ≤  (t, s; q)† (t, s; q) ≤ 1,

(6.6)
l∑

i=1

|i j(t, s; q)|2 ≤ 1, j = 1, 2, . . . , l,

where i j(t, s; q) denotes the (i, j)-component of  (t, s; q).
(2) Assume Ws(t, x) ≥ 0 in [0, T ] × Rd and

(6.7) |∂αx hs(t, x)| ≤ Cα, |α| ≥ 1,

(6.8) |∂αxws(t, x)| ≤ Cα, |α| ≥ 1

in [0, T ] × Rd, where |Ω| denotes the Hilbert–Schmidt norm
(∑l

i, j=1 |Ωi j|2)1/2 of a matrix
Ω = (Ωi j; i ↓ j→ 1, 2, . . . , l). Then we have

(6.9) |∂αx∂βy (t′, s′; qt,s
x,y)| ≤ Cαβ(t′ − s′), |α + β| ≥ 1

for 0 ≤ s ≤ s′ ≤ t′ ≤ t ≤ T and (x, y) ∈ R2d.

Proof. (1) We set  (t) =  (t, s; q). From (2.13) we have

d
dθ

 (θ)† (θ) =  (θ)†
{
iHs(θ, q(θ)) −Ws(θ, q(θ))

}
 (θ)(6.10)

− (θ)†
{
iHs(θ, q(θ)) +Ws(θ, q(θ))

}
 (θ)

= −2 (θ)†Ws(θ, q(θ)) (θ) ≤ 0.

Hence we have (6.5) because of  (s) = I. Taking e1 =
t(1, 0, . . . , 0) ∈ Rl, from (6.5) we

have

1 ≥ 〈 (t)† (t)e1, e1〉 =
l∑

i=1

|i1(t, s; q)|2,
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where 〈·, ·〉 denotes the usual inner product of Rl. In the same way we can prove (6.6).
(2) From (2.13) we can easily see

∂

∂x j
 (t′, s′; qt,s

x,y) = −
∫ t′

s′
 (t′, θ; qt,s

x,y)
[
∂

∂x j

{
iHs(θ, qt,s

x,y(θ)) +Ws(θ, qt,s
x,y(θ))

}]
(6.11)

×  (θ, s′; qt,s
x,y)dθ

(cf. (3.3) in [16]). Then, noting (3.1), from (6.6)–(6.8) we can prove

|∂x j (t′, s′; qt,s
x,y)| ≤ C(t′ − s′)

with a constant C ≥ 0. In the same way we can prove (6.9) from (6.11) by induction. �

Lemma 6.2. Assume Ws(t, x) ≥ 0, (1.13) and (2.16). Then we have

(6.12)
∣∣∣∣∂αx∂βy { (t, s; qt,s

x,y) − I
}∣∣∣∣ ≤ Cα,β(t − s)

in 0 ≤ s ≤ t ≤ T and (x, y) ∈ R2d for all α and β.

Proof. From (2.13) we have

 (t′, s; qt,s
x,y) − I = −

∫ t′

s

{
iHs(θ, qt,s

x,y(θ)) +Ws(θ, qt,s
x,y(θ))

}
 (θ, s; qt,s

x,y)dθ.

Hence, by (1.13), (2.16) and (6.6) we see∣∣∣ (t, s; qt,s
x,y) − I

∣∣∣ ≤ C(t − s)

in 0 ≤ s ≤ t ≤ T and (x, y) ∈ R2d with a constant C ≥ 0. The inequalities (6.12) for
|α + β| ≥ 1 follow from (6.9). �

Proposition 6.3. Besides the assumptions of Proposition 3.5 we suppose Ws(t, x) ≥ 0,
(1.13) and (2.16). Let ρ∗ > 0 be the constant determined in Lemma 3.3 and s(t, s) the
operator defined by (6.2). Then there exists a constant K′0 ≥ 0 such that

(6.13) ‖s(t, s) f ‖ ≤ eK′0(t−s)‖ f ‖, 0 ≤ t − s ≤ ρ∗

for all f ∈ (L2)l.

Proof. Using (t, s) defined by (3.7), we write

s(t, s) f = (t, s) f +
(

m
2πiρ

) d
2
∫ (

exp iSw(t, s; qt,s
x,y)

) {
 (t, s; qt,s

x,y) − I
}

f (y)dy(6.14)

for f ∈  l. Noting (6.12), from Proposition 3.6 we see that the L2-norm of the second term
on the right-hand side of (6.14) is bounded by C(t− s)‖ f ‖ from above with a constant C ≥ 0.
Proposition 3.5 is showing (3.24). Hence we have

‖s(t, s) f ‖ ≤ eK0(t−s)‖ f ‖ +C(t − s)‖ f ‖ ≤ e(K0+C)(t−s)‖ f ‖, 0 ≤ t − s ≤ ρ∗.
Consequently, we can prove (6.13) with a constant K′0 ≥ 0. �

Lemma 6.4. Besides the assumptions of Lemma 4.1 we assume Ws(t, x) ≥ 0 and (6.7)–
(6.8). Then, there exist functions ri j(t, s; x, w) (i, j = 1, 2, . . . , l) satisfying (3.5) for an integer
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M ≥ 0 such that ∂αw∂
β
xri j(t, s; x, w) are continuous in 0 ≤ s ≤ t ≤ T and (x, w) ∈ R2d for all α

and β, and we have{
i
∂

∂t
− Hw(t) − Hs(t, x) + iWs(t, x)

}
s(t, s) f(6.15)

=
√

t − s
(
Ri j(t, s); i ↓ j→ 1, 2, . . . , l

)
f ≡ √t − sR(t, s) f

for f ∈ C∞0 (Rd)l, where Ri j(t, s) are the operators defined by (3.6).

Proof. We note that (6.6) and (6.9) hold under our assumptions. Consequently, replacing
V(t, x) and Hs(t, x) with V(t, x)− iW(t, s) and Hs(t, x)− iWs(t, x), respectively in the proof of
Proposition 3.5 of [16], we can complete the proof of Lemma 6.4. In particular, see (3.21)
and (3.22) of [16]. �

Proposition 6.5. Besides the assumptions of Proposition 4.2, we suppose Ws(t, s) ≥ 0
and (6.7)–(6.8). Then, there exist functions ri j(t, s; x, w) (i, j = 1, 2, . . . , l) satisfying the
properties stated in Lemma 6.4 and we have

(6.16) ‖R(t, s) f ‖a ≤ Ca‖ f ‖M+aM1 , 0 ≤ t − s ≤ ρ∗

for a = 0, 1, 2, . . . and all f ∈ (BM+aM1 )l, where M1 is the integer in (3.23).

Proof. As in the proof of Proposition 4.2, we can easily see that the assumptions of
Lemma 6.4 hold. Hence, using Lemma 6.4, from Proposition 3.6 we can prove (6.16). �

Proposition 6.6. Besides the assumptions of Theorem 2.2 we suppose (1.13), (2.16) and
(6.1). Then, for a = 0, 1, 2, . . . there exist constants K′a ≥ 0 such that

(6.17) ‖Cs(t, s) f ‖a ≤ eK′a(t−s)‖ f ‖a, 0 ≤ t − s ≤ ρ∗

for all f ∈ (Ba)l.

Proof. We note that (6.12) hold. Then, applying Proposition 3.6 as M1 = 1 to the second
term on the right-hand side of (6.14), its Ba-norm is bounded by Ca(t − s)‖ f ‖a from above
with a constant Ca ≥ 0 for 0 ≤ t − s ≤ ρ∗. Hence, using (4.7), from (6.14) we can prove

‖Cs(t, s) f ‖a ≤ eKa(t−s)‖ f ‖a +Ca(t − s)‖ f ‖a ≤ e(Ka+Ca)(t−s)‖ f ‖a, 0 ≤ t − s ≤ ρ∗,
which shows (6.17). �

Proofs of Theorems 2.3 and 2.4. Since we are assuming (1.13) and (2.16), we obtain
the same results as in Theorem 4.5 for the equation (1.12) from (1) of Theorem 2.1 of [17].
We write the solution to (1.12) with u(s) = f as Us(t, s) f . Then, using Proposition 6.5, we
can prove

(6.18) ‖s(t, s) f − Us(t, s) f ‖a ≤ Caρ
3/2‖ f ‖M+a, 0 ≤ t − s ≤ ρ∗

for a = 0, 1, 2, . . . as in the proof of (4.11). Thereby, following the proofs of Theorems 2.1
and 2.2 in Sect. 5, we can complete the proofs of Theorems 2.3 and 2.4 together with (6.13)
and (6.17). �
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Proofs of Theorems 2.5 and 2.6. We may assume Wj(t, x j) ≥ 0 and Ws j(t, x j) ≥
0 ( j = 1, 2, . . . ,N) without loss of generality as in the proofs of Theorems 2.3 and 2.4. For a
continuous path q(θ) =

(
q1(θ), . . . , qN(θ)

) ∈ RdN (s ≤ θ ≤ t) we define 
�(θ, s; q) (s ≤ θ ≤ t)

by the solution to

d
dθ


�(θ) = −

[ N∑
j=1

I1 ⊗ · · · ⊗ I j−1 ⊗ {
iHs j(θ, q j(θ)) +Ws j(θ, q j(θ))

}
(6.19)

⊗ I j+1 ⊗ · · · ⊗ IN

]


�(θ), 
�(s) = I1 ⊗ · · · ⊗ IN

in the same way as we do  (θ, s; q) from (2.13).
We consider  j(θ, s; q j) in (2.19). Then from the simple properties of the tensor products

(cf. 4.2.1 and 4.2.10 in §4.2 of [11], and §VIII.10 of [26]) we can easily have

d
dθ

1(θ, s; q1) ⊗ · · · ⊗ N(θ, s; qN)(6.20)

=

N∑
j=1

1(θ, s; q1) ⊗ · · · ⊗  j−1(θ, s; q j−1)

⊗ d
dθ

 j(θ, s; q j) ⊗  j+1(θ, s; q j+1) ⊗ · · · ⊗ N(θ, s; qN)

= −
N∑

j=1

1(θ, s; q1) ⊗ · · · ⊗  j−1(θ, s; q j−1)

⊗ {
iHs j(θ, q j(θ)) +Ws j(θ, q j(θ))

}
 j(θ, s; q j)

⊗  j+1(θ, s; q j+1) ⊗ · · · ⊗ N(θ, s; qN)

= −
N∑

j=1

[
I1 ⊗ · · · ⊗ I j−1 ⊗ {

iHs j(θ, q j(θ)) +Ws j(θ, q j(θ))
} ⊗ I j+1 ⊗ · · · ⊗ IN

]
1(θ, s; q1) ⊗ · · · ⊗ N(θ, s; qN).

Consequently we have

(6.21) 
�(θ, s; q) = 1(θ, s; q1) ⊗ · · · ⊗ N(θ, s; qN),

which follows from uniqueness of the solutions to (6.19). Hence we can write (2.19) as

(6.22) exp ∗iS�sw(t, 0; qΔ) =
(
exp iS�w(t, 0; qΔ)

)

�(θ, s; qΔ),

which corresponds to (2.14) for one particle system. We set

H�
s(t, x) :=

N∑
j=1

I1 ⊗ · · · ⊗ I j−1 ⊗ Hs j(t, x j) ⊗ I j+1 ⊗ · · · ⊗ IN ,(6.23)

W�
s(t, x) :=

N∑
j=1

I1 ⊗ · · · ⊗ I j−1 ⊗Ws j(t, x j) ⊗ I j+1 ⊗ · · · ⊗ IN ,(6.24)

W�(t, x) =
N∑

j=1

Wj(t, x j).(6.25)
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Then we can write (2.18) in the form of (1.11) as

(6.26) 
�
sw(t, x, ẋ) = 

�
w(t, x, ẋ) − H�

s(t, x) + iW�
s(t, x).

We can easily see that both of H�
s(t, x) and W�

s(t, x) are written as lN × lN Hermitian matrices
(cf. 4.2.5 in §4.2 of [11] and §VIII.10 of [26]) and satisfy (1.13), (2.16) and W�

s(t, x) ≥ 0.
Hence we can obtain the same results as in Lemma 6.1 for  �(t, s; q).

We consider c�w(t, s; x, y) defined by (3.9) where W = W�(t, x). Then we can easily see
the same estimates as in (3.19) for c�w(t, s; x, y) because of c�w(t, s; x, y) =

∏N
j=1 cw j(t, s; x j, y j)

and Wj(t, x j) ≥ 0 ( j = 1, 2, . . . ,N). We also note that W�(t, x) satisfies (2.7) and (2.9).
Hence, using the results stated above for  �(t, s; q) and c�w(t, s; x, y) and following the proofs
of Theorems 2.5 and 2.6, we can complete the proofs of Theorems 2.5 and 2.6 from (6.22).

�

Appendix A. A proof of Theorem 1.A

Appendix A. A proof of Theorem 1.A
We will prove Theorem 1.A in the introduction from Theorem 13.13 in [29]. Let q(x, ξ)

be a function satisfying (1.14) and set

(A.1) qw(x, ξ, x′) = q((x + x′)/2, ξ).

Then Theorem 13.13 in [29] says

(A.2) ‖Qw(X, hDx, X′)‖L2→L2 = sup
x,ξ
|q(x, ξ)| + O(h).

We set

(A.3) qwL(x, hξ) = Os-
�

e−iy·ηqw(x, h(ξ + η), x + y)dyd̄η.

Then, applying Theorem 2.5 in Chapter 2 of [20] as

(A.4) p(x, ξ, x′, ξ′) = qw(x, hξ, x′)

to (A.3), we have

(A.5) QwL(X, hDx) = Qw(X, hDx, X′).

Applying Theorem 3.1 in Chapter 2 of [20] as (A.4) to (A.3), we have

qwL(x, hξ) = qw(x, hξ, x) + hr(x, hξ)

with a function r(x, ξ) satisfying (1.14), which shows

(A.6) qwL(x, hξ) = q(x, hξ) + hr(x, hξ)

together with (A.1). Applying the usual Calderón–Vaillaincourt theorem (cf. Theorem 1.6
in Chapter 7 of [20]) to R(X, hDx), we have

(A.7) ‖R(X, hDx)‖L2→L2 ≤ C < ∞
with a constant C independent of 0 < h ≤ 1. Hence from (A.5) and (A.6) we have

‖Q(X, hDx)‖L2→L2 = ‖QwL(X, hDx)‖L2→L2 + O(h) = ‖Qw(X, hDx, X′)‖L2→L2 + O(h).
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Therefore we have obtained

(A.8) ‖Q(X, hDx)‖L2→L2 = sup
x,ξ
|q(x, ξ)| + O(h)

from (A.2).
Now let p(x, ξ, x′) be a function in Theorem 1.A. We set

(A.9) pL(x, hξ) = Os-
�

e−iy·ηp(x, h(ξ + η), x + y)dyd̄η

as we set qwL(x, hξ) in (A.3). Then we have

(A.10) PL(X, hDx) = P(X, hDx, X′),

pL(x, hξ) = p(x, hξ, x) + hr′(x, hξ) ≡ p̂(x, hξ) + hr′(x, hξ)(A.11)

with r′(x, ξ) satisfying (1.14) as in the proofs of (A.5) and (A.6). Thus, using (A.8), we have

‖P(X, hDx, X′)‖L2→L2 = ‖PL(X, hDx)‖L2→L2(A.12)

= ‖P̂(X, hDx)‖L2→L2 + O(h) = sup
x,ξ
|p(x, ξ, x)| + O(h),

which shows Theorem 1.A.

Data availability statement. Data sharing is not applicable to this article as no new data
were created or analyzed in this study.
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