
Murai, S.
Osaka J. Math.
60 (2023), 351–376

STRICHARTZ ESTIMATES FOR MAGNETIC SCHRÖDINGER,
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Abstract
Our purpose of this paper is to derive Strichartz estimates for solutions of magnetic

Schrödinger, wave and Klein–Gordon equations in exterior to the star-shaped obstacle. For its
proof we need the smoothing estimates for solutions of perturbed equations and the Strichartz
estimates for solutions of free equations. Moreover as an application of them, we shall in-
vestigate the scattering theory for these equations with a power type nonlinearity in suitable
space.

1. Strichartz estimates

1. Strichartz estimates
Strichartz estimates are one of the standard tool in the study of linear and nonlinear evo-

lution equations. They are initiated by the fundamental paper of Strichartz [24]. After him,
many authors extended them to some equations with variable coefficients. D’Ancona &
Fanelli [9] (see also [8], [10]) have treated the magnetic potentials in whole space. On the
other hand, in exterior domains, Ivanovici [12] proved the corresponding Strichartz esti-
mates for free Schrödinger equations. Smith & Sogge studied them for free wave equation
in odd dimension (see [23]), and Burq and Metcalfe extended to higher dimension n ≥ 4
(see [3, 15]). Recently the Strichartz estimates for Schrödinger, Klein–Gordon and wave
equations with potential are treated in Mochizuki & Murai [20]. Our goal in this section is
to extend the above results to the case of more general potentials.

To be more precisely, throughout this paper let Ω be an exterior domain in Rn (n ≥ 2)
with smooth boundary ∂Ω such that Rn \Ω is star-shaped with respect to the origin. The case
Ω = Rn is not excluded when n ≥ 3. In case n = 2, we fix r0 > 0 satisfying Ω ⊂ {x; |x| >
r0}. Consider in Ω the following Schrödinger, wave (m = 0) and Klein–Gordon (m > 0)
equations:

(1.1) i∂tu = Lu +G(x, t), x ∈ Ω, t � 0,

(1.2) ∂2
t u + Lu + m2u = G(x, t), x ∈ Ω, t � 0

with Dirichlet boundary condition

(1.3) u(x, t) = 0, x ∈ ∂Ω, t ∈ R.
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Here L = −Δb + c(x), Δb is the magnetic Laplacian

Δb = ∇b · ∇b =

n∑
j=1

{∂ j + ib j(x)}2, ∂ j =
∂

∂x j
,

b j(x) and c(x) are real-valued C1-functions of x ∈ Ω. b(x) = (b1(x), · · · , bn(x)) represents a
magnetic potential. Thus, the magnetic field is defined by its rotation ∇ × b(x) = (∂ jbk(x) −
∂kb j(x)) j<k.

Let ΔD be the Dirichlet Laplacian. We can define (−ΔD)s/2 via the functional calculus
of selfadjoint operators for s ≥ 0 and Ḣs

D(Ω) is a domain of (−ΔD)s/2. Thus by duality and
interpolation argument we define Ḣs

D(Ω) for s ∈ R. Similarly, define the inhomogeneous
space Hs

D(Ω), s ∈ R as a domain of (−ΔD + 1)s/2. In this paper, we simply write LpLq(Ω) =
Lp

t (R±; Lq
x(Ω)) for R+ = [0,∞) and R− = (−∞, 0].

To achieve our purpose we will employ the following strategy: the equation (1.1) or (1.2)
with G = 0 is rewritten to the evolution equation:

i∂tu = Λu.

Decomposing the operator Λ into the free part and the perturbed part, that is, writing Λ =
Λ0 +W, the solution u(t) = e−itΛ f is represented as an integral equation:

(1.4) u(t) = e−itΛ0 f − i
∫ t

0
e−i(t−τ)Λ0Wu(τ) dτ

by Duhamel’s principle. Hence, we shall concentrate to estimate each term of the right hand
side of (1.4). To do so, we need the Strichartz estimates for the free solutions e−itΛ0 f and the
smoothing estimates for the perturbed solutions e−itΛ f . Moreover as an immediately conse-
quence of the estimate for this solution, we can also get the estimate for the inhomogeneous
term G(x, t) by TT ∗-argument treated in Ginibre & Velo [11].

In the following we denote r = |x| and

[r] =
{

r,
r(1 + log(r/r0)),

[n − 2] =
{

n − 2, when n ≥ 3,
1, when n = 2.

We prepare two elementary lemmas.

Lemma 1.1. Let n ≥ 2 and −1 ≤ γ ≤ 1. Assume that b(x) and c(x) satisfy

(1.5) |b(x)| ≤ δ[r]−1, −δ[r]−2 ≤ c(x) ≤ C[r]−2

for some δ > 0 sufficiently small and C > 0. Then ‖√Lγg‖L2(Ω) � ‖
√−ΔD

γg‖L2(Ω). Moreover
the inhomogeneous version also holds.

Proof. When γ = 1, we have

‖√Lg‖2L2(Ω) = ((∇ + ib(x))g, (∇ + ib(x))g)L2(Ω) + (c(x)g, g)L2(Ω)

= ‖∇g‖2L2(Ω) + 2Im(b · ∇g, g)L2(Ω) + ((|b|2 + c)g, g)L2(Ω),

where (·, ·)L2(Ω) is an inner-product of L2(Ω). Applying assumption (1.5) and the Hardy
inequality
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(1.6)
∫
Ω

[n − 2]2

4[r]2 |g|2 dx ≤
∫
Ω

|∇bg|2 dx

with b = 0 (which is proved by Mochizuki [17] for n ≥ 3 and Mochizuki & Nakazawa [22]
for n = 2) to the second and third terms, we obtain

|(b · ∇g, g)L2(Ω)| ≤
∫
Ω

|∇g||b||g| dx ≤ δ‖∇g‖2L2(Ω),

((|b|2 + c)g, g)L2(Ω) =

∫
Ω

|b|2|g|2 dx +
∫
Ω

c|g|2 dx ≤ C‖∇g‖2L2(Ω).

Summarizing these inequalities, we have ‖√Lg‖L2(Ω) ≤ C‖∇g‖L2(Ω). On the other hand,
proceeding as for the upper bound, we estimate from below as follows:

‖√Lg‖2L2(Ω) ≥ ‖∇g‖2L2(Ω) + 2Im(b · ∇g, g)L2(Ω) + (cg, g)L2(Ω)

≥ (1 −Cδ)‖∇g‖2L2(Ω)

for δ small enough. This with the fact ‖∇g‖L2(Ω) � ‖
√−ΔDg‖L2(Ω) proves the case of γ = 1.

By duality, we have for γ = −1. Finally we use the interpolation argument to get the required
equivalence for −1 ≤ γ ≤ 1.

It is clear that the inhomogeneous version holds by the same argument. �

Furthermore, to estimate the integral term, the following lemma is useful.

Lemma 1.2 (Christ & Kiselev [5]). Let −∞ ≤ a < b ≤ ∞. Given two Banach spaces X,
Y and a bounded linear operator

Th =
∫ b

a
K(t, τ)h(τ) dτ

from Lp̃((a, b); X) to Lp((a, b); Y), then its truncated version

Sh =
∫ t

a
K(t, τ)h(τ) dτ

is also bounded on the same spaces, provided 1 ≤ p̃ < p ≤ ∞.

Note that thanks to this lemma, to prove the following type inequality∥∥∥∥∥∥
∫ t

0
e−i(t−τ)ΛF(τ) dτ

∥∥∥∥∥∥
LpY
≤ C‖F‖Lp′Y ′ ,

it is enough to estimate the integral∥∥∥∥∥
∫ ∞

0
e−i(t−τ)ΛF(τ) dτ

∥∥∥∥∥
LpY
.

In our previous paper [20] the smoothing estimates for e−itL and e−it
√

L+m2 are proved
under the smallness assumption on the rotation of b(x) and the negative part c0(x) of c(x) as
follows:

(1.7) |∇ × b(x)|, |c0(x)| ≤ ε[r]−2,
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where ε ≥ 0 is a small constant. Moreover, using them, the Strichartz estimates for the
solution with b = 0 were proved along the strategy mentioned above. However, in the
present case the coefficient b(x) makes the argument more complicate. Actually, our method
requires to regard the terms relating to b(x) as a perturbation of −Δ, and so we need the
smoothing estimates in Hs

D(Ω) and another smallness assumption on b(x) itself like (1.5)
from Lemma 1.1 to derive the Strichartz estimates. To avoid this overlap condition, in
this paper changing the proof of the smoothing estimates in [20] to that without (1.7), we
simplify the assumption on b(x) (see the proof of Proposition 1.3).

1.1. Schrödinger equations.
1.1. Schrödinger equations. Throughout this section we put ξ(r) = (1 + [r])−1 and al-

ways assume that the coefficients b(x) and c(x) = c0(x) + c1(x) satisfy

|b(x)|, |∇ · b(x) + |b(x)|2 + c0(x)| ≤ ε0ξ(r)2,(AS1)

c1(x) = o(r−1) (r → ∞), c1(x) ≥ 0, ∂r{rc1(x)} ≤ 0,

where ε0 ≥ 0 is a small constant and ∂r = ∂/∂r.
Let us derive the smoothing estimate for solution e−itL f which is a crucial tool for the

proof of Strichartz estimate.

Proposition 1.3. Let n ≥ 2. Assume (AS1). Then the following estimate holds.

‖ξe−itL f ‖L2L2(Ω) + ‖ξe−itL f ‖
L2H

1
2

D (Ω)
≤ C‖ f ‖L2(Ω).

Proof. The desired estimate follows from the same argument as in [20] (see also [17],
[18]). The following lemma is available.

Lemma 1.4 ([13, 18]). Let  be a Hilbert space and let (Λ − z)−1 for z ∈ C \ R be
the resolvent of selfadjoint operator Λ in . Suppose that  is a densely defined, closed
operator from  to another Hilbert space 1. Assume that there exists C > 0 such that

sup
z�R
‖(Λ − z)−1


∗g‖1 < C‖g‖1 , g ∈ (∗).

Then we have for each f ∈ ,

‖e−itΛ f ‖2L21
≤ 2C‖ f ‖2


.

First we need to prove the inequality:

(1.8) (1 +
√
|z|)‖ξ(L − z)−1g‖L2(Ω) + ‖ξ∇(L − z)−1g‖L2(Ω) ≤ C‖ξ−1g‖L2(Ω)

for the resolvent (L− z)−1 of L, z ∈ C \R under our assumption (similar inequality is already
proved by Mochizuki & Murai [20] under the smallness condition on the rotation of b(x)
instead of it on b(x) itself like (AS1)). To do so, we represent the operator L as

L = −Δ + A · ∇ + B0 + B1

with

A = −2ib, B0 = −i∇ · b + |b|2 + c0, B1 = c1,

and use the following identity.

(L − z)−1 = RB1 (z)
(
I + (A · ∇ + B0)RB1 (z)

)−1 ,
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where RB1 (z) = (−ΔD + B1 − z)−1. Note that the assumption (AS1) implies

|A|, |B0| ≤ ε0ξ
2, B1 ≥ 0, ∂r(rB1) ≤ 0.

Here for the resolvent RB1 (z) the following inequality is proved in [20] under the assumption
(AS1) on B1 and the star-shapedness of Rn \Ω:

(1.9) (1 +
√
|z|)‖ξRB1 (z)g‖L2(Ω) + ‖ξ∇RB1 (z)g‖L2(Ω) ≤ C‖ξ−1g‖L2(Ω).

Hence if the operator ξ−1(I + (A · ∇ + B0)RB1 (z))−1ξ exists and bounded in L2(Ω), then the
same type inequality as above holds for the resolvent (L− z)−1. Since (AS1), using (1.9), we
have

‖ξ−1(A · ∇ + B0)RB1 (z)g‖L2(Ω)

≤ ‖ξ−2 max{|A|, |B0|}‖L∞(Ω)(‖ξ∇RB1 (z)g‖L2(Ω) + ‖ξRB1 (z)g‖L2(Ω))

≤ ε0‖ξ−1g‖L2(Ω).

Thus, if ε0 is sufficiently small we can invert I + (A · ∇+ B0)RB1 (z) by a Neumann series and
get

‖ξ−1 (I + (A · ∇ + B0)RB1 (z)
)−1 g‖L2(Ω) ≤ C‖ξ−1g‖L2(Ω).

As soon as the inequality (1.8) is proved, we can obtain the desired estimate for the first term
by Lemma 1.4 with  = ξ, Λ = L and  = 1 = L2(Ω). On the other hand (1.8) shows

‖ξ(L − z)−1g‖H1
D(Ω)(1.10)

≤ ‖ξ(L − z)−1g‖L2(Ω) + ‖∇ξ(L − z)−1g‖L2(Ω) + ‖ξ∇(L − z)−1g‖L2(Ω)

≤ C‖ξ−1g‖L2(Ω),

where we used the fact |∇ξ| ≤ Cξ. By duality, we also have

(1.11) ‖ξ(L − z)−1g‖L2(Ω) ≤ C‖ξ−1g‖H−1
D (Ω).

Then interpolating these inequalities (1.10) and (1.11), we obtain

‖ξ(L − z)−1g‖
H

1
2

D (Ω)
≤ C‖ξ−1g‖

H
− 1

2
D (Ω)
.

Thus, it follows from Lemma 1.4 with  = (−ΔD + 1)1/4ξ, Λ = L and  = 1 = L2(Ω), the
desired estimate for the second term can be obtained. �

Next we shall treat the Strichartz estimates. In addition to (AS1), we further assume the
following condition.

(AS2) ξ(r)−2c1(x) ∈ L∞(Ω).

Noting that this together with (AS1) implies

ξ−2A ∈ L∞(Ω), ξ−2B ∈ L∞(Ω), B = B0 + B1.

In the following exponent pairs (p, q) and ( p̃, q̃) always satisfy the relation:

(1.12) 2 < p, p̃ ≤ ∞, 2
p
+

n
q
=

n
2
,

2
p̃
+

n
q̃
=

n
2
.
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The main result in this section is the following.

Theorem 1.5. Let n ≥ 2. Assume (AS1)–(AS2) and that Rn \ Ω is a strictly convex
obstacle. Then for the solution u of (1.1) with (1.3) and the initial data u(0) = f the following
estimate holds.

(1.13) ‖u‖LpLq(Ω) + ‖u‖L∞L2(Ω) ≤ C1

(
‖ f ‖L2(Ω) + ‖G‖Lp̃′Lq̃′ (Ω)

)
.

Proof. The solution u is represented as the integral form:

u(t) = e−itL f − i
∫ t

0
e−i(t−τ)LG(τ) dτ.

Hence it is enough to derive the inequality:

(1.14) ‖e−itL f ‖LpLq(Ω) + ‖e−itL f ‖L∞L2(Ω) ≤ C‖ f ‖L2(Ω).

Indeed, the first term can be estimated by (1.14) directly. Using (1.14) again and the dual
inequality ∥∥∥∥∥

∫ ∞

0
eiτLh(τ) dτ

∥∥∥∥∥
L2(Ω)
≤ C‖h‖Lp̃′Lq̃′ (Ω)

of (1.14), we have∥∥∥∥∥
∫ ∞

0
e−i(t−τ)LG(τ) dτ

∥∥∥∥∥
LpLq(Ω)

≤ C
∥∥∥∥∥
∫ ∞

0
eiτLG(τ) dτ

∥∥∥∥∥
L2(Ω)
≤ C‖G‖Lp̃′Lq̃′ (Ω).

Finally we can apply Lemma 1.2 to get the desired estimate. Thus in the following we shall
concentrate to prove (1.14). The estimate of the second term is an immediate consequence
of the unitarity of e−itL. To estimate the first term, we write

Lv = −Δv + ∇ · (Av) − ∇ · Av + Bv := −Δv +W1(v) +W2(v)

with W1(v) = ∇ · (Av) and W2(v) = −∇ · Av + Bv. Then the solution v = e−itL f is represented
as the integral form:

v(t) = eitΔD f − i
∫ t

0
ei(t−τ)ΔD(W1(v) +W2(v)) dτ.

It is enough to estimate each term of the right hand side of this integral equation. The first
term can be estimated by the inequality:

(1.15) ‖eitΔD f ‖LpLq(Ω) ≤ C‖ f ‖L2(Ω)

which is proved by Ivanovici [12] under the condition that Rn \ Ω is strictly convex. As to
the second term, thanks to Lemma 1.2 it is enough to estimate the following integral.∫ ∞

0
ei(t−τ)ΔD(W1(v) +W2(v)) dτ.

Using the inequality (1.15) and applying the dual inequality of Proposition 1.3:∥∥∥∥∥
∫ ∞

0
e−iτΔDh(τ) dτ

∥∥∥∥∥
L2(Ω)
≤ C‖ξ−1h‖

L2H
− 1

2
D (Ω)

to the term for W1(v), we have
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∥∥∥∥∥
∫ ∞

0
ei(t−τ)ΔDW1(v) dτ

∥∥∥∥∥
LpLq(Ω)

≤C
∥∥∥∥∥
∫ ∞

0
e−iτΔDW1(v) dτ

∥∥∥∥∥
L2(Ω)

≤C‖ξ−1W1(v)‖
L2H

− 1
2

D (Ω)
.

Note that

ξ−1∇ · (Av) = ∇ · (ξ−1Av) − A · ∇ξ−1v.

Then using the fact ‖∇ · �f ‖
H
− 1

2
D (Ω)

≤ ‖ �f ‖
H

1
2

D (Ω)
with �f |∂Ω = 0, we have

‖ξ−1∇ · (Av)‖
L2H

− 1
2

D (Ω)
≤ ‖ξ−1Av‖

L2H
1
2

D (Ω)
+ ‖A · ∇ξ−1v‖

L2H
− 1

2
D (Ω)
.

Here note that |∇ξ−2| ≤ Cξ−2 and |∇ · A| ≤ C|B|, it follows from the assumption on A and B
that

‖ξ−2Av‖H1
D(Ω)

≤ ‖∇ξ−2Av‖L2(Ω) + ‖ξ−2∇ · Av‖L2(Ω) + ‖ξ−2A · ∇v‖L2(Ω) + ‖ξ−2Av‖L2(Ω)

≤ C
{
‖ξ−2B‖L∞(Ω)‖v‖L2(Ω) + ‖ξ−2A‖L∞(Ω)

(
‖∇v‖L2(Ω) + ‖v‖L2(Ω)

)}
≤ C‖v‖H1

D(Ω)

and

‖ξ−2Av‖L2(Ω) ≤ ‖ξ−2A‖L∞(Ω)‖v‖L2(Ω) ≤ C‖v‖L2(Ω).

Then interpolating these inequalities, we get

‖ξ−1Av‖HγD(Ω) ≤ C‖ξv‖HγD(Ω)

for 0 ≤ γ ≤ 1. Using this inequality with γ = 1/2 and Proposition 1.3, we get

‖ξ−1Av‖
L2H

1
2

D (Ω)
≤ C‖ξv‖

L2H
1
2

D (Ω)
≤ C‖ f ‖L2(Ω).

On the other hand, since |∇ξ−1| ≤ Cξ−1[r]−
1
2 and |∇([r]1/2ξ∇ξ−1)| ≤ C[r]−1, we have by

using the Hardy inequality (1.6) with b = 0

‖[r]
1
2 ξ∇ξ−1g‖H1

D(Ω) ≤ ‖∇([r]
1
2 ξ∇ξ−1)g‖L2(Ω) + ‖[r]

1
2 ξ∇ξ−1 · ∇g‖L2(Ω)

+ ‖[r]
1
2 ξ∇ξ−1g‖L2(Ω)

≤ C‖g‖H1
D(Ω)

and

‖[r]
1
2 ξ∇ξ−1g‖L2(Ω) ≤ C‖g‖L2(Ω).

Hence by the interpolation and the duality argument show

‖∇ξ−1g‖H−γD (Ω) ≤ C‖ξ−1[r]−
1
2 g‖H−γD

, 0 ≤ γ ≤ 1.

This inequality with γ = 1/2 implies

‖A · ∇ξ−1v‖
L2H

− 1
2

D (Ω)
≤ C‖ξ−1[r]−

1
2 Av‖

L2H
− 1

2
D (Ω)
.



358 S. Murai

Moreover using the dual of Hardy inequality:

‖[r]−
1
2 v‖L2(Ω) ≤ ‖v‖

H
1
2

D (Ω)

(which is proved by interpolating (1.6) with b = 0 and the trivial one ‖v‖L2(Ω) ≤ C‖v‖L2(Ω))
and Proposition 1.3 again, we obtain

‖ξ−1[r]−
1
2 Av‖

L2H
− 1

2
D (Ω)

≤ ‖ξ−1Av‖L2L2(Ω) ≤ ‖ξ−2A‖L∞(Ω)‖ξv‖L2L2(Ω) ≤ C‖ f ‖L2(Ω).

These inequalities give

‖ξ−1W1(v)‖
L2H

− 1
2

D (Ω)
≤ C‖ f ‖L2(Ω).

On the other hand the dual of Proposition 1.3:∥∥∥∥∥
∫ ∞

0
e−iτΔDh(τ) dτ

∥∥∥∥∥
L2(Ω)
≤ C‖ξ−1h‖L2L2(Ω)

shows that the term for W2(v) can be estimated as∥∥∥∥∥
∫ ∞

0
ei(t−τ)ΔDW2(v) dτ

∥∥∥∥∥
LpLq(Ω)

≤ C‖ξ−1W2(v)‖L2L2(Ω)

≤ C‖ξ−2B‖L∞(Ω)‖ξv‖L2L2(Ω) ≤ C‖ f ‖L2(Ω).

Thus, summarizing the above argument, the desired estimate is now proved. �

1.2. Wave equations.
1.2. Wave equations. Throughout this section let ϕ = ϕ(r) > 0 be a smooth function of

r > 0 and let μ = μ(r) > 0 be a smooth L1(R+) function of r > 0 satisfying

(1.16) μ′(r) ≤ 0, μ′(r)2 ≤ 2μ(r)μ′′(r).

In the wave case, we always assume that the coefficients b(x) and c(x) = c0(x)+c1(x) satisfy

|b(x)|, r|∇ · b(x) + |b(x)|2 + c0(x)| ≤ ε0μ(r),(AW1)

c1(x) = o(r−1) (r → ∞), c1(x) ≥ 0, ∂r{ϕ(r)c1(x)} ≤ 0,

where ε0 ≥ 0 is a small constant.
Let us first state the smoothing estimate.

Proposition 1.6. Let n ≥ 3. Assume (AW1) and (1.5). Then the following estimate holds
for 0 ≤ γ ≤ 1.

‖√μe−it
√

L f ‖L2ḢγD(Ω) ≤ C‖ f ‖ḢγD(Ω).

Proof. In this proof we simply write ∂tu = ut where u is a solution of (1.2) with G = 0
and also rewrite the equation as

(1.17) utt − Δu + A · ∇u + B0u + B1u = 0,

where A, B0 and B1 are same as Schrödinger case. Then the assumption (AW1) is also
rewritten as

|A| ≤ ε0μ, |B0| ≤ ε0r−1μ, B1 ≥ 0, ∂r(ϕB1) ≤ 0.
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Multiplying by ϕ
(
x̃ · ∇u + n−1

2r u
)

(x̃ = x/r) on each term in (1.17) and take a real part, we
have

(1.18) ∂tX +
1
2
∇ · Y + Z = 0,

where we put

X = ϕRe
(
ut x̃ · ∇u +

n − 1
2r

utu
)
,

Y = x̃ϕ(−|ut|2 + |∇u|2 + B1|u|2) − 2ϕRe∇u
(
x̃ · ∇u +

n − 1
2r

u
)
+ x̃

(
ϕ

n − 1
2r

)′
|u|2,

Z =
(
ϕ

r
− ϕ′

) {
|∇u|2 − |x̃ · ∇u|2 + (n − 1)(n − 3)

4r2 |u|2
}

+
1
2
ϕ′(|ut|2 + |∇u|2) − ϕ′′ n − 1

4r
|u|2 − 1

2
∂r(ϕB1)|u|2

+ ϕRe
{

(A · ∇u + B0u)
(
x̃ · ∇u +

n − 1
2r

u
)}
.

Integrating (1.18) over Ω × [s, t], we have

(1.19)
∫
Ω

X(t) dx −
∫
Ω

X(s) dx +
1
2

∫ t

s

∫
∂Ω

Y(τ) · ν dSdτ +
∫ t

s

∫
Ω

Z(τ) dxdτ = 0,

where ν = ν(x) is the outer normal vector at x ∈ ∂Ω. We now estimate the integrals of X and
Y in (1.19). Let ϕ(r) =

∫ r
0 μ(σ) dσ. It follows from the Hardy inequality (1.6) and Young

inequality, we have ∣∣∣∣∣
∫
Ω

X(τ) dx
∣∣∣∣∣ ≤ C(‖μ‖L1(R+))

∫
Ω

(
|uτ|2 + |∇u|2

)
dx.

Here by Lemma 1.1 the integral of the right hand side is equivalent to∫
Ω

(
|ut|2 + |∇bu|2 + c|u|2

)
dx,

and this integral is conserved in time by the energy conservation low. Hence, we have

(1.20)
∣∣∣∣∣
∫
Ω

X(τ) dx
∣∣∣∣∣ ≤ C

(
‖∇u(0)‖2L2(Ω) + ‖ut(0)‖2L2(Ω)

)

for any τ ∈ R. As to Y , the boundary condition and assumption on the star-shapedness of
R

n \Ω assure that the integral in Y(τ) · ν can be neglected, since∫
∂Ω

Y(τ) · ν dS =
∫
∂Ω

{ϕ(x̃ · ν)(−|uτ|2 + |ν · ∇u|2) − 2ϕ(x̃ · ν)|ν · ∇u|2} dS(1.21)

= −
∫
∂Ω

ϕ(x̃ · ν)(|uτ|2 + |ν · ∇u|2) dS ≥ 0.

Hence it follows from (1.19)–(1.21) that∫ t

s

∫
Ω

Z(τ) dxdτ ≤ C
(
‖∇u(0)‖2L2(Ω) + ‖ut(0)‖2L2(Ω)

)
.
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Finally as to Z, since the assumption (AW1), the term for B1 can be neglected, and the term
for A and B0 can be estimated by Young inequality and the boundedness of ϕ(r)∣∣∣∣∣∣ϕRe

{
(A · ∇u + B0u)

(
x̃ · ∇u +

n − 1
2r

u
)}∣∣∣∣∣∣(1.22)

≤ Cε0

(
μ|∇u|2 + μ

r
|u||∇u| + μ

r2 |u|2
)

≤ Cε0

(
μ|∇u|2 + μ (n − 2)2

4r2 |u|2
)
.

Applying the weighted Hardy inequality:∫ t

s

∫
Ω

μ
(n − 2)2

4r2 |u|2 dxdτ ≤
∫ t

s

∫
Ω

|∇(
√
μu)|2 dxdτ(1.23)

≤
∫ t

s

∫
Ω

(
μ|∇u|2 − μ′ n − 1

2r
|u|2

)
dxdτ

which is proved in Mochizuki [16] under (1.16) to the second term of the right hand side in
(1.22), we have
∫ t

s

∫
Ω

∣∣∣∣∣∣ϕRe
{

(A · ∇u + B0u)
(
x̃ · ∇u +

n − 1
2r

u
)}∣∣∣∣∣∣ dxdτ

≤ Cε0

∫ t

s

∫
Ω

(
μ|∇u|2 − μ′ n − 1

2r
|u|2

)
dxdτ.

Since ϕ(r) ≥ rμ(r) = rϕ′(r) and |x̃ · ∇u| ≤ |∇u|, the integral of Z can be estimated if ε0 is
sufficiently small as∫ t

s

∫
Ω

Z(τ) dxdτ ≥ C
∫ t

s

∫
Ω

{
μ(|uτ|2 + |∇u|2) − μ′ n − 1

2r
|u|2

}
dxdτ.

Thus, the above argument shows the inequality:∫ t

s

∫
Ω

{
μ(|uτ|2 + |∇u|2) − μ′ n − 1

2r
|u|2

}
dxdτ ≤ C

(
‖∇u(0)‖2L2(Ω) + ‖ut(0)‖2L2(Ω)

)
.(1.24)

To derive the desired estimate, we focus on the first term of the left hand side and choose
(u(0), ut(0)) = (0, f ) or = (

√
L−1 f , 0) in (1.24) to obtain

‖√μ cos(t
√

L) f ‖L2L2(Ω) ≤ C‖ f ‖L2(Ω), ‖√μ sin(t
√

L) f ‖L2L2(Ω) ≤ C‖ f ‖L2(Ω).

These inequalities imply the case of γ = 0. Furthermore we put u = e−it
√

L f in (1.24). Then
the argument of (1.23) reads us to the case of γ = 1. Hence the desired estimate is now
proved by the interpolation. �

In the following, we put μ(r) = (1+ r)−1−δ, δ > 0. In order to state the result for Strichartz
estimate, we further assume the following condition.

(AW2) rμ(r)−1c1(x) ∈ L∞(Ω).

This together with (AW1) implies

μ−1A ∈ L∞(Ω), rμ−1B ∈ L∞(Ω), B = B0 + B1.
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And let the exponents p, q, p̃, q̃ and κ always satisfy the following relations.

2 < p, p̃ ≤ ∞, 2
p
+

n − 1
q
=

n − 1
2
,

2
p̃
+

n − 1
q̃
=

n − 1
2
,(1.25)

1
p
+

n
q
=

n
2
− κ = 1

p̃′
+

n
q̃′
− 2.

Remark that the final equality of (1.25) makes the relations of the exponents p, q, p̃, q̃ more
restrictive as the following.

(1.26)
1
p̃′
− 1

p
=

1
q̃′
− 1

q
=

2
n + 1

, 2 < p <
2(n + 1)

n − 3
.

Our main result in this section is as follows.

Theorem 1.7. Let n ≥ 3. Assume (AW1)–(AW2) and that Rn \ Ω is a strictly convex
obstacle. Then for the solution u of (1.2) with (1.3) and the initial data (u(0), ∂tu(0)) =
( f1, f2) the following estimate holds.

‖u‖LpLq(Ω) + ‖u‖L∞ḢκD(Ω) + ‖∂tu‖L∞Ḣκ−1
D (Ω) ≤ C2

(
‖ f1‖ḢκD(Ω) + ‖ f2‖Ḣκ−1

D (Ω) + ‖G‖Lp̃′Lq̃′ (Ω)

)
.

Proof. The solution u is represented as the integral form:

u(t) = cos(t
√

L) f1 +
sin(t
√

L)√
L

f2 +
∫ t

0

sin{(t − τ)√L}√
L

G(τ) dτ.

In order to estimate the each term of the right hand side, it suffices to derive the inequalities:

(1.27) ‖e−it
√

L f ‖L∞ḢκD(Ω) ≤ C‖ f ‖ḢκD(Ω),

(1.28) ‖e−it
√

L f ‖LpLq(Ω) ≤ C‖ f ‖ḢκD(Ω).

The case of G = 0 obviously follows from these inequalities and Lemma 1.1. In fact, we
have

‖u‖L∞ḢκD(Ω) + ‖∂tu‖L∞Ḣκ−1
D (Ω)

=

∥∥∥∥∥∥cos(t
√

L) f1 +
sin(t
√

L)√
L

f2

∥∥∥∥∥∥
L∞ḢκD(Ω)

+
∥∥∥∥−√L sin(t

√
L) f1 + cos(t

√
L) f2

∥∥∥∥
L∞Ḣκ−1

D (Ω)

≤ C
(
‖ f1‖ḢκD(Ω) + ‖

√
L−1 f2‖ḢκD(Ω) + ‖

√
L f1‖Ḣκ−1

D (Ω) + ‖ f2‖Ḣκ−1
D (Ω)

)
≤ C

(
‖ f1‖ḢκD(Ω) + ‖ f2‖Ḣκ−1

D (Ω)

)
.

Moreover

‖u‖LpLq(Ω) =

∥∥∥∥∥∥cos(t
√

L) f1 +
sin(t
√

L)√
L

f2

∥∥∥∥∥∥
LpLq(Ω)

≤C
(
‖ f1‖ḢκD(Ω) + ‖

√
L−1 f2‖ḢκD(Ω)

)
≤C

(
‖ f1‖ḢκD(Ω) + ‖ f2‖Ḣκ−1

D (Ω)

)
.

As to the integral term, using (1.27) and (1.28), we have
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∥∥∥∥∥∥∥
∫ ∞

0

e−i(t−τ)√L

√
L

G dτ

∥∥∥∥∥∥∥
LpLq(Ω)

+

∥∥∥∥∥∥∥
∫ ∞

0

e−i(t−τ)√L

√
L

G dτ

∥∥∥∥∥∥∥
L∞ḢκD(Ω)

+

∥∥∥∥∥
∫ ∞

0
e−i(t−τ)√LG dτ

∥∥∥∥∥
L∞Ḣκ−1

D (Ω)
≤ C

∥∥∥∥∥
∫ ∞

0
eiτ
√

LG dτ
∥∥∥∥∥

Ḣκ−1
D (Ω)

.

Here we used Lemma 1.1. On the other hand, by duality (1.28) implies∥∥∥∥∥
∫ ∞

0
eiτ
√

Lh(τ) dτ
∥∥∥∥∥

Ḣ−κ̃D (Ω)
≤ C‖h‖Lp̃′Lq̃′ (Ω), κ̃ = n

(
1
2
− 1

q̃

)
− 1

p̃
.

Now choosing κ− 1 = −κ̃ which is equivalent to the final equality in the relations (1.25) and
using Lemma 1.2, these inequalities show
∥∥∥∥∥∥∥
∫ t

0

e−i(t−τ)√L

√
L

G dτ

∥∥∥∥∥∥∥
LpLq(Ω)

+

∥∥∥∥∥∥∥
∫ t

0

e−i(t−τ)√L

√
L

G dτ

∥∥∥∥∥∥∥
L∞ḢκD(Ω)

+

∥∥∥∥∥∥
∫ t

0
e−i(t−τ)√LG dτ

∥∥∥∥∥∥
L∞Ḣκ−1

D (Ω)
≤ C‖G‖Lp̃′Lq̃′ (Ω).

Summarizing the above argument, the desired estimate can be obtained. Hence we shall
concentrate to prove the inequalities (1.27) and (1.28).

The first inequality (1.27) is an immediately consequence of the unitarity of e−it
√

L and
Lemma 1.1. Indeed, we have

‖e−it
√

L f ‖L∞ḢκD(Ω) � ‖
√

Lκe−it
√

L f ‖L∞L2(Ω)

= ‖e−it
√

L
√

Lκ f ‖L∞L2(Ω) ≤ ‖
√

Lκ f ‖L2(Ω) � ‖ f ‖ḢκD(Ω).

Next let us prove the second inequality (1.28). We need the following lemma.

Lemma 1.8 (Smith & Sogge [23], Burq [3], Metcalfe [15]). Let n ≥ 3. Assume that
R

n \Ω is a strictly convex obstacle. Then

‖e−it
√−ΔD f ‖LpLq(Ω) ≤ C‖ f ‖ḢκD(Ω).

v = e−it
√

L f satisfies the following problem.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2

t v − Δv = −Wv,
v(0) = f , ∂tv(0) = −i

√
L f ,

v|∂Ω = 0,

where

W = A · ∇ + B.

By Duhamel’s principle the solution v is represented as follows.

v(t) = cos(t
√
−ΔD) f − i

sin(t
√−ΔD)√−ΔD

√
L f −

∫ t

0

sin{(t − τ)√−ΔD}√−ΔD
Wv dτ.

The first and second terms can be estimated by Lemma 1.8 and Lemma 1.1. In fact, we have
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∥∥∥∥∥∥cos(t
√
−ΔD) f − i

sin(t
√−ΔD)√−ΔD

√
L f

∥∥∥∥∥∥
LpLq(Ω)

≤ C

⎛⎜⎜⎜⎜⎜⎝‖ f ‖ḢκD(Ω) +

∥∥∥∥∥∥
√

L f√−ΔD

∥∥∥∥∥∥
ḢκD(Ω)

⎞⎟⎟⎟⎟⎟⎠
≤ C‖ f ‖ḢκD(Ω).

As to the third term, using Lemma 1.8 and the dual of the inequality from Proposition 1.6
with b = c = 0: ∥∥∥∥∥

∫ ∞

0
eiτ
√−ΔDh(τ) dτ

∥∥∥∥∥
Ḣ−γD (Ω)

≤ C‖√μ−1h‖L2Ḣ−γD (Ω),

we have for 0 ≤ κ ≤ 1∥∥∥∥∥∥∥
∫ ∞

0

e−i(t−τ)√−ΔD

√−ΔD
Wv dτ

∥∥∥∥∥∥∥
LpLq(Ω)

≤ C
∥∥∥∥∥
∫ ∞

0
eiτ
√−ΔDWv dτ

∥∥∥∥∥
Ḣκ−1

D (Ω)
≤ C‖√μ−1Wv‖L2Ḣκ−1

D (Ω).

Now it is enough to prove the inequality:

‖√μ−1Wv‖L2Ḣκ−1
D (Ω) ≤ C‖ f ‖ḢκD(Ω)

for κ = 0, 1. Then interpolating these inequalities, we can get the desired estimate. Since
the assumptions (AW1) and (AW2) we have

‖√μ−1Wv‖L2L2(Ω) ≤ max{‖μ−1A‖L∞(Ω), ‖μ−1rB‖L∞(Ω)}
(
‖√μ∇v‖L2L2(Ω) + ‖√μr−1v‖L2L2(Ω)

)
.

Applying the inequality (1.23) to the second term and using the inequality (1.24), we obtain

‖√μ−1Wv‖L2L2(Ω) ≤ C‖ f ‖Ḣ1
D(Ω).

This implies the case of κ = 1. If κ = 0, write

Wv = ∇ · (Av) − ∇ · Av + Bv,

and hence
√
μ−1Wv = ∇ · (√μ−1Av) − A · ∇√μ−1v − √μ−1(∇ · A − B)v.

It follows from the fact ‖∇ · �f ‖Ḣ−1
D (Ω) ≤ ‖ �f ‖L2(Ω) for �f |∂Ω = �0 that

‖∇ · (√μ−1Av)‖L2Ḣ−1
D (Ω) ≤ ‖√μ−1Av‖L2L2(Ω).

Noting |∇√μ−1| ≤ Cr−1√μ−1 and |∇ · A| ≤ C|B|, we have by Hardy inequality

‖A · ∇√μ−1v‖L2Ḣ−1
D (Ω) ≤ C‖r−1√μ−1Av‖L2Ḣ−1

D (Ω) ≤ C‖√μ−1Av‖L2L2(Ω),

‖√μ−1(∇ · A − B)v‖L2Ḣ−1
D (Ω) ≤ C‖√μ−1rBv‖L2L2(Ω).

Hence using the assumptions (AW1) and (AW2), we can estimate

‖√μ−1Wv‖L2Ḣ−1
D (Ω)

≤ C
(
‖√μ−1Av‖L2L2(Ω) + ‖√μ−1rBv‖L2L2(Ω)

)
≤ C max{‖μ−1A‖L∞(Ω), ‖μ−1rB‖L∞(Ω)}‖√μv‖L2L2(Ω).

Finally using Proposition 1.6 with γ = 0, we get the case of κ = 0.
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Thus summarizing the above argument, we obtain (1.28) and the proof of Theorem 1.7 is
now finished. �

1.3. Klein–Gordon equations.
1.3. Klein–Gordon equations. Throughout this section we put ξ(r) = (1 + [r])−1. In the

Klein–Gordon case, we always assume that the coefficients b(x) and c(x) satisfy (AS1) and
(AS2) from Schrödinger case. Let the exponents p, q, p̃, q̃ and κ always satisfy the following
relations.

2 < p, p̃ ≤ ∞, 2
p
+

n
q
=

n
2
,

2
p̃
+

n
q̃
=

n
2
,(1.29)

1
p
+

3n
2q
=

3n
4
− κ = 1

p̃′
+

3n
2q̃′
− 2.

Remark that the final equality makes the relations for p, q, p̃, q̃ more restrictive as the
following.

(1.30)
1
p̃′
=

1
p
+

1
2
,

1
q̃′
=

1
q
+

1
n
, 2 < p < ∞.

The main result in this section is the following.

Theorem 1.9. Let n ≥ 2. Assume (AS1) and (AS2). Then for the solution u of (1.2) with
(1.3) and the initial data (u(0), ∂tu(0)) = ( f1, f2) the following estimate holds.

‖u‖LpLq(Ω) + ‖u‖L∞HκD(Ω) + ‖∂tu‖L∞Hκ−1
D (Ω) ≤ C3

(
‖ f1‖HκD(Ω) + ‖ f2‖Hκ−1

D (Ω) + ‖G‖Lp̃′Lq̃′ (Ω)

)
.

We first prepare the Strichartz estimate for the free solutions which is proved in Mochizuki
& Murai [20].

Lemma 1.10 (Mochizuki & Murai [20]). Let n ≥ 2. Then the following estimate holds.

‖e−it
√
−ΔD+m2

f ‖LpLq(Ω) ≤ C‖ f ‖HκD(Ω).

In the Klein–Gordon case, the weighted energy method used in the proof of Proposition
1.6 does not work well, and it is difficult to obtain the same type estimate as Proposition
1.6. For this reason we need to employ the another strategy. Let us first derive the estimate
for the solution with c = 0 . So we prepare the following smoothing estimate treated in
Mochizuki & Murai [21].

Lemma 1.11. Let n ≥ 2. Assume (AS1) and (1.5). Then the following estimate holds for
0 ≤ γ ≤ 1.

‖ξe−it
√
−Δb+m2

f ‖L2HγD(Ω) ≤ C‖ f ‖HγD(Ω).

Proof. The proof is based on the following estimate proved in Mochizuki & Murai [21].

‖ξ∇bub‖L2L2(Ω) + m‖ξub‖L2L2(Ω) + ‖ξ∂tub‖L2L2(Ω)

≤ C
(
‖∇b f1‖L2(Ω) + m‖ f1‖L2(Ω) + ‖ f2‖L2(Ω)

)
,

where Rn \ Ω is star-shaped with respect to the origin and ub is the solution of (1.2) with
c = G = 0 (In [21], this inequality is proved by using (1.8) under the smallness condition
on the rotation of b. Hence similar to the proof of (1.8), this assumption can be replaced
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with our one). Similar to the wave case, choosing ( f1, f2) = ( f , 0) or = (0,
√−Δb + m2 f ), we

obtain

‖ξe−it
√
−Δb+m2

f ‖L2L2(Ω) + ‖ξ∇be−it
√
−Δb+m2

f ‖L2L2(Ω) ≤ C‖ f ‖H1
D(Ω).

This shows the case of γ = 1. Furthermore we can choose ( f1, f2) = (0, f ) or =
(
√−Δb + m2−1 f , 0) to obtain

‖ξ cos(t
√
−Δb + m2) f ‖L2L2(Ω) ≤ C‖ f ‖L2(Ω), ‖ξ sin(t

√
−Δb + m2) f ‖L2L2(Ω) ≤ C‖ f ‖L2(Ω).

These inequalities imply the case of γ = 0. Thus the assertion follows from the interpolation
argument. �

The following proposition can be obtained.

Proposition 1.12. Under the same conditions as Theorem 1.9 the following estimate
holds.

‖e−it
√
−Δb+m2

f ‖LpLq(Ω) ≤ C‖ f ‖HκD(Ω).

Proof. It can be proved by the similar line of the proof of Theorem 1.7. vb = e−it
√
−Δb+m2 f

satisfies the following problem.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2

t vb − Δvb + m2vb = −Wvb,
vb(0) = f , ∂tvb(0) = −i

√−Δb + m2 f ,
vb|∂Ω = 0,

where

W = −2ib · ∇b − i∇ · b − |b|2.
By Duhamel’s principle the solution vb is represented as

vb(t) = cos(t
√
−ΔD + m2) f − i

sin(t
√−ΔD + m2)√−ΔD + m2

√
−Δb + m2 f

−
∫ t

0

sin{(t − τ)√−ΔD + m2}√−ΔD + m2
Wvb dτ.

As to the first and second terms, it suffices to apply Lemma 1.10 and Lemma 1.1. Using
Lemma 1.10 again and the dual inequality of Lemma 1.11 with b = 0, we have for the
integral term ∥∥∥∥∥∥∥

∫ ∞

0

e−i(t−τ)
√
−ΔD+m2

√−ΔD + m2
Wvb dτ

∥∥∥∥∥∥∥
LpLq(Ω)

≤ C‖ξ−1Wvb‖L2Hκ−1
D (Ω).

This norm can be estimated by using the assumption on b(x) and Lemma 1.11 as follows.

‖ξ−1Wvb‖L2L2(Ω)

≤ ‖ξ−1(b · ∇bvb + ∇ · bvb + |b|2vb)‖L2L2(Ω)

≤ max{‖ξ−2b‖L∞(Ω), ‖ξ−2(∇ · b + |b|2)‖L∞(Ω)}
(
‖ξ∇bvb‖L2L2(Ω) + ‖ξvb‖L2L2(Ω)

)
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≤ C‖ f ‖H1
D(Ω).

Similarly we can write

Wvb = −2i∇ · (bvb) + i∇ · bvb + |b|2vb
to get

‖ξ−1Wvb‖L2H−1
D (Ω)

≤ ‖ξ−1bvb‖L2L2(Ω) + ‖ξ−1(∇ · b + |b|2)vb‖L2L2(Ω)

≤ max{‖ξ−2b‖L∞(Ω), ‖ξ−2(∇ · b + |b|2)‖L∞(Ω)}‖ξvb‖L2L2(Ω)

≤ C‖ f ‖L2(Ω).

Here we used the fact |∇ξ−1| ≤ Cξ−1 in the first step. Interpolating the above inequalities,
we obtain the estimate for the integral term and then conclude the proof of Proposition 1.12.

�

Proof of Theorem 1.9. Similar to the wave case, it is enough to prove the following
inequalities.

(1.31) ‖e−it
√

L+m2
f ‖L∞HκD(Ω) ≤ C‖ f ‖HκD(Ω),

(1.32) ‖e−it
√

L+m2
f ‖LpLq(Ω) ≤ C‖ f ‖HκD(Ω).

The inequality (1.31) follows from the unitarity of e−it
√

L+m2 and Lemma 1.1. On the other
hand, v = e−it

√
L+m2 f satisfies the problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂2
t v − Δbv + m2v = −cv,
v(0) = f , ∂tv(0) = −i

√
L + m2 f ,

v|∂Ω = 0,

and is represented as

(1.33) v(t) = cos(t
√
−Δb + m2) f − i

sin(t
√−Δb + m2)√−Δb + m2

√
L + m2 f

−
∫ t

0

sin{(t − τ)√−Δb + m2)}√−Δb + m2
cv dτ.

Proposition 1.12 and the dual inequality of Lemma 1.11 give∥∥∥∥∥∥∥
∫ ∞

0

e−i(t−τ)
√
−Δb+m2

√−Δb + m2
cv dτ

∥∥∥∥∥∥∥
LpLq(Ω)

≤ C
∥∥∥∥∥
∫ ∞

0
eiτ
√
−Δb+m2

cv dτ
∥∥∥∥∥

L2(Ω)
≤ C‖ξ−1cv‖L2L2(Ω)

since κ < 1. It follows from the assumption on c(x) and the smoothing estimate

‖ξe−it
√

L+m2
f ‖L2L2(Ω) ≤ C‖ f ‖L2(Ω)

which can be obtained along the same argument in [20] based on the inequality (1.8) that

‖ξ−1cv‖L2L2(Ω) ≤ ‖ξ−2c‖L∞(Ω)‖ξv‖L2L2(Ω) ≤ C‖ f ‖L2(Ω) ≤ C‖ f ‖HκD(Ω)
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since κ ≥ 0. Summarizing the above inequalities, we obtain∥∥∥∥∥∥∥
∫ t

0

sin{(t − τ)√−Δb + m2}√−Δb + m2
cv dτ

∥∥∥∥∥∥∥
LpLq(Ω)

≤ C‖ f ‖HκD(Ω).

We can apply this inequality and Proposition 1.12 to each term of (1.33) to obtain (1.32),
and thus Theorem 1.9 is now proved. �

2. Application to nonlinear problem

2. Application to nonlinear problem
Consider in Ω the Schrödinger, wave and Klein–Gordon equations:

(2.1) i∂tu = Lu +G(u),

(2.2) ∂2
t u + Lu + m2u +G(u) = 0,

with a linear or a nonlinear term G depending on the solution. L satisfies the assumptions
from Theorem 1.5, 1.7 or 1.9. As an application of the Strichartz estimates, we shall inves-
tigate the global existence and scattering theory for the solution of the above equations with
boundary condition (1.3). Roughly speaking, our purpose in this section is to prove that the
solution u(t) behaves like the corresponding free (G = 0) solution u±(t) to the problem:

(2.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i∂tu± = Lu±,
u±(0) = f ±,
u±|∂Ω = 0,

or

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2

t u± + Lu± + m2u± = 0,
(u±(0), ∂tu(0)) = ( f ±1 , f ±2 ),
u±|∂Ω = 0

when the time tends to infinity, and hence the scattering operator can be defined in an ap-
propriate space.

The equations (2.1) and (2.2) with the initial data f are rewritten as an integral equation:

(2.4) u(t) = Γ(t) f +
∫ t

0
(t − τ)G(u(τ)) dτ,

where

Γ(t) f =
{

i(t) f ,
∂t(t) f1 +(t) f2,

(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ie−itL, (Schrödinger)
sin(t
√

L + m2)√
L + m2

, (wave or Klein–Gordon)

We will consider the solution to (2.4) in the following space. Denote  = L2(Ω)
(Schrödinger), ḢκD(Ω) × Ḣκ−1

D (Ω) (wave) or HκD(Ω) × Hκ−1
D (Ω) (Klein–Gordon). We set

YT = {u ∈ L∞T  ∩ Lp
T Lq(Ω); ‖u‖YT = ‖u‖L∞T  + ‖u‖Lp

T Lq(Ω) ≤ K},
where Lp

T = Lp(0, T ). When the wave case, u ∈  means that u ∈ ḢκD(Ω), ∂tu ∈ Ḣκ−1
D (Ω)

and its norm is defined by

‖u‖ := ‖u‖ḢκD(Ω) + ‖∂tu‖Ḣκ−1
D (Ω).
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When Klein–Gordon case we should replace the homogeneous Sobolev space with the in-
homogeneous one. K > 0 is a constant depending on the initial data which will be defined
later. Denote YT with T = ±∞ by Y .

To show our result, we impose the following hypothesis on the nonlinearity.
(H) G(0) = 0 and for u1, u2 ∈ YT

‖G(u1) −G(u2)‖Lp̃′
T Lq̃′ (Ω) ≤ C4T θ(‖u1‖α−1

YT
+ ‖u2‖α−1

YT
)‖u1 − u2‖YT ,

where α ≥ 1, θ = θ(p, p̃, α, n) ≥ 0.
Main result in this section is as follows.

Theorem 2.1. Under the hypothesis (H), the following assertions hold.
(i) When θ > 0 for any initial data f ∈ , there exists T > 0 and a unique local solution

u of (2.4) in YT .
(ii) When θ = 0, if we restrict as C4Kα−1 � 1, then, there exists a unique global solution

u of (2.4). Moreover, for any f ∈  as above there exists the scattering data f + ∈  such
that the corresponding solution u+(t) of (2.3) satisfies

‖u(t) − u+(t)‖ → 0

as t → ∞. Conversely, if f − ∈  is sufficiently small and u−(t) is a corresponding solution
of (2.3), then there exists a solution of (2.4) satisfies

‖u(t) − u−(t)‖ → 0

as t → −∞. Thus, the scattering operator S : f − → f + is well-defined in a neighborhood of
the origin in .

Proof. We construct the contraction map in YT . Put

Φ[u](t) = Γ(t) f +
∫ t

0
(t − τ)G(u(τ)) dτ.

Using Theorem 1.5, 1.7 or 1.9, we have

‖Φ[u]‖YT ≤ C̃
(
‖ f ‖ + ‖G(u)‖Lp̃′

T Lq̃′ (Ω)

)
, C̃ = C1, C2 or C3

and applying (H) to the second term of the right hand side, we obtain

(2.5) ‖Φ[u]‖YT ≤ C̃‖ f ‖ + C̃C4T θKα.

Similarly, we have

(2.6) ‖Φ[u1] − Φ[u2]‖YT ≤ 2C̃C4T θKα−1‖u1 − u2‖YT , u1, u2 ∈ YT .

Choosing K = 2C̃‖ f ‖ and T θ < 1/(4C̃C4Kα−1), we obtain

(2.7) ‖Φ[u]‖YT < K, ‖Φ[u1] − Φ[u2]‖YT <
1
2
‖u1 − u2‖YT

which imply the existence of the unique local solution in YT via the well-known fixed point
argument.

(ii) In this case it should be restricted that 4C̃C4Kα−1 < 1 with same K as above. Then we
obtain (2.7) for any T . Thus the same argument as (i) shows the unique global existence of
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the solution. The asymptotic behavior follows from this result. In fact, for given small data
f − ∈  let u−(t) be the solution of (2.1) or (2.2) with G = 0. Then there exists the solution
u(t) of the form

u(t) = u−(t) +
∫ t

−∞
K(t − τ)G(u) dτ,

and since the solution u is global in Y , Theorem 1.5, 1.7 or 1.9 and (H) show∥∥∥∥∥∥
∫ t

−∞
K(t − τ)G(u) dτ

∥∥∥∥∥∥
L∞
≤ C̃‖G(u)‖Lp̃′Lq̃′ (Ω) ≤ C̃C4‖u‖αY < ∞.

Hence we have

‖u(t) − u−(t)‖ → 0

as t → −∞. Similarly if u(t) is the solution with small data f ∈ , then there exists a
solution u+(t) with data f + ∈  satisfies

‖u(t) − u+(t)‖ → 0

as t → ∞. This concludes the proof of Theorem 2.1. �

We will give an example for the nonlinearity satisfying our hypothesis (H) in the next
subsections.

2.1. Nonlinear Schrödinger equation.
2.1. Nonlinear Schrödinger equation. Let V(x, t) be a time-dependent complex func-

tion belonging to LνT Lρ(Ω) where

0 ≤ 1
ρ
<

2
n
,

1
ν
≤ 1 − n

2ρ
.

For this function we set a nonlinear term as G(u) = V(x, t)|u|α−1u. The local solution exists
when the power α satisfies

(2.8) 1 ≤ α ≤ 1 +
4
n

(
1 − 1
ν
− n

2ρ

)
,

while the global result is proved if and only if the endpoint case. To explain this fact, we
need to prove that the above G satisfies our hypothesis (H) which is shown in the following
lemma.

Lemma 2.2. Let G satisfy (2.8). Then for u1, u2 ∈ YT the following inequality holds.

‖G(u1) −G(u2)‖Lp̃′
T Lq̃′ (Ω) ≤ CVT

1
p̃′ − αp− 1

ν

(
‖u1‖α−1

Lp
T Lq(Ω) + ‖u2‖α−1

Lp
T Lq(Ω)

)
‖u1 − u2‖Lp

T Lq(Ω).

Proof. We shall prove only the case of p̃ = p and q̃ = q. More general case can be proved
along the similar line. Using Hölder inequality we have

‖V |u1|α−1u1 − V |u2|α−1u2‖Lp′
T Lq′ (Ω)

≤ C
(
‖V |u1|α−1‖

L
p

p−2
T L

q
q−2 (Ω)

+ ‖V |u2|α−1‖
L

p
p−2

T L
q

q−2 (Ω)

)
‖u1 − u2‖Lp

T Lq(Ω).
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Hence it suffices to estimate the term ‖V |u|α−1‖
L

p
p−2

T L
q

q−2 (Ω)
. Using Hölder inequality again,

we have

‖V |u|α−1‖
L

p
p−2

T L
q

q−2 (Ω)
≤ ‖V‖LνT Lρ(Ω)‖|u|α−1‖La

T Lb(Ω)

with

(2.9) 1 − 2
p
=

1
ν
+

1
a
, 1 − 2

q
=

1
ρ
+

1
b
.

Here choosing

(2.10) p ≥ a(α − 1), q = b(α − 1),

we obtain

‖V |u|α−1‖
L

p
p−2

T L
q

q−2 (Ω)
≤ T 1− α+1

p − 1
ν ‖V‖LνT Lρ(Ω)‖u‖α−1

Lp
T Lq(Ω)

which implies the desired inequality. The conditions (2.9) and (2.10) together with the
admissibility (1.12) imply

α ≤ 1 +
4
n

(
1 − 1
ν
− n

2ρ

)
.

This corresponds to the condition θ ≥ 0, and hence we obtain the global solution and the
scattering results when the equality holds in the above inequality. �

Remark 1. According to this lemma, when α = 1, that is, (2.1) is a linear equation
with time-dependent potential, the global behavior and scattering occurs under the smallness
condition

2C1‖V‖LνLρ(Ω) < 1,
1
ν
= 1 − n

2ρ
.

This is the same result of Mochizuki & Motai [19] which is treated the case of b = c = 0
and Ω = Rn.

Remark 2. In the case when V is a constant, b = c = 0 and Ω = Rn, there are so many
results (see [7] for details). Focusing on that relating to the Strichartz estimates in an exterior
domain, we refer to Blair & Smith & Sogge [2], Burq & Gérard & Tzvetkov [4], Cassano &
D’Ancona [6] and the references therein. Especially the magnetic potential is treated in [6]
under the assumption that the Strichartz estimate for e−itL are valid.

2.2. Nonlinear wave equation.
2.2. Nonlinear wave equation. Let V(x, t) be a time-dependent complex function be-

longing to LνT Lρ(Ω) where (n + 1)/2 ≤ ρ, ν ≤ ∞ and

(2.11)
(n − 1)2 + 4

ν
≤ (n − 1)(n − 3)

ρ
+ 4.

We set G(u) = V(x, t)|u|α−1u. For this term the following situations are considerable: when
α = 1, then G(u) = V(x, t)u, that is, (2.2) is a linear equation with time-dependent potential.
In this case it can be easily checked that the relation (1.26) and Hölder inequality give
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‖Vu1 − Vu2‖Lp̃′
T Lq̃′ (Ω) ≤ T

2
n+1− 1

ν ‖V‖
LνT L

n+1
2 (Ω)
‖u1 − u2‖Lp

T Lq(Ω).

This implies the hypothesis (H), and then the local existence result can be proved by the
previous argument. Moreover if we impose the smallness condition

(2.12) 2C2‖V‖L n+1
2 L

n+1
2 (Ω)
< 1

instead of that for the initial data, then the global result can be also proved.
On the other hand when α � 1, we restrict ν � (n + 1)/2, ρ � (n + 1)/2. The local

existence of the solution for (2.2) can be proved under the condition:

(2.13) 1 +
4(n − 1)

(n − 1)2 + 4

(
1 − n + 1

2ρ

)
< α

< min
{

1 +
4

n − 1

(
1 − 1
ν
− n − 1

2ρ

)
, 1 +

4(n − 1)
(n − 1)2 − 4

(
1 − n + 1

2ρ

)}

if
n − 3

2(n − 1)
< κ < min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1 − n + 1

2ν

2
(
1 − 1
ν
− n − 1

2ρ

) , n + 1
2(n − 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Moreover in addition to (2.11) we restrict

(2.14)
n − 3

2ν
≥ n − 1

2ρ
− 2

n + 1
.

Then the global existence and scattering results can be obtained under the condition:

(2.15) 1 +
4

n − 1

(
1 − 1
ν
− n − 1

2ρ

)
≤ α < 1 +

4(n − 1)
n2 − 2n − 1

(
1 − 1

2ν
− n

2ρ

)

if
1 − n + 1

2ν

2
(
1 − 1
ν
− n − 1

2ρ

) ≤ κ < n + 1
2(n − 1)

.

Here to keep the consistency of the inequalities (2.13) and (2.15) the restrictions (2.11) and
(2.14) are needed. Remark that when V is a complex constant, we put ν = ρ = ∞ and the
conditions (2.13) and (2.15) are rewritten as

(n + 1)2

(n − 1)2 + 4
< α <

n + 3
n − 1

if
n − 3

2(n − 1)
< κ <

1
2
,

n + 3
n − 1

≤ α < n2 + 2n − 5
n2 − 2n − 1

if
1
2
≤ κ < n + 1

2(n − 1)
,

respectively. These conditions coincide with those of the case of Ω = Rn (see Lindblad &
Sogge [14]). For the case when Ω � Rn and κ = 1, we refer to [1] and references therein.

Now let us prove that G(u) with (2.13) or (2.15) satisfies our hypothesis (H) in the fol-
lowing lemmas.

Lemma 2.3. Let G satisfy (2.13). Then for u1, u2 ∈ WT the following inequality holds.
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(2.16) ‖G(u1) −G(u2)‖Lp̃′
T Lq̃′ (Ω)

≤ CVT
2

n+1− α−1
p − 1

ν

(
‖u1‖α−1

Lp
T Lq(Ω) + ‖u2‖α−1

Lp
T Lq(Ω)

)
‖u1 − u2‖Lp

T Lq(Ω).

Proof. Noticing the relation (1.26), the Hölder inequality gives

‖V |u1|α−1u1 − V |u2|α−1u2‖Lp̃′
T Lq̃′ (Ω)

≤
(
‖V |u1|α−1‖

L
n+1

2
T L

n+1
2 (Ω)
+ ‖V |u2|α−1‖

L
n+1

2
T L

n+1
2 (Ω)

)
‖u1 − u2‖Lp

T Lq(Ω).

Hence, it is enough to estimate the term ‖V |u|α−1‖
L

n+1
2

T L
n+1

2 (Ω)
. Choosing

(2.17) p ≥ ν(n + 1)
2ν − n − 1

(α − 1), q =
ρ(n + 1)

2ρ − n − 1
(α − 1),

we can get by Hölder inequality again

‖V |u|α−1‖
L

n+1
2

T L
n+1

2 (Ω)
≤ ‖V‖LνT Lρ(Ω)‖|u|α−1‖

L
ν(n+1)
2ν−n−1
T L

ρ(n+1)
2ρ−n−1 (Ω)

≤ T
2

n+1− α−1
p − 1

ν ‖V‖LνT Lρ(Ω)‖u‖α−1
Lp

T Lq(Ω).

This proves the inequality (2.16). Eliminating p and q from (2.17), we obtain

α ≤ 1 +
4

n − 1

(
1 − 1
ν
− n − 1

2ρ

)
.

Here note that the global result can be obtained if the equality holds. On the other hand, the
second equality of (2.17) together with the restriction by the admissibility (1.26) gives

1 +
4(n − 1)

(n − 1)2 + 4

(
1 − n + 1

2ρ

)
< α < 1 +

4(n − 1)
(n − 1)2 − 4

(
1 − n + 1

2ρ

)
.

Moreover, the parameter κ is represented as

κ =
n + 1

4
−
(
1 − n + 1

2ρ

)
1
α − 1

by the second equality of (2.17) and (1.25). Thus, summarizing the above inequalities, the
condition (2.13) can be obtained. �

Lemma 2.4. Let G satisfy (2.15). Then the following inequality holds for 0 ≤ β ≤ α − 1.

‖G(u1) −G(u2)‖Lp̃′Lq̃′ (Ω)(2.18)

≤ CV

(
‖u1‖α−β−1

L∞ḢκD(Ω)
‖u1‖βLpLq(Ω) + ‖u2‖α−β−1

L∞ḢκD(Ω)
‖u2‖βLpLq(Ω)

)
‖u1 − u2‖LpLq(Ω).

Proof. Similar to the case of the previous lemma, it suffices to estimate the term
‖V |u|α−1‖

L
n+1

2 L
n+1

2 (Ω)
. Using the Gagliardo–Nirenberg inequality, we obtain for 0 ≤ β ≤ α− 1

‖|u|α−1‖
L
ν(n+1)
2ν−n−1 L

ρ(n+1)
2ρ−n−1 (Ω)

≤ ‖u‖α−β−1

L∞L
2n

n−2κ (Ω)
‖u‖βLpLq(Ω),

where

(2.19)
2

n + 1
− 1
ν
=
β

p
,

2
n + 1

− 1
ρ
=

(
1
2
− κ

n

)
(α − β − 1) +

β

q
.
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Finally applying Sobolev embedding

(2.20) ḢκD(Ω) ⊂ L
2n

n−2κ (Ω)

to the first term, we obtain

‖V |u|α−1‖
L

n+1
2 L

n+1
2 (Ω)
≤ ‖V‖LνLρ(Ω)‖u‖α−β−1

L∞ḢκD(Ω)
‖u‖βLpLq(Ω)

which implies the inequality (2.18). It follows from (2.19) and the admissibility (1.25) that
we have for α and β

α − 1
n

(
2

n − 1
− n + 1
ν(n − 1)

)
= β

(
α − 1

2
− 2

n
+

1
nν
+

1
ρ

)
.

Substituting this to 0 ≤ β ≤ α − 1, we obtain

(2.21) α ≥ 1 +
4

n − 1

(
1 − 1
ν
− n − 1

2ρ

)
.

Moreover, (2.19) with (1.25) shows

α = 1 +
4

n − 2κ

(
1 − 1

2ν
− n

2ρ

)
.

Substituting this to (2.21) and using the restriction by (1.26), the relation (2.15) can be
obtained. �

2.3. Nonlinear Klein–Gordon equation.
2.3. Nonlinear Klein–Gordon equation. Let V(x, t) be a time-dependent complex func-

tion belonging to LνT Lρ(Ω), 2 ≤ ν ≤ ∞, n ≤ ρ ≤ ∞ and we set G(u) = V(x, t)|u|α−1u. Similar
to the wave case, when α = 1 the hypothesis (H) follows from (1.30) and Hölder inequality,
and hence the global behavior can be obtained under the smallness condition

(2.22) 2C3‖V‖L2Ln(Ω) < 1.

When α � 1 we set ν � 2, ρ � n, and the local result holds under

(2.23) 1 +
2
n

(
1 − n
ρ

)
< α < min

{
1 +

4
n

(
1 − 1
ν
− n

2ρ

)
, 1 +

2
n − 2

(
1 − n
ρ

)}

if 0 < κ < min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n
(
1 − 2
ν

)

4
(
1 − 1
ν
− n

2ρ

) , 1
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

The global one also holds under

1 +
4
n

(
1 − 1
ν
− n

2ρ

)
≤ α < 1 +

2
n − 2

(
1 − n
ρ

)
if

n
(
1 − 2
ν

)

4
(
1 − 1
ν
− n

2ρ

) ≤ κ < 1(2.24)

with the restriction
n − 2
ν
≥ n
ρ
+

n − 4
2
.
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When V is a constant, we put ν = ρ = ∞ and then the conditions (2.23) and (2.24) are
rewritten as follows:

1 +
2
n
< α < min

{
1 +

4
n
,

n
n − 2

}
if 0 < κ < min

{n
4
, 1
}
,

1 +
4
n
≤ α < n

n − 2
if

n
4
≤ κ < 1.

For this nonlinearity the following inequalities can be obtained.

Lemma 2.5. Let G(u) = V(x, t)|u|α−1u. Then we have

‖G(u1) −G(u2)‖Lp̃′
T Lq̃′ (Ω) ≤ CVT

1
2− α−1

p − 1
ν

(
‖u1‖α−1

Lp
T Lq(Ω) + ‖u2‖α−1

Lp
T Lq(Ω)

)
‖u1 − u2‖Lp

T Lq(Ω),(2.25)

when G satisfies (2.23), and for 0 ≤ β ≤ α − 1

(2.26) ‖G(u1) −G(u2)‖Lp̃′Lq̃′ (Ω)

≤ CV

(
‖u1‖α−β−1

L∞HκD(Ω)‖u1‖βLpLq(Ω) + ‖u2‖α−β−1
L∞HκD(Ω)‖u2‖βLpLq(Ω)

)
‖u1 − u2‖LpLq(Ω),

when G satisfies (2.24).

Proof. Noticing the relation (1.30), the Hölder inequality gives

‖G(u1) −G(u2)‖Lp̃′
T Lq̃′ (Ω) ≤ C

(
‖V |u1|α−1‖L2

T Ln(Ω) + ‖V |u2|α−1‖L2
T Ln(Ω)

)
‖u1 − u2‖Lp

T Lq(Ω).

Choosing

(2.27) p ≥ 2ν
ν − 2

(α − 1), q =
nρ
ρ − n

(α − 1)

which together with (1.29) is equivalent to the condition (2.23), we have by Hölder inequal-
ity

‖V |u|α−1‖L2
T Ln(Ω) ≤ T

1
2− α−1

p − 1
ν ‖V‖LνT Lρ(Ω)‖u‖α−1

Lp
T Lq(Ω).

This implies the inequality (2.25).
On the other hand, Gagliardo–Nirenberg inequality shows

‖|u|α−1‖
L

2ν
ν−2 L

nρ
ρ−n (Ω)

≤ ‖u‖α−β−1

L∞L
2n

n−2κ (Ω)
‖u‖βLpLq(Ω)

for 0 ≤ β ≤ α − 1 where

1
2
− 1
ν
=
β

p
,

1
n
− 1
ρ
=

(
1
2
− κ

n

)
(α − β − 1) +

β

q
.

This condition together with (1.29) imply (2.24). Finally using Sobolev embedding

(2.28) HκD(Ω) ⊂ L
2n

n−2κ (Ω),

we obtain

‖V |u|α−1‖L2Ln(Ω) ≤ ‖V‖LνLρ(Ω)‖u‖α−β−1
L∞HκD(Ω)‖u‖βLpLq(Ω).



Strichartz Estimate forMagnetic Equations 375

Thus, the inequality (2.26) holds. �
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