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Abstract
There are four groups G fitting into a short exact sequence 1 → SL(2, 5) → G → C2 → 1,

where SL(2, 5) is the special linear group of (2 × 2)-matrices with entries in the field of five
elements. Except for the direct product of SL(2, 5) and C2, there are two other semidirect
products of these two groups and just one non-semidirect product SL(2, 5).C2, considered in this
paper. It is known that each finite nonsolvable group can act on spheres with arbitrary positive
number of fixed points. Clearly, SL(2, 5).C2 is a nonsolvable group. Moreover, it turns out that
SL(2, 5).C2 possesses a free representation and as such, can potentially act pseudofreely with
nonempty fixed point set on manifolds of arbitrarily large dimension. We prove that SL(2, 5).C2
cannot act effectively with odd number of fixed points on homology spheres of dimensions less
than 14. In the special case of effective one fixed point actions on homology spheres, we are able
to exclude 15, 16, and 17 from the dimension of them. Moreover, we prove that 5-pseudofree
one fixed point actions of SL(2, 5).C2 on spheres do not exist.

0. Introduction

0. Introduction
A smooth action of finite group G on a smooth manifold M is a homomorphism ϕ :

G → Diff(M), where Diff(M) denotes the group of diffeomorphisms of M. All groups
appearing in this paper are assumed to be finite and actions to be smooth. This article
concerns exclusions of actions on spheres with exactly one fixed point or with odd number
of fixed points. We refer to such actions as one fixed point actions or odd fixed point actions
respectively.

In [15, p. 55] Montgomery and Samelson wrote the following: ”If a compact Lie group
G acts smoothly on the n-sphere Sn in such a way as to have one stationary point, it is likely
that there must be a second stationary point. This appears difficult to prove.”. It is already
known which groups admit one fixed point actions on spheres. It turns out that such groups
are precisely the groups admitting fixed point free actions on disks. The characterization of
groups admitting fixed point free actions on disks was provided by Oliver [20] in 1975. Such
groups G are characterized in the following way: G does not contain subgroups P,H ≤ G
fitting into a sequence P � H � G such that P and G/H are groups of prime power order and
the quotient H/P is cyclic. We refer to such groups G as Oliver groups. The first examples of
groups admitting one fixed point G-actions go back to Stein [22] for G = SL(2, 5) and Petrie
[21] for abelian groups with three non-cyclic Sylow subgroups. In 1995, Laitinen, Morimoto
and Pawałowski [12] proved that each nonsolvable group G such that |G/Gsol| is of odd order
admits a one fixed point action on a sphere (here Gsol denotes the smallest normal subgroup
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of G such that G/Gsol is solvable). Later, in 1998, by modifying the techniques descibed
in the paper concerning nonsolvable groups, Laitinen and Morimoto [11] generalized this
result and showed that Oliver groups coincide with the groups admitting one fixed point
actions on homology spheres.

Further research has shown that the minimal dimension of a sphere admitting one fixed
point actions is 6. First, the combined work of De Michelis [6], Buchdahl et. al. [5] and
Furuta [8] has shown that Sn does not admit one fixed point actions for n ≤ 5. Later, on the
other hand, Bak and Morimoto [1, 2, 16, 17, 18] proved that A5, the alternating group on
five letters, admits one fixed point actions on Sn for every n ≥ 6.

This leads us to the following question: given an Oliver group G and an integer n ≥ 6, is it
true that there exists a one fixed point action of G on Sn? Apart from the results described in
the last paragraph concerning this question, other have been obtained as well. Let us discuss
them. In 1977, Stein [22] proved that SL(2, 5) can act on S7 with exactly on fixed point.
On the other hand, in 2016, Borowiecka [3] excluded 8 from the dimension of homology
spheres with effective one fixed point actions of SL(2, 5). Two years later, in the joint work
of Borowiecka and the author [4], new exclusions of effective one fixed point actions have
been obtained for Oliver groups of order up to 216 and spheres of dimensions varying from 6
to 10. In 2020, Morimoto and Tamura [19] showed that any homology sphere of dimension n
does not admit odd fixed point actions of S5 (resp. SL(2, 5)) if n ∈ {0, 1, 2, 3, 4, 5, 7, 8, 9, 13}
(resp. {0, 1, 2, 3, 4, 5, 6, 8, 9}), where S5 is the symmetric group on five letters. Further exclu-
sion results concerning odd fixed point actions have been recently obtained by Tamura [23].
These results concern six Oliver groups (including symmetric groups, special linear and pro-
jective special linear groups, automorphism groups and Mathieu groups) and cover many of
the dimensions from the set {0, ..., 50}. The methods used in the aticles of Borowiecka, Mo-
rimoto, Tamura and the author have been used to extend exclusion results in the PhD thesis
of the author [14, Theorem 1.4, Theorem 5.29] by the application of GAP [9] software.

A general scheme in the study of transformation groups is to consider prescibed isotropy
subgroups. The simpliest case constitute semifree actions (i. e. actions with trivial isotropy
subgroups outside of the fixed point set). One can relax this criterion however and allow
a weaker version of semifree actions. Such actions have restrictive dimensions of fixed
point sets. After Illman [10], we call an action of a group G on a smooth manifold M a
k-pseudofree action if dim MH ≤ k for any nontrivial subgroup H ≤ G. Lately, Morimoto
announced a result that 3-pseudofree one fixed point actions of G on even-dimensional ho-
motopy spheres Σn are possible only for G = A5, A5 ×C2 or G = S5 and n = 6. On the other
hand, if a k-pseudofree action is required to exist for arbitrarily large spheres, the group in
question must possess a free representation. The classification of such groups was provided
in [24, 6.3.1 Theorem]. Following this classification, there exists a group of order 240 pos-
sessing a free representation which contains SL(2, 5) as a subgroup of index 2 (this group is
denoted by TL2(5) in [13]). In the GAP [9] SmallGroup library, the group SL(2, 5).C2 we
consider appears with IdGroup = [240, 89]. It turns out that SL(2, 5).C2 possesses a free
representation (see Proposition 1.1) and therefore SL(2, 5).C2 � TL2(5).

In a private correspondence with the author, Morimoto suggested that there may exist
6-pseudofree effective one fixed point actions of SL(2, 5).C2 on Sn whenever n = 6 + 8k for
some k ≥ 1. Our main results concern the converse statement. Before, we formulate these
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results, let us recall a notion of a homology sphere. Given a commutative ring R with unity,
we call a closed smooth manifold Σ of dimension n an R-homology sphere if the homology
groups of Σ with coefficients in R coincide with the groups Hk(Sn; R) for k = 0, . . . , n. If the
commutative ring R is not specified, we put R = Z. The two main theorems of the paper are
the following.

Theorem 0.1 (cf. Theorem 3.1). SL(2, 5).C2 cannot act effectively with odd number of
fixed points on n-dimensional Z-homology sphere provided n ∈ {0, 1, . . . , 13}. Moreover,
SL(2, 5).C2 cannot act effectively with exactly one fixed point on any homology sphere of
dimension n provided n ∈ {0, 1, . . . , 13} ∪ {15, 16, 17}.

Theorem 0.2 (cf. Theorem 3.2). There are no 5-pseudofree one fixed point actions of
SL(2, 5).C2 on Z-homology spheres. In case SL(2, 5).C2 acts 6-pseudofreely with exactly
one fixed point on an n-dimensional Z-homology sphere Σ, then n = 6 + 8k or n = 18 + 8k
for k ≥ 0. Moreover, if the action in question is effective and n = 6 + 8k, then k ≥ 1.

The article is organized as follows. In the first section we provide the necessary algebraic
data for SL(2, 5).C2. We compute the fixed point dimensions for irreducible RSL(2, 5).C2-
modules for specific subgroups of SL(2, 5).C2 and prove useful facts about these subgroups
by means of the subgroup lattice of SL(2, 5).C2. The next section contains the main technical
exclusion results which the proofs of Theorems 0.1 and 0.2 rely on. In the last section we
prove the two main theorems of this paper.

1. The necessary algebraic data for SL(2, 5).C2

1. The necessary algebraic data for SL(2, 5).C2
In this section, we show the existence of subgroups of SL(2, 5).C2 with suitable fixed

point dimensions and forming generating sets for SL(2, 5).C2. For that purpose, we present
the real irreducible characters of SL(2, 5).C2 and the fixed point dimensions for the corre-
sponding representations of the actions of subgroups of our interest. The poset of conjugacy
classes of SL(2, 5).C2 shall be important as it provides the necessary information concerning
the subgroup lattice of SL(2, 5).C2.

We shall use the fact that one of the quotients of SL(2, 5).C2 is S5. More precisely, the
center Z of SL(2, 5) is of order 2 and SL(2, 5).C2/Z � S5. Let us denote by

π : SL(2, 5).C2 → SL(2, 5).C2/Z � S5

the quotient epimorphism.

1.1. Nontrivial real irreducible characters of SL(2, 5).C2.
1.1. Nontrivial real irreducible characters of SL(2, 5).C2. Among nontrivial real irre-

ducible characters of SL(2, 5).C2, 6 characters are not faithful and 5 are faithful. Let U1,
U4,1, U4,2, U5,2, U5,1 and U6 be nontrivial irreducible RSL(2, 5).C2-modules with the non-
faithful characters (these modules are faithful as RG-modules, where G = SL(2, 5).C2/Z =
S5), and W8,1, W8,2, W8,3, W12,1, and W12,2 irreducible faithful RSL(2, 5).C2-modules. The
characters are presented in the table below (they can be derived from complex irreducible
characters of SL(2, 5).C2 which can be found at [7] for example). The notation of conjugacy
classes in the table is as follows. The class is denoted by a number indicating the order of its
representative. If there is more than one class whose representative has a given order, then
subsequent capital letters are used to distinguish between such classes.
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Table 1. Character table of SL(2, 5).C2.

class 1 2 (3) (4A) (4B) (5) (6) (8A) (8B) (10) (12A) (12B)
size 1 1 20 20 30 24 20 30 30 24 20 20
U1 1 1 1 −1 1 1 1 −1 −1 1 −1 −1

U4,1 4 4 1 −2 0 −1 1 0 0 −1 1 1
U4,2 4 4 1 2 0 −1 1 0 0 −1 −1 −1
U5,1 5 5 −1 −1 1 0 −1 1 1 0 −1 −1
U5,2 5 5 −1 1 1 0 −1 −1 −1 0 1 1
U6 6 6 0 0 −2 1 0 0 0 1 0 0

W8,1 8 −8 −4 0 0 −2 4 0 0 2 0 0
W8,2 8 −8 2 0 0 −2 −2 0 0 2 2

√
3 −2

√
3

W8,3 8 −8 2 0 0 −2 −2 0 0 2 −2
√

3 2
√

3
W12,1 12 −12 0 0 0 2 0 −2

√
2 2

√
2 −2 0 0

W12,2 12 −12 0 0 0 2 0 2
√

2 −2
√

2 −2 0 0

1.2. Fixed point dimensions for nontrivial irreducible RSL(2, 5).C2-modules.
1.2. Fixed point dimensions for nontrivial irreducible RSL(2, 5).C2-modules. The

conjugacy classes of subgroups of SL(2, 5).C2 are described in the poset below (see [7]).
The classes are denoted by aliases of their representatives (with an exception for the center,
Z � C2), where Dicn = 〈a, b|a2n = 1, b2 = an, bab−1 = a−1〉 denotes the dicyclic group of or-
der 4n. If there is more than one class with isomorphic representatives, then we distinguish
these classes by additional suffices. The normal subgroups are written without parenthe-
ses to indicate that they are unique representatives of their conjugacy classes of subgroups.
Moreover, using the notations from Figure 2, we write in the subscript in front of each con-
jugacy class (H) of SL(2, 5).C2 such that π((H)) = (K) for some K ∈ S5, an alias of K (at this
stage we do not prove the correspondence π((H)) = (K), however, as the indication should
serve readibility only). The subscripts are present only in the figure below - in the subse-
quent considereations we skip them since this shall not lead to confusion. The conjugacy
classes in frames are of particular interest for us as we shall use them for the intersection
number argument to prove the exclusion results of this paper. The conjugacy classes (H)
such that π(H) ∈ A5 ≤ S5 are marked with bold.

Let us show first that SL(2, 5).C2 is indeed isomorphic to the group TL2(5) mentioned
in [13, Remark on p. 154]. To this aim, we have to show that SL(2, 5).C2 possesses a free
representation. It turns out that the real irreducible SL(2, 5).C2-representation W8,1 is free.
This follows from the proposition below, since the only primes dividing 240, which is the
order of SL(2, 5).C2, are 2, 3, and 5.

Proposition 1.1. Suppose 4 = {U4,k|k = 1, 2}, 5 = {U5,k|k = 1, 2}, 8 = {W8,k|k =
1, 2, 3}, 12 = {W12,k|k = 1, 2}. Then, for any U4 ∈ 4, U5 ∈ 5, W8 ∈ 8, W12 ∈ 12,
W ∈8 ∪12, and i ∈ {2, 3}, the following equalities hold.

dim WZ = dim WC3
8,1 = dim WC5

8 = 0,

dim UZ
1 = dim UC3

1 = dim UC5
1 = dim UC3

5 = dim UC5
5 = 1,

dim UC3
4 = dim UC3

6 = dim UC5
6 = 2,

dim UZ
4 = dim WC3

8,i = dim WC3
12 = dim WC5

12 = 4,
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Fig.1. Subgroups of SL(2, 5).C2.

dim UZ
5 = 5, and dim UZ

6 = 6.

Proof. The equalities concerning the center subgroup Z ≤ SL(2, 5).C2 are straightforward
as Ker U = Z for U = Uk for k = 1, 4, 5, 6 and W is a faithful representation.

Since there are unique conjugacy classes of elements of order 3, 5, we get the desired
equalities from Table 1 by using the formula for the fixed point dimension,

dim VH =
1
|H|
∑

h∈H
χ

V
(h),(1)

where H ≤ G, V is an RG-module and χ
V

is its character. �

The next proposition provides fixed point dimensions for 4 conjugacy classes of sub-
groups which are of our particular interest.

Proposition 1.2. Assuming the notations from Proposition 1.1, and H ∈ (C4,A)∪ (Q8,A)∪
(Q16) ∪ (Dic6), the following equalities hold.

dim UH
1 = dim WH = dim UQ8,A

4,1 = dim UQ16
4,1 = dim UDic6

4,1 = dim UDic6
5,1 = dim UQ16

6

= dim UDic6
6 = 0,

dim UC4,A

4,1 = dim UQ16
4,2 = dim UDic6

4,2 = dim UQ8,A

5,1 = dim UQ16
5,1 = dim UQ16

5,2 = dim UDic6
5,2

= dim UQ8,A

6 = 1,

dim UQ8,A

4,2 = dim UC4,A

5,1 = dim UQ8,A

5,2 = 2, and dim UC4,A

4,2 = dim UC4,A

5,2 = dim UC4,A

6 = 3.

Proof. The equality dim WH = 0 follows immediately from Proposition 1.1.
In the proof we use the formula (1) from the proof of the previous proposition. Let C′4,A
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be the cyclic subgroup of order 4, generated by an element in the conjugacy class (4A). It
follows from Table 1 that

1 >
1
4
· (1 − 1 + 1 + 1) ≥ dim U

C′4,A
1 ≥ 0.

Thus dim U
C′4,A
1 = 0. On the other hand,

1 ≥ dim USL(2,3)
1 ≥ 1

24
· (1 + 1 + 8 · 1 + 6 · (−1) + 8 · 1) > 0,

as SL(2, 3) contains precisely: one element of order 1 and 2, eight elements of order 3,
six elements of order 4, and eight elements of order 6. Hence, dim USL(2,3)

1 = 1, which in

connection with dim U
C′4,A
1 = 0 and Figure 1 yields C′4,A ∈ (C4,A). Hence dim UH

1 = 0 as H
contains as a subgroup a representative of the class (C4,A). Moreover, as we know now that
the elements of C4,A of order 2 belong to (4A), all equalities involving C4,A follow directly
from Table 1 and we skip it.

The subgroup Q8,A is isomorphic to the quaternion group, and therefore contains two
elements of order ≤ 2, and six elements of order 4 (moreover, at least two of them are con-
tained in the conjugacy class of elements (4A) since a representative of (C4,A) is contained
in (Q8,A)). Thus,

dim UQ8,A

4,1 ≤
1
8
· (4 + 4 + 2 · (−2) + 4 · 0) < 1,

which yields dim UQ8,A

4,1 = dim UQ16
4,1 = dim UDic6

4,1 = 0. The subgroup Q16 contains one
element of order 1 and 2, ten elements of order 4, and four elements of order 8, while Dic6

contains one element of order 1 and 2, two elements of order 3, fourteen elements of order 4,
two elements of order 6, and four elements of order 12. Using this knowledge, The equalities
concerning U5,2 can be derived directly from Table 1, just as in the proof of Proposition 1.1.
We skip these computations. Moreover,

dim UDic6
5,1 <

1
24
· (5 + 5 + 2 · (−1) + 14 · 1 + 2 · (−1) + 4 · (−1)) < 1,

dim UQ16
6 <

1
16
· (6 + 6 + 10 · 0 + 4 · 0) < 1,

and

dim UDic6
6 <

1
24
· (6 + 6 + 2 · 0 + 14 · 0 + 2 · 0 + 4 · 0) < 1,

which means that dim UDic6
5,1 = dim UQ16

6 = dim UDic6
6 = 0.

Further proof is the repetition of the already used arguments. We are left with the proofs
of equalities concerning dimensions which are to be equal 1 or 2. The following inequalities
conclude then the proof.

2 >
1

16
· (4 + 4 + 10 · 2 + 4 · 0) ≥ dim UQ16

4,2 ≥
1
16
· (4 + 4 + 10 · 0 + 4 · 0) > 0.

2 >
1

24
·(4+4+2·1+14·2+2·1+4·(−1)) ≥ dim UDic6

4,2 ≥
1

24
·(4+4+2·1+14·0+2·1+4·(−1)) > 0,

2 >
1
8
· (5 + 5 + 2 · (−1) + 4 · 1) ≥ dim UQ8,A

5,1 ≥
1
8
· (5 + 5 + 6 · (−1)) > 0,
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Fig.2. Subgroups of S5.

1 = dim UQ8,A

5,1 ≥ dim UQ16
5,1 ≥

1
16
· (5 + 5 + 10 · (−1) + 4 · 1) > 0,

2 >
1
8
· (6 + 6 + 6 · 0) ≥ dim UQ8,A

6 ≥ 1
8
· (6 + 6 + 2 · 0 + 4 · (−2)) > 0,

3 >
1
8
· (4 + 4 + 6 · 2) ≥ dim UQ8,A

4,2 ≥
1
8
· (4 + 4 + 2 · 2 + 4 · 0) > 1. �

Another important fact is that the fixed point set, USL(2,5)
1 , has positive dimension. The

group SL(2, 5) contains one element of order 1 and 2, twenty elements of order 3, thirty
elements of order 4, twenty four elements of order 5, twenty elements of order 6, and twenty
four elements of order 10. Hence,

dim USL(2,5)
1 ≥ 1

120
· (1 + 1 + 20 · 1 + 30 · (−1) + 24 · 1 + 20 · 1 + 24 · 1) > 0,

which means that dim USL(2,5)
1 = 1.

1.3. Suitable generating subgroups of SL(2, 5).C2.
1.3. Suitable generating subgroups of SL(2, 5).C2. Recall that we denoted the center

of SL(2, 5).C2 by Z and that π : SL(2, 5).C2 → SL(2, 5).C2/Z � S5 is the quotient epimor-
phism. As there shall be no confusion, from now on, we identify SL(2, 5).C2/Z with S5, the
group of all permutations on 5 letters. The following figure is the poset of conjugacy classes
of subgroups of S5. In the figure below, D2n denotes the dihedral group of order 2n, and F5

is the Frobenius group of order 20. This poset can be also found at [7]. The convention for
notation is the same as in Figure 1 with an exception that now superscripts in front of classes
indicate the corresponding classes of SL(2, 5).C2.

Define the subgroups L,K1,K2 ≤ S5 as follows.

L = 〈(1 3)〉 � C2, K1 = 〈(1 3), (4 5)〉 � C2
2 and K2 = 〈(1 2 3 4), (1 2)(3 4)〉.

Lemma 1.3. We have K2 � D8, L = K1 ∩ K2, and 〈K1,K2〉 = S5.



8 P. Mizerka

Proof. Let D8 = 〈a, b|a4 = b2 = 1, bab = a−1〉. Define ϕ : D8 → K2 by ϕ(a) =
(1 2 3 4) and ϕ(b) = (1 2)(3 4). Then

ϕ(a4) = ϕ(b2) = 1

and

ϕ(bab) = ϕ(b)ϕ(a)ϕ(b) = (1 2)(3 4)(1 2 3 4)(1 2)(3 4) = (1 4 3 2) = ϕ(a−1).

Therefore ϕ is a well-defined homomorphism. As it maps generators to generators, it is an
epimorphism. Now, we have

Kerϕ = {bεak|ϕ(bεak) = id} = {bεak|((1 2)(3 4))ε(1 2 3 4)k = id}.
Notice that (1 2 3 4)k = id iff 4|k. Thus, if ε = 0, then ϕ(bεak) = id if and only if
bεak = 1. In case ε = 1, we have

ϕ(bε) = ϕ(b) = (1 2)(3 4),

ϕ(bεa) = ϕ(ba) = (1 2)(3 4)(1 2 3 4) = (2 4),

ϕ(bεa2) = ϕ(ba2) = ϕ(ba)ϕ(a) = (2 4)(1 2 3 4) = (1 4)(2 3),

ϕ(bεa3) = ϕ(ba3) = ϕ(ba2)ϕ(a) = (1 4)(2 3)(1 2 3 4) = (1 3).

Thus ϕ(bεak) = id if and only if bεak = 1, whence ϕ has the trivial kernel. Therefore ϕ is an
isomorphism and K2 � D8.

We show now that L = K1 ∩ K2. Notice that

(1 2 3 4)(1 2)(3 4) = (1 3).

Thus L ≤ K1∩K2. This shows (as |K1| = 4) that |K1∩K2| ∈ {2, 4}, whence K1∩K2 = 〈(1 3)〉
or K1 ∩ K2 = K1. On the other hand, (4 5) ∈ K1 \ K2, whence K1 ∩ K2 = 〈(1 3)〉 = L.

We are left with the proof that 〈K1,K2〉 = S5. As |K2| = |D8| = 8, the order of 〈K1,K2〉 is
divisible by 8. On the other hand,

(1 2 3 4 5) = (1 2 3 4)(4 5),

which shows that the order of 〈K1,K2〉 has to be divisible by 5, and hence by 40. It follows
now easily from Figure 2 that 〈K1,K2〉 = S5. �

We have now the following corollary.

Corollary 1.4. Using the notations from Figure 1,

π−1(L) ∈ (C4,A), π−1(K1) ∈ (Q8,A), and π−1(K2) ∈ (Q16).

Moreover,

π−1(L) = π−1(K1) ∩ π−1(K2) and 〈π−1(K1), π−1(K2)〉 = SL(2, 5).C2.

Proof. Notice that both L and K1 are not subgroups of A5. Now, the rest of the proof
follows from Figures 1 and 2 and Lemma 1.3. �
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Table 2. Fixed point dimension table for generating subgroups of SL(2, 5).C2.

class (C4,A) (Q8,A) (Q16) (Dic6)

U1 0 0 0 0
U4,1 1 0 0 0
U4,2 3 2 1 1
U5,1 2 1 1 0
U5,2 3 2 1 1
U6 3 1 0 0

W8,1 0 0 0 0
W8,i 0 0 0 0
W12, j 0 0 0 0

2. The main exclusion results

2. The main exclusion results
The following table contains useful information concerning fixed point dimensions for

the four subgroups of SL(2, 5).C2 considered in the previous section. This is a summary of
Proposition 1.2. In the table below, i = 2, 3 and j = 1, 2.

In the following four lemmas, G can be taken to be any finite group acting on a Z-
homology sphere Σ.

Lemma 2.1 ([19, cf. Proposition 2.4]). If ΣG is nonempty, then for any non-Oliver sub-
group H ≤ G we have χ(ΣH) � 1.

Lemma 2.2. Suppose that H1 and H2 are non-Oliver subgroups of G which generate G
and suppose P is a prime power order subgroup of H1 ∩ H2. If there exists x ∈ ΣG with
dim Tx(ΣP) = 0, then ΣG is a two point set.

Proof. By the Smith theory, it follows that ΣP is a Zp-homology sphere. As it is a finite
set, we have |ΣP| = 2. Since ΣH1 ,ΣH2 ⊆ ΣP, the Euler characteristics of ΣH1 and ΣH2 are
equal to their cardinalities. On the other hand, by Lemma 2.1, we conclude that |ΣHi | � 1 for
i = 1, 2. Thus |ΣHi | = 2 for i = 1, 2, and, in conclusion, ΣH1 = ΣH2 = ΣP. As 〈H1,H2〉 = G,
we have ΣG = ΣH1 ∩ ΣH2 = ΣP, and ΣG is therefore a two point set. �

The following lemma is a modified version of the previous one.

Lemma 2.3. Suppose H1, H2 are non-Oliver subgroups generating G. Let x0 ∈ ΣG and
put V = Tx0Σ. Suppose H ≤ H1 ∩ H2 is such that

dim VH1 + dim VH2 = dim VH

and ΣH � Sk for some k ∈ {0, 1, 2}. Then ΣG � {x0}.
Proof. Suppose the assumptions of the Lemma hold. Consider the case dim VH1 =

dim VH2 = 1 as it is a bit different. Let C(H1) and C(H2) be the connected components
containing x0 of ΣH1 and ΣH2 respectively. Suppose for the converse that ΣG = {x0}. Then,
as 〈H1,H2〉 = G, we have ΣG = C(H1) ∩ C(H2). On the other hand the intersection number
of C(H1) and C(H2) in ΣH � Sk is zero. A contradiction.

Suppose now that at least one of the dimensions, dim VH1 or dim VH2 , is not equal to 1.
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As dim VH = k, where k ∈ {0, 1, 2}, this means that precisely one dimension from dim VH1

and dim VH2 is zero and the second one is dim VH . The case k = 0 can be excluded by the
previous lemma. Without loss of generality, suppose that dim VH1 = dim VH . This means
that ΣH1 contains a connected component which is a closed submanifold of ΣH � Sk of
dimension k ∈ {1, 2}. Therefore this component must be entire ΣH , which yields ΣH1 = ΣH .
Thus, as ΣH2 ⊆ ΣH ,

ΣG = ΣH1 ∩ ΣH2 = ΣH ∩ ΣH2 = ΣH2 .

Therefore, if ΣG = {x0}, then ΣH2 = {x0}. The latter, however, cannot hold since H2 is a non-
Oliver group and as such it cannot act on homology spheres with exactly one fixed point.

�

Lemma 2.4 ([19, Corollary 2.8]). Suppose Σ is a Z-homology sphere. Let G2 be the
intersection of all subgroups H ≤ G with [G : H] ≤ 2 and suppose x ∈ ΣG. If dim Tx(Σ)G2 >

0, then ΣG � {x}.
The theorem below is similar to Theorem 5.1 of [23].

Theorem 2.5. Let Σ be a Z-homology sphere with SL(2, 5).C2-action and |ΣSL(2,5).C2 | ≡
1 (mod 2). Then the following statements hold.

(1) If for each x ∈ ΣSL(2,5).C2 , Tx(Σ) contains at least one of the modules U4,2 or U5,2,
then the set of all points x ∈ ΣSL(2,5).C2 such that Tx(Σ) contains U6 consists of odd
number of points.

(2) Let x ∈ ΣSL(2,5).C2 . If Tx(Σ) contains neither U4,2 nor U5,2, then Tx(Σ) contains U5,1

or U6.

Proof. Let us prove first the first statement. Assume therefore that for each x ∈ ΣSL(2,5).C2 ,
Tx(Σ) contains at least one of the modules U4,2 or U5,2. Denote by F the set consisting of all
points from x ∈ ΣSL(2,5).C2 such that the tangential representation Tx(Σ) contains U6 and put
F′ = ΣSL(2,5).C2 \ F. We show that |F′| ≡ 0 (mod 2).

If F′ is empty, then the assertion follows. Hence, we may assume F′ is non-empty and
take y ∈ F′. Suppose now F is non-empty and take x ∈ F. Then,

Tx(Σ) = U⊕k
6 ⊕ U⊕a

1 ⊕ U⊕b1
4,1 ⊕ U⊕b2

4,2 ⊕ U⊕c1
5,1 ⊕ U⊕c2

5,2 ⊕W,

Ty(Σ) = U⊕r
1 ⊕ U⊕s1

4,1 ⊕ U⊕s2
4,2 ⊕ U⊕t1

5,1 ⊕ U⊕t2
5,2 ⊕W ′,

where W and W ′ contain only the irreducible RSL(2, 5).C2-modules in Table 1 denoted with
the capital ”W” and some index (these are precisely faithful real irreducibles of SL(2, 5).C2)
and a, b1, b2, c1, c2, r, s1, s2, t1, t2 are non-negative integers and k is a positive integer. More-
over, by our assumption, we know that s2 or t2 is positive (and, similarly, b2 or c2 is positive).

Since 〈Q16,Dic6〉 = SL(2, 5).C2, we have ΣQ16 ∩ΣDic6 = ΣSL(2,5).C2 . Note that 0 < s2+ t2 =
dim Ty(ΣDic6) ≤ dim Ty(ΣQ8,A), and dim Ty(ΣQ16 ) = s2 + t1 + t2 > 0. Therefore both ΣQ8,A

and ΣQ16 are connected as positive dimensional Z2-homology spheres (by the Smith Theory)
because Q8,A and Q16 are 2-groups. Summing up, by Table 2, we get

dimΣQ16 = b2 + c1 + c2, dimΣQ16 = s2 + t1 + t2,

dim Tx(ΣDic6) = b2 + c2, dim Ty(ΣDic6) = s2 + t2,
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and

dimΣQ8,A = 2b2 + c1 + 2c2 + k, dimΣQ8,A = 2s2 + t1 + 2t2.

Thus,

dimΣQ16 + dim Tx(ΣDic6) = dimΣQ8,A − k,

dimΣQ16 + dim Ty(ΣDic6) = dimΣQ8,A .

Denote by ΣDic6
0 the union of all connected components C of ΣDic6 such that C∩ΣSL(2,5).C2 � ∅

and dimΣQ16 + dim C = dimΣQ8,A . Then F ∩ ΣDic6
0 = ∅ and F′ = ΣDic6

0 ∩ ΣSL(2,5).C2 . Thus, the
(mod 2)-intersection number of ΣQ16 and ΣDic6

0 in ΣQ8,A is equal to |F′| in Z2. On the other
hand, the canonical (mod 2)-intersection form on ΣQ8,A ,

ϕ : Hs2+t1+t2 (Σ
Q8,A ;Z2) × Hs2+t1 (Σ

Q8,A ;Z2)→ Z2

is trivial as ΣQ8,A is a Z2-homology sphere and s2 + t2 > 0. Thus, the intersection number
of ΣQ16 and ΣDic6

0 in ΣQ8,A is zero, whence |F′| ≡ 0 (mod 2) in the case F is non-empty. This
contradicts the assumption that |ΣSL(2,5).C2 | is even. If F is empty, then ΣDic6

0 = ΣDic6 and
ΣSL(2,5).C2 = F′. Therefore, for any y ∈ ΣSL(2,5).C2 , we have

dimΣQ16 + dim Ty(ΣDic6) = dimΣQ8,A ,

and the intersection number argument yields |ΣSL(2,5).C2 | = |F′| even. On the other hand, in
this case |ΣSL(2,5).C2 | = |F′ ∪ F| = |F′| which yields |ΣSL(2,5).C2 | even which is a contradiction.
This concludes the proof of the first statement.

Let us prove the second statement. Suppose therefore that Tx(Σ) contains neither U4,2 nor
U5,2. If Tx(Σ) contains U5,1 or U6, there is nothing to prove. Thus, we can assume that Tx(Σ)
does not contain neither U4,2, U5,2, U5,1, nor U6. Hence, Tx(Σ) � U⊕r

1 ⊕ U⊕s1
4,1 ⊕ W for W

containing only direct summands from the set {W8,1,W8,2,W8,3,W12,1,W12,2}. This means,
however, that dim Tx(ΣQ8,A) = 0. As Q16 and Dic6 are non-Oliver and generate SL(2, 5).C2,
we conclude by Lemma 2.2 that |ΣSL(2,5).C2 | = 2 which is a contradiction. �

3. Proofs of Theorem 0.1 and Theorem 0.2

3. Proofs of Theorem 0.1 and Theorem 0.2
In the light of Corollary 1.4, we can assume that C4,A ≤ Q8,A ∩ Q16 and 〈Q8,A,Q16〉 =

SL(2, 5).C2.

Theorem 3.1 (cf. Theorem 0.1). Let Σ be a homology sphere of dimension n. Then
SL(2, 5).C2 cannot act effectively with odd number of fixed points on Σ provided n ∈ {0,
1, . . . , 13}. Moreover, SL(2, 5).C2 cannot act effectively with exactly one fixed point on Σ
provided n ∈ {0, 1, . . . , 13} ∪ {15, 16, 17}.

Proof. Suppose SL(2, 5).C2 acts on a Z-homology n-sphere Σ with odd number of fixed
points. Suppose first that for each x ∈ ΣSL(2,5).C2 , Tx(Σ) contains at least one of the modules
U4,2 or U5,2. By Theorem 2.5 we conclude that there exists x ∈ ΣSL(2,5).C2 such that Tx(Σ)
contains U6. As the action is faithful, Tx(Σ) must contain one of the modules from the set
{W8,1,W8,2,W8,3,W12,1,W12,2}. This would mean that n ≥ min(4, 5) + 6 + 8 = 18.

Assume that there is a point x ∈ ΣSL(2,5).C2 such that Tx(Σ) contains neither U4,2, U5,2,
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nor U6. By Theorem 2.5 we conclude that Tx(Σ) contains U5,1. Thus (by Table 2), in
order to prove the assertion concerning actions with odd number of fixed points, we have
to exclude three possibilities: Tx(Σ) � U5,1 ⊕ W8,i for i = 1, 2, 3. Fortunately, we will be
able to exclude these three possibilities at once - just by using the fact that U5,1 appears as a
unique non-faithful direct summand of Tx(Σ). The proof of the first part can be finished by
considering the (mod 2)-intersection numbers of ΣQ8,A and ΣQ16 in ΣC4,A as ΣQ8,A , ΣQ16 and
ΣC4,A are connected by the Smith theory (because they have positive dimension by Table 2)
and dimΣQ8,A + dimΣQ16 = 1+ 1 = 2 = dimΣC4,A . Indeed, the intersection number argument
yields |ΣSL(2,5).C2 | even as ΣQ8,A ∩ ΣQ16 = ΣSL(2,5).C2 for Q8,A and Q16 generate SL(2, 5).C2.

Assume now that SL(2, 5).C2 acts effectively with exactly one fixed point on Σ with n ∈
{15, 16, 17}. Denote the fixed point by x and put V = Tx(Σ). By Lemma 2.4 and the last
paragraph of subsection 1.2, we conclude that V cannot contain U1 as a direct summand. On
the other hand, we know by Theorem 2.5 that V must contain U5,1 or U6 as a direct summand.
Since n ∈ {15, 16, 17}, and V contains an effective direct summand, it follows now by Table
2 that one of the following possibilities holds: V � U4,1 ⊕U5,1 ⊕W8,i, V � U4,2 ⊕U5,1 ⊕W8,i

or V � U5,1 ⊕W12, j for i ∈ {1, 2, 3} and j ∈ {1, 2}. If V � U4,1 ⊕ U5,1 ⊕W8,i, then, by Table
2, we have dim VQ8,A = 1 = 1 + 0 = dim VQ16 + dim VDic6 and we can exclude this case by
Lemma 2.3. If V � U4,2 ⊕ U5,1 ⊕W8,i, then dim VC4,A = 5 = 3 + 2 = dim VQ8,A + dim VQ16 ,
whereas if V � U5,1 ⊕ W12, j, then dim VC4,A = 2 = 1 + 1 = dim VQ8,A + dim VQ16 . Both
situations can be excluded by the intersection number argument. �

Theorem 3.2 (cf. Theorem 0.2). There are no 5-pseudofree one fixed point actions of
SL(2, 5).C2 on Z-homology spheres. In the case SL(2, 5).C2 acts 6-pseudofreely with exactly
one fixed point on an n-dimensional Z-homology sphere Σ, then n = 6 + 8k or n = 18 + 8k
for k ≥ 0. Moreover, if the action in question is effective and n = 6 + 8k, then k ≥ 1.

Proof. Suppose first that SL(2, 5).C2 acts 6-pseudofreely with exactly one fixed point on
some Z-homology sphere Σ. Let ΣSL(2,5).C2 = {x} and put V = Tx(Σ). By Theorem 3.1, it
follows that V contains either U5,1 or U6 as a direct summand. On the other hand, by Lemma
2.4, V cannot contain U1 as a direct summand since, by the last paragraph of subsection
1.2, dim USL(2,5)

1 = 1. As SL(2, 5).C2 acts 6-pseudofreely, it follows by Proposition 1.1 that
V � U5,1⊕W or V � U6⊕W, where W contains only W8,i and W12, j as direct summands. The
former case can be however excluded by the intersection number argument as dim VC4,A =

2 = 1 + 1 = dim VQ8,A + dim VQ16 . This shows immediately that SL(2, 5).C2 cannot act
5-pseudofreely. Moreover, if SL(2, 5).C2 acts 6-pseudofreely, then, by Proposiotion 1.2,
V � U6 ⊕W, where W consists only of modules W8,i and at most one of the modules W12, j.
This shows n = 6 + 8k or n = 18 + 8k for k ≥ 0. In case the action in question is effective
and n = 6 + 8k, W must be nontrivial and thus k ≥ 1. This concludes the proof. �
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