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Abstract
Shimizu introduced a region crossing change unknotting operation for knot diagrams. As

extensions, two integral region choice problems were proposed and the existences of solutions
of the problems were shown for all non-trivial knot diagrams by Ahara and Suzuki, and Harada.
We relate both integral region choice problems with an Alexander numbering for regions of a
link diagram,and give alternative proofs of the existences of solutions for knot diagrams. We
also discuss the problems on link diagrams. For each of the problems on the diagram of a
two-component link, we give a necessary and sufficient condition that there exists a solution.

1. Introduction

1. Introduction
A link is a closed 1-manifold smoothly embedded in the 3-space R3 or in the 3-sphere S3

and a knot is a link with one component. A link in the 3-space is presented as the natural
projection image on the 2-plane R2 where the singular points are transverse double points
with over/under information. This presentation is called a link diagram or a diagram of
the link. A diagram of a link in the 3-sphere S3 = R3 ∪ {∞} is given on the 2-sphere
S2 = R2 ∪ {∞} similarly. For each link diagram, a connected component of the complement
of the projection image on R2 or S2 is called a region.

In [10], Shimizu defined a region crossing change at a region for a diagram to be the
crossing change at all the crossings on the boundary of the region as an unknotting operation
for a knot diagram, which was proposed by Kengo Kishimoto. For example in Fig.1, the left
diagram is changed to the right diagram, choosing the region marked with ∗ as illustrated on
the middle and changing the three crossings on the boundary of the marked region. In [3, 4],
Cheng and Gao gave a necessary and sufficient condition that a region crossing change is an
unknotting operation on a link diagram.

It is known that a region crossing change can be interpreted as follows. We call a diagram
ignored over/under information a projection. Let each crossing of the given projection be
equipped with a score 0 or 1 modulo 2. We choose a region of the projection. Then the
scores of all the crossings on its boundary are increased by 1 modulo 2. For example, the
region crossing change illustrated on Fig.1 is interpreted as Fig.2. Shimizu showed that the
scores of all the crossings on any knot diagram become 0 by some choices of regions. Cheng
and Gao induced a Z2-homomorphism from region crossing changes on link diagrams. In
[6, 7], Hashizume studied structures of their Z2-homomorphism.

As an extension of a region crossing change to an integral range, Ahara and Suzuki pro-
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Fig.1. An example of a region crossing change.

Fig.2. An example of an interpreted region crossing change.

posed an integral region choice problem and showed the existence of a solution of this prob-
lem for all knot projections in [1]. Let each crossing of the given projection be equipped with
an integral score. We choose a region of the projection and assign an integer u to it. Then
the scores of all the crossings on its boundary are increased by u. For example in Fig.3, the
scores of the crossings on the left projection are changed to the right, assigning integers to
regions as the middle projection; 1 �→ 1+0+2+(−1)+(−2) = 0, −1 �→ −1+0+0+(−1)+2 = 0,
3 �→ 3+0+0+ (−2)+ (−1) = 0, and 2 �→ 2+0+0+0+ (−2) = 0. Ahara and Suzuki showed
that the scores of all the crossings on any knot projection become 0 by some choices of
regions and some assignments of the integers to them. We shall call their problem a definite
integral region choice problem. In Section 3, we state their result exactly.

Fig.3. An example of a definite integral region choice problem.

By an argument similar to that due to Ahara and Suzuki, Harada showed in his master
thesis [5] that there exists a solution of an alternating integral region choice problem for
all knot diagrams, which was suggested by Yasuyoshi Yonezawa. Let each crossing of the
given diagram be equipped with an integral score. We choose a region of the projection
and assign an integer u to it. Then the score of each crossing on its boundary is changed as
follows. If the region lies on the right when we move along the underpass to the crossing,
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illustrated as ∗ or ∗ , the score of this crossing is increased by u. If the region lies on the

left when we move along the underpass to the crossing, illustrated as ∗ or ∗ , the score
of this crossing is decreased by u. For example in Fig.4, the scores of the crossings on the
left diagram are changed to the right, assigning integers to regions as the middle diagram;
1 �→ 1+0−(−2)+(−1)−2 = 0, −1 �→ −1+0−0+(−1)−(−2) = 0, 3 �→ 3−0+0−2+(−1) = 0,
and 2 �→ 2 + 0 − 0 + 0 − 2 = 0. Harada showed that the scores of all the crossings on any
knot diagram become 0 by some choices of regions and some assignments of the integers to
them. We shall call this proposed problem as another extension of a region crossing change
an alternating integral region choice problem. In Section 4, we state his result exactly.

Fig.4. An example of an alternating integral region choice problem.

In [1, 5], Ahara, Suzuki and Harada reduced the above integral region choice problems
to systems of linear equations, as explained in Sections 3 and 4 in this article, and they
showed the existences of solutions for non-trivial knot diagrams. We show that an Alexan-
der numbering for regions of a link diagram is a solution of the system of homogeneous
linear equations reduced from an alternating integral region choice problem in Section 5.
By this result, we give alternative proofs of the existences of solutions of both alternating
and definite integral region choice problems for all non-trivial knot diagrams in Sections 6
and 7.

In [10], Shimizu used checkerboard colorings to regions of knot diagrams for showing
that a region crossing change is an unknotting operation. Cheng and Gao [4], and Hashizume
[6, 7] also used checkerboard colorings for discussing region crossing changes on link di-
agrams. An Alexander numbering is an integral extension of a checkerboard coloring, as
mentioned in Section 2. In this article, we use Alexander numberings to discuss the integral
region choice problems on link diagrams, which are integral extensions of region crossing
changes.

In Sections 8 and 9, we determine the ranks for the coefficient matrices of the systems of
linear equations reduced from the integral region choice problems, applying the arguments
in the original proofs of the solvability of integral region choice problems on knot diagrams
in [1, 5] to link diagrams. Then we obtain an extension of the result about the incidence
matrix due to Cheng and Gao [4].

In Section 10, we give a basis of the space of solutions of the system of homogeneous
linear equations reduced from each of integral region choice problems on link diagrams. In
Section 11, we give necessary and sufficient conditions that there exist solutions of integral
region choice problems on the connected diagram of a two-component link. These results
are extensions of some of the results about region crossing changes on link diagrams due to
Cheng and Gao [4], and Hashizume [6, 7].
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2. Preliminary

2. Preliminary
By the Jordan curve theorem, any short arc without a crossing on a link diagram lies on

the intersection of just two boundaries of regions. Each crossing is touched by at most four
regions. If the number of the regions touching the fixed crossing is less than four, it must be
three and the pair of the corners of the same region touching the crossing are not adjacent
each other around the crossing. This fact is also shown from the Jordan curve theorem. In
this case, such a crossing is called a reducible crossing. If a link diagram have a reducible
crossing, it is called a reducible diagram. Otherwise, it is called an irreducible diagram.

Lemma 2.1 (cf. [1, 7]). Let D be a link diagram or projection. If D has d connected
components and n crossings, then it has n + d + 1 regions.

Proof. It is shown by the Euler formula. �

On an oriented link diagram D, we say that we splice at a crossing x if we change the
diagram D around the crossing x, �

��� or �
���, to �� and obtain the new link diagram Dx.

This local move between oriented link diagrams is called a splicing or smoothing at the
crossing x. The change from Dx to D is called an unsplicing at x. In this article, the local
moves ������ to �� and �� to ������ among oriented link projections are also called a splicing
and an unsplicing respectively.

In [2], Alexander assigned an integer index to each region of an oriented link diagram
or projection, so that for any oriented arc on the link diagram, an index of the left region
adjacent to the arc is larger that of the right by one. Such an index is called an Alexander
index, and this assignment of the indexes is called an Alexander indexing or an Alexander
numbering. In [8], Kauffman also defined an Alexander indexing for an oriented link pro-
jection and show that there exist an Alexander indexing for any projection, though an index
of the right region is assigned larger than that of the left by one for any oriented arc on the
link projection. We note that these assignments may begin with an arbitrary region assigned
arbitrary integer index for the given oriented link diagram or projection.

It is known that we can shade regions for any link projection so that each two regions
adjacent by an arc on the projection are shaded and unshaded, and such shading is call a
checkerboard coloring. For any oriented link diagram or projection, if we shade only the
regions assigned odd number by an Alexander numbering, then we obtain a checkerboard
coloring. If we reverse the orientation of some link components fixing a region and its index,
we obtain a new Alexander numbering and the same checkerboard coloring. In this article,
we shall call an Alexander numbering modulo 2 a checkerboard coloring.

3. A definite integral region choice problem

3. A definite integral region choice problem
Let D be a link diagram or projection with d connected components and n crossings

x1, · · · , xn, n ≥ 1. We note that d is not greater than the number of the link components.
Let R1, · · · ,Rn+d+1 be the regions of D. In [1], Ahara and Suzuki induced two region choice
matrices Ad1(D) and Ad2(D) with n rows and n + d + 1 columns as follows, where they
denoted them by A1(D) and A2(D). We determine each element a(d1)

i j by
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a(d1)
i j =

⎧⎪⎪⎨⎪⎪⎩
1 if xi ∈ ∂Rj,

0 if xi � ∂Rj.

The region choice matrix of the single counting rule for D is the matrix Ad1(D) with the
element a(d1)

i j on the i-th row and the j-th column. We determine each element a(d2)
i j by

a(d2)
i j =

⎧⎪⎪⎨⎪⎪⎩
2 if Rj touches xi twice,

a(d1)
i j otherwise.

The region choice matrix of the double counting rule for D is the matrix Ad2(D) with the
element a(d2)

i j on the i-th row and the j-th column. We shall call these two region choice
matrices by the definite region choice matrices.

Using the definite region choice matrices, the definite integral region choice problem and
the existence of solutions for it are stated as follows.

Theorem 3.1 ([1]). Let D be a knot diagram or projection with n crossings x1, · · · , xn,
n ≥ 1. Let R1, · · · ,Rn+2 be the regions of D.

(1) Let Ad1(D) be the definite region choice matrix of the single counting rule for D. For
any c ∈ Zn, there exists a solution u ∈ Zn+2 such that Ad1(D)u + c = 0.

(2) Let Ad2(D) be the definite region choice matrix of the double counting rule for D.
For any c ∈ Zn, there exists a solution u ∈ Zn+2 such that Ad2(D)u + c = 0.

Example 3.2. Let D be the knot projection given in Fig.3. Under certain orders of cross-
ings and regions, we have

Ad1(D) = Ad2(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1
1 1 0 0 1 1
0 1 1 1 1 0
0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Fig.3 implies the equation

Adi(D)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
−1
−2
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
3
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

holds for i = 1, 2.

If we transpose the incidence matrices induced by Cheng and Gao [4] and Hashizume [6],
it is the same as the definite region choice matrix of the single counting rule modulo 2 up to
permutations of rows and columns.

4. An alternating integral region choice problem

4. An alternating integral region choice problem
Let D be a link diagram with d connected components and n crossings x1, · · · , xn, n ≥ 1.

Let R1, · · · ,Rn+d+1 be the regions of D. In [5], Harada induced two region choice matrices
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Aa1(D) and Aa2(D) with n rows and n + d + 1 columns as follows, where he denoted them
by B1(D) and B2(D).

We determine each elements a(a1)
i j as follows. We define a(a1)

i j = 1, if the region Rj lies on

the right when we move along the underpass to the crossing xi, illustrated as ∗ or ∗ . We

define a(a1)
i j = −1, if Rj lies on the left when we move along the underpass to xi, illustrated

as ∗ or ∗ . If xi does not lie on ∂Rj, we define a(a1)
i j = 0. The alternating region choice

matrix of the single counting rule for D is the matrix Aa1(D) with the element a(a1)
i j on the

i-th row and the j-th column. We determine each element a(a2)
i j by

a(a2)
i j =

⎧⎪⎪⎨⎪⎪⎩
2a(a1)

i j if Rj touches xi twice as ∗∗ or ∗∗ ,
a(a1)

i j otherwise.

The alternating region choice matrix of the double counting rule for D is the matrix Aa2(D)
with the element a(a2)

i j on the i-th row and the j-th column.

We compare the definitions of a(d1)
i j , a

(d2)
i j , a

(a1)
i j , a

(a2)
i j on Table 1, where the region Rj in-

cludes the corners marked with ∗ but does not include the unmarked corners around the
crossing xi.

Table 1. a(d1)
i j , a

(d2)
i j , a

(a1)
i j , a

(a2)
i j .

xi and R j ∗∗ ∗ or ∗ ∗ or ∗
∗
∗ otherwise

a(d1)
i j 1 1 1 1 0

a(d2)
i j 2 1 1 2 0

a(a1)
i j 1 1 −1 −1 0

a(a2)
i j 2 1 −1 −2 0

Using the alternating region choice matrices, the alternating integral region choice prob-
lem and the existence of solutions for it are stated as follows.

Theorem 4.1 ([5]). Let D be a knot diagram with n crossings x1, · · · , xn, n ≥ 1. Let
R1, · · · ,Rn+2 be the regions of D.

(1) Let Aa1(D) be the alternating region choice matrix of the single counting rule for D.
For any c ∈ Zn, there exists a solution u ∈ Zn+2 such that Aa1(D)u + c = 0.

(2) Let Aa2(D) be the alternating region choice matrix of the double counting rule for
D. For any c ∈ Zn, there exists a solution u ∈ Zn+2 such that Aa2(D)u + c = 0.

Example 4.2. Let D be the knot diagram given in Fig.4. Under certain orders of crossings
and regions, we have

Aa1(D) = Aa2(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 −1 0 0 1
−1 1 0 0 −1 1
0 1 −1 1 −1 0
0 0 −1 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Fig.4 implies the equation
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Aai(D)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
−1
2
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
3
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

holds for i = 1, 2.

Remark 4.3. If we transpose the incidence matrix induced by Cheng and Gao [4] and
Hashizume [6], it is the same as the alternating region choice matrix of the single counting
rule modulo 2 up to permutations of rows and columns.

Remark 4.4. In this article, we reverse signs of the elements in the alternating region
choice matrices defined by Harada [5], since our alternating region choice matrix of the
double counting rule coincides with the Alexander matrix defined in [2] if we substitute 1 for
the variable. In [8], Kauffman illustrated the definition of the Alexander matrix as a crossing
with labeled corners � t

−t
1
−1

. In his terms, our alternating region choice matrix and the definite
region choice matrix of the double counting rule are denoted by 1

−1
1−1

and 1
1

1
1

respectively. In
[9], Kawauchi indicated that the transposed incidence matrix is the same as the Alexander
matrix substituted 1 modulo 2, and that the solvability of the original region choice problem
on knot diagrams is induced by the fact the Alexander polynomial substituted 1 becomes 1
for any knot. This fact also implies that Theorem 4.1 (2).

We give more examples to compare definite and alternating region choice matrices of the
single counting rule and of the double counting rule.

Example 4.5. Let D be the link diagram given as the split sum of the l copies of the
knot diagram with only one crossing such that one region touches all crossings twice. The
diagram D represents a trivial l-component link. Under certain orders of crossings and
regions, we obtain

Ad1(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 . . . 0
1 0 0 1 1 0 . . . 0
...

. . .

1 0 0 0 0 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ad2(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 0 0 0 . . . 0
2 0 0 1 1 0 . . . 0
...

. . .

2 0 0 0 0 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and
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Aa1(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε1 ε1 ε1 0 0 0 . . . 0
−ε2 0 0 ε2 ε2 0 . . . 0
...

. . .

−εl 0 0 0 0 . . . εl εl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Aa2(D) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2ε1 ε1 ε1 0 0 0 . . . 0
−2ε2 0 0 ε2 ε2 0 . . . 0
...

. . .

−2εl 0 0 0 0 . . . εl εl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where εi = 1 if the i-th crossing is positive �
��� , εi = −1 if it is negative �

���. Each of these
matrices has l rows and 2l + 1 columns.

Example 4.6. Let D be the link diagram given as the split sum of the knot diagram with
only one crossing and the l − 1 copies of the trivial knot daigaram �. The diagram D
represents a trivial l-component link. On D with certain orders of regions, we obtain

Ad1(D) =
(
1 1 1 0 0 0 . . . 0

)
,

Ad2(D) =
(
2 1 1 0 0 0 . . . 0

)
,

and

Aa1(D) =
(
−ε ε ε 0 0 0 . . . 0

)
,

Aa2(D) =
(
−2ε ε ε 0 0 0 . . . 0

)
,

where ε = 1 if the crossing is positive, otherwise ε = −1, and the number of 0 appearing on
each matrix is l − 1.

5. Kernel solutions from Alexander numberings

5. Kernel solutions from Alexander numberings
Let D be a link diagram with d connected components and n crossings x1, · · · , xn, n ≥ 1.

Let R1, · · · ,Rn+d+1 be the regions of D. Let all crossings be equipped with 0. Then the inte-
gral region choice problems induce Z-homomorphisms. We denote byΦdi(D) : Zn+d+1 → Zn

and Φai(D) : Zn+d+1 → Zn the induced homomorphisms with representation matrices Adi(D)
and Aai(D) respectively, i = 1, 2. We call a vector u ∈ Zn+d+1 with Ad1(D)u = 0 (resp.
Ad2(D)u = 0) a kernel solution for the definite region choice matrix of the single (resp.
double) counting rule, similarly to that defined to knot projections in [1]. We call a vector
u ∈ Zn+d+1 with Aa1(D)u = 0 (resp. Aa2(D)u = 0) a kernel solution for the alternating
region choice matrix of the single (resp. double) counting rule, similarly to that defined to
knot diagrams in [5].

Lemma 5.1. On any link diagram with at least one crossing, an Alexander numbering
for an arbitrary orientation gives a kernel solution for an alternating region choice matrix
of the double counting rule.



Integral Region Choice Problems 843

Proof. On the given oriented link diagram D, we fix an Alexander numbering for it. We
take an arbitrary crossing x of D. We may assume that x lies as �

��� or �
��� in D. We suppose

that the index of the right region of x is p ∈ Z. Then the index of the left region of x is p+ 2
and the rest regions touching x are p + 1. We have p − (p + 1) + (p + 2) − (p − 1) = 0 and
−p + (p + 1) − (p + 2) + (p − 1) = 0. Then the alternating region choice obtained from the
Alexander numbering does not change the scores of the crossings. �

Let D be an oriented link diagram with ordered link components, and Di be a sub-diagram
of D representing i-th link component, i = 1, · · · , l. We fix a sub-diagram Di. We ignore the
diagrams of link components other Di, and take an Alexander numbering. Each region R of
the diagram D is a subset of one region S of the diagram Di. Let aS be the integer assigned to
S by this Alexander numbering. We assign the integer aS to the region R and denote it by uR.
We call this assignment of the integers to the region {uR}R a componentwise Alexander num-
bering associated with Di. Fig.5 gives an example of a pair of componentwise Alexander
numberings on a 2-component link diagram.

Fig.5. Componentwise Alexander numberings.

Lemma 5.2. On any oriented link diagram with at least one crossing, each componen-
twise Alexander numbering gives a kernel solution for an alternating region choice matrix
of the double counting rule.

Proof. Let D be an oriented link diagram with at least one crossing and ordered link
components, and Di be a sub-diagram of D representing i-th link component, i = 1, · · · , l.
We fix a sub-diagram Di. We take a componentwise Alexander numbering associated with
Di. Let q be a crossing of D and we denote the four corners touching q by C1

q,C
2
q,C

3
q,C

4
q

clockwise, and the regions on D including C j
q by Rj

q, j = 1, 2, 3, 4. If q is a crossing of Di, the
regions R1

q,R
2
q,R

3
q,R

4
q are assigned integers r1, r2, r3, r4 with r1 − r2 + r3 − r4 = 0 by Lemma

5.1. If q is a crossing of an arc of Di and an arc of other components, we may assume that
R1

q and R2
q are subsets of a region S of the diagram Di, and that R3

q and R4
q are subsets of a

region S′ of the diagram Di. Then the regions R1
q,R

2
q,R

3
q,R

4
q are assigned integers r1, r1, r3, r3

with r1 − r3 = ±1, and we have r1 − r1 + r3 − r3 = 0. If q is a crossing not included in Di,
the regions R1

q,R
2
q,R

3
q,R

4
q are subsets of a region of the diagram Di. Then they are assigned

same integer r1, and we have r1 − r1 + r1 − r1 = 0.
Therefore the componentwise Alexander numbering associated with Di becomes a kernel

solution for the alternating integral region choice problem of double counting rule. �
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We can obtain kernel solutions for the definite region choice matrix from kernel solutions
for the alternating region choice matrix and a fixed checkerboard coloring.

Lemma 5.3. For a given link diagram, we fix a checkerboard coloring. We take a kernel
solution for an alternating region choice matrix of the double counting rule. For each region
R, let cR and uR be the integers assigned by the checkerboard coloring and the kernel solution
respectively. Assigning the integer (−1)cRuR to each region R, we obtain a kernel solution
for a definite region choice matrix of the double counting rule.

Proof. For a crossing x of the diagram, We denote the four corners touching x by
C1,C2,C3,C4 clockwise, and the regions including C j by Rj, j = 1, 2, 3, 4. Then we have
±(uR1 − uR2 + uR3 − uR4 ) = 0. We may assume cR1 = 0. Then the equalities cR2 = 1, cR3 =

0, cR4 = 1 hold. Hence we have

(−1)cR1 uR1 + (−1)cR2 uR2 + (−1)cR3 uR3 + (−1)cR4 uR4

= uR1 − uR2 + uR3 − uR4

= 0.

�

Lemma 5.4. For a given link diagram, we fix a checkerboard coloring. We take a kernel
solution for an alternating region choice matrix of the single counting rule. For each region
R, let cR and uR be the integers assigned by the checkerboard coloring and the kernel solution
respectively. Assigning the integer (−1)cRuR to each region R, we obtain a kernel solution
for a definite region choice matrix of the single counting rule.

Proof. For a crossing x of the diagram, We denote the four corners touching x by
C1,C2,C3,C4 clockwise, and the regions including C j by Rj, j = 1, 2, 3, 4. We may as-
sume cR1 = 0. Then the equalitiess cR2 = 1, cR3 = 0, cR4 = 1 hold.

If x is not reducible, then Rj’s are different each other and we have ±(uR1−uR2+uR3−uR4 ) =
0. Hence we have

(−1)cR1 uR1 + (−1)cR2 uR2 + (−1)cR3 uR3 + (−1)cR4 uR4

= uR1 − uR2 + uR3 − uR4

= 0.

We suppose that x is reducible. Then there exists just one pair of Rj’s coinciding each
other. If R1 coincides with R3, the equality ±(uR1 − uR2 − uR4 ) = 0 holds. Hence we have

(−1)cR1 uR1 + (−1)cR2 uR2 + (−1)cR4 uR4 = uR1 − uR2 − uR4 = 0.

Otherwise, R2 coincides with R4 and we have ±(uR1 − uR2 + uR3 ) = 0. Hence we have

(−1)cR1 uR1 + (−1)cR2 uR2 + (−1)cR3 uR3 = uR1 − uR2 + uR3 = 0.

�

Similarly, we can obtain kernel solutions for the alternating region choice matrix from
kernel solutions for the definite region choice matrix and a fixed checkerboard coloring.
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Lemma 5.5. For a given link diagram, we fix a checkerboard coloring. We take a kernel
solution for a definite region choice matrix of the double (resp. single) counting rule. For
each region R, let cR and uR be the integers assigned by the checkerboard coloring and the
kernel solution respectively. Assigning the integer (−1)cRuR to each region R, we obtain a
kernel solution for an alternating region choice matrix of the double (resp. single) counting
rule.

6. Solutions of the alternating integral region choice problem on knot diagrams

6. Solutions of the alternating integral region choice problem on knot diagrams
In this section, we give an alternative proof of Theorem 4.1.
First, we observe the alternating integral region choice problem of the double counting

rule.

Lemma 6.1. Let D be a link diagram with n crossings, n ≥ 1. We fix an arc γ in the link
diagram D, and let R and R′ be two regions which are the both sides of the arc γ. Then there
exists a kernel solution u for Aa2(D) such that the components of u corresponding to R and
R′ are 0 and 1 respectively.

Proof. We orient the given diagram D arbitrarily. We take the Alexander numbering u
for the oriented link diagram D, such that the region R is assigned 0. Then the index of the
region R′ is 1 or −1. By Lemma 5.1, this assignment u gives a kernel solution for Aa2(D). If
R′ is assigned −1, we multiply all components of the kernel solution u by −1. �

Alternative proof of Lemma 6.1. We orient the given diagram D arbitrarily. Let Dγ
be a sub-diagram of D including the arc γ and representing a link component. We take
the componentwise Alexander numbering associated with Dγ, uγ, such that the region R is
assigned 0. Then the index of the region R′ is 1 or −1. By Lemma 5.2, this assignment uγ
gives a kernel solution for Aa2(D). If R′ is assigned −1, we multiply all components of the
kernel solution uγ by −1. �

Fig.6. A kernel solution for an alternating region choice matrix.

Fig.6 gives an example of a link diagram with a kernel solution for an alternating region
choice matrix such that two regions adjacent to the arc γ are assigned 0 and 1. This kernel
solution is obtained from an Alexander numbering. The componentwise Alexander number-
ing illustrated on the left of Fig.5 also gives a kernel solution such that two regions adjacent
to the arc γ are assigned 0 and 1.
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Remark 6.2. In [5], Harada proved Lemma 6.1 for a knot diagram, showing that Reide-
meister moves and crossing changes preserve the existence of the kernel solution, and that
the knot diagram with only one crossing has a kernel solution. His argument is similar to
that due to Ahara and Suzuki [1] for Lemma 7.1.

The following theorem also has been proved by Harada [5] for a knot diagram using
Lemma 6.1. We give a proof using Lemma 5.2 instead.

Theorem 6.3. Let D be a link diagram with d connected components and n crossings,
n ≥ 1. We suppose that there exists a crossing x of D of arcs in same link component. Then
there exist vx ∈ Zn+d+1 such that any components of Aa2(D)vx are 0 but the component of
Aa2(D)vx to x is 1.

Fig.7. Finding vx such that any components of Aa2(D)vx are 0 but the com-
ponent of Aa2(D)vx to x is 1.

Proof. The argument is similar to that for knot diagrams due to Harada [5]. We orient D
arbitrarily. We splice D at x. On Fig.7, this splicing is illustrated as the transformation from
top left to bottom left. The sub-diagram D0

x of the link component including x splits to the
diagrams of two link components D1

x and D2
x. We note D1

x and D2
x may intersects each other

as link projections. Let γi be an oriented arc in Di
x appearing after the splice at x for each

i = 1, 2. We may assume that γ1 lies on the left of γ2. For the diagram (D \ D0
x) ∪ D1

x ∪ D2
x,

we take the componentwise Alexander numbering associated with D1
x such that the right

and left regions of γ1 are assigned 0 and 1 respectively. We denote this assignment of the
indexes by u′. On Fig.7, u′ is illustrated on bottom right. By Lemma 5.2, u′ gives a kernel
solution of Aa2((D \ D0

x) ∪ D1
x ∪ D2

x) if the spliced diagram has at least one crossing. We
unsplice (D \ D0

x) ∪ D1
x ∪ D2

x to D at x. Let ε = 1 if x is a positive crossing, otherwise
ε = −1. We assign the same integers to all regions of D as the components of εu′, where
the integer assigned to the region between γ1 and γ2 is assigned to the two regions splitting
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at x. On Fig.7, this unsplicing is illustrated as the transformation from bottom right to top
right, where the crossing x is negative and we have ε = −1. Then we obtain the desired
vx ∈ Zn+d+1. �

Theorem 6.3 implies Theorem 4.1 (2), that is the existence of a solution of an alternating
integral region choice problem of the double counting rule for a knot diagram, by the same
argument as that due to Harada [5].

Proof of Theorem 4.1 (2). Applying Theorem 6.3 for each crossing xi, there exist vi ∈
Z

n+d+1 such that any components of Aa2(D)vi are 0 but the i-th component of Aa2(D)vi is 1,

i = 1, 2, · · · , n. Let ci be the i-th component of c. If we take u = −
n∑

i=1

civi, then we have

Aa2(D)u + c = 0. �

Next, we observe the alternating integral region choice problem of the single counting
rule. The following lemma has been proved by Harada [5] for knot diagrams.

Lemma 6.4. Let D be a link diagram with n crossings, n ≥ 1. We fix an arc γ in the link
diagram D, and let R and R′ be two regions which are the both sides of the arc γ. We take
two arbitrary integers a and b. Then there exists a kernel solution u for Aa1(D) such that the
components of u corresponding to R and R′ are a and b respectively.

Proof. The argument is the same as that for knot diagrams due to Harada [5]. His argu-
ment is similar to that due to Ahara and Suzuki [1] for Lemma 7.4.

We use an induction on the number of reducible crossings.
If the given link diagram D is irreducible, the matrices Aa1(D) and Aa2(D) coincide. We

apply Lemma 6.1 to the pairs R,R′ and R′,R in order to a kernel solutions u′ and u′′ re-
spectively. Then the components of u′ corresponding to R and R′ are 0 and 1 respectively,
and the components of u′′ corresponding to R and R′ are 1 and 0 respectively. Therefore
u = au′′ + bu′ is the desired kernel solution for Aa1(D) on the irreducible diagram D.

Fig.8. Splicing at y and obtaining a kernel solution.

We assume that there exists a desired kernel solution if the number of reducible crossings
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is less than k. We suppose that the link diagram D has k reducible crossings. We take a
reducible crossing y, and orient D arbitrarily. We splice D at y. The diagram D splits to the
disjoint link diagrams D1

y and D2
y. Each of them has less reducible crossings than k. We may

assume that the given arc γ lies on D1
y. On Fig.8, we obtain the middle diagram splicing the

reducible crossing y of the left diagram, where we omit over/under information for y and the
orientation of D. Let γi be an arc in Di

y appearing after the splice at y for each i = 1, 2. We
denote the region between the arcs γ1 and γ2 by R0

y, and another region adjacent to γ j by Rj
y,

j = 1, 2. We ignore D2
y. If D1

y has no crossing, we assign a and b to the regions including
R and R′ respectively, and 0 to other regions of D1

y where we may assign arbitrary integers.
If D1

y has at least one crossing, we apply the assumption of induction to D1
y and γ. Then

we obtain a kernel solution for Aa1(D1
y) whose components corresponding to the regions

including R and R′ are a and b respectively. Let c ∈ Z assigned to R1
y and d ∈ Z to the region

of D1
y including R0

y. On the middle of Fig.8, we write c and d, though we omit γi and Rj
y.

We assign the integer −c + d to the region R2
y on D1

y ∪ D2
y as the middle of Fig.8. We ignore

D1
y. If the diagram D2

y has no crossing, we assign 0 to the regions of D2
y including neither

R0
y nor R2

y, though we may assign arbitrary integers. Otherwise we apply the assumption of
the induction to D2

y and γ2, then we obtain a kernel solution for Aa1(D2
y) whose components

corresponding to R2
y and the region including R0

y are −c + d and d respectively. Let R̃ be a
region of the diagram D1

y ∪ D2
y. If R̃ is R0

y, we assign d to R̃ = R0
y. Otherwise R̃ coincides

with one of regions of D1
y or D2

y, then we assign to R̃ same integer as the region of D1
y or D2

y.
Therefore we obtain a kernel solution u′ of Aa1(D1

y ∪ D2
y). We unsplice D1

y ∪ D2
y at y. We

assign the same integer as either u′ to all regions of D, where the region touching y twice is
assigned d, as illustrated on the right of Fig.8. Then we obtain the desired kernel solution
for Aa1(D) since we have c − d + (−c + d) = 0. �

The following lemma also has been proved by Harada [5] for knot diagrams. He proved it
as a corollary to Lemma 6.4: the region R2

y in the proof of Lemma 6.4 is assigned −c+ d + ε
instead of −c + d, where ε = 1 if y is positive, otherwise ε = −1. We give an alternative
proof.

Lemma 6.5. Let D be a link diagram with d connected components and n crossings,
n ≥ 1. We suppose that there exists a reducible crossing y of D. Then there exist vy ∈ Zn+d+1

such that any components of Aa1(D)vy are 0 but the component of Aa1(D)vy to y is 1.

Proof. We orient D arbitrarily. We splice D at the reducible crossing y. The diagram D
splits to the two disjoint link diagrams D1

y and D2
y. Let γi be an arc in Di

y appearing after
the splice at y for each i = 1, 2. We denote the region between the arcs γ1 and γ2 by R0

y,
and another region adjacent to γ j by Rj

y, j = 1, 2. We assign integers 0, 0, 1 to R0
y,R

1
y,R

2
y

respectively, as illustrated on the middle of Fig.9 or Fig.10. If D2
y has at least one crossing,

we apply Lemma 6.4 to D2
y and γ2, in order to obtain a kernel solution for Aa1(D2

y) such
that the region including R0

y is assigned 0 and R2
y is assigned 1. If D2

y has no crossing, we
assign 0 to the regions of D2

y including neither R0
y nor R2

y, though we may assign arbitrary
integers. We assign 0 to all regions of D1

y: it gives the trivial kernel solution for Aa1(D1
y) if

D1
y has at least one crossing. Each of the other regions of D1

y ∪D2
y than R0

y,R
1
y,R

2
y is a region

of D1
y or D2

y, then it has been assigned an integer. Therefore we obtain a kernel solution
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Fig.9. Obtaining vy for the reducible and positive crossing y.

Fig.10. Obtaining vy for the reducible and negative crossing y.

u′ for Aa1(D1
y ∪ D2

y) such that the components of u′ corresponding to R0
y,R

1
y,R

2
y are 0, 0, 1

respectively. Let ε = 1 if y is a positive crossing, otherwise ε = −1. We unsplice at y and
assign the same integers to all regions of D as εu′, where the region touching y twice is
assigned 0. On the right of Fig.9, the crossing y is positive and regions of D are assigned
the components of u′. On the right of Fig.10, the crossing y is negative and regions of D are
assigned the components of −u′. Then we obtain the desired vy ∈ Zn+d+1. �

Combining Lemma 6.5 with Theorem 4.1 (2), we obtain the proof of Theorem 4.1 (1),
that is the existence of a solution of an alternating integral region choice problem of the
single counting rule for a knot diagram, by the same argument as that due to Harada [5].

Proof of Theorem 4.1 (1). If the given knot diagram D is irreducible, then we have
Aa1(D) = Aa2(D) and a solution of the double counting rule, which has been obtained, is
also a solution of the single counting rule.
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We suppose that the knot diagram D has at least one reducible crossing. For a region Rj,
let  j be the set of reducible crossings touched by Rj twice, j = 1, · · · , n+2. A set  j might
be empty. Applying Lemma 6.5 for each reducible crossing y ∈  j, we obtain vy ∈ Zn+2

such that any components of Aa1(D)vy are 0 but the component of Aa1(D)vy to y is 1. We
take r j ∈ Zn+2 such that any components of r j are 0 but the j-th component is 1. Choosing
Rj once corresponds with r j. By the definitions of the alternating region choice matrices,
we have

Aa2(D)r j − Aa1(D)r j =
∑
y∈ j

Aa1(D)vy.

Applying Theorem 4.1 (2), which has been proved, we obtain a solution of double count-
ing rule, w ∈ Zn+2 with Aa2(D)w+c = 0. Let w j be the j-th component of w, j = 1, · · · , n+2.
We note w =

∑
j

w jr j. We take u = w +
∑

j

w j

∑
y∈ j

vy. Then we have

Aa1(D)u = Aa1(D)w +
∑

j

w j

∑
y∈ j

Aa1(D)vy

=
∑

j

w j

⎛⎜⎜⎜⎜⎜⎜⎜⎝Aa1(D)r j +
∑
y∈ j

Aa1(D)vy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

∑
j

w jAa2(D)r j

= Aa2(D)w
= −c.

Therefore we have Aa1(D)u + c = 0. �

Remark 6.6. In Section 9, we prove that the first and second results of Theorem 4.1 are
equivalent.

The proof of Lemma 6.5 for knot diagrams due to Harada [5] implies the following fact.
We give an alternative proof.

Lemma 6.7. Let D be a link diagram with d connected components and n crossings,
n ≥ 1. We suppose that there exists a reducible crossing y of D. We fix an arc γ in the link
diagram D, and let R and R′ be two regions which are the both sides of the arc γ. We take
two arbitrary integers a and b. Then there exist vy ∈ Zn+d+1 such that any components of
Aa1(D)vy are 0 but the component of Aa1(D)vy to y is 1, and such that the components of vy
corresponding to R and R′ are a and b respectively.

Proof. Applying Lemma 6.5, we obtain v′y ∈ Zn+d+1 such that any components of
Aa1(D)v′y are 0 but the component of Aa1(D)v′y to y is 1. We denote the components of
v′y corresponding to R and R′ by a′ and b′ respectively. Applying Lemma 6.4, there exists
a kernel solution u for Aa1(D) such that the components of u corresponding to R and R′ are
a − a′ and b − b′ respectively. Let vy = u + v′y. Then we obtain the desired vy. �

We note that we use Lemma 6.5 but does not use Lemma 6.7 to prove Theorem 4.1 (1) in
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this article.

Remark 6.8. In [10], Shimizu took checkerboard colorings to show that a region crossing
change is an unknotting operation on a knot diagram. In the above argument for Theorem
4.1, we take Alexander numberings instead of checkerboard colorings. Then an extension
of her argument is given.

7. Solutions of the definite integral region choice problem on knot diagrams

7. Solutions of the definite integral region choice problem on knot diagrams
In this section, we give an alternative proof of Theorem 3.1.
First, we observe the definite integral region choice problem of the double counting rule.

Lemma 7.1. Let D be a link diagram or projection with n crossings, n ≥ 1. We fix an arc
γ in the link diagram D, and let R and R′ be two regions which are the both sides of the arc γ.
Then there exists a kernel solution for Ad2(D) such that the components of u corresponding
to R and R′ are 0 and 1 respectively.

Proof. If D is a link projection, we arbitrarily add over/under information to crossings.
Then we may assume that D is a link diagram. By Lemma 6.1, there exists a kernel solution ũ
for Aa2(D) such that the components of ũ corresponding to R and R′ are 0 and 1 respectively.
We fix a checkerboard coloring such that the region R′ is assigned 0. Applying Lemma 5.3
to ũ, we obtain a kernel solution u for Ad2(D) such that the components of u corresponding
to R and R′ are 0 and 1 respectively. �

Fig.11 gives an example of a link diagram with a kernel solution for a definite region
choice matrix such that two regions adjacent to the arc γ are assigned 0 and 1. This kernel
solution is obtained from Fig.6 applying Lemma 5.3.

Fig.11. A kernel solution for a definite region choice matrix.

Remark 7.2. In [1], Ahara and Suzuki proved Lemma 7.1 for a knot diagram, showing
that Reidemeister moves preserve the existence of the kernel solution, and that the knot
diagram with only one crossing has a kernel solution.

The following theorem also has been proved by Ahara and Suzuki [1] for a knot diagram
splicing at the given crossing and applying Lemma 7.1. We give an alternative proof below.
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Theorem 7.3. Let D be a link diagram or projection with d connected components and
n crossings, n ≥ 1. We suppose that there exists a crossing x of D of arcs in same link
component. Then there exist vx ∈ Zn+d+1 such that any components of Ad2(D)vx are 0 but
the component of Ad2(D)vx to x is 1.

Proof. If D is a link projection, we arbitrarily add over/under information to crossings.
Then we may assume that D is a link diagram. By Theorem 6.3, there exist wx ∈ Zn+d+1

such that any components of Aa2(D)wx are 0 but the component of Aa2(D)wx to x is 1. For
each region R, let wR be the component of wx to R. We denote the four corners touching x
by C1,C2,C3,C4 clockwise, and the regions including C j by Rj, j = 1, 2, 3, 4. Then we have
wR1−wR2+wR3−wR4 = 1. We fix the checkerboard coloring such that the region R1 is assigned
0. For each region R, let cR be the integer assigned by this checkerboard coloring. Let vx be
the vector in Zn+d+1 such that the component to R is (−1)cRwR. By similar argument to the
proof of Lemma 5.3, it is shown that any components of Ad2(D)vx are 0 but the component
of Ad2(D)vx to x is 1. Fig.12 gives an example of the above process from wx to vx, where
wx is a solution illustrated on top right of Fig.7. �

Fig. 12. Finding vx such that any components of Ad2(D)vx are 0 but the
component of Ad2(D)vx to x is 1.

In the above proof, we do not use Lemma 7.1 immediately.
Theorem 7.3 implies Theorem 3.1 (2), that is the existence of a solution of a definite

integral region choice problem of the double counting rule for a knot diagram, by the same
argument as that due to Ahara and Suzuki [1].

Proof of Theorem 3.1 (2). Applying Theorem 7.3 for each crossing xi, there exist vi ∈
Z

n+d+1 such that any components of Ad2(D)vi are 0 but the i-th component of Aa2(D)vi is 1,

i = 1, 2, · · · , n. Let ci be the i-th component of c. If we take u = −
n∑

i=1

civi, then we have

Ad2(D)u + c = 0. �

Next, we observe the definite integral region choice problem of the single counting rule.
The following lemma has been proved by Ahara and Suzuki [1] for knot diagrams. We give
an alternative proof.

Lemma 7.4. Let D be a link diagram or projection with n crossings, n ≥ 1. We fix an arc
γ in the link diagram D, and let R and R′ be two regions which are the both sides of the arc
γ. We take two arbitrary integers a and b. Then there exists a kernel solution u for Ad1(D)
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such that the components of u corresponding to R and R′ are a and b respectively.

Proof. If D is a link projection, we arbitrarily add over/under information to crossings.
Then we may assume that D is a link diagram. We fix a checkerboard coloring of D. Let cR

and cR′ be the assigned integers to R and R′ respectively by the fixed checkerboard coloring.
By Lemma 6.4, there exists a kernel solution w for Aa1(D) such that the components of w
corresponding to R and R′ are (−1)cRa and (−1)cR′b respectively. We apply Lemma 5.4 to w.
Then we obtain a kernel solution u for Ad1(D) such that the components of u corresponding
to R and R′ are a and b respectively. �

The following lemma also has been proved by Ahara and Suzuki [1] for knot diagrams.
They proved it as a corollary to Lemma 7.4. We give an alternative proof.

Lemma 7.5. Let D be a link diagram or projection with d connected components and n
crossings, n ≥ 1. We suppose that there exists a reducible crossing y of D. Then there exist
vy ∈ Zn+d+1 such that any components of Ad1(D)vy are 0 but the component of Ad1(D)vy to
y is 1.

Proof. If D is a link projection, we arbitrarily add over/under information to crossings.
Then we may assume that D is a link diagram. By Lemma 6.5, there exist wy ∈ Zn+d+1 such
that any components of Aa1(D)wy are 0 but the component of Aa1(D)wy to y is 1. For each
region R, let wR be the component of wy to R. We denote the four corners touching x by
C1,C2,C3,C4 clockwise, and the regions including C j by Rj, j = 1, 2, 3, 4. We may assume
that R3 coincides with R1. Then we have wR1 − wR2 − wR4 = ±1. If wR1 − wR2 − wR4 = 1,
that is the crossing y is negative, we fix the checkerboard coloring such that the region R1 is
assigned 0 . Otherwise, we fix the checkerboard coloring such that the region R1 is assigned
1 . For each region R, let cR be the integer assigned by the fixed checkerboard coloring. Let
vy be the vector in Zn+d+1 such that the component to R is (−1)cRwR. By similar argument
to the proof of Lemma 5.4, it is shown that any components of Ad1(D)vy are 0 but the
component of Ad1(D)vy to y is 1. �

Combining Lemma 7.5 with Theorem 3.1 (2), we obtain the proof of Theorem 3.1 (1),
that is the existence of a solution of a definite integral region choice problem of the single
counting rule for a knot diagram, by the same argument as that due to Ahara and Suzuki [1].

Proof of Theorem 3.1 (1). If the given knot diagram or projection D is irreducible, then we
have Ad1(D) = Ad2(D) and a solution of the double counting rule, which has been obtained,
is also a solution of the single counting rule.

We suppose that the knot diagram or projection D has at least one reducible crossing. For
a region Rj, let  j be the set of reducible crossings touched by Rj twice, j = 1, · · · , n+ 2. A
set  j might be empty. Applying Lemma 7.5 for each reducible crossing y ∈  j, we obtain
vy ∈ Zn+2 such that any components of Ad1(D)vy are 0 but the component of Ad1(D)vy to
y is 1. We take r j ∈ Zn+2 such that any components of r j are 0 but the j-th component is
1. Choosing Rj once corresponds with r j. By the definitions of the definite region choice
matrices, we have

Ad2(D)r j − Ad1(D)r j =
∑
y∈ j

Ad1(D)vy.
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Applying Theorem 3.1 (2), which has been proved, we obtain a solution of double count-
ing rule, w ∈ Zn+2 with Ad2(D)w+c = 0. Let w j be the j-th component of w, j = 1, · · · , n+2.
We note w =

∑
j

w jr j. We take u = w +
∑

j

w j

∑
y∈ j

vy. Then we have

Ad1(D)u = Ad1(D)w +
∑

j

w j

∑
y∈ j

Ad1(D)vy

=
∑

j

w j

⎛⎜⎜⎜⎜⎜⎜⎜⎝Ad1(D)r j +
∑
y∈ j

Ad1(D)vy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

∑
j

w jAd2(D)r j

= Ad2(D)w
= −c.

Therefore we have Ad1(D)u + c = 0. �

Remark 7.6. In Section 9, we prove that the first and second results of Theorem 3.1 are
equivalent.

The proof of Lemma 7.5 for knot diagrams due to Ahara and Suzuki [1] implies the
following fact. We give an alternative proof.

Lemma 7.7. Let D be a link diagram or projection with d connected components and n
crossings, n ≥ 1. We suppose that there exists a reducible crossing y of D. We fix an arc γ in
the link diagram D, and let R and R′ be two regions which are the both sides of the arc γ. We
take two arbitrary integers a and b. Then there exist vy ∈ Zn+d+1 such that any components
of Ad1(D)vy are 0 but the component of Ad1(D)vy to y is 1, and such that the components of
vy corresponding to R and R′ are a and b respectively.

Proof. Applying Lemma 7.5, we obtain v′y ∈ Zn+d+1 such that any components of Ad1(D)v′y
are 0 but the component of Ad1(D)v′y to y is 1. We denote the components of v′y correspond-
ing to R and R′ by a′ and b′ respectively. Applying Lemma 7.4, there exists a kernel solution
u for Ad1(D) such that the components of u corresponding to R and R′ are a − a′ and b − b′

respectively. Let vy = u + v′y. Then we obtain the desired vy. �

We note that we use Lemma 7.5 but does not use Lemma 7.7 to prove Theorem 3.1 (1) in
this article.

8. Region choice matrices of the double counting rule

8. Region choice matrices of the double counting rule
From now on, we change link projections to link diagrams adding over/under information

to crossings arbitrarily.
Applying the arguments in the original proofs of Theorem 3.1 and 4.1 in [1, 5] to link

diagrams, the ranks of the definite and alternating region choice matrices are determined. In
this section, we show that on the double counting rule.
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Theorem 8.1. Let D be a diagram of an l-component link. We assume that D has d
connected components and n crossings, n ≥ 1. Then each rank of the definite and alternating
region choice matrices of the double counting rule, Ad2(D) and Aa2(D), is n+d− l, and each
rank of the Z-submodules {u ∈ Zn+d+1 | Ad2(D)u = 0} and {u ∈ Zn+d+1 | Aa2(D)u = 0} is
l + 1.

If we transpose the incidence matrix induced by Cheng and Gao [4] and Hashizume [6], it
is same as the definite region choice matrix of the single counting rule up to permutations of
rows and columns. This transposed matrix also coincides with the alternating region choice
matrix of the single counting rule modulo 2 up to permutations of rows and columns. For
irreducible diagrams, Theorem 8.1 is an extension of their result on the rank of the incidence
matrices.

It is well known that we can make any link diagram into a diagram of a trivial link after
some crossing changes, and that some Reidemeister moves can transform any pair of non-
trivial diagrams of a trivial link each other. We prove Theorem 8.1 using a similar argument
to that in Appendix A of the article written by Ahara and Suzuki [1]. That means it is similar
to the proof of the invariance for the Alexander polynomial in [2].

Lemma 8.2. If we change a crossing of a link diagram admitting integral region choices,
the changed diagram also admit it, the definite region choice matrix of double counting rule
is preserved, and the row concerning this crossing is multiplied by −1 for the alternating
region choice matrix of the double counting rule.

Proof. It is cleared by the definitions of region choice matrices. �

Remark 8.3. In [5], Harada proved that crossings changes preserve kernel solutions for
alternating region choice matrices of the double counting rule on any knot diagrams. Lemma
8.2 implies that his claim holds on any link diagrams.

Lemma 8.4. A Reidemeister move I between link diagrams admitting integral region
choices preserves the rank of the Z-submodules of kernel solutions for definite and alternat-
ing region choice matrices of the double counting rule.

Fig.13. Reidemeister moves I among the diagrams D+, D, and D−.

Proof (cf. [1]). Let the middle of Fig.13 be an arc of a link diagram D admitting an
integral region choice, and we denote by D+ and D− the obtained diagrams from D by a
Reidemeister move I at the arc as illustrated on the right side and the left side of Fig.13
respectively. We may order the regions of D such that the upper and lower regions on the
middle of Fig.13 are ordered 1 and 2 respectively. We denote the definite and the alternating
region choice matrices of the double counting rule for D by

Ad2(D) =
(
ad bd Pd

)
, Aa2(D) =

(
aa ba Pa

)
.
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Inserting the row and the column corresponding to the added crossing and the added region
respectively, we obtain the matrices for D+ and D−,

Ad2(D+) = Ad2(D−) =
(
1 2 1 0
0 ad bd Pd

)
,

Aa2(D+) =
(
1 −2 1 0
0 aa ba Pa

)
, Aa2(D−) =

(−1 2 −1 0
0 aa ba Pa

)
.

Each of the matrices for D+ and D− has one more column than D, and the equalities
rankAd2(D±) = rankAd2(D) + 1 and rankAa2(D±) = rankAa2(D) + 1 hold. Then the Z-
submodules of the kernel solutions for these matrices have the same rank. �

Lemma 8.5. A Reidemeister move II between link diagrams admitting integral region
choices preserves the rank of the Z-submodules of kernel solutions for definite and alternat-
ing region choice matrices of the double counting rule.

Fig.14. A Reidemeister move II between the diagrams D and D′.

Proof (cf. [1]). Let the left side of Fig.14 be two arcs of a link diagram D admitting an
integral region choice, and we denote by D′ the obtained diagram from D by a Reidemeister
move II around the arcs as illustrated on the right side of Fig.14.

If the Reidemeister move II does not change the number of the connected components of
the diagram, and the regions appearing around the move are different each other, then we
may order the regions of D such that the bottom, middle and top regions of the left side of
Fig.14 are ordered 1, 2 and 3 respectively. We denote the definite and the alternating region
choice matrices of the double counting rule for D by

Ad2(D) =
(
ad bd cd Pd

)
, Aa2(D) =

(
aa ba ca Pa

)
.

Inserting the rows and the column corresponding to the added crossings and the added region
respectively, we obtain the matrices for D′,

Ad2(D′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 0 1 O
1 1 0 1 1
0 ad b′d b′′d cd Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where b′d + b′′d = bd, and

Aa2(D′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −1 1 0 −1 O
−1 1 0 −1 1
0 aa b′a b′′a ca Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where b′a + b′′a = ba. Each of the matrices for D′ has two more columns than D. Adding the
fourth column to the third column, and taking the first column off the second, third and fifth
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columns on Ad2(D′), we obtain the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 O
1 0 0 1 0
0 ad bd b′′d cd Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and the equality rankAd2(D′) = rankAd2(D) + 2. Adding the fourth column to the third
column, and the first column to the second and fifth columns, and taking the first column off
the third column on Aa2(D′), we obtain the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 O
−1 0 0 −1 0
0 aa ba b′′a ca Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and the equality rankAa2(D′) = rankAa2(D) + 2. Then the Z-submodules of the kernel
solutions for these matrices have the same rank.

If the Reidemeister move II does not change the number of the connected components
of the diagram, and the top and bottom regions coincide, then we may order the regions
of D such that the upper and middle regions of the left side of Fig.14 are ordered 1, and 2
respectively. We denote the definite and the alternating region choice matrices of the double
counting rule for D by

Ad2(D) =
(
ad bd Pd

)
, Aa2(D) =

(
aa ba Pa

)
.

Inserting the rows and the column corresponding to the added crossings and the added region
respectively, we obtain the matrices for D′,

Ad2(D′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 2 1 0 O
1 2 0 1
0 ad b′d b′′d Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where b′d + b′′d = bd, and

Aa2(D′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −2 1 0 O
−1 2 0 −1
0 aa b′a b′′a Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where b′a + b′′a = ba. Each of the matrices for D′ has two more columns than D. Adding the
fourth column to the third column, taking the first column off the third column, and taking
the first column multiplied by 2 off the second column on Ad2(D′), we obtain the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 O
1 0 0 1
0 ad bd b′′d Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and the equality rankAd2(D′) = rankAd2(D) + 2. Adding the fourth column to the third
column, the first column multiplied by 2 to the second column, and taking the first column
off the third column on Aa2(D′), we obtain the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 O
−1 0 0 −1
0 aa ba b′′a Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
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and the equality rankAa2(D′) = rankAa2(D) + 2. Then the Z-submodules of the kernel
solutions for these matrices have the same rank.

If the Reidemeister move II changes the number of the connected components of the
diagram, then we may order the regions of D such that the bottom, middle and top regions
of the left side of Fig.14 are ordered 1, 2 and 3 respectively. We denote the definite and the
alternating region choice matrices of the double counting rule for D by

Ad2(D) =
(
ad bd cd Pd

)
, Aa2(D) =

(
aa ba ca Pa

)
.

Inserting the rows and the column corresponding to the added crossings and the added region
respectively, we obtain the matrices for D′,

Ad2(D′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1 O
1 1 1 1
0 ad bd cd Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

Aa2(D′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −1 1 −1 O
−1 1 −1 1
0 aa ba ca Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Each of the matrices for D′ has one more column than D, and the equalities rankAd2(D′) =
rankAd2(D) + 1 and rankAa2(D′) = rankAa2(D) + 1 hold. Then the Z-submodules of the
kernel solutions for these matrices have the same rank. �

Lemma 8.6. A Reidemeister moves III between link diagrams admitting integral region
choices preserves the ranks of the Z-submodules of kernel solutions for definite and alter-
nating region choice matrices of the double counting rule.

Fig.15. A Reidemeister move III between the diagrams D∇ and DΔ.

Proof (cf. [1]). Let the left side of Fig.15 be a neighborhood of a triangle region on a link
diagram D∇ admitting an integral region choice, and we denote by DΔ the obtained diagram
from D∇ by a Reidemeister move III around the triangle region as illustrated on the right
side of Fig.15.

If regions appearing around the move are different each other, then we may order the
regions of D∇ such that the triangle region on Fig.15 is ordered 1 and that other six regions
around are ordered 2, 3, 4, 5, 6, 7 clockwise from top left. The definite and the alternating
region choice matrices of the double counting rule for D∇ are
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Ad2(D∇) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 1
1 0 1 1 1 0 0 O
1 0 0 0 1 1 1
0 ad bd cd dd ed fd Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Aa2(D∇) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 0 0 0 1
1 0 −1 1 −1 0 0 O
1 0 0 0 −1 1 −1
0 aa ba ca da ea fa Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the upper left crossing, the upper right crossing, and the lower crossing of the triangle
of D∇ are ordered 1,2, and 3. We order the crossings of DΔ such that the lower right crossing,
the lower left crossing, and the upper crossing are ordered 1,2, and 3, and that the others are
ordered as D∇. Then we obtain the matrices for DΔ,

Ad2(DΔ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 1 0
1 1 0 0 0 1 1 O
1 1 1 1 0 0 0
0 ad bd cd dd ed fd Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Aa2(DΔ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1 −1 1 0
1 −1 0 0 0 −1 1 O
1 −1 1 −1 0 0 0
0 aa ba ca da ea fa Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

After multiplying the top three rows on Ad2 (D∇) by −1 and multiplying the first column
by −1, if we add the first column to the j-th columns, j = 2, 3, · · · , 7, then we obtain
Ad2 (DΔ). The matrices Ad2(D∇) and Ad2(DΔ) have the same size and the same rank, then the
Z-submodules of the kernel solutions for the matrices have the same rank. Adding the first
column multiplied by (−1) j+1 to the j-th columns, j = 2, 3, · · · , 7, we obtain Aa2(DΔ) from
Aa2(D∇). The matrices Aa2(D∇) and Aa2(DΔ) have the same size and the same rank, then the
Z-submodules of the kernel solutions for these matrices have the same rank.

If the top left and top right regions of the left side of Fig.15 coincide on D∇, and if this and
the other regions appearing around the move are different each other, then we may order the
regions of D∇ such that the triangle region on Fig.15 is ordered 1 and that other five regions
around are ordered 2, 3, 4, 5, 6 clockwise from top left. The definite and the alternating
region choice matrices of the double counting rule for D∇ are

Ad2(D∇) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1
1 1 1 1 0 0 O
1 0 0 1 1 1
0 ad bd dd ed fd Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Aa2(D∇) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 0 0 1
1 1 −1 −1 0 0 O
1 0 0 −1 1 −1
0 aa ba da ea fa Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Then we obtain the matrices for DΔ,

Ad2(DΔ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 1 0
1 1 0 0 1 1 O
1 2 1 0 0 0
0 ad bd dd ed fd Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Aa2(DΔ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 −1 1 0
1 −1 0 0 −1 1 O
1 −2 1 0 0 0
0 aa ba da ea fa Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

After multiplying the top three rows on Ad2 (D∇) by −1 and multiplying the first column
by −1, if we add the first column to the j-th columns, j = 3, · · · , 6 and the first column
multiplied by 2 to the second column, then we obtain Ad2 (DΔ). The matrices Ad2(D∇) and
Ad2(DΔ) have the same size and the same rank, then the Z-submodules of the kernel solutions
for the matrices have the same rank. Adding the first column to the third, fourth, and sixth
columns, and taking the first column off the fifth column and the first column multiplied
by 2 off the second column, we obtain Aa2(DΔ) from Aa2(D∇). The matrices Aa2(D∇) and
Aa2(DΔ) have the same size and the same rank, then the Z-submodules of the kernel solutions
for these matrices have the same rank.

If the top left, top right, and the bottom middle regions of the left side of Fig.15 coincide
on D∇, then this and the other regions appearing around the move are different each other.
We may order the regions of D∇ such that the triangle region on Fig.15 is ordered 1 and that
other four regions around are ordered 2, 3, 4, 5 clockwise from top left. The definite and the
alternating region choice matrices of the double counting rule for D∇ are

Ad2(D∇) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1
1 1 1 1 0 O
1 1 0 1 1
0 ad bd dd fd Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Aa2(D∇) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 0 1
1 1 −1 −1 0 O
1 1 0 −1 −1
0 aa ba da fa Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we obtain the matrices for DΔ,

Ad2(DΔ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 1 0
1 2 0 0 1 O
1 2 1 0 0
0 ad bd dd fd Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Aa2(DΔ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 2 0 −1 0
1 −2 0 0 1 O
1 −2 1 0 0
0 aa ba da fa Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

After multiplying the top three rows on Ad2 (D∇) by −1 and multiplying the first column by
−1, if we add the first column to the third, fourth and fifth columns, and the first column
multiplied by 3 to the second column, then we obtain Ad2 (DΔ). The matrices Ad2(D∇) and
Ad2(DΔ) have the same size and the same rank, then the Z-submodules of the kernel solutions
for the matrices have the same rank. Adding the first column to the third, fourth, and fifth
columns, and taking the first column multiplied by 3 off the second columns, we obtain
Aa2(DΔ) from Aa2(D∇). The matrices Aa2(D∇) and Aa2(DΔ) have the same size and the same
rank, then the Z-submodules of the kernel solutions for these matrices have the same rank.

If the top left and top right regions of the left side of Fig.15 coincide on D∇, and if the
bottom left and bottom right regions also coincide on D∇, we may order the regions of D∇
such that the triangle region on Fig.15 is ordered 1 and that other four regions around are
ordered 2, 3, 4, 5 clockwise from top left. The definite and the alternating region choice
matrices of the double counting rule for D∇ are

Ad2(D∇) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0
1 1 1 1 0 O
1 0 0 2 1
0 ad bd dd ed Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Aa2(D∇) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 1 0
1 1 −1 −1 0 O
1 0 0 −2 1
0 aa ba da ea Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we obtain the matrices for DΔ,

Ad2(DΔ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 1
1 1 0 1 1 O
1 2 1 0 0
0 ad bd dd ed Pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Aa2(DΔ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 −1 1
1 −1 0 1 −1 O
1 −2 1 0 0
0 aa ba da ea Pa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

After multiplying the top three rows on Ad2 (D∇) by −1 and multiplying the first column by
−1, if we add the first column to the third and fifth columns, and the first column multiplied
by 2 to the second and fourth columns, then we obtain Ad2 (DΔ). The matrices Ad2(D∇)
and Ad2(DΔ) have the same size and the same rank, then the Z-submodules of the kernel
solutions for the matrices have the same rank. Adding the first column multiplied by −2,
1, 2 and −1 to the second, third, fourth, and fifth columns respectively, we obtain Aa2(DΔ)
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from Aa2(D∇). The matrices Aa2(D∇) and Aa2(DΔ) have the same size and the same rank,
then the Z-submodules of the kernel solutions for these matrices have the same rank.

The proof for the other cases are given by the similar arguments as above, or reduced to
the one of the above cases applying Lemma 8.2. �

Proof of Theorem 8.1. It is well known that we can make any link diagram into a diagram
of a trivial link after some crossing changes, and that some Reidemeister moves can trans-
form the non-trivial diagram of a trivial link to the split sum of the knot diagram with only
one crossing and the l − 1 copies of the trivial knot diagram, which is given in Example 4.6.
On this obtained diagram D0 with certain orders of crossings and regions, we obtain

Ad2(D0) =
(
2 1 1 0 0 0 . . . 0

)
,

and

Aa2(D0) =
(
−2ε ε ε 0 0 0 . . . 0

)
,

where ε = 1 if the crossing is positive, otherwise ε = −1, and the number of 0 appearing
on each matrix is l − 1. The both matrices have l + 2 columns. Their ranks are equal to
1 = 1+ l− l. Then the desired claim holds for D0. By Lemma 8.2, 8.4, 8.5, and 8.6, crossing
changes and Reidemeister moves preserve this claim. Then this theorem is proved. �

Remark 8.7. As commented in Remark 6.2 and 7.2, Ahara and Suzuki [1] and Harada [5]
showed that Reidemeister moves and crossing changes preserve the existence of the kernel
solution, and that the knot diagram with only one crossing has a kernel solution, to prove
Lemma 6.1 and 7.1 for a knot diagram. Their arguments are extended to that for the proof
of Theorem 8.1, though Harada did not describe how alternating region choice matrices are
affected.

9. Region choice matrices of the single counting rule

9. Region choice matrices of the single counting rule
Before determining the rank of region choice matrices of the single counting rule, we ob-

serve the images of the homomorphismsΦd1(D), Φd2(D), Φa1(D),Φa2(D) defined in Section
5. The arguments in the proofs of Theorem 3.1 (1) and 4.1 (1) given in Sections 7 and 6
imply the following result.

Lemma 9.1. Let D be a diagram of an l-component link. We assume that D has d con-
nected components and n crossings, n ≥ 1. We take c ∈ Zn.

(1) If there exists a solution w ∈ Zn+d+1 such that Ad2(D)w + c = 0, then there exists a
solution u ∈ Zn+d+1 such that Ad1(D)u + c = 0.

(2) If there exists a solution w ∈ Zn+d+1 such that Aa2(D)w + c = 0, then there exists a
solution u ∈ Zn+d+1 such that Aa1(D)u + c = 0.

By a similar argument, the converse of Lemma 9.1 is shown as follows.

Lemma 9.2. Let D be a diagram of an l-component link. We assume that D has d con-
nected components and n crossings x1, · · · , xn, n ≥ 1. Let R1, · · · ,Rn+d+1 be the regions of
D. We take c ∈ Zn.
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(1) If there exists a solution u ∈ Zn+d+1 such that Ad1(D)u + c = 0, then there exists a
solution w ∈ Zn+d+1 such that Ad2(D)w + c = 0.

(2) If there exists a solution u ∈ Zn+d+1 such that Aa1(D)u + c = 0, then there exists a
solution w ∈ Zn+d+1 such that Aa2(D)w + c = 0.

Proof. If the given diagram D is irreducible, then we have Ad1(D) = Ad2(D) and Aa1(D) =
Aa2(D).

We suppose that the diagram D has at least one reducible crossing. For a region Rj, let  j

be the set of reducible crossings touched by Rj twice, j = 1, · · · , n + d + 1. A set  j might
be empty. We take r j ∈ Zn+d+1 such that any components of r j are 0 but the j-th component
is 1. Choosing Rj once corresponds with r j.

(1) We suppose that Ad1(D)u+ c = 0. Let u j be the j-th component of u, j = 1, · · · , n+
d + 1. Applying Theorem 7.3 for each reducible crossing y ∈  j, we obtain v′y ∈
Z

n+d+1 such that any components of Ad2(D)v′y are 0 but the component of Ad2(D)v′y
to y is 1. By the definitions of the definite region choice matrices, we have

Ad2(D)r j − Ad1(D)r j =
∑
y∈ j

Ad2(D)v′y.

We note u =
∑

j

u jr j. We take w = u −
∑

j

u j

∑
y∈ j

v′y. Then we have

Ad2(D)w = Ad2(D)u −
∑

j

u j

∑
y∈ j

Ad2(D)v′y

=
∑

j

u j

⎛⎜⎜⎜⎜⎜⎜⎜⎝Ad2(D)r j −
∑
y∈ j

Ad2(D)v′y

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

∑
j

u jAd1(D)r j

= Ad1(D)u
= −c.

Therefore we have Ad2(D)w + c = 0.
(2) We suppose that Aa1(D)u+ c = 0. Let u j be the j-th component of u, j = 1, · · · , n+

d + 1. Applying Theorem 6.3 for each reducible crossing y ∈  j, we obtain v′y ∈
Z

n+d+1 such that any components of Aa2(D)v′y are 0 but the component of Aa2(D)v′y
to y is 1. By the definitions of the definite region choice matrices, we have

Aa2(D)r j − Aa1(D)r j =
∑
y∈ j

Aa2(D)v′y.

We note u =
∑

j

u jr j. We take w = u −
∑

j

u j

∑
y∈ j

v′y. Then we have

Aa2(D)w = Aa2(D)u −
∑

j

u j

∑
y∈ j

Aa2(D)v′y

=
∑

j

u j

⎛⎜⎜⎜⎜⎜⎜⎜⎝Aa2(D)r j −
∑
y∈ j

Aa2(D)v′y

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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=
∑

j

u jAa1(D)r j

= Aa1(D)u
= −c.

Therefore we have Aa2(D)w + c = 0.
�

By Lemmas 9.1 and 9.2, we obtain the following result.

Theorem 9.3. Let D be a link diagram. We assume that D has at least one crossing.

(1) The image of the homomorphism Φd1(D) coincides with the image of the homomor-
phism Φd2(D).

(2) The image of the homomorphism Φa1(D) coincides with the image of the homomor-
phism Φa2(D).

The above theorem implies that the existence of a solution of the single counting rule
coincides with that of the double counting rule for each of the both integral region choice
problem. Particularly, the first and second results of Theorem 3.1 are equivalent, and the
first and second results of Theorem 4.1 are equivalent.

By Theorems 8.1, 9.3, and the homomorphism theorem, we obtain the following theorem.

Theorem 9.4. Let D be a diagram of an l-component link. We assume that D has d
connected components and n crossings, n ≥ 1. Then each rank of the definite and alternating
region choice matrices of the single counting rule, Ad1(D) and Aa1(D), is n+ d − l, and each
rank of the Z-submodules {u ∈ Zn+d+1 | Ad1(D)u = 0} and {u ∈ Zn+d+1 | Aa1(D)u = 0} is
l + 1.

In [4], Chen and Gao determined the Z2-rank of the incidence matrix for connected link
diagrams. In [6], Hashizume generalized their result to disconnected diagrams and con-
nected diagrams, and determined the rank, which she called the Z2-dimension, of the Z2-
submodule of kernel solutions for the homomorphism induced from region crossing changes
on diagrams. The ranks obtained in Theorems 8.1 and 9.4 are the same values as their ranks.
If we transpose their incidence matrix, it coincides with the definite region choice matrix of
the single counting rule up to permutations of rows and columns. This transposed matrix
also coincides with the alternating region choice matrix of the single counting rule mod-
ulo 2 up to permutations of rows and columns. Hence Theorems 8.1 and 9.4 are integral
extensions of their results.

10. Standard kernel solutions of the double counting rule

10. Standard kernel solutions of the double counting rule
In [6, 7], Hashizume studied structures of the Z2-homomorphism induced by region cross-

ing changes on link diagrams. Particularly, she gave a basis of the kernel of the homo-
morphism on an irreducible link diagram. In this section, we observe the kernels of the
Z-homomorphisms Φa2 and Φd2 given in Section 5.

Lemma 10.1. On any link diagram with at least one crossing, assigning a same integer
to all regions gives a kernel solution for an alternating region choice matrix of the double
counting rule.
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Proof. Any crossing is touched by four corners of regions, and we have p− p+ p− p = 0
for any integer p. �

We denote by u∞ the kernel solution assigning 1 to all regions, as illustrated in Fig.16.

Fig.16. The kernel solution u∞.

Let D be an oriented link diagram with ordered link components, and Di be a sub-diagram
of D representing i-th link component, i = 1, · · · , l. If the oriented link diagram D is a
diagram on the plane R2, we may denote the unbounded region by R∞(D). If D is a diagram
on the sphere S2 = R2∪{∞}, we may denote the region including the infinite point by R∞(D).
For each sub-diagram Di, we denote by ui the kernel solution obtained by Lemma 5.2 from
a componentwise Alexander numbering associated with Di such that the region R∞(D) is
assigned 0. We shall call ui the standard kernel solution associated with Di. Fig.17, same as
Fig.5, gives examples of standard kernel solutions on the same link diagram as Fig.16 and

Fig.6. The kernel solution given by an Alexander numbering for D is equal to ru∞ +
l∑

i=1

ui

where the region R∞(D) is assigned the integer r in the Alexander numbering.

Fig.17. The standard kernel solutions u1 and u2.

Theorem 10.2. Let D be an oriented link diagram with l ordered link components and
at least one crossing, and R∞ = R∞(D) be the above region. The set of the above kernel
solutions u1, · · · , ul, and u∞ is a basis of the kernel of the homomorphism induced by the
alternating integral region choice problem of double counting rule.

Proof. For the linear independence of u1, · · · , ul, u∞, it is sufficient to prove that the
standard kernel solutions are linearly independent, since the region R∞ is assigned 1 by u∞
and 0 by ui, i = 1, · · · , l. We use an induction on l. If D is a knot diagram, the standard
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kernel solution associated with D has at least one component equal to 1 or −1. Then it
is linearly independent. We assume that l ≥ 2 and that the standard kernel solutions are
linearly independent on any oriented link diagram with less components than l. Let D be an
oriented link diagram with l components. We take a point p on ∂R∞(D) except crossings.

We may assume that p lies on l-th link component diagram Dl. We suppose
l∑

i=1

niui = 0,

ni ∈ Z. Let Rp be a region of D with p ∈ ∂Rp and Rp � R∞. The region Rp is assigned 1
or −1 by ul and 0 by each of the other standard kernel solutions. Then we have nl = 0 and
l−1∑
i=1

niui = 0. On the diagram obtained from D ignoring Dl, the standard kernel solutions

are linearly independent by the assumption of the induction. Then n1, · · · , nl−1 should be 0.
Hence the standard kernel solutions on D are linearly independent.

Let x be a kernel solution of the homomorphism Φa2(D). By Theorem 8.1, the rank of the
kernel of the homomorphism Φa2(D) is l + 1. Then x, u1, · · · , ul, u∞ are linearly dependent,

since u1, · · · , ul, u∞ are linearly independent. Hence x =
l∑

i=1

qiui + q∞u∞ holds for certain

rational numbers q1, · · · , ql, q∞. We show that q1, · · · , ql, q∞ are integers. The region R∞ is
assigned 1 by u∞ and 0 by ui, i = 1, · · · , l. Hence q∞ is an integer since the components of
x are integers. Then it is sufficient to show that q1, · · · , ql are integers if the all components

of
l∑

i=1

qiui are integers. We use an induction on l. If D is a knot diagram, the standard kernel

solution associated with D has at least one component equal to 1 or −1. Then q1 ∈ Z holds.
We assume that l ≥ 2 and that the desired claim holds for any oriented link diagram with
less components than l. Let D be an oriented link diagram with l components. The above
region Rp is assigned 1 or −1 by ul and 0 by each of the other standard kernel solutions.

Hence ql ∈ Z holds and all components of
l−1∑
i=1

qiui are integers. We apply the assumption of

the induction to the diagram obtained from D ignoring Dl. Then we have q1, · · · , ql−1 ∈ Z.
Therefore x is a linear combination of u1, · · · , ul, u∞ over Z. Then the set of the kernel

solutions u1, · · · , ul, and u∞ is a basis of the kernel of the homomorphism Φa2(D). �

For the above link diagram D, we fix a checkerboard coloring. We apply Lemma 5.3
to the above basis u1, · · · , ul, u∞. Then we obtain kernel solutions of the definite integral
region choice problem of double counting rule. We denote them by ū1, · · · , ūl, ū∞.

Theorem 10.3. Let D be an oriented link diagram with l ordered link components and
at least one crossing, and R∞ = R∞(D) be the above region. The set of the above kernel
solutions ū1, · · · , ūl, and ū∞ is a basis of the kernel of the homomorphism induced by the
definite integral region choice problem of double counting rule.

Proof. The linear independence of ū1, · · · , ūl, ū∞ is shown by the similar argument to that
for u1, · · · , ul, u∞ in the proof of Theorem 10.2. Let y be a kernel solution of the homomor-
phismΦd2(D). By Theorem 8.1, the rank of the kernel of the homomorphismΦd2(D) is l+1.
Then y, ū1, · · · , ūl, ū∞ are linearly dependent, since ū1, · · · , ūl, ū∞ are linearly independent.
By the similar argument to that for a kernel solution x of Φa2(D) in the proof of Theorem
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10.2, y is a linear combination of ū1, · · · , ūl, ū∞ over Z. Therefore the set of the kernel so-
lutions ū1, · · · , ūl, and ū∞ is a basis of the kernel of the homomorphism Φd2(D). �

Fig.18 gives an example of the basis obtained by Theorem 10.3.

Fig.18. The basis ū1, ū2, ū∞.

Theorems 10.2 and 10.3 are extensions of the result due to Hashizume [6] on a region
crossing change. Her basis of the kernel of Z2-homomorphism induced by region crossing
changes is the same as the basis given in Theorem 10.2 and the basis given in Theorem 10.3
modulo 2.

11. Images of homomorphisms induced by integral region choice problems

11. Images of homomorphisms induced by integral region choice problems
Let D be a link diagram with at least one crossing. For each i = 1, 2, the system of linear

equations Adi(D)u + c = 0 (resp. Aai(D)u + c = 0) is solvable if and only if c lies in the
image of the homomorphism Φdi(D) (resp. Φai(D)). In this section, we discuss about the
images of the homomorphisms induced by integral region choice problems.

By Theorems 3.1 and 4.1, the homomorphisms Φd1(D), Φd2(D), Φa1(D), Φa2(D) defined
in Section 5 are surjective if D is a knot diagram. Otherwise they are not surjective in general
by Theorems 8.1 and 9.4.

In [4], Cheng and Gao proved that a region crossing change on a 2-component link di-
agram is an unknotting operation if and only if the linking number is even, showing that
changing two crossings of different components on a 2-component link diagram is repre-
sented by certain region crossing changes.

For example, the canonical diagram of (2, 4)-torus link changes to a diagram of the trivial
link by one region choice. Otherwise there exists an equipment of integers to the crossings
on this diagram such that the definite and alternating integral region choice problem does
not have any solution. On the canonical diagram of (2, 4)-torus link with certain orders of
crossings and regions, the definite region choice matrix is

Ad =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0
0 1 1 1 1 0
0 1 1 0 1 1
1 1 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the alternating region choice matrix is
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Aa =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 −1 0 0
0 1 1 −1 −1 0
0 1 1 0 −1 −1
−1 1 1 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The system of linear equations Adu + c = 0 has a solution u ∈ Z6 if and only if c1 − c2 +

c3 − c4 = 0 holds where ci is the i-th component of c ∈ Z4. The system of linear equations
Aau + c = 0 is solvable if and only if c1 − c2 + c3 − c4 = 0 holds. Then in the case
(c1, c2, c3, c4) = (1, 0, 0,−1), any u ∈ Z6 does not hold Adu + c = 0 or Aau + c = 0, though
we have

Ad

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Z2

4,

Aa

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0
0
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Z2

4.

In [7], Hashizume gave a generating system of the image of the Z2-homomorphism in-
duced by region crossing changes on a link diagram. Their results include the following
results.

Lemma 11.1 ([4, 7]). Let D be a connected diagram of two-component link with n cross-
ings. We take two distinct crossings x, y of D of arcs in different link components. There
exist vxy ∈ Zn+2

2 such that any components of Ad1(D)vxy ∈ Z2
n are 0 but the components of

Ad1(D)vxy ∈ Z2
n to x and y are 1.

Theorem 11.2 ([7]). Let D be a connected diagram of two-component link with n cross-
ings. The image of the Z2-homomorphism induced by region crossing changes is generated
by the elements in Z2

n of the following two types:

(1) any components are 0 but the only one component corresponding to a crossing in
same link component is 1;

(2) any components are 0 but the only two components corresponding to two distinct
crossings of distinct link components are 1.

We note that a connected diagram of two-component link has at least two crossings be-
cause of the Jordan curve theorem.

We extend Lemma 11.1 to the alternating integral region choice problem as follows,
where we define εx = 1 for a positive crossing x and εx = −1 for a negative crossing
x.
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Lemma 11.3. Let D = D1 ∪ D2 be a connected diagram of two-component oriented
link with n crossings, where D1 and D2 are sub-diagram of D representing the first and
the second components respectively. We take two distinct crossings x, y of D1 and D2. We
suppose that D2 crosses D1 from the right to the left at x.

(1) If D2 crosses D1 from the left to the right at y, then there exist vxy ∈ Zn+2 such that
any components of Aa2(D)vxy ∈ Zn are 0 but the components of Aa2(D)vxy ∈ Zn to x
and y are εx and εy.

(2) If D2 crosses D1 from the right to the left at y, then there exist vxy ∈ Zn+2 such that
any components of Aa2(D)vxy ∈ Zn are 0 but the components of Aa2(D)vxy ∈ Zn to x
and y are εx and −εy.

Fig.19. Obtaining vxy in the two cases.

Proof. We splice at x. Let γ1 and γ2 be oriented arcs appearing after the splice at x on the
obtained diagram. We suppose that γ1 lies on the left of γ2. We splice at y. We obtain a new
diagram of a two-component link as illustrated on the middle of Fig.19, where the cases (1)
and (2) are described in the upper and lower rows respectively. We denote the sub-diagram
of the link component including the arc γi by Di

xy, i = 1, 2. For the diagram D1
xy ∪ D2

xy, we
take the componentwise Alexander numbering associated with D1

xy such that the right and
left regions of γ1 are assigned 0 and 1 respectively. We denote by a the integer assigned to
the right region of two oriented arcs which appear after the splice at y. In the case (1), D1

xy

includes the left of these two arcs, then the region between the arcs is assigned a, and the
left region is assigned a + 1. In the case (2), D1

xy includes the right of these two arcs, then
the both regions adjacent to the left arc are assigned a + 1. By Lemma 5.2, this numbering
gives a kernel solution for Aa2(D1

xy∪D2
xy) if D1

xy∪D2
xy has at least one crossing. We unsplice

D1
xy ∪ D2

xy at x and y. We assign the same integers to all regions of D as D1
xy ∪ D2

xy, where
the two regions splitting at x are assigned 0, and where the two regions splitting at y are
assigned a and a+ 1 in the case (1) and (2) respectively, as illustrated on the right of Fig.19.
Then the obtained assignment of integers to regions is the desired vxy ∈ Zn+2 in the both
cases. �
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By Lemmas 9.1 (2) and 11.3, we obtain the following result.

Corollary 11.4. Let D = D1 ∪ D2 be a connected diagram of two-component oriented
link with n crossings, where D1 and D2 are sub-diagram of D representing the first and
the second components respectively. We take two distinct crossings x, y of D1 and D2. We
suppose that D2 crosses D1 from the right to the left at x.

(1) If D2 crosses D1 from the left to the right at y, then there exist vxy ∈ Zn+2 such that
any components of Aa1(D)vxy ∈ Zn are 0 but the components of Aa1(D)vxy ∈ Zn to x
and y are εx and εy.

(2) If D2 crosses D1 from the right to the left at y, then there exist vxy ∈ Zn+2 such that
any components of Aa1(D)vxy ∈ Zn are 0 but the components of Aa1(D)vxy ∈ Zn to x
and y are εx and −εy.

We note that Lemma 11.1 is a modulo 2 reduction of Corollary 11.4.
To construct a generating system of the image of Φa2(D) for a connected diagram of a

2-component link D = D1 ∪ D2 extending Theorem 11.2, we do not need all pair of the
distinct crossings of D1 and D2, since we obtain the following result by easy calculation.

Corollary 11.5. Let D = D1 ∪ D2 be a connected diagram of two-component oriented
link with n crossings, where D1 and D2 are sub-diagram of D representing the first and the
second components respectively. We suppose that there exist three distinct crossings x, y, z
of D1 and D2, and that D2 crosses D1 from the right to the left at x. Let vxy, vxz ∈ Zn be
obtained by Lemma 11.3.

(1) If D2 crosses D1 from the left to the right at y and z, then any components of
Aa2(D)(vxy−vxz) are 0 but the components of Aa2(D)(vxy−vxz) to y and z are εy and
−εz respectively.

(2) If D2 crosses D1 from the left to the right at y and from the right to the left at z, then
any components of Aa2(D)(vxy − vxz) are 0 but the components of Aa2(D)(vxy − vxz)
to y and z are εy and εz respectively.

(3) If D2 crosses D1 from the right to the left at y and z, then any components of
Aa2(D)(vxz−vxy) are 0 but the components of Aa2(D)(vxz−vxy) to y and z are εy and
−εz respectively.

We note that the above vxy − vxz or vxz − vxy are not equal to vyz obtained in the proof of
Lemma 11.3 generally.

We obtain a basis of the image of the homomorphism of the alternating integral region
choice problem as belows.

Theorem 11.6. Let D = D1 ∪ D2 be a connected diagram of two-component oriented
link with n crossings x1, · · · , xn, where D1 and D2 are sub-diagram of D representing the
first and the second components respectively. We suppose that each of x1, · · · , xk (k < n) is a
crossing in D1 or a crossing in D2, xk+1, · · · , xn are crossings of D1 and D2, and D2 crosses
D1 from the right to the left at xn. We take e1, · · · , en−1 ∈ Zn as belows:

(1) for i = 1, · · · , k, let ei be the element of Zn such that the i-th component is 1 and the
others are 0;

(2) for i = k + 1, · · · , n − 1, let ei be the element of Zn such that the n-th component is
εxn and the i-th component is εxi (resp. −εxi ) if D2 crosses D1 at xi from the left to
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the right (resp. from the right to the left), and that the others are 0.

Then the set of e1, · · · , en−1 is a basis of the image of the homomorphism induced by the al-
ternating integral region choice problem. Therefore the systems of linear equations Aa1(D1∪
D2)u + c = 0 and Aa2(D1 ∪ D2)w + c = 0 have solutions u,w ∈ Zn+2 if and only if c ∈ Zn is
a linear combination of e1, · · · , en−1.

Proof. By Theorem 6.3 and Lemma 11.3, e1, · · · , en−1 are elements in the image of the
homomorphism Φa2(D1 ∪ D2). They are linearly independent by the construction. Let c be
an element of the image of the homomorphism Φa2(D1 ∪ D2). By Theorem 8.1, the rank of
the image of the homomorphism Φa2(D1 ∪ D2) is n + 1 − 2 = n − 1. Hence c, e1, · · · , en−1

are linearly dependent since e1, · · · , en−1 are linearly independent. By the construction of
e1, · · · , en−1, it is shown that c is a linear combination of e1, · · · , en−1 over Z. Then the set of
e1, · · · , en−1 is a basis of the image of the homomorphism Φa2(D1 ∪ D2).

By Theorem 9.3 (2), the image of the homomorphism Φa1(D1 ∪ D2) coincides with the
image of the homomorphism Φa2(D1 ∪ D2). �

We note that the modulo 2 reduction of Theorem 11.6 implies Theorem 11.2.
From the above basis, we obtain a basis of the image of the homomorphism of the definite

integral region choice problem as belows. Let D = D1 ∪D2 be a connected diagram of two-
component oriented link with n crossings x1, · · · , xn. Let R1, · · · ,Rn+2 be the regions of
D. We suppose that each of x1, · · · , xk (k < n) is a crossing in D1 or a crossing in D2,
xk+1, · · · , xn are crossings of D1 and D2, and D2 crosses D1 from the right to the left at
xn. For each of e1, · · · , en−1 obtained by Theorem 11.6, there exists a solution vi ∈ Zn+2 of
Aa2(D)vi = ei. We take the checkerboard coloring such that the left and right regions of both
oriented arcs crossing at xn are assigned 0 as ���� 00

1
1

or ����00
1
1

. For each i = 1, · · · , k, there exists
a solution v̄i ∈ Zn+2 of Ad2(D)v̄i = ei by Theorem 7.3. For each i = k + 1, · · · , n − 1, we
multiply the j-th component of vi by −1 if the region Rj is assigned the checkerboard index
1. We denote by v̄i the obtained element of Zn+2 from vi. Let ēi = Ad2(D)v̄i. Then the n-th
component of ēi becomes 1, the i-th component becomes 1 or −1, and the others are 0.

Theorem 11.7. The set of the above e1, · · · , ek, ēk+1, · · · , ēn−1 is a a basis of the image of
the homomorphism induced by the definite integral region choice problem on the connected
diagram of two-component link D = D1 ∪ D2. Therefore the systems of linear equations
Ad1(D1 ∪ D2)u + c = 0 and Ad2(D1 ∪ D2)w + c = 0 have solutions u,w ∈ Zn+2 if and only if
c ∈ Zn is a linear combination of e1, · · · , ek, ēk+1, · · · , ēn−1.

Proof. By the construction, e1, · · · , ek, ēk+1, · · · , ēn−1 are elements in the image of the ho-
momorphism Φd2(D1 ∪ D2) and linearly independent. Let c be an element of the image of
the homomorphism Φd2(D1 ∪ D2). By Theorem 8.1, the rank of the image of the homomor-
phism Φd2(D1 ∪ D2) is n + 1 − 2 = n − 1. Hence c, e1, · · · , ek, ēk+1, · · · , ēn−1 are linearly
dependent since e1, · · · , ek, ēk+1, · · · , ēn−1 are linearly independent. By the construction of
e1, · · · , ek, ēk+1, · · · , ēn−1, it is shown that c is a linear combination of e1, · · · , ek, ēk+1, · · · ,
ēn−1 over Z. Then the set of e1, · · · , ek, ēk+1, · · · , ēn−1 is a basis of the image of the homo-
morphism Φd2(D1 ∪ D2).

By Theorem 9.3 (1), the image of the homomorphism Φd1(D1 ∪ D2) coincides with the
image of the homomorphism Φd2(D1 ∪ D2). �
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Remark 11.8. In [7], Hashizume gave a generating system of the image of the Z2-
homomorphism induced by region crossing changes for a link diagram with arbitrary num-
ber of link components. Her generating system includes that in Theorem 11.2. For each of
the Z-homomorphisms induced by integral region choice problems on a link diagram with
arbitrary number of link components, we are finding a basis of the image.
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