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Abstract
We develop rigorously a geometric theory of third-order partial differential equations for a

scalar function. Under our framework, we can define a notion of nilpotent graded Lie algebras
as an invariant useful to study geometry of third-order equations. In terms of these graded Lie
algebras, we provide a classification for some classes of third-order equations under a con-
tact equivalence. By this classification, together with model equations, we also clarify several
aspects for each subcategory of equations.

1. Introduction

1. Introduction
Geometry of partial differential equations started from the classical theory by Monge,

Lie, Darboux, Goursat, E. Cartan and others (cf. [2], [3], [5], [7]). In a series of research,
they explored many techniques for the investigation into the geometric theory of differen-
tial equations. Notable topics include the reduction of the problem by some characteristic
systems (e.g. Cauchy, Monge characteristics) and the establishment the notion of involu-
tive systems. The former brought us the theory of quadrature via the reduction into lower
dimensional spaces. On the other hand, the latter indicated a criterion for the existence of
(local) solutions and the prolongation scheme by using the theory of (exterior) differential
systems. By the improvement of these approaches, for partial differential equations up to
second order, deep understanding have been obtained together with abundant examples. In
particular, geometry of second-order partial differential equations has provided the various
interesting subjects. Especially notable among them are applications to the study of surfaces
with various curvature conditions (cf. [5], [9]) and relationship to parabolic geometry (cf.
[17], [20]) modeled after the homogeneous space G/G′, where G is a simple Lie group and
G′ is a parabolic subgroup of G. Nowadays, these geometric theory of second-order partial
differential equations have been described by means of (exterior) differential systems (cf.
[1], [6], [9], [19], [21]).

As we mentioned above, the geometry of partial differential equations up to second or-
der gave substantial results rather than the formal theory. Succeeding to this tradition, in
the present paper, we provide a rigorous development of the geometric theory of third-order
partial differential equations for a scalar function. Roughly speaking, we formulate this
geometry as the theory of submanifolds R of the 3-jet space J3 together with an appropri-
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ate (tangential) filtration. This formulation enables us to clarify the notion of isomorphism
(contact-equivalence) for all third-order equations. By utilizing this filtration, we can de-
fine a nilpotent graded Lie algebra called the symbol algebra of the third-order equations
R ⊂ J3 at each point as a fundamental invariant. In general, this notion of the symbol alge-
bra clarify the analytic, algebraic and geometric aspects of differential equations, especially
the existence of (local) solutions of equations and their degree of freedom, symmetries (in-
finitesimal automorphisms), the geometric behavior of the corresponding distribution, etc.
Thus, we also study the structure of the symbol algebra in our situation.

Now let us proceed to describe the contents of each section. In section 2, we recall some
notions and terminologies which are necessary for the geometric study of partial differential
equations. Especially, we prepare basics of (linear) differential systems such as derived
systems, weak-derived systems, Cauchy characteristic systems, (tangential) filtrations, and
the symbol algebra s(x) at each point x on R associated with a filtration. In section 3, we
reconsider the 3-jet space J3 as the manifold equipped with the filtration defined by the
weak-derived systems ∂(k)C3 of the canonical contact system C3. Then the symbol algebra
m at each point on the 3-jet space J3 is isomorphic to the contact algebra c3. Moreover, we
also mention the graded Lie algebra automorphism group Aut(c3) of this contact algebra c3.
In section 4, we give the detailed formulation of a geometric theory of third-order partial
differential equations. Here, our framework can be applied to any third-order equations
for a scalar function with n independent variables. However, in this paper, we treat the
case of two independent variables to obtain more concrete and essential results. Hence,
the above discussion for the 3-jet space J3 is also given in the case of two independent
and one dependent variables. Then, we provide the rigorous formulation of geometry of
third-order equations as the theory of submanifolds (R; D1,D2,D3) of the 3-jet space J3,
where R is a manifold together with a triplet of appropriate differential systems D1,D2 and
D3. Here, D3,D2 and D1 are the restrictions to R of the canonical system C3, the lift of
the second-order canonical system C2 and the lift of the first-order canonical system C1

respectively. This geometric object (R; D1,D2,D3) satisfies an appropriate condition for the
Lie bracket [ , ] of vector fields, hence it defines the (tangential) filtration TR ⊃ D1 ⊃
D2 ⊃ D3 on R (see, section 2.3). By utilizing this filtration, we can define the symbol
algebra s(v) =

⊕−4
p=−1 sp(v) of R ⊂ J3 at each v ∈ R. Then we provide the classification of

these symbol algebras in the cases of submanifolds of codimension 1 (i.e. single equations)
and submanifolds of codimension 3 (i.e. systems of three equations) as the main results
(Theorem 4.7 and Theorem 4.11). From these results, we can show the duality between
these two classes of equations. We do not discuss the cases of codimension 2 and 4 in this
paper. Although the framework is slightly different, the case of codimension 4 is treated in
[15]. We next reveal the analytic and algebraic aspects of each subcategory based on the
above classification together with model equations. In particular, we establish involutivity
and the uniqueness of the integral element (Corollary 4.9 and Corollary 4.10).

2. Differential systems and symbol algebras

2. Differential systems and symbol algebras2.1. Derived systems and weak derived systems.
2.1. Derived systems and weak derived systems. By a differential system (R,D), we

mean a distribution D on a manifold R, that is, D is a subbundle of the tangent bundle TR
of R. The sheaf of sections to D is denoted by  = Γ(D). The derived system ∂D of a
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differential system D is defined, in terms of sections, by ∂ :=  + [,]. In general,
∂D is obtained as a subsheaf of the tangent sheaf of R. Moreover, higher derived systems
∂kD are defined successively by ∂k

 := ∂(∂k−1
), where we set ∂0D = D by convention.

On the other hand, the k-th weak derived systems ∂(k)D of D are defined inductively by
∂(k)

 := ∂(k−1)
+[, ∂(k−1)

], where ∂(0)D = D. These derived systems are also interpreted
by using annihilators as follows; Let D = {�1 = · · · = �s = 0} be a differential system on
R. We denote by D⊥ the annihilator subbundle of D in T ∗R. Then the annihilator (∂D)⊥ of
the first derived system ∂D(= ∂(1)D) of D is given by (∂D)⊥ = {� ∈ D⊥ | d� ≡ 0 mod D⊥}.
Moreover, for k ≥ 1, the annihilator (∂k+1D)⊥ of the (k + 1)-th derived system of D is given
by

(∂k+1D)⊥ = {� ∈ (∂kD)⊥ | d� ≡ 0 mod (∂kD)⊥}.
On the other hand, the annihilator (∂(k+1)D)⊥ of the (k + 1)-th weak derived system of D is
also given by

(∂(k+1)D)⊥ = {� ∈ (∂(k)D)⊥ | d� ≡ 0 mod (∂(k)D)⊥, (D)⊥/(∂(k)D)⊥ ∧ (D)⊥/(∂(k)D)⊥}.
We explain the meaning of the notation mod (D)⊥/(∂(k)D)⊥∧(D)⊥/(∂(k)D)⊥. For 2-formsω,
η, we write ω ≡ η mod (D)⊥/(∂(k)D)⊥ ∧ (D)⊥/(∂(k)D)⊥ if ω = η + θ for some θ = �1 ∧�2,
where 1-forms �1, �2 are any representatives of elements [�1], [�2] in (D)⊥/(∂(k)D)⊥.
A differential system D is called regular (resp. weakly regular), if ∂kD (resp. ∂(k)D) is a
subbundle for each k. We set D−1 := D, D−k := ∂(k−1)D (k ≥ 2), for a weakly regular
differential system D. Then we have ([16, Proposition 1.1]);

(T1) There exists a unique positive integer μ such that

D−1 ⊂ D−2 ⊂ · · · ⊂ D−k ⊂ · · · ⊂ D−(μ−1) ⊂ D−μ = D−(μ+1) = · · · ;
(T2) [p,q] ⊂ 

p+q for all p, q < 0.
Let D be a differential system on R defined by local 1-forms �1, . . . , �s such that �1 ∧

· · · ∧�s � 0 at each point, where s is the corank of D, namely, D = {�1 = · · · = �s = 0}.
Then the Cauchy characteristic system Ch(D) is defined at each point x ∈ R by

Ch(D)(x) := {X ∈ D(x) | X�d�i ≡ 0 (mod �1, . . . , �s) for i = 1, . . . , s} ,
where � denotes the interior product (i.e., X�d�(Y) = d�(X, Y)).

2.2. Symbol algebra of regular differential system.
2.2. Symbol algebra of regular differential system. Let (R,D) be a weakly regular dif-

ferential system such that TR = D−μ ⊃ D−(μ−1) ⊃ · · · ⊃ D−1 =: D. For all x ∈ R,
we set g−1(x) := D−1(x) = D(x), gp(x) := Dp(x)/Dp+1(x) (p = −2,−3, . . . ,−μ), and
m(x) :=

⊕−μ
p=−1 gp(x). Then, dim m(x) = dim R holds. We set gp(x) = {0} when p ≤ −μ − 1.

For X ∈ gp(x), Y ∈ gq(x), the Lie bracket [X, Y] ∈ gp+q(x) is defined as follows; Let�p be the
projection of Dp(x) onto gp(x) and X̃ ∈ p, Ỹ ∈ q be any extensions such that �p(X̃x) = X
and �q(Ỹx) = Y . Then [X̃, Ỹ] ∈ 

p+q, and we define [X, Y] := �p+q([X̃, Ỹ]x) ∈ gp+q(x).
It does not depend on the choice of the extensions. Hence, m(x) is a nilpotent graded Lie
algebra. We call (m(x), [ , ]) the symbol algebra of (R,D) at x. Note that the symbol algebra
(m(x), [ , ]) satisfies the generating conditions [gp, g−1] = gp−1 (p < 0). For two differential
systems (R,D) and (R′,D′), we define (local) contact transformations φ from R to R′ by
(local) diffeomorphisms φ : R → R′ satisfying φ∗D = D′. The symbol algebra is an invari-
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ant of differential systems under contact transformations. Namely, if there exists a (local)
contact transformation φ : R → R′, then we obtain the graded Lie algebra isomorphism
m(x) � m(φ(x)) at each point x ([16]).

2.3. Filtered manifolds and symbol algebras.
2.3. Filtered manifolds and symbol algebras. Morimoto introduced the notion of a fil-

tered manifold as a generalization of weakly regular differential systems ([12]). We define
a filtered manifold (R, F) by a pair of a manifold R and a tangential filtration F. Here, a
tangential filtration F on R is a sequence {F p}p<0 of subbundles of the tangent bundle TR
and the following conditions are satisfied;

(M1) F p ⊃ F p+1, F0 = {0} ,
⋃
p≤0

F p = TR,

(M2) [ p,q] ⊂ 
p+q for all p, q < 0,

where 
p = Γ(F p) is the space of sections of F p. Let (R, F) be a filtered manifold. For

x ∈ R, we set fp(x) := F p(x)/F p+1(x) and f(x) :=
⊕

p<0 fp(x). For X ∈ fp(x), Y ∈ fq(x), the
Lie bracket [X, Y] ∈ fp+q(x) is defined in the same way as before. The Lie algebra f(x) is
also a nilpotent graded Lie algebra. We call (f(x), [ , ]) the symbol algebra of (R, F) at x. In
general it does not satisfy the generating conditions. Suppose (R, F) and (R′, F′) are filtered
manifolds. Then, (local) contact transformations between (R, F) and (R′, F′) are defined by
(local) diffeomorphisms φ : R → R′ such that φ∗F p = F p′. This symbol algebra is also an
invariant of filtered manifolds under contact transformations ([12]).

3. Third jet space with a tangential filtration

3. Third jet space with a tangential filtration
In this section, we reconsider the 3-jet space. The 3-jet space J3(R2,R) with two inde-

pendent variables and one dependent variable is expressed as;

(1) J3(R2,R) := {(x1, x2, z, p1, p2, p11, p12, p22, p111, p112, p122, p222)} .
The contact system C3 := {�0 = �1 = �2 = �11 = �12 = �22 = 0} on this jet space J3 is
given by the 1-forms;

�0 := dz − p1dx1 − p2dx2, �1 := dp1 − p11dx1 − p12dx2,

�2 := dp2 − p12dx1 − p22dx2, �11 := dp11 − p111dx1 − p112dx2,

�12 := dp12 − p112dx1 − p122dx2, �22 := dp22 − p122dx1 − p222dx2.

Then we can show easily the following facts. The canonical contact system C3 is weakly-
regular and the weak derived systems define the filtration T (J3(R2,R)) = ∂(3)C3 ⊃ ∂(2)C3 ⊃
∂C3 ⊃ C3 on this 3-jet space. Here, the first derived system ∂C3 and the second derived
system ∂(2)C3 are the pull-back of the second-order canonical system C2 on J2(R2,R) and
the first-order canonical system C1 on J1(R2,R) respectively. Namely, we have;

(2) ∂C3 = {�0 = �1 = �2 = 0} = (π3
2)−1
∗ C2, ∂(2)C3 = {�0 = 0} = (π3

1)−1
∗ C1,

where π3
2 : J3(R2,R) → J2(R2,R) and π3

1 : J3(R2,R) → J1(R2,R) denote the projections
of the fibrations as the jet bundles. Hence, according to the manner of section 2.2, we can
define the symbol algebram = m−4⊕m−3⊕m−2⊕m−1 at each point on this 3-jet space. Now,
let us take the coframe

{
�0, �i, �i j, ωi := dxi, πi jk := dpi jk

}
(1 ≤ i ≤ j ≤ k ≤ 2) on the 3-jet
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space. We also take the dual frame
{
∂

∂z
,
∂

∂pi
,
∂

∂pi j
,

d
dxi

,
∂

∂pi jk

}
, where

d
dx1
=

∂

∂x1
+ p1

∂

∂z
+ p11

∂

∂p1
+ p12

∂

∂p2
+ p111

∂

∂p11
+ p112

∂

∂p12
+ p122

∂

∂p22
,

d
dx2
=

∂

∂x2
+ p2

∂

∂z
+ p12

∂

∂p1
+ p22

∂

∂p2
+ p112

∂

∂p11
+ p122

∂

∂p12
+ p222

∂

∂p22
.

Then, we have the explicit description of the bracket product of m as follows.[
∂

∂p111
,

d
dx1

]
=

[
∂

∂p112
,

d
dx2

]
=

∂

∂p11
,

[
∂

∂p112
,

d
dx1

]
=

[
∂

∂p122
,

d
dx2

]
=

∂

∂p12
,

[
∂

∂p122
,

d
dx1

]
=

[
∂

∂p222
,

d
dx2

]
=

∂

∂p22
,

[
∂

∂p11
,

d
dx1

]
=

[
∂

∂p12
,

d
dx2

]
=

∂

∂p1
,

[
∂

∂p12
,

d
dx1

]
=

[
∂

∂p22
,

d
dx2

]
=

∂

∂p2
,

[
∂

∂p1
,

d
dx1

]
=

[
∂

∂p2
,

d
dx2

]
=
∂

∂z
,

and the other brackets are trivial. Each component of m is given by m−1 =

{
d

dxi
,

∂

∂pi jk

}
,

m−2 =

{
∂

∂pi j

}
, m−3 =

{
∂

∂pi

}
and m−4 =

{
∂

∂z

}
. On the other hand, this bracket product

can be also calculated in terms of the following structure equations (differential invariant
equations) in the sense of E. Cartan;

(3) d�0 ≡ ω1 ∧�1 + ω2 ∧�2 mod �0, �1 ∧�2, �i ∧� jk, �i j ∧�kl,

⎧⎪⎪⎨⎪⎪⎩
d�1 ≡ ω1 ∧�11 + ω2 ∧�12 mod �0, �1, �2, �i j ∧�kl,

d�2 ≡ ω1 ∧�12 + ω2 ∧�22 mod �0, �1, �2, �i j ∧�kl.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d�11 ≡ ω1 ∧ π111 + ω2 ∧ π112 mod �0, �i, �i j,

d�12 ≡ ω1 ∧ π112 + ω2 ∧ π122 mod �0, �i, �i j,

d�22 ≡ ω1 ∧ π122 + ω2 ∧ π222 mod �0, �i, �i j.

In fact, the bracket product of this symbol algebra m3 can be also described in terms of the
following tensor space decomposition (cf. [21]).

(4) c3 = c−4 ⊕ c−3 ⊕ c−2 ⊕ c−1,

where c−4 = R, c−3 = V∗, c−2 = S2(V∗) and c−1 = V ⊕ S3(V∗). Here V is a 2-dimensional
vector space and the bracket relation of this algebra c3 is defined through the dual pairing
between V and V∗ such that V and S3(V∗) are both abelian subspaces of c−1. From the
correspondence between the direction generated by d

dxi
(resp. ∂

∂pi jk
) and the component V

(resp. S3(V∗)), we have the graded Lie algebra isomorphism m � c3. Here, the directions
generated by ∂

∂pi j
, ∂
∂pi

and ∂
∂z correspond to the components c−2 = S2(V∗), c−3 = V∗ and

c−4 = R respectively (cf. [16]).
In the rest of this section, we recall the structure of graded Lie algebra automorphism

group Aut(c3) of the above symbol algebra c3 = c−4 ⊕ c−3 ⊕ c−2 ⊕ c−1, where c−4 = R, c−3 =

V∗, c−2 = S2(V∗) and c−1 = V ⊕ S3(V∗). In the following discussion, we refer to [19]. Let
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κ : c−1 → c−1/S3(V∗) be the projection. Then κ0 := κ|V is a linear isomorphism of V onto
c−1/S3(V∗). From the bracket product of c3, we have S3(V∗) = {X ∈ c−1 | [X, c−2] = 0}, hence
it follows that φ(S3(V∗)) = S3(V∗) for φ ∈ Aut(c3). Thus this automorphism φ derives a
unique linear isomorphism φ̂ : c−1/S3(V∗) → c−1/S3(V∗) such that φ̂ · κ = κ · φ. We define
the closed normal subgroup N(c3) of Aut(c3) by setting

(5) N(c3) :=
{
φ ∈ Aut(c3) | φ|c−4 = idc−4 , φ̂ := idc−1/S3(V∗)

}
.

Furthermore, we define the homomorphism χ : GL(V) × GL(R) → Aut(c3) for a ∈ GL(V)
and b ∈ GL(R) by putting

χ(a, b)|V = a, χ(a, b)|R = b · idc−4 , χ(a, b)|V∗ = b · (a∗)−1,

χ(a, b)|S2(V∗) = b · ⊗2(a∗)−1, χ(a, b)|S3(V∗) = b · ⊗3(a∗)−1,

where a∗ is the adjoint linear map. We set G0(c3) = χ(GL(V) ×GL(R)) and let S(c3) be the
set of abelian subalgebras V̂ of c3 such that c−1 = V̂ ⊕ S3(V∗). Then we have (Proposition
3.7 in [19]);

(J-1) N(c3) is canonically isomorphic to the vector group S4(V∗).
(J-2) G0(c3) =

{
φ ∈ Aut(c3) | φ(V) = V

}
and Aut(c3) = G0(c3) ·N(c3) (semi-direct product).

By the relation; S4(V∗) �
{
ρ : V → S3(V∗) (linear) | v1�ρ(v2) = v2�ρ(v1), v1, v2 ∈ V

}
, we de-

scribe the action of N(c3) on c3. For ρ ∈ S4(V∗), we define the element Aρ ∈ N(c3) by
Aρ|c−4 = idc−4 , Aρ|Sr(V∗) = idSr(V∗) (for r = 1, 2, 3) and Aρ|V = idV + ρ. Then the correspon-
dence S4(V∗) � ρ �→ Aρ ∈ N(c3) gives a group isomorphism in (J-1).

4. Contact geometry of third-order partial differential equations

4. Contact geometry of third-order partial differential equations
In this section, we develop contact geometry of partial differential equations of third order

as the theory of submanifolds of the 3-jet space J3 equipped with the filtration T (J3(R2,R)) =
∂(3)C3 ⊃ ∂(2)C3 ⊃ ∂C3 ⊃ C3.

Definition 4.1. Let R be a (regular) submanifold of J3(R2,R) and let ι be the inclusion of
R into J3(R2,R). We set the two projections p3

i = π
3
i · ι : R → Ji(R2,R) (i = 1, 2). Now, we

impose the following conditions on R.
(c.1) The projection p3

2 : R→ J2(R2,R) is a submersion.
(c.2) The first prolongation p(1) : R(1) → R of R is onto. Here, R(1) =

⋃
x∈R

R(1)
x is defined by

R(1)
x =

{
v ⊂ TxR | v is a 2-dim. integral element of D3(x) transversal to ker(p3

2)∗
}
,

where D3 := ι−1∗ C3 is a differential system on R obtained by the pull-back by ι

and an integral element of D3 at x ∈ R is a subspace v of TxR satisfying ι∗�0|v =
ι∗�i|v = ι∗�i j|v = dι∗�0|v = dι∗�i|v = dι∗�i j|v = 0 for the annihilators of D3.

Then, for the canonical contact systems Ci (i = 1, 2, 3) on each jet space Ji(R2,R), all of the
pullbacks Dk := (p3

k)−1∗ Ck(k = 1, 2) and D3 := ι−1∗ C3 are differential systems on R (i.e. Di

has constant rank) from the condition (c.1). We call the triplet (D1,D2,D3) the third-order
contact system on R. We also call the quadruple (R; D1,D2,D3) a geometric third-order
partial differential equation for a scalar function of two independent variables.
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Remark 4.2. From now on, we sometimes omit the notation of the pull-back for the
annihilators of differential systems on R.

We explain the meaning of these conditions more precisely. The first condition (c.1)
implies that the system of equations R contains no equations up to second order. Namely, R
is an essential third-order equation. On the other hand, the second condition (c.2) means that
there exists a 2-dimensional integral element v of (R,D3) at each x ∈ R. In this connection,
we state that these integral elements are the candidates for the tangent spaces at x ∈ R of the
2-dimensional integral manifolds (i.e. local solutions) of D3.

According to this formulation, we define the isomorphism (contact-equivalence) of third-
order equations as follows.

Definition 4.3. Let (R; D1,D2,D3) and (R̂; D̂1, D̂2, D̂3) be the third-order contact systems
as above. Then we call a local diffeomorphism φ : R→ R̂ such that φ∗Di = D̂i (i = 1, 2, 3) a
contact transformation between R and R̂.

We emphasize that this notion of isomorphisms can be applicable to a wide range of
equations. In particular, the above isomorphism is different from a local diffeomorphism
ψ : R → R̂ such that ψ∗D3 = D̂3, that is, a transformation preserving the canonical differ-
ential system D3 of third order. If D3 is weakly-regular, the above isomorphism ψ becomes
the isomorphism preserving the filtration. In fact, for single equations (i.e. submanifolds of
codimension one) R, D3 is weakly-regular. However, for systems of equations (i.e. subman-
ifolds of higher codimension), we can not have the weak-regularity of D3. Thus, we need to
define the notion of isomorphisms as above to treat the case of each codimension uniformly.

Remark 4.4. We have given the above geometric formulation along the spirit of contact
geometry of second order by K. Yamaguchi (cf. [19], [21]).

Now, we study various geometric properties of (R; D1,D2,D3). We prove the following
fundamental properties of Di.

Lemma 4.5. Let R be a submanifold of J3(R2,R) and (D1,D2,D3) be the third-order
contact system on R. Then we have

(i) ∂D3 ⊂ D2 and ∂Di = Di−1 for i = 1, 2, where D0 := TR.
(ii) Ch(Di) = ker(p3

i )∗ for i = 1, 2.

Proof. For the inclusion ι : R ↪→ J3(R2,R), we set x∗i = xi · ι, z∗ = z · ι, p∗i = pi · ι,
p∗i j = pi j · ι and p∗i jk = pi jk · ι, where (xi, z, pi, pi j, pi jk) is the canonical coordinate on the
3-jet space. Then, from the condition (c.1), Dk (k = 1, 2, 3) is defined by the (linearly
independent) 1-forms as follows;

�∗0 = dz∗ −
2∑

i=1

p∗i dx∗i , �∗i = dp∗i −
2∑

j=1

p∗i jdx∗j , �∗i j = dp∗i j −
2∑

k=1

p∗i jkdx∗k,

D3 =
{
�∗0 = �

∗
i = �

∗
i j = 0

}
, D2 =

{
�∗0 = �

∗
i = 0

}
, D1 =

{
�∗0 = 0

}
,

where the indices of p∗i j and p∗i jk are symmetric. Now we recall the structure equations (3)
of the canonical systems C3 or the weak-derived systems ∂(k)C3 on the 3-jet space. Then we
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first have d�∗0 ≡ d�∗1 ≡ d�∗2 ≡ 0 mod �∗0, �
∗
i , �

∗
i j as the structure equation of D3. This

means that ∂3 ⊂ 
2 holds. In general, we can not have ∂3 = 

2 (see section 4.1). We
next have d�∗0 ≡ 0, d�∗i � 0, mod �∗0, �

∗
i as the structure equation of D2. Hence, we have

∂2 = 
1. Finally, for the corank 1 differential system D1, we have ∂D1 = TR by the same

argument. Thus we have the statement of (i).
For the statement (ii), from the structure equation of Dk (k = 1, 2) and the descrip-

tion of each fiber ker(p3
k)∗ at each x ∈ R; ker(p3

1)∗(x) =
{
X ∈ TxR | dx∗i = dz∗ = dp∗i = 0

}
,

ker(p3
2)∗(x) =

{
X ∈ TxR | dx∗i = dz∗ = dp∗i = dp∗i j = 0

}
. Then we can show the agreement

Ch(Di) = ker(p3
i )∗ for i = 1, 2. �

Lemma 4.6. Let R be a submanifold of J3(R2,R) and (D1,D2,D3) be the third-order
contact system on R. Then the sequence TR ⊃ D1 ⊃ D2 ⊃ D3 becomes a filtration in the
sense of section 2.3. Namely, the quadruple (R; D1,D2,D3) is a filtered manifold.

Proof. To establish the statement, we reset the subbundles of the tangent bundle TR;
Fk := TR (k ≤ −4), F−3 := D1, F−2 := D2 and F−1 := D3. Then, from the condition (i) of
Lemma 4.5, we have [−1,−1] ⊂ 

−2, [−1,−2] ⊂ [−2,−2] ⊂ 
−3. Moreover, it is

clear that [−1,−3], [−2,−2], [−2,−3] and [−3,−3] are subsheafs of −4 = Γ(TR).
Thus, we obtain the condition [ p,q] ⊂ 

p+q for p, q < 0. �

From Lemma 4.6, we can define the symbol algebra s(x) as a fundamental invariant of
(R; D1,D2,D3) following the manner in section 2.3. We set s−4(x) = TxR/D1(x), s−3(x) =
D1(x)/D2(x), s−2(x) = D2(x)/D3(x), s−1(x) = D3(x) at each x ∈ R. Then the symbol algebra
s(x) of R at x ∈ R is written as

(6) s(x) = s−4(x) ⊕ s−3(x) ⊕ s−2(x) ⊕ s−1(x).

In fact, in this case, we can discuss the detailed method of the calculation of the bracket
product by utilizing the annihilators of D1 = {�0 = 0} , D2 = {�0 = �i = 0} and D3 ={
�0 = �i = �i j = 0

}
. The defining 1-forms �0, �i, �i j of D1,D2 and D3 defines a basis {A}

of s−4(x), {B1, B2} of s−3(x) and {C11,C12,C22} of s−2(x) so that

�0(Ã) = 1, π−4(Ã) = A, �i(B̃ j) = δi
j, π−3(B̃i) = Bi (B̃i ∈ D1(x)),

�i j(C̃kl) = δ
i j
kl (1 ≤ i ≤ j ≤ 2, 1 ≤ k ≤ l ≤ 2), π−2(C̃i j) = Ci j (C̃i j ∈ D2(x)),

where π−4 : TxR → s−4(x), π−3 : D1(x) → s−3(x) and π−2 : D2(x) → s−2(x) are the

projections. We also use the notation δi j
kl defined by δi j

kl :=

⎧⎪⎪⎨⎪⎪⎩
1 if i = k and j = l

0 if otherwise.
Then we calculate brackets in symbol algebra as follows;
(1) [s−1(x), s−1(x)]. For X1, X2 ∈ s−1(x) = D3(x), we calculate

d�i j(X1, X2) = X̃1�i j(X̃2) − X̃2�i j(X̃1) −�i j([X̃1, X̃2]) = −�i j([X̃1, X̃2]).

Hence, by setting γi j = −d�i j(X1, X2), we have [X1, X2] = γ11C11+γ12C12+γ22C22 ∈ s−2(x).
(2) [s−1(x), s−2(x)]. For X ∈ s−1(x) = D3(x) and Y ∈ s−2(x), we calculate

d�i(X, Ỹx) = X̃x(�i(Ỹ)) − Ỹx(�i(X̃)) −�i([X̃, Ỹ]x) = −�i([X̃, Ỹ]x).
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Similarly, we have d�i(X1, X2) = 0 for X1, X2 ∈ s−1(x). Hence d�i(X, Ỹx) depends only on
X ∈ s−1(x), Y ∈ s−2(x). Thus, by putting, βi = −d�i(X, Ỹx), we have [X, Y] = β1B1 + β2B2 ∈
s−3(x). Moreover, it follows that, for X ∈ s−1(x),

(7) X�d�i(Y) = 0 for all i and ∀Y ∈ D2(x) if and only if [X, s−2(x)] = 0.

(3) [s−1(x), s−3(x)]. For X ∈ s−1(x) = D3(x) and Z ∈ s−3(x), we calculate

d�0(X, Z̃x) = X̃x(�0(Z̃)) − Z̃x(�0(X̃)) −�0([X̃, Z̃]x) = −�0([X̃, Z̃]x).

Similarly, we have d�0(X1, X2) = d�0(X1, Ỹx) = 0 for X1, X2 ∈ s−1(x), Y ∈ s−2(x). Hence
d�0(X, Z̃x) depends only on X ∈ s−1(x), Z ∈ s−3(x). Thus, by setting, α = −d�0(X, Z̃x), we
have [X, Z] = αA ∈ s−4(x). Moreover, it follows that, for X ∈ s−1(x),

(8) X�d�0(Y) = 0 for ∀Y ∈ D1(x) if and only if [X, s−3(x)] = 0.

From the above description of s(x), we obtain that �0, �i and �i j, all together, define bases
of m−4(x), m−3(x) and m−2(x) of the symbol algebra m(x) = m−4(x) ⊕ m−3(x) ⊕ m−2(x) ⊕
m−1(x) (� c3) of the 3-jet space J3(R2,R) at each x ∈ J3(R2,R). Then s(x) is a graded Lie
subalgebra of m(x) satisfying s−4(x) = m−4(x), s−3(x) = m−3(x) and s−2(x) = m−2(x). We
also recall the compatibility condition (c.2) in Definition 4.1. If we put f(x) := (p3

2)−1∗ (x) =
Ch(D2)(x) = TxR ∩ Ch(C2)(x), then this condition means that there exists a 2-dimensional
integral element V of D3 at each x ∈ R such that s−1(x) = V ⊕ f(x), where V is an abelian
subalgebra in s(x). In summary, the symbol algebra s(x) = s−4(x) ⊕ s−3(x) ⊕ s−2(x) ⊕ s−1(x)
at x ∈ R can be treated as the graded subalgebra of the symbol algebra m(x) � c3 and hence
we obtain;

s−4(x) � R, s−3(x) � V∗, s−2(x) � S2(V∗),(9)

s−1(x) = V ⊕ f(x), f(x) ⊂ S3(V∗).

Thus f(x) ⊂ S3(V∗) is also an invariant of R under contact transformations in Definition
4.3. The classification of the symbol algebras s(x) can be reduced to the classification of
the subspaces f(x). To discuss the classification of f, we mention the graded Lie algebra
automorphism group of s in the following. We discuss the graded Lie algebra automorphism
group Aut(s) of the above symbol algebra s. In this context, we can apply Corollary 5.8 in
[19] to our situation. Namely, we have ([19, Corollary 5.8]);

(R-1) Each φ ∈ Aut(s) has a unique extension φ̂ ∈ Aut(c3), that is, φ̂|s = φ. Hence
Aut(s) can be treated as a closed subgroup of Aut(c3) and is given by Aut(s) ={
φ ∈ Aut(c3) | φ(s) = s

}
=

{
φ ∈ Aut(c3) | φ(s−1) = s−1 ⊂ c−1

}
.

(R-2) Let N(c3) be the group in (5), then N(s) = Aut(s)∩N(c3) is a closed normal subgroup
of Aut(s) and is isomorphic to the vector group f(1), where f(1) is defined by f(1) ={
ρ : V → f ⊂ S3(V∗) : linear | X�ρ(Y) = Y�ρ(X), for X, Y ∈ V

}
. Moreover, N(s) acts

simply transitively on S(s), where S(s) is the set of abelian subalgebras V̂ such that
s−1 = V̂ ⊕ f.

(R-3) Aut(s) = G0(s) · N(s) (semi-direct product), where G0(s) = Aut(s) ∩ G0(c3) =
{σ ∈ Aut(s) | σ(V) = V}.

(R-4) N(s) =
{
φ ∈ Aut(s) | φ|sp = idsp p < −1

}
.
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Here we pay attention to the action of Aut(c3) in the previous section and the structure of
the symbol algebras s of (R; D1,D2,D3). It is sufficient to consider the orbit decomposition
of the subspaces f ⊂ S3(V∗) for the adjoint action of GL(V) on S3(V∗) to classify the symbol
algebra s under the graded Lie algebra isomorphisms. From now on, we reveal the several
aspects for each category of equations from the viewpoint of this symbol algebra.

4.1. The case of codimension three.
4.1. The case of codimension three. In this subsection, we investigate the system of

three third-order equations geometrically;

(10) Fi(x1, x2, z, p1, p2, p11, p12, p22, p111, p112, p122, p222) = 0, (i = 1, 2, 3).

Of course, we impose the conditions in Definition 4.1 on the third-order equation. Hence
we have a third-order equation (R; D1,D2,D3). Here R is a 9-dimensional submanifold and
D3 is a rank 3 differential system. In this subsection, we call (R; D1,D2,D3) the third-order
equation of codimension three. In this case, we have dim f(x) = 1 for the symbol algebra
s(x) = s−4(x) ⊕ s−3(x) ⊕ s−2(x) ⊕ s−1(x) at each point x ∈ R.

Theorem 4.7. Let (R; D1,D2,D3) be a third-order equation of codimension three. We
choose a basis {e1, e2} of V and the dual basis

{
e∗1, e

∗
2

}
of V∗. We also take a basis{

e∗1 � e∗1 � e∗1, 3e∗1 � e∗1 � e∗2, 3e∗1 � e∗2 � e∗2, e
∗
2 � e∗2 � e∗2

}
of S3(V∗), where ei � e j � ek =

1
3!

∑
σ∈S3

eσ(i) ⊗ eσ( j) ⊗ eσ(k). Then the symbol algebra s at each point is classified into the
following four types in terms of lines f ⊂ S3(V∗).

(I) f = 〈e∗1 � e∗1 � e∗1〉,
(II) f = 〈e∗1 � e∗1 � e∗1 + e∗2 � e∗2 � e∗2〉,

(III) f = 〈3e∗1 � e∗2 � e∗2〉,
(IV) f = 〈e∗1 � e∗1 � e∗1 − 3e∗1 � e∗2 � e∗2〉.
Proof. Since f ⊂ S3(V∗) is a 1-dimensional subspace (i.e. line), the orbit decomposition of

f under the adjoint action of GL(V) on S3(V∗) corresponds to the classification of the cubic
(binary) form ax3+3bx2y+3cxy2+dx3 under the congruence, i.e., the equivalence between
cubic forms. In this context, the normal form of this cubic form is well-known traditionally
(e.g., p. 274–278 in [18] or p. 263–267 in [8]);

(I) x3, (II) x3 + y3, (III) 3xy2, (IV) x3 − 3xy2.

Thus, we obtain the classification of the statement by rewriting the above normal forms in
terms of the basis of S3(V∗). �

In connection with the above-mentioned classification of the symbol algebras, we ex-
plain here the process of this classification from the point of view of the structure equation.
For defining 1-forms of the differential systems D1 = {�0 = 0}, D2 = {�0 = �i = 0} and
D3 =

{
�0 = �i = �i j = 0

}
, the isomorphism of the symbol algebra s corresponds to the

transformation of the structure equations associated with the change of the 1-forms;(
ω̂1

ω̂2

)
= P−1

(
ω1

ω2

)
,

(
�̂1

�̂2

)
= tP

(
�1

�2

)
,

(
�̂11 �̂12

�̂12 �̂22

)
= tP

(
�11 �12

�12 �22

)
P,(11)

where P ∈ GL(2,R). Under this change of these 1-forms, the structure equations up to
second-order are preserved, that is,
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(12) d�0 ≡ ω1 ∧�1 + ω2 ∧�2 mod �0, �1 ∧�2, �i ∧� jk, �i j ∧�kl,

⎧⎪⎪⎨⎪⎪⎩
d�1 ≡ ω1 ∧�11 + ω2 ∧�12 mod �0, �1, �2, �i j ∧�kl,

d�2 ≡ ω1 ∧�12 + ω2 ∧�22 mod �0, �1, �2, �i j ∧�kl

are invariant. Namely, the structure equation of the third-order system D3 is essential for the
classification. Here, we remark that ωi, �i, �i j and πi jk correspond to the components of
the symbol algebra, V , V∗, S2(V∗) and f(⊂ S3(V∗)) respectively. Under this correspondence
between 1-forms and the components of the symbol algebra s, the transformations (11) of
1-forms are equivalent to the representations of GL(V) on V (change of basis), V∗ (dual
representation) and S2(V∗) (adjoint representation) respectively. Then the change of 1-forms
πi jk appeared in the (third-order) structure equation of D3 corresponds to the congruence of
cubic forms. Thus, we can show that the normal form of cubic forms also gives the normal
form of the structure equation equivalent to the normal form of the symbol algebra.

Remark 4.8. In order to derive a series of these invariant properties, we adopted the
formulation as in Definition 4.1. In the above structure equation, the 2-forms �i ∧� j, �i ∧
� jk and �i j ∧�kl appearing at the behind of mod are very closely related to our contact-
equivalence.

Now, we describe here the structure equation of D3 representing the symbol algebras each
of the above four types.

(I) f = 〈e∗1 � e∗1 � e∗1〉.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d�11 ≡ ω1 ∧ π mod �0, �i, �i j,

d�12 ≡ 0 mod �0, �i, �i j,

d�22 ≡ 0 mod �0, �i, �i j.

(II) f = 〈e∗1 � e∗1 � e∗1 + e∗2 � e∗2 � e∗2〉.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d�11 ≡ ω1 ∧ π mod �0, �i, �i j,

d�12 ≡ 0 mod �0, �i, �i j,

d�22 ≡ ω2 ∧ π mod �0, �i, �i j.

(III) f = 〈3e∗1 � e∗2 � e∗2〉.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d�11 ≡ 0 mod �0, �i, �i j,

d�12 ≡ ω2 ∧ π mod �0, �i, �i j,

d�22 ≡ ω1 ∧ π mod �0, �i, �i j.

(IV) f = 〈e∗1 � e∗1 � e∗1 − 3e∗1 � e∗2 � e∗2〉.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d�11 ≡ ω1 ∧ π mod �0, �i, �i j,

d�12 ≡ − ω2 ∧ π mod �0, �i, �i j,

d�22 ≡ − ω1 ∧ π mod �0, �i, �i j.

We remark here that the structure equations in (12) up to second order are omitted, because
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the difference does not appear for each case. However, we emphasize that the precise bracket
product of each symbol algebra can be calculated in terms of both of structure equations.
Now, we obtain the following corollary through process of analyzing these symbol algebras.

Corollary 4.9. Let (R; D1,D2,D3) be a third-order equation of codimension three. Among
of the symbol algebras of the four types, only the type (I) is involutive. In contrast to the type
(I), for other three types (i.e., (II), (III) and (IV)-type), the integral element V is unique, i.e.,
R(1) � R and f(1) = {0}. Namely, these are finite types.

Proof. To establish the statement, we first clarify the first prolongation R(1) for each case.
For this purpose, we introduce the Grassmann bundle J(D3, 2) :=

⋃
x∈R

Jx over R, where Jx is

defined by Jx :=
{
w ⊂ TxR | w is a 2-dimensional subspace of D3(x)

}
. Let Π : J(D3, 2)→ R

be the projection and U be a small open neighborhood of a point in R. Then Π−1(U) is
covered by 3 open sets in J(D3, 2); Π−1(U) = Uω1ω2 ∪ Uω1π ∪ Uω2π, where each open
set is Uω1ω2 :=

{
v ∈ Π−1(U) | ω1|v ∧ ω2|v � 0

}
, Uω1π :=

{
v ∈ Π−1(U) | ω1|v ∧ π|v � 0

}
and

Uω2π :=
{
v ∈ Π−1(U) | ω2|v ∧ π|v � 0

}
. To clarify the integral elements with the transversality

condition, we explicitly describe the defining equation of R(1) in terms of the inhomogeneous
Grassmann coordinate of fibers in Uω1ω2 . For ŵ ∈ Uω1ω2 , ŵ is a 2-dimensional subspace of
D3(w), where p(1)(ŵ) = w. Hence, by restricting π to ŵ, we can introduce the inhomogeneous
coordinate p1

i (i = 1, 2) of fibers of J(D3, 2) around ŵ with π|ŵ = p1
1(ŵ)ω1|ŵ + p1

2(ŵ)ω2|ŵ.
Moreover, ŵ satisfies the condition d�i j|ŵ ≡ 0 for the structure equation of each type. We
describe this condition for each type by using the inhomogeneous coordinate. In the case
of (I), we have d�11|ŵ ≡ ω1|ŵ ∧ π|ŵ ≡ p1

2(ŵ)ω1|ŵ ∧ ω2|ŵ. Hence we obtain the defining
equations f = 0 of R(1) in Uω1ω2 of J(D, 2), where f = p2

1, that is, { f = 0} ⊂ Uω1ω2 . Then
d f does not vanish on { f = 0}. Thus p(1) : R(1) → R is a R-bundle. In other three cases
(i.e., (II), (III) and (IV)-type), we can see that p(1) : R(1) → R is a section of the Grassmann
bundle J(D3, 2) :=

⋃
x∈R

Jx by the same argument.

We next check involutivity for the above four types by applying the Cartan–Kähler the-
orem for linear Pfaffian systems (e.g., section 4 and 5 in [9]). We set the tableau matrix A
consisting of the 1-form π appeared in each structure equation as follows;

(13) (I)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (II)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π 0
0 0
0 π

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (III)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0
0 π

π 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (IV)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π 0
0 −π
−π 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

In all cases, we show that the reduced characters of A are s1 = 1, s2 = 0. Among of
the above four types, only the type (I) satisfies the equality of the Cartan test (i.e., dim
Rx = s1 + 2s2 = 1) and the other three types do not satisfy this equality, because dim
Rx = 0, s1 = 1. �

From Corollary 4.9 and the structure equations of D3, we obtain the following character-
ization of involutive systems.

Corollary 4.10. Let (R; D1,D2,D3) be a third-order equation of codimension three. Then
R is involutive if and only if this admits a one-dimensional Cauchy characteristic system.
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This result is analogous to the characterization of second-order regular overdetermined
involutive systems by E. Cartan ([2]). In the following paragraph, we clarify some properties
for the third-order equations which have the regular symbol of each type. Namely, we
assume that the symbol algebra s(x) is isomorphic to a fixed algebra at each point x ∈ R.

First we investigate the case of (I) f = 〈e∗1 � e∗1 � e∗1〉. For the bracket product, we show
that s−1 generates the 1-dimensional subspace of s−2. Moreover, this involutive subcate-
gory satisfies the condition dim Ch(D3)(x) = 1 at each point x ∈ R. From the proof of
Corollary 4.9, the Cartan character is s1 = 1 and the Cartan integer is also 1. By the Cartan-
Kähler theorem, (local) solutions depends on a scalar function of one variable, and these
solutions can be constructed by using the reduction of (R,D3) into the leaf (moduli) space
(R/Ch(D3),DR/Ch(D3)) coming from the complete integrability of Ch(D3). More precisely,
locally, R/Ch(D3) is an 8-dimensional manifold and DR/Ch(D3) is a rank 2 differential system.
Then, by utilizing the fibration Ψ : R → R/Ch(D3), we can construct the (local) solution of
D3 as the lifts of the integral curves of DR/Ch(D3). Now, we give a model equation belonging
to this class; namely

∂3z
∂x2

1∂x2
=

∂3z
∂x1∂x2

2

=
∂3z
∂x3

2

= 0,

for a scalar function z = z(x1, x2). Next, we study the case of (II), (III), and (IV), that is, f is
one of the three types 〈e∗1�e∗1�e∗1+e∗2�e∗2�e∗2〉, 〈3e∗1�e∗2�e∗2〉 or 〈e∗1�e∗1�e∗1−3e∗1�e∗2�e∗2〉. These
three subcategories have common properties that is in contrast to the involutive-type (I). As
we mentioned in Corollary 4.9, these equations have a unique integral element at each point.
For each category consisting of these equations, the analysis of infinitesimal automorphisms
(symmetry algebras) is a very important problem. However, these symbol algebras do not
satisfy the generating condition [sk, s−1] = sk−1. Indeed, for the bracket product, we show
that s−1 generates the 2-dimensional subspace of s−2. Hence, we mention that Tanaka’s
inequality dim Aut ≤ dim g(s) ([16], Corollary of Theorem 8.4) can not be applied to the
analysis of the symmetry for these equations. We give here the model equations for each
class.

∂3z
∂x3

1

− ∂3z
∂x3

2

=
∂3z

∂x2
1∂x2

=
∂3z

∂x1∂x2
2

= 0, in case of (II),

∂3z
∂x3

1

=
∂3z

∂x2
1∂x2

=
∂3z
∂x3

2

= 0, in case of (III),

∂3z
∂x3

1

+
∂3z

∂x1∂x2
2

=
∂3z

∂x2
1∂x2

=
∂3z
∂x3

2

= 0, in case of (IV).

Finally, let us discuss the type-changing phenomenon in the case of codimension 3. We
already showed the degeneration of the bracket product for type (I) compared with (II), (III)
and (IV) types, that is, the degeneration of the generating direction by s−1. Accordingly, we
note that the notion of type-changing equations can be also defined for these systems of three
equations by perturbations of equations which have the regular symbol of type (I). Here, we
recall that second-order type-changing equations are defined by perturbations of parabolic
equations (see [14]). Thus, we have formulated an example of the third-order version of
second-order type-changing equations.
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4.2. The case of codimension one (i.e., hypersurfaces).
4.2. The case of codimension one (i.e., hypersurfaces). In this subsection, we treat the

following single equation;

(14) F(x1, x2, z, p1, p2, p11, p12, p22, p111, p112, p122, p222) = 0.

We also assume for these equations the conditions in Definition 4.1. Hence, R = {F = 0} is
a (regular) hypersurface in J3(R2,R). Moreover, a quadruple (R; D1,D2,D3) is a third-order
contact system associated with a equation (14). Here R is a 11-dimensional manifold and
the third-order canonical system D3 is a rank 5 differential system. In this subsection, we
call (R; D1,D2,D3) the third-order equation of codimension one. In this case, we have dim
f(x) = 3 for the symbol algebra s(x) = s−4(x) ⊕ s−3(x) ⊕ s−2(x) ⊕ s−1(x) at each point x ∈ R.
Then our statement is the following.

Theorem 4.11. Let (R; D1,D2,D3) be a third-order equation of codimension one. Then
the symbol algebra s at each point is classified into the following four types.

(I) f = 〈3e∗1 � e∗1 � e∗2, 3e∗1 � e∗2 � e∗2, e∗2 � e∗2 � e∗2〉,
(II) f = 〈e∗1 � e∗1 � e∗1 − e∗2 � e∗2 � e∗2, 3e∗1 � e∗1 � e∗2, 3e∗1 � e∗2 � e∗2〉,

(III) f = 〈e∗1 � e∗1 � e∗1, 3e∗1 � e∗1 � e∗2, e∗2 � e∗2 � e∗2〉,
(IV) f = 〈e∗1 � e∗1 � e∗1 + 3e∗1 � e∗2 � e∗2, 3e∗1 � e∗1 � e∗2, e∗2 � e∗2 � e∗2〉.
Proof. To prove our assertion, we make full use of the duality V � V∗ to avoid the

direct classification of subspaces f ⊂ S3(V∗) of codimension 1 (i.e. dimension 3). Under this
duality, let us describe the symbol algebra c = c−4 ⊕ c−3 ⊕ c−2 ⊕ c−1 of the 3-jet space by
c−4 = R, c−3 = V, c−2 = S2(V), c−1 = V∗ ⊕ S3(V) and consider the classification of the 1-
dimensional subspaces f ⊂ S3(V) under the adjoint action of GL(V∗) on S3(V). It is clear that
this classification is essentially equal to the classification in the previous subsection, hence
the list of the classification of the 1-dimensional subspaces is given by (I) f = 〈e1 � e1 � e1〉,
(II) 〈e1 � e1 � e1 + e2 � e2 � e2〉, (III) 〈e1 � e2 � e2〉 and (IV) 〈e1 � e1 � e1 − e1 � e2 � e2〉. Now
we recall again the duality V � V∗. We have the one to one correspondence (i.e. Grassmann
duality) between f ⊂ S3(V) and f⊥ ⊂ S3(V∗), where f⊥ denotes the annihilator of f. Hence the
classification of subspaces f⊥ ⊂ S3(V∗) of codimension 1 can be reduced to the classification
of 1-dimensional subspaces f ⊂ S3(V). We obtain the required list by rewriting the above
list in term of the annihilator f⊥. �

In connection with this classification, by using the famous covariants (e.g., discriminant)
of cubic forms, we can assign the list of the classification to given single equations at point-
wise level. For detailed commentary of the covariants for cubic forms, refer to [4], [8] and
[11]. Here we describe the structure equations corresponding to each symbol algebra.

(I) f = 〈3e∗1 � e∗1 � e∗2, 3e∗1 � e∗2 � e∗2, e∗2 � e∗2 � e∗2〉.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d�11 ≡ ω2 ∧ π112 mod �0, �i, �i j,

d�12 ≡ ω1 ∧ π112 + ω2 ∧ π122 mod �0, �i, �i j,

d�22 ≡ ω1 ∧ π122 + ω2 ∧ π222 mod �0, �i, �i j.
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(II) f = 〈e∗1 � e∗1 � e∗1 − e∗2 � e∗2 � e∗2, 3e∗1 � e∗1 � e∗2, 3e∗1 � e∗2 � e∗2〉.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d�11 ≡ ω1 ∧ π111 + ω2 ∧ π112 mod �0, �i, �i j,

d�12 ≡ ω1 ∧ π112 + ω2 ∧ π122 mod �0, �i, �i j,

d�22 ≡ ω1 ∧ π122 − ω2 ∧ π111 mod �0, �i, �i j.

(III) f = 〈e∗1 � e∗1 � e∗1, 3e∗1 � e∗1 � e∗2, e∗2 � e∗2 � e∗2〉.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d�11 ≡ ω1 ∧ π111 + ω2 ∧ π112 mod �0, �i, �i j,

d�12 ≡ ω1 ∧ π112 mod �0, �i, �i j,

d�22 ≡ ω2 ∧ π222 mod �0, �i, �i j.

(IV) f = 〈e∗1 � e∗1 � e∗1 + 3e∗1 � e∗2 � e∗2, 3e∗1 � e∗1 � e∗2, e∗2 � e∗2 � e∗2〉.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d�11 ≡ ω1 ∧ π111 + ω2 ∧ π112 mod �0, �i, �i j,

d�12 ≡ ω1 ∧ π112 + ω2 ∧ π111 mod �0, �i, �i j,

d�22 ≡ ω1 ∧ π111 + ω2 ∧ π222 mod �0, �i, �i j.

Now, let us investigate the various aspects of single equations. In all cases, we have dim
R(1)

x = 3 for each point x ∈ R by the same argument as in the proof of Corollary 4.9.
In contrast to the case of codimension three, we can show that the above four types are all
involutive by the following discussion. We set the tableau matrix A consisting of the 1-forms
πi jk appeared in each structure equation;

(15) (I)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 π112

π112 π122

π122 π222

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (II)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π111 π112

π112 π122

π122 −π111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (III)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π111 π112

π112 0
0 π222

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (IV)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π111 π112

π112 π111

π111 π222

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

In this expression of A, the characters of A are given by s1 = 2, s2 = 1 for (I), (III), (IV)
and s1 = 3, s2 = 0 for (II). We show that the type (II) is involutive because the above A of
type (II) satisfies the equality dim Rx = 3 = s1 + 2s2 = 3. On the other hand, for other three
cases, we fail to pass the Cartan test by the inequality dim Rx = 3 < s1 + 2s2 = 2 + 2 = 4.
However, it is possible to break through this situation by the appropriate transformation
of each structure equation. In the following, we calculate only the case of type (III).

By using the matrix P :=
(
1 −1
1 1

)
, we transform the structure equation of type (III) as-

sociated with the change of the 1-forms in (11). Then we have the (reduced) tableau

matrix Â :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π111 + 3π112 + π222 −π111 − π112 + π222

−π111 − π112 + π222 π111 − π112 + π222

π111 − π112 + π222 −π111 + 3π112 + π222

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. In this description, 1-forms

π111 + 3π112 + π222, −π111 − π112 + π222, π111 − π112 + π222 in the first column are linearly
independent. Hence we have the reduced characters s1 = 3, s2 = 0 of Â and the equality
dim R(1)

x = s1 + 2s2 = 3 in the Cartan test. Consequently, we show that the type (III) is
involutive. The type (I) and (IV) are also involutive by the same argument. By the Cartan–
Kähler theorem, local solutions depend on three scalar functions of one variable. We also
mention that the generating condition [s−1, s−k] = s−k−1 (k = 1, 2, 3) is satisfied in all cases.

In this manner, the symbol algebras of all types have some common properties. On the
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other hand, we can provide the individual property that some cases have. As an example,
we discuss the covariant systems of (R; D1,D2,D3). In general, covariant systems mean the
invariant subsheafs of D3 under contact transformations. For third-order single equations,
we note that the covariant systems can be defined for types (I) and (III) from the decompos-
ability of 2-forms in the structure equations.

From now on, we assume the regularity of the symbol algebras for equations. We first
discuss the case of (I) f = 〈3e∗1� e∗1� e∗2, 3e∗1� e∗2� e∗2, e∗2� e∗2� e∗2〉. For this case, we can in-
troduce the covariant system E =

{
�0 = �i = �i j = ω2 = π112 = 0

}
. This covariant system

can be regarded as the third-order version of Monge characteristic systems for second-order
parabolic equations. However, this covariant system has a decisive difference compared with
the second-order parabolic case in the following sense.

Proposition 4.12. Let (R; D1,D2,D3) be a third-order equation belonging to type (I).
Then, the covariant system E is not completely integrable.

Proof. For the defining 1-forms �0, �i, �i j, ω2 and π112 of E, we have

d�22 ≡ ω1 ∧ π122 � 0 mod �0, �i, �i j, ω2, π112. �

Hence, at least by using the method similar to the second-order parabolic case, we can
not derive the subcategory consisting of equations like Goursat equations ([6]). Another
approach is needed to discover such a subcategory.

We next investigate the case of (III) f = 〈e∗1�e∗1�e∗1, 3e∗1�e∗1�e∗2, e∗2�e∗2�e∗2〉. In this case,
we can provide a pair of differential systems; E1 =

{
�0 = �i = �i j = ω1 = π112 = 0

}
and

E2 =
{
�0 = �i = �i j = ω2 = π222 = 0

}
as a covariant system. This covariant system can be

regarded as the third-order version of Monge characteristic systems in the case of second-
order hyperbolic equations. As an application of this covariant system Ei, the quadrature
initiated by Darboux is expected. Now, we give the simplest model equations belonging to
each class.

∂3z
∂x3

1

= 0 in case of (I),
∂3z
∂x3

1

+
∂3z
∂x3

2

= 0 in case of (II),

∂3z
∂x1∂x2

2

= 0 in case of (III),
∂3z
∂x3

1

− ∂3z
∂x1∂x2

2

= 0 in case of (IV).

These model equations can be regarded as the dual equations of the model equations of codi-
mension 3 given in the previous subsection. We also note that the notion of type-changing
equations can be defined for these single equations by perturbations of equations which have
the regular symbol of type (I) ([14]).

In the rest of this subsection, we mention the KdV equation which is an important soliton
equation;

(16)
∂z
∂x2
+
∂3z
∂x3

1

+ 6z
∂z
∂x1
= 0.

We explain how this equation can be understood in our framework. For this purpose, we
rewrite the KdV equation (16) as the equation p2+p111+6zp1 = 0. Then we have the descrip-
tion of the defining 1-forms of D3, especially�11 := dp11+(p2+6zp1)dx1− p112dx2, �12 :=



Contact Geometry of Third Order 401

dp12 − p112dx1 − p122dx2 and �22 := dp22 − p122dx1 − p222dx2. The exterior derivative of
�11 satisfies

d�11 = (dp2 + 6zdp1 + 6p1dz) ∧ dx1 − dp112 ∧ dx2,

≡ dx2 ∧ {dp112 + (p22 + 6zp12 + 6p1 p2)dx1} , mod �0, �i, �i j.

Thus, if we take the coframe
{
�0, �i, �i j, ωi, πi jk

}
on the equation manifold R by putting

ω1 := dx1, ω2 := dx2, π112 := dp112 + (p22 + 6zp12 + 6p1 p2)dx1 and π122 := dp122, �222 :=
dp222, then we have the structure equation of type (I). Namely, we have shown that the KdV
equation (16) belongs to type (I).
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