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Abstract
We study topological zeta functions of complex plane curve singularities using toric modifi-

cations and further developments. As applications of the research method, we prove that the
topological zeta function is a topological invariant for complex plane curve singularities, we
give a short and new proof of the monodromy conjecture for plane curves.

1. Introduction

1. Introduction
Let f be a non-constant complex function on a smooth complex algebraic variety X,

and let X0 be its zero locus. In 1992, using an embedded resolution of singularities Denef
and Loeser [5] introduced the topological zeta function for f . Let h : Y → (X, X0) be an
embedded resolution of singularities of X0, i.e, a proper morphism h : Y → X with Y smooth
such that the restriction Y \ h−1(X0) → X \ X0 is an isomorphism and h−1(X0) is a divisor
with normal crossings. The exceptional divisors and irreducible components of the strict
transform of h are denoted by Ei, where i is in a finite set S. The multiplicities Ni of h∗ f
on Ei and the discrepancies νi − 1 of the Jacobian of h are determined respectively in the
formulas h−1(X0) =

∑
i∈S NiEi and KY = h∗KX +

∑
i∈S(νi − 1)Ei. For I ⊆ S we write EI for

the intersection
⋂

i∈I Ei and write E◦I for the set EI \⋃ j�I E j. For a closed point x in X0, we
denote Sx := {i ∈ S | h(Ei) = x}. With the function f and the morphism h as above, the
associated topological zeta function is defined as follows

Ztop
f (s) =

∑
I⊆S

χ(E◦I )
∏
i∈I

1
Nis + νi

.

It was shown that the function Ztop
f (s) is independent of the choice of h (cf. [5, Théorème

3.2]), and its poles are interesting numerical invariants, which concern the monodromy con-
jecture. The local topological zeta function Ztop

f ,x (s) associated to ( f , x) is also defined in the
same way where the sum over I ⊆ S is replaced by the sum over I ⊆ S satisfying I ∩ Sx � ∅.

It is a fact that the monodromy conjecture is one of important problems in singularity
theory, algebraic geometry and other branches of mathematics. In Igusa’s original version,
it is expected to be a bridge that connects geometry and arithmetic of a integer-coefficient
polynomial. The topological version was first stated in [5] using the topological zeta func-
tion.
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Conjecture 1.1 (Topological monodromy conjecture). If θ is a pole of Ztop
f (s), then

exp(2πiθ) is an eigenvalue of the monodromy of ( f , x) for some closed point x in X0.

Up to now, the positiveness of the conjecture has been confirmed only in particular cases,
and finding a proof for the general case is still a widely open problem. Any proof for this
conjecture can motivate the development of several fields of mathematics.

In this article, we study the local topological zeta function for reduced complex plane
curve singularities ( f ,O) which have no smooth irreducible components, as well as some
related problems in a practical method using toric modifications. The first result, Theorem
3.10, describes explicitly Ztop

f ,O(s) in terms of the simplified extended resolution graph Gs of
( f ,O) defined in [7]. Namely,

Ztop
f ,O(s) =

∑
B

⎡⎢⎢⎢⎢⎣ bB
1

(N(PB
root)s + ν(PB

root))(N(PB
1 )s + ν(PB

1 ))
+ ZB(s)

⎤⎥⎥⎥⎥⎦ ,
with the sum running over non-top bamboos B of Gs. Each vertex of a bamboo B is attached
with a primitive vector PB

i = (aB
i , b

B
i )t, and if the vertex PB

i of Gs is of degree rB
i + 1, we

define

ZB(s) =
kB∑
i=1

⎡⎢⎢⎢⎢⎢⎣ det(PB
i , P

B
i+1)

(N(PB
i )s + ν(PB

i ))(N(PB
i+1)s + ν(PB

i+1))
− rB

i

N(PB
i )s + ν(PB

i )

⎤⎥⎥⎥⎥⎥⎦ .
Here, the numbers N(PB

root), ν(P
B
root), N(PB

i ) and ν(PB
i ) concerning the resolution of singu-

larities of ( f ,O) are also given in Theorem 3.10. Let B0 denote the first bamboo of Gs.
The hypothesis on ( f ,O) mentioned above means that ai = aB0

i ≥ 2, bi = bB0
i ≥ 2 and

(ai, bi) = 1 for all i. Remark that if ai = 1 or bi = 1 for some i, f becomes non-convenient
via an analytic change of coordinates described in [6, Lemma 1.3]. In fact, our method also
works well in this case, and the restriction of study to the case of reducedness and ai ≥ 2,
bi ≥ 2 and (ai, bi) = 1 for all i is simply to simplify the notation. Indeed, if ai = 1 for some
i, we meet the so-called exceptional integral vector (1, bi) which corresponds to the lowest
right end edge of the Newton boundary. In this situation, we add an additional weight vector
(1, bi)t + (0, 1)t, which is the new right end vertex. If ai = 1 for some i, we may face to this
situation several times in higher bamboos B, i.e. aB

j = 1 for some j, while if ai ≥ 2, bi ≥ 2,
(ai, bi) = 1 for all i, it then follows from [2] that aB

j ≥ 2, bB
j ≥ 2 and (aB

j , b
B
j ) = 1 for all

bamboos B and all j.
As an application of Theorem 3.10, we prove that the local topological zeta function is a

topological invariant for reduced complex plane curve singularities (Theorem 4.1). This is
in fact not a trivial result because one finds in [3] an example of surface singularities with
the same topological type but different local topological zeta functions.

As another application of Theorem 3.10, we revisit the works by Loeser [9] and Ro-
drigues [12] on the monodromy conjecture for curves with some new ideas. Namely, with
the method computing Ztop

f ,O(s) we prove Conjecture 1.1 for reduced complex plane curves
(Theorem 4.2). This result was already made in [9] and [12], our contribution is just a new
short proof in terms of an explicit performance of the poles of Ztop

f ,O(s). We follow the track
A’Campo and Oka in [2] and Lê in [7, 8] to reach the proof.
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2. Nondegenerate complex plane curve singularities

2. Nondegenerate complex plane curve singularities2.1. Toric modifications.
2.1. Toric modifications. Let N be the 2-latice

{
(a, b)t | a, b ∈ Z}, and N+ its positive

subgroup
{
(a, b)t ∈ N | a, b ≥ 0

}
. We consider NR = N ⊗R and N+

R
= N+ ⊗R. By definition,

a simplicial cone subdivision Σ∗ of N+
R

is a sequence (T1, . . . , Tm) of primitive weight vectors
in N+ such that det(Ti, Ti+1) ≥ 1 for all 0 ≤ i ≤ m, with T0 = (1, 0)t and Tm+1 = (0, 1)t. A
simplicial cone subdivision Σ∗ is said to be regular if det(Ti, Ti+1) = 1 for all 0 ≤ i ≤ m.
It is clear that N+

R
is covered by m + 1 cones C(Ti, Ti+1) = {xTi + yTi+1 | x, y ≥ 0} of Σ∗.

These cones are in one-to-one correspondence with the matrices σi = (Ti, Ti+1); so we shall
identify C(Ti, Ti+1) with σi for all 0 ≤ i ≤ m.

It is a fact that each matrix σ =
(
a b
c d

)
in GL(2,Z) defines a birational map

Φσ : C2 → C2

sending (x, y) to (xayb, xcyd). In toric geometry, one uses such birational map to define toric
modifications. For a regular simplicial cone subdivision Σ∗ with vertices T1, . . . , Tm, we
consider the cones σi = (Ti, Ti+1) and the corresponding toric charts (C2

σi
; xi, yi), 0 ≤ i ≤ m,

with C2
σi

a copy of C2. On the disjoint union
⊔m

i=0

(
C

2
σi

; xi, yi

)
, as in [11] we consider the

equivalence relation given by (xi, yi) ∼ (x j, y j) if and only if Φσ−1
j σi

(xi, yi) = (x j, y j). Let X

be the quotient of
⊔m

i=0

(
C

2
σi

; xi, yi

)
by the previous equivalence relation, which is endowed

with the quotient topology. Then X is a smooth complex manifold of dimension 2, with the
toric charts (C2

σi
; xi, yi) as local coordinates systems. In other words, we can present

X =
m⋃

i=0

(
C

2
σi

; xi, yi

)
,

where C2
σi

are viewed as open subsets of X, and two charts (C2
σi

; xi, yi) and (C2
σ j

; x j, y j) with
nonempty intersection are compatibly glued in such a way that

(xi, yi) ≡ (x j, y j) if and only if (xi, yi) ∼ (x j, y j).(2.1)

We now define π : X → C2 with π(xi, yi) = Φσi(xi, yi) for (xi, yi) in C2
σi

, 0 ≤ i ≤ m. This
map is compatible with the glueing and it is called the toric modification associated to the
regular simplicial cone subdivision Σ∗.

As explained in [6], the toric modification π can be decomposed as a composition of
finitely many quadratic blowups. The divisor π−1(O) has simple normal crossings with m
irreducible components E(Ti), named as exceptional divisors, for 1 ≤ i ≤ m. For every
1 ≤ i ≤ m, the exceptional divisor E(Ti) corresponds uniquely to the vertex Ti of Σ∗, and it
is covered by two charts C2

σi−1
and C2

σi
, with the equations yi−1 = 0 and xi = 0 respectively.

Therefore, only E(Ti) and E(Ti+1) intersect for all 1 ≤ i ≤ m − 1, and the intersections are
transversal. The noncompact components E(T0) = {x0 = 0} and E(Tm+1) = {ym = 0} are
isomorphic to the coordinate axes x = 0 and y = 0 respectively.

2.2. A toric resolution for f (x, y).
2.2. A toric resolution for f (x, y). Let f (x, y) =

∑
(a,b)∈N2 cαβxαyβ be in C{x, y} such that

f (O) = 0. Denote by Γ or Γ f the Newton polyhedron of f (x, y). Clearly, the boundary of
Γ contains finitely many facets each of which is completely defined by a positive primitive
weight vector of the form P = (a, b)t ∈ N+, where (a, b) is a normal vector of the facet. The
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singularity f (x, y) at O is said to be nondegenerate with respect to Γ if it has the form

f (x, y) = cxrys f1(x, y) · · · fk(x, y),(2.2)

fi(x, y) =
ri∏
	=1

(yai + ξi	xbi) + (higher terms),

where c � 0, and for every 1 ≤ i ≤ k,

(ai, bi) = 1,(2.3)

ξi	 � 0, ξi	 � ξi	′ if 	 � 	′.

For simplicity, we shall assume that c = 1 and r = s = 0 in the formula of f (x, y). Then the
Newton polyhedron Γ has k primitive weight vectors P1 = (a1, b1)t, . . . , Pk = (ak, bk)t as k
compact facets. Define an ordering on primitive vectors as follows P < Q if det(P,Q) > 0.
We order the Pi in such a way that P1 < · · · < Pk.

Let Σ∗ be a regular simplicial cone subdivision with vertices T j = (c j, d j)t, 1 ≤ j ≤ m,
augmented by (c0, d0) = (1, 0), (cm+1, dm+1) = (0, 1), with det(T j, T j+1) = 1 for all 0 ≤ j ≤ m.
We say that Σ∗ is admissible for f (x, y) if {P1, . . . , Pk} ⊆ {T1, . . . , Tm}. Let π : X → C2 be
the toric modification associated to Σ∗. Then π is said to be admissible for f (x, y) if Σ∗ is
admissible for f (x, y). In the case where f (x, y) is nondegenerate with respect to Γ, π is
nothing else than a resolution of singularity of f (x, y) at O, with simple normal crossing
divisors. We respectively denote by N(T j) and ν(T j) − 1 the multiplicity of π∗ f and that of
π∗(dx ∧ dy) on the exceptional divisor E(T j), for 1 ≤ j ≤ m. Since the expression of π on
C

2
σ j

is π(x j, y j) = (xcj

j y
c j+1

j , x
dj

j y
d j+1

j ), we have

π∗(dx ∧ dy)(x j, y j) = xcj+d j−1
j y

c j+1+d j+1−1
j dx j ∧ dy j

on C2
σ j

, thus

ν(T j) = c j + d j,(2.4)

for all 1 ≤ j ≤ m. It is clear that if F is an irreducible component of the strict transform of
f (x, y), and if f (x, y) is reduced, then ν(F) = 1.

We are in fact using the ordering defined above by P < Q if det(P,Q) > 0. To compute
the multiplicity N(T j) of π∗ f on E(T j) we consider the following three cases. The first one
is Pi ≤ T j < Pi+1, for some 1 ≤ i ≤ k − 1. Since Pt ≤ T j for all 1 ≤ t ≤ i, it follows from [2,
Section 4.3] that, on the chart (C2

σ j
; x j, y j), and for 1 ≤ t ≤ i,

π∗ ft(x j, y j) = xrtbtc j

j y
rtbtc j+1

j

⎛⎜⎜⎜⎜⎜⎝ rt∏
	=1

(xatd j−btc j

j y
atd j+1−btc j+1

j + ξt	) + x jRt(x j, y j)

⎞⎟⎟⎟⎟⎟⎠ ,
for some Rt(x j, y j) ∈ C{x j, y j}. Since T j < Pt for all i + 1 ≤ t ≤ k, it follows similarly as
previous, for i + 1 ≤ t ≤ k, that

π∗ ft(x j, y j) = xrtatd j

j y
rtatd j+1

j

⎛⎜⎜⎜⎜⎜⎝ rt∏
	=1

(
1 + ξt	x

btc j−atd j

j y
btc j+1−atd j+1

j

)
+ x jRt(x j, y j)

⎞⎟⎟⎟⎟⎟⎠ ,
for some Rt(x j, y j) ∈ C{x j, y j}. Thus, on the chart (C2

σ j
; x j, y j),
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π∗ f (x j, y j) =
i∏

t=1

π∗ ft(x j, y j) ·
k∏

t=i+1

π∗ ft(x j, y j) = xN(T j)
j y

N(T j+1)
j u(x j, y j),

with u(x j, y j) a unit in C{x j, y j}, and N(T j) = c j
∑i

t=1 rtbt+d j
∑k

t=i+1 rtat. In the same way, for
the second case T j < P1, we get N(T j) = d j

∑k
t=1 rtat, and for the third case Pk ≤ T j, we get

N(T j) = c j
∑k

t=1 rtbt. Thus, by convention that P0 := T0 = (1, 0)t and Pk+1 := Tm+1 = (0, 1)t,
we can summarize the three cases by a common formula as follows

N(T j) = c j

i∑
t=1

rtbt + d j

k∑
t=i+1

rtat,(2.5)

where Pi ≤ T j < Pi+1, for all 1 ≤ j ≤ m.
When T j = Pi for some i,

π∗ fi(x j, y j) = xriaibi
j yribici+1

j

⎛⎜⎜⎜⎜⎜⎝ ri∏
	=1

(y j + ξi	) + x jRi(x j, y j)

⎞⎟⎟⎟⎟⎟⎠ ,
with Ri(x j, y j) in C{x j, y j}. Therefore, there are ri irreducible components of the strict trans-
form intersecting transversally with E(Pi) at (0,−ξi	), 1 ≤ 	 ≤ ri, in the chart (C2

σ j
; x j, y j).

If 2 ≤ j ≤ m − 1 and T j � Pi for all 1 ≤ i ≤ k, then E(T j) intersects with exactly two other
exceptional divisors and does not intersect with the strict transform. Also, if T1 � P1 (resp.
Tm � Pk), then E(T1) (resp. E(Tk)) intersects with only one divisor.

The below is the configuration of the toric resolution for the nondegenerate singularity
f (x, y) at O:

. . .

�E0i1 (1, 1)

�E0i2 (1, 1)

...
�E0iri (1, 1)

E(T2)

. . .
E(T j+1)

E(Tm)

E(T j−1) (N(T j−1), ν(T j−1))

E(T1) (N(T1), ν(T1))

E(Pi) = E(T j) (N(T j), ν(T j))

2.3. The topological zeta function of a nondegenerate singularity.
2.3. The topological zeta function of a nondegenerate singularity. Let f (x, y) be a

singularity at O nondegenerate with respect to its Newton polyhedron Γ. Assume that f (x, y)
has the form as in (2.2) and (2.3) with c = 1 and r = s = 0. Recall that Pi = (ai, bi)t for
0 ≤ i ≤ k + 1, with (a0, b0) = (1, 0) and (ak+1, bk+1) = (0, 1).

Theorem 2.1. With f (x, y) nondegenerate as previous, Ztop
f ,O(s) equals

k∑
i=0

det(Pi, Pi+1)
(N(Pi)s + ν(Pi))(N(Pi+1)s + ν(Pi+1))

− s
s + 1

k∑
i=1

ri

N(Pi)s + ν(Pi)
,
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where, for every 0 ≤ i ≤ k + 1, ν(Pi) = ai + bi and N(Pi) = ai
∑i

t=1 rtbt + bi
∑k

t=i+1 rtat.

Proof. We use the toric resolution described in Section 2.2 to compute the topological zeta
function. Here is the table with the strata E◦I of π−1( f −1(O)) and their Euler characteristic:

Strata Euler char. Conditions
E(T1)◦, E(Tm)◦ 1

E(T j)◦ 0 1 < j < m, T j � Pi (∀ 1 ≤ i ≤ k)
E(Pi)◦ −ri 1 ≤ i ≤ k

E◦0i	 0 1 ≤ i ≤ k, 1 ≤ 	 ≤ ri

E0i	 ∩ E0i	′ = ∅ 0 1 ≤ i ≤ k, 	 � 	′

E(T j) ∩ E(T j+1) = 1pt 1 1 ≤ j < m
E(T j) ∩ E(T j′) = ∅ 0 | j − j′| ≥ 2
E(T j) ∩ E0i	 = ∅ 0 1 ≤ i ≤ k, 1 ≤ 	 ≤ ri, T j � Pi (∀ i)

E(Pi) ∩ E0i	 = 1pt 1 1 ≤ i ≤ k, 1 ≤ 	 ≤ ri

E(Pi) ∩ E0i′	 = ∅ 0 1 ≤ i � i′ ≤ k

By definition, the topological zeta function Ztop
f ,O(s) is the sum of the following functions

Z1 =
1

N(T1)s + ν(T1)
, Z2 =

1
N(Tm)s + ν(Tm)

, Z3 =

k∑
i=1

−ri

N(Pi)s + ν(Pi)
,

Z4 =

m−1∑
j=1

1
(N(T j)s + ν(T j))(N(T j+1)s + ν(T j+1))

, Z5 =

k∑
i=1

ri

(s + 1)(N(Pi)s + ν(Pi))
.

For all 0 ≤ i ≤ k + 1, let ji be the index with 0 ≤ ji ≤ m + 1 and T ji = Pi. Then Z4 equals

j1−1∑
j=1

1
(N(T j)s+ν(T j))(N(T j+1)s+ν(T j+1))

+

m−1∑
j= jk

1
(N(T j)s+ν(T j))(N(T j+1)s+ν(T j+1))

plus

k−1∑
i=1

ji+1−1∑
j= ji

1
(N(T j)s + ν(T j))(N(T j+1)s + ν(T j+1))

.

Claim 2.2. For 0 ≤ i ≤ k and ji ≤ j ≤ ji+1 − 1,∣∣∣∣∣∣N(T j+1) N(T j)
ν(T j+1) ν(T j)

∣∣∣∣∣∣ = Di :=
k∑

t=i+1

rtat −
i∑

t=1

rtbt.

The proof of this claim is trivial, thanks to (2.4), (2.5). If Di � 0, then for ji ≤ j ≤ ji+1−1,

1
(N(T j)s + ν(T j))(N(T j+1)s + ν(T j+1))

=
N(T j+1)/Di

N(T j+1)s + ν(T j+1)
− N(T j)/Di

N(T j)s + ν(T j)
.

In particular, D0 and Dk are automatically nonzero, since D0 = N(T1) and Dk = −N(Tm).
Moreover, N(P1)/D0 = b1 and N(Pk)/Dk = −ak, hence we have

j1−1∑
j=1

1
(N(T j)s + ν(T j))(N(T j+1)s + ν(T j+1))

=
b1

N(P1)s + ν(P1)
− Z1,
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m−1∑
j= jk

1
(N(T j)s + ν(T j))(N(T j+1)s + ν(T j+1))

=
ak

N(Pk)s + ν(Pk)
− Z2.

For 1 ≤ i ≤ k − 1, if Di � 0, then

Ii :=
ji+1−1∑
j= ji

1
(N(T j)s + ν(T j))(N(T j+1)s + ν(T j+1))

=
N(Pi+1)/Di

N(Pi+1)s + ν(Pi+1)
− N(Pi)/Di

N(Pi)s + ν(Pi)

=
det(Pi, Pi+1)

(N(Pi)s + ν(Pi))(N(Pi+1)s + ν(Pi+1))
.

Also, if Di = 0, then for ji ≤ j ≤ ji+1 − 1 we have

1
λ jλ j+1

= (ai + bi)
(

c j

λ j
− c j+1

λ j+1

)
for λ j :=

N(T j)
N(Pi)

=
ν(T j)
ν(Pi)

=
c j + d j

ai + bi
;

hence

Ii =
det(Pi, Pi+1)ν(Pi)/ν(Pi+1)

(N(Pi)s + ν(Pi))2 =
det(Pi, Pi+1)

(N(Pi)s + ν(Pi))(N(Pi+1)s + ν(Pi+1))
.

In conclusion, by the above computation, Ztop
f ,O(s) equals

k∑
i=0

det(Pi, Pi+1)
(N(Pi)s + ν(Pi))(N(Pi+1)s + ν(Pi+1))

−
k∑

i=1

ris
(s + 1)(N(Pi)s + ν(Pi))

,

and the theorem is proved. �

We can deduce from the proof of Theorem 2.1 that − ν(Pi)
N(Pi)

is a pole of order 2 of the
topological zeta function Ztop

f ,O(s) if and only if Di = 0. Further, also due to Theorem 2.1, we
can prove the following proposition. We leave the detailed proof to the reader.

Proposition 2.3. With f (x, y) nondegenerate as previous, for any 1 ≤ i ≤ k, the rational
number − ν(Pi)

N(Pi)
is a pole of Ztop

f ,O(s).

3. General complex plane curve singularities

3. General complex plane curve singularities3.1. Toric resolution tree.
3.1. Toric resolution tree. Let f be a reduced complex plane curve singularity at O

which has no smooth irreducible components, and let C = f −1(0). Using toric modifications
with centers determined canonically in terms of Tschirnhausen polynomials (see [2]), Q.T.
Lê [7] constructs a resolution of singularity of f at O and a resolution graph Gs for ( f ,O).
His method allows to arrange the vertices of Gs into an ordering so that we can consider
Gs as a tree. With the help of [7], Gs is quite simple but still sufficiently strong to describe
combinatorially the monodromy zeta function of ( f ,O). Further, Gs is also used in [8] to
formulate a recurrence formula for the motivic Milnor fiber of ( f ,O). It is shown explicitly
in this article that we can also compute the topological zeta function and give a new proof of
the monodromy conjecture for plane curves in terms of Gs. However, to reach to this goal,
we have to construct a more complicated graph G, which is useful for the computation.

Write f as follows

(3.1) f = f1 · · · fk, fi = fi1 · · · firi , fi	 = fi	1 · · · fi	ri	 ,
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where for each (i, 	, τ), fi	τ is irreducible in C{x}[y] and of the form

(3.2) fi	τ(x, y) = (yai + ξi	xbi)Ai	τ + (higher terms),

with ξi	 being nonzero and distinct. It is clear that (ai, bi) is coprime. In this factorization,
the (Newton) principal parts of fi and f j are weighted homogeneous of different weights for
i � j, the principal parts of fi	 and fi	′ are weighted homogeneous of the same weight (this
weight corresponds to (ai, bi)). We assume that

ai ≥ 2, bi ≥ 2 and (ai, bi) = 1 for all 1 ≤ i ≤ k,

the assumption guarantees that f has no smooth branches. In fact, if ai = 1 or bi = 1, one
may use an analytic change of coordinates (cf. [6, Lemma 1.3]) to make f non-convenient,
which we do not want to consider. Put

Ai = Ai1 + · · · + Airi , Ai	 = Ai	1 + · · · + Ai	ri	 .

Then by [2, Section 4.3], the Ai	-th Tschirnhausen approximate polynomial of fi	(x, y) has
the form

hi	(x, y) = yai + ξi	xbi + (higher terms).

Put Pi = (ai, bi)t for 1 ≤ i ≤ k. These weight vectors correspond to the compact facets of the
Newton polyhedron Γ of f (x, y). Suppose that P1 < · · · < Pk. Let Σ∗ be a regular simplicial
cone subdivision with vertices T j = (c j, d j)t ∈ N+, for 1 ≤ j ≤ m, such that T1 < · · · < Tm

and {P1, . . . , Pk} ⊆ {T1, . . . , Tm}. We can assume that T1 � P1 and Tm � Pk (see [7]). Let πO

be the toric modification associated to Σ∗. Then we construct the first floor of G as follows:
The vertices correspond to the exceptional divisors E(T1), . . . , E(Tm) of πO, the edges are
edges joining E(T j) with E(T j+1), for all 1 ≤ j ≤ m − 1. These vertices and edges form a
subgraph B0 of G, which is named as the first bamboo of G. By convention, the coordinates
(x, y) will be rewritten as (xB0 , yB0 ).

We construct G by induction. Assume that Bp is a bamboo of G, which consists of ver-
tices E(T Bp

1 ), . . . , E(T Bp

mBp ) with T Bp

1 < · · · < T Bp

mBp . Let πBp : XBp → C2 be the toric modifi-
cation constructing Bp, and let fBp (xBp , yBp ) be in C{xBp , yBp} for which πBp is admissible.
Note that XBp is covered by the toric charts (C2

Bp,σ j
; xBp, j, yBp, j), for 1 ≤ j ≤ mBp , and

that, for simplicity, we sometimes write their coordinates by (x j, y j) instead of (xBp, j, yBp, j).
Assume that fBp (xBp , yBp ) has the form

fBp (xBp , yBp ) = UBp (xBp , yBp )xNBp

Bp

kBp∏
i=1

r
Bp
i∏
	=1

r
Bp
i	∏
τ=1

f Bp

i	τ (xBp , yBp ),

where NBp is in N, UBp (xBp , yBp ) is a unit in the ring C{xBp , yBp}, and

f Bp

i	τ (xBp , yBp ) = (ya
Bp
i

Bp
+ ξ

Bp

i	 xb
Bp
i

Bp
)A

Bp
i	τ + (higher terms)

are irreducible in C{xBp , yBp}, with ξBp

i	 � 0 distinct. It follows from [2, Section 4.3] that

aBp

i ≥ 2, bBp

i ≥ 2 and (aBp

i ≥ 2, bBp

i ≥ 2) = 1 for all 1 ≤ i ≤ kBp ,
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because all ai (for 1 ≤ i ≤ k) corresponding to B0 are greater than or equal to 2. Notice
that when Bp = B0, we have UBp (xBp , yBp ) = 1, NBp = 0, and fBp is nothing but f .

Put PBp

i = (aBp

i , b
Bp

i )t for all 1 ≤ i ≤ kBp , and assume that PBp

1 < · · · < PBp

kBp . By the

admissibility for fBp (xBp , yBp ) of πBp , we have {PBp

1 , . . . , P
Bp

kBp } ⊆ {T Bp

1 , . . . , T
Bp

mBp }. The

vertices E(PBp

1 ), . . . , E(PBp

kBp ) are called the principal vertices of Bp. By [2, Section 4.3], the

ABp

i	 -th Tschirnhausen approximate polynomial of f Bp

i	 (xBp , yBp ) has the form

hBp

i	 (xBp , yBp ) = y
a

Bp
i

Bp
+ ξ

Bp

i	 xb
Bp
i

Bp
+ (higher terms).

If T Bp

j = PBp

i0
, the pullbacks π∗

Bp
fBp and π∗

Bp
hi0	 on the chart (C2

Bp,σ j
; x j, y j) are as follows

π∗Bp
fBp (x j, y j) = ξx

N(P
Bp
i0

)

j y
N(T

Bp
j+1 )

j

(
(y j + ξ

Bp

i0	
)A

Bp
i0	 + x jR(x j, y j)

)
and

π∗Bp
hBp

i0	
(x j, y j) = x

a
Bp
i0

b
Bp
i0

j y
c

Bp
j+1b

Bp
i0

j (y j + ξ
Bp

i0	
+ x jR′(x j, y j)),

for some ξ in C∗, R(x j, y j) and R′(x j, y j) in C{x j, y j}. Without loss of generality we can (and
will) assume that ξ = 1. By [2], in this step, there is a canonical way to change of variables
which uses the Tschirnhausen approximate polynomial hBp

i0	
, namely

(3.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u = x j

v = π∗
Bp

hBp

i0	
/x

a
Bp
i0

b
Bp
i0

j = y
c

Bp
j+1b

Bp
i

j (y j + ξi0	 + x jR′(x j, y j)).

It is easy to obtain the following lemma.

Lemma 3.1. The inverse modification of (3.3) is of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
x j = u

y j = −ξi0	 + (−ξi0	)1/c
Bp
j+1b

Bp
i0 v + R

′′
(u, v),

for some R
′′
(u, v) in C{u, v}.

Fix i0 in {1, . . . , kBp} and 	0 in {1, . . . , rBp

i }. Since ξi0	0 � 0, it follows from Lemma 3.1
that the pullback π∗

Bp
fBp is of the following form, in the Tschirnhausen coordinates (u, v),

π∗Bp
fBp (u, v) = U′(u, v)uN(P

Bp
i0

)
k′∏

i=1

r′i∏
	=1

r′i	∏
τ=1

f ′i	τ(u, v),

where U′(u, v) is a unit in C{u, v}, and

f ′i	τ(u, v) = (va
′
i + ξ′i	u

b′i )A′i	τ + (higher terms)

are irreducible in C{u}[v], with ξ′i	 ∈ C∗ distinct. The Newton polyhedron of π∗
Bp

fBp (u, v)
again gives rise to an admissible toric modification, which constructs a bamboo B whose
vertices are denoted by E(T B

1 ), . . . , E(T B
mB) with T B

1 < · · · < T B
mB . In G, we connect E(T B

1 )

to E(PBp

i0
) by a single edge, and this edge is taken into account of B.
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Definition 3.2. The graph G is called the toric resolution tree G of ( f ,O). The bamboo
B constructed as above is called the successor (in G) of Bp at E(PBp

i0
) associated to 	0. The

bamboo Bp is called the predecessor (in G) of B. A bamboo of G which has no successor
is called a top bamboo of G. A bamboo of G which is not a top bamboo is called a non-top
bamboo of G. Let Bnt denote the set of all the non-top bamboos of G.

Notation 3.3. Since each bamboo B � B0 determines uniquely PBp

i0
, hence from now on,

we denote PB
root := PBp

i0
. Remark again that E(PB

root) is not a vertex of B, it is a vertex of Bp.

Remark that every top bamboo has a unique vertex and a unique edge. The number of top
bamboos of G is nothing else than the number of irreducible components of the singularity
( f ,O). The below illustrates a toric resolution tree of a plane curve singularity (where the
bamboos containing a unique white vertex are top bamboos):

B0
E(Pi) E(T j) E(Pk) E(Tm)

• • • • ••••�
�

�
�

�
�

�
�

�
�

�

Bp

E(PBp
i0

)=E(PB
root)•

•

•
•

�
�

�
�

�
��

•
•�
�
�
◦

•
����◦ �

�
�

�
�

•�
��
◦

•

�
�
�
�
�
�
�B

E(T B

mB )

•	
		
◦ •

•
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�
�

�
��
•

•
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•
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�
�
�
�
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�
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�
��

◦
◦

•

•

Fig.1. A toric resolution tree of a plane curve singularity

Notation 3.4. It is convenient to denote

(xB, yB) := (u, v), fB := π∗Bp
fBp , UB := U′,

(aB
i , b

B
i ) := (a′i , b

′
i), AB

i	τ := A′i	τ, ξ
B
i	 := ξ′i	, kB := k′, rB

i := r′i , rB
i	 := r′i	.

Then we rewrite the initial expansion of fB(xB, yB) as follows

fB = UBxN(PB
root)

B
· f B

1 · · · f B
kB , f B

i = f B
i1 · · · f B

irB
i
, f B

i	 = f B
i	1 · · · f B

i	rB
i	
,(3.4)

f B
i	τ(xB, yB) = (yaB

i
B
+ ξBi	 xbB

i
B

)AB
i	τ + (higher terms),

where aB
i ≥ 2, aB

i ≥ 2, (aB
i , b

B
i ) = 1, and f B

i	τ(xB, yB) are irreducible in C{xB, yB}, and the

complex numbers ξBp

i	 are nonzero and distinct.

Notation 3.5. We denote PB
0 := (1, 0)t, PB

kB+1 := (0, 1)t; also, if B = B0, we write simply
k for kB0 , and Pi for PB0

i , for 0 ≤ i ≤ k + 1.

Remark 3.6. To a bamboo B of G we associate a unique bamboo Bs whose vertices are
the principal vertices of B together with E(T B

1 ) and E(T B
mB). All the edges of Bs consist
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of the one connecting E(T B
1 ) with E(PB

1 ), the ones connecting E(PB
i ) with E(PB

i+1) for all
1 ≤ i ≤ kB − 1, and the one connecting E(PB

kB) with E(T B
mB). Working with the bamboos

Bs and using the method in constructing G we obtain a tree, which recovers the simplified
extended resolution graph Gs in [8].

3.2. Multiplicities and discrepancies.
3.2. Multiplicities and discrepancies. Let B be a bamboo of G and Bp be the predeces-

sor of B in G. First, using the notation in Section 3.1 (in particular, Notation 3.3) and the
same method of computation as in Section 2.2 we obtain the following lemmas.

Lemma 3.7. For B = B0, and 1 ≤ j ≤ m with Pi ≤ T j < Pi+1, we have

N(T j) = c j

i∑
t=1

btAt + d j

k∑
t=i+1

atAt,

where Ai =
∑ri
	=1

∑ri	
τ=1 Ai	τ.

As above, suppose that B has all vertices E(T B
j ), with T B

j = (cB
j , d

B
j )t and T B

1 < · · · <
T B

mB , and it has E(PB
1 ), . . . , E(PB

kB) as the principal vertices.

Lemma 3.8. For B � B0 and 1 ≤ j ≤ mB with PB
i ≤ T B

j < PB
i+1, we have

N(T B
j ) = cB

j N(PB
root) + cB

j

i∑
t=1

bB
t AB

t + dB
j

kB∑
t=i+1

aB
t AB

t ,

where AB
i =

∑rB
i
	=1

∑rB
i	
τ=1 AB

i	τ.

Consider the Tschirnhausen coordinates (xBp , yBp ), which is used to construct Bp, and
consider the 2-form ωBp = dxBp ∧ dyBp on (C2; xBp , yBp ) (note that (xB0 , yB0 ) = (x, y) and
ω := dx ∧ dy). Let πBp : XBp → (C2; xBp , yBp ) be the toric modification constructing Bp.

Suppose that j′ is the index such that T Bp

j′ = PB
root. Then, in the chart (C2

Bp, j′
; xBp, j′ , yBp, j′) of

XBp , we have

Φ∗Bp
ω = xν(P

B
root)−1

Bp, j′
yν−1

Bp, j′dxBp, j′ ∧ dyBp, j′

for some ν in N∗, where ΦBp is the composition of the toric modifications along the series
of consecutive bamboos from B0 to Bp in G. Via the change of variables in Lemma 3.1, this
form Φ∗

Bp
ω becomes

Ũ(xB, yB)xν(P
B
root)−1

B
ωB,

where Ũ(xB, yB) is a unit in C{xB, yB}. Here, due to Notation 3.4, we replace (u, v) by
(xB, yB) when applying Lemma 3.1.

Lemma 3.9. With the previous notation and hypothesis, for B = B0 and 1 ≤ j ≤ m, we
have ν(T j) = c j + d j; otherwise, for 1 ≤ j ≤ mB,

ν(T B
j ) = cB

j ν(P
B
root) + dB

j .

Proof. The case B = B0 is similar as in the nondegenerate case. Now we consider the
case B � B0. In the chart (C2

B, j; xB, j, yB, j) of XB, we have
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π∗B
(
xν(P

B
root)−1

B
ωB

)
= x

cB
j ν(P

B
root)+dB

j −1

B, j y
cB

j+1ν(P
B
root)+dB

j+1−1

B, j dxB, j ∧ dyB, j.

Hence ν(T B
j ) = cB

j ν(P
B
root) + dB

j and the lemma is proved. �

3.3. The topological zeta function.
3.3. The topological zeta function. Let f (x, y) be a reduced complex plane curve singu-

larity at O = (0, 0), in which its initial expansion is given in (3.1) and (3.2) (with respect to
B0) and the initial expansion of fB in the Tschirnhausen coordinates (xB, yB) with respect
to B is given in (3.4). The main result can be stated using Gs (i.e., only principal vertices
of G) and proved using G. We use all the notation in Section 3.2. Let B be the set of the
bamboos of G. Note that we can identify B with the set of the bamboos of Gs.

Theorem 3.10. With the previous notation, put ZB(s) = 0 for B being a top bamboo, and

ZB(s) =
kB∑
i=1

⎡⎢⎢⎢⎢⎢⎣ det(PB
i , P

B
i+1)

(N(PB
i )s + ν(PB

i ))(N(PB
i+1)s + ν(PB

i+1))
− rB

i

N(PB
i )s + ν(PB

i )

⎤⎥⎥⎥⎥⎥⎦
otherwise, where ν(PB

i ) = aB
i ν(P

B
root) + bB

i and

N(PB
i ) = aB

i N(PB
root) + aB

i

i∑
t=1

bB
t AB

t + bB
i

kB∑
t=i+1

aB
t AB

t .

Then, the topological zeta function of ( f ,O) is given by

Ztop
f ,O(s) =

∑
B∈B

⎡⎢⎢⎢⎢⎣ bB
1

(N(PB
root)s + ν(PB

root))(N(PB
1 )s + ν(PB

1 ))
+ ZB(s)

⎤⎥⎥⎥⎥⎦ ,
with N(PB0

root) = 0, ν(PB0
root) = 1, and N(PB

1 ) = ν(PB
1 ) = bB

1 = 1 for any top bamboo B.

Proof. Let us regard each bamboo B of G as a subgraph of G with the edge connecting
E(T B

1 ) to E(PB
root) included. Remark that the vertex E(PB

root) belongs to the predecessor
bamboo Bp of B in G, and that each top bamboo consists of a unique vertex and a unique
edge.

From the definition of Ztop
f ,O(s), if for each bamboo B of G which is not a top bamboo, we

define Z′
B

(s) as the sum of

δ(B)
N(T B

1 )s + ν(T B
1 )
,

1 − δ(B)
(N(PB

root)s + ν(PB
root))(N(T B

1 )s + ν(T B
1 ))
,

1
N(T B

mB)s + ν(T B
mB)
,

kB∑
i=1

−rB
i

N(PB
i )s + ν(PB

i )
, and Z :=

mB−1∑
j=1

1
(N(T B

j )s + ν(T B
j ))(N(T B

j+1)s + ν(T B
j+1))
,

with δ(B0) = 1 and δ(B) = 0 whenever B � B0, and if for each top bamboo B, we define

Z′B(s) =
1

(N(PB
root)s + ν(PB

root))(s + 1)
,

then Ztop
f ,O(s) =

∑
B∈B Z′

B
(s). Similarly as in the nondegenarate case (Theorem 2.1), we have

Z′B0
(s) =

k∑
i=0

det(Pi, Pi+1)
(N(Pi)s + ν(Pi))(N(Pi+1)s + ν(Pi+1))

−
k∑

i=1

ri

N(Pi)s + ν(Pi)
.
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Now we consider a bamboo B of G which is neither the first bamboo B0 nor a top bamboo.
By the same method of computation as in the proof of Theorem 2.1 we get

Z =
kB−1∑
i=1

det(PB
i , P

B
i+1)

(N(PB
i )s + ν(PB

i ))(N(PB
i+1)s + ν(PB

i+1))

+
det(T B

1 , P
B
1 )

(N(T B
1 )s + ν(T B

1 ))(N(PB
1 )s + ν(PB

1 ))
+

det(PB
kB , T B

mB)

(N(PB
kB)s + ν(PB

kB))(N(T B
mB)s + ν(T B

mB))
.

It follows that

Z′B(s) =
bB

1

(N(PB
root)s + ν(PB

root))(N(PB
1 )s + ν(PB

1 ))
+

aB
kB

N(PB
kB)s + ν(PB

kB)

+

kB−1∑
i=1

det(PB
i , P

B
i+1)

(N(PB
i )s + ν(PB

i ))(N(PB
i+1)s + ν(PB

i+1))
−

kB∑
i=1

rB
i

N(PB
i )s + ν(PB

i )
.

Since aB
kB = det(PB

kB , PB
kB+1), N(PB

kB+1) = 0, ν(PB
kB+1) = 1, the theorem is now proved. �

This theorem gives immediately the following corollary.

Corollary 3.11. Every pole of Ztop
f ,O(s) has the form − ν(PB

i )
N(PB

i ) for some B in B and some i

with 1 ≤ i ≤ kB.

In fact, we can go further to state that every number − ν(PB
i )

N(PB
i ) is a pole of Ztop

f ,O(s). However,
its proof is rather long while all we need for the proof of Theorem 4.2 is only Corollary 3.11.
So we skip proving this stronger statement.

4. Applications of Theorem 3.10

4. Applications of Theorem 3.104.1. The topological invariance of the zeta function.
4.1. The topological invariance of the zeta function. Recall that two analytic function

germs ( f , x) and (g, y) on Cn are topologically equivalent if there are neighborhoods U of
x and V of y in Cn, and a homeomorphism ϕ : U → V such that g ◦ ϕ = f . In [3],
Artal Bartolo, Cassou-Noguès, Luengo and Melle Hernández introduce an example which
shows that the topological zeta function of a germ of a complex hypersurface singularity is
not a topological invariant of the singularity. However, in this section we shall prove that
when n = 2 the topological zeta function of a complex singularity is exactly a topological
invariant.

Theorem 4.1. For reduced complex plane curve singularities, the local topological zeta
function is a topological invariant.

Proof. In the toric resolution tree G of the reduced singularity ( f ,O), consider a sequence
of consecutive bamboos from the first one B0 to a top one, say (B0,B1, . . . ,Bg+1) with Bi is
the predecessor of Bi+1. Then the sequence of vertices

(PB1
root, . . . , P

Bg+1
root )

corresponds one-to-one to an irreducible component D of ( f ,O), hence by [2, Remark 4.5.4],
to the sequence of Puiseux pairs of the irreducible component of ( f ,O). Let D′ be another
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irreducible component of ( f ,O), which corresponds to a sequence of consecutive bamboos
(B′0 = B0,B

′
1, . . . ,B

′
g′+1). Let θ be the index such that

PBt
root = PB′t

root, 0 ≤ t ≤ θ, and PBθ+1
root � PB′θ+1

root .

Via Notation 3.3, fixing a bamboo B of G we introduce new notations as follows: If PB
i =

(aB
i , b

B
i ) is the weight vector in the initial expansion of Φ∗

B
D = f B

i	τ (for some 	 and τ), with
ΦB defined in the paragraph right before Lemma 3.9, then we put

a(PB
i ) := aB

i , b(PB
i ) := bB

i , AD(PB
i ) = AB

i	τ.

By [2, Lemma 3.4.2], the intersection number I(D,D′; O) is computed as follows

I(D,D′; O) =
θ∑

t=0

a(PBt
root)b(PBt

root)AD(PBt
root)AD′(P

B′t
root) + Iθ+1,

where Iθ+1 is equal to

min
{
a(PBθ+1

root )b(PB′θ+1
root )AD(PBθ+1

root )AD′(P
B′θ+1
root ), a(PB′θ+1

root )b(PB′θ+1
root )AD(PBθ+1

root )AD′(P
B′θ+1
root )

}
if θ < min{g, g′}, and

Iθ+1 = b(PBθ+1
root )AD(PBθ+1

root )AD′(P
B′θ+1
root )

if θ = g′ = min{g, g′}. This means that the simplified extended resolution graph Gs of ( f ,O)
defined in [8] (see Remark 3.6) completely determines the Puiseux pairs of all the irreducible
components and the intersection numbers of any couple of them. Thus, by Brieskorn [4], Gs

is a topological invariant of the singularity ( f ,O).
Clearly, the statement in Theorem 3.10 can be stated using Gs (i.e., using data from the

principal vertices of the bamboos B of G). Then the topological zeta function of ( f ,O) is
completely determined by Gs of ( f ,O). Since Gs is a topological invariant of ( f ,O), so is
the topological zeta function of ( f ,O). �

4.2. A new proof of the monodromy conjecture for complex plane curves.
4.2. A new proof of the monodromy conjecture for complex plane curves. In 1975,

A’Campo introduced in [1, Theorem 3] a celebrated formula computing the monodromy
zeta function of an isolated singularity in terms of its embedded resolution. For complex
plane curve singularities, a reduced one is always isolated, so we can apply the formula of
A’Campo.

Let f (x, y) be a complex plane curve singularity at the origin O of C2. Its Milnor fiber
FO is the intersection of f −1(η) with a small ball around O for η > 0 very small (see Milnor
[10]). The complex vector spaces Hq(FO,C) (resp. H∗(FO,C)) admit an automorphism M(q)

O
(resp. MO) generated by going once around a loop around O with the starting point η.

Theorem 4.2. Let ( f ,O) be a reduced complex plane curve singularity. If θ is a pole of
Ztop

f ,O(s), then exp(2π
√−1θ) is an eigenvalue of MO.

Proof. By the Weierstrass preparation theorem, we can assume that f (x, y) is in C{x}[y].
Denote by n the degree of the polynomial f (x, y) in the variable y. It is sufficient to consider
the poles different from 1 of Ztop

f ,O(s). By Corollary 3.11, every pole different from 1 is of the
form −ν(PB

i )/N(PB
i ) for some B ∈ Bnt and some i with 1 ≤ i ≤ kB, where Bnt is the set of
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all the non-top bamboos of G (see Definition 3.2, in Figure 1 non-top bamboos are bamboos
containing black vertices).

The proof is by induction with many steps. The first step is to verify for the case where
the number k = kB0 of compact facets of Γ f is ≥ 2. The second one is to do for k = 1 and
the number r1 = rB0

1 of successors of B0 in G is ≥ 2. Finally, for the case k = r1 = 1 we
prove by induction on n.

Let Δ(1)(t) be the characteristic polynomial of M(1)
O . By Milnor [10], Δ(1)(t) is symmetric,

hence Δ(1)(t) = (1 − t)Zmon
f ,O (t), where Zmon

f ,O (t) is the monodromy zeta function of ( f ,O). We
recall the computation of Zmon

f ,O (t) in [7, Theorem 3.5], under the light of [1, Theorem 3], as
follows

Zmon
f ,O (t) =

1
1 − tN(T1)

∏
B∈Bnt

∏kB

i=1(1 − tN(PB
i ))rB

i

1 − tN(T B

mB
)
.(4.1)

Notice that N(T1) and N(T B
mB) are independent of T1 and T B

mB for any B in Bnt, because

N(P1) = b1N(T1), N(PB
kB) = aB

kB N(T B
mB).(4.2)

Hence, from (4.1), if k = kB0 ≥ 2, then Zmon
f ,O (t) equals

(1 − tN(P1))r1

1 − tN(T1) ·
(1 − tN(Pk))rk

1 − tN(Tm)

k−1∏
i=2

(1 − tN(Pi))ri

times

∏
B0�B∈Bnt

(1 − tN(PB

kB ))rB

kB

1 − tN(T B

mB
)

kB−1∏
i=1

(1 − tN(PB
i ))rB

i .

In this formula, observe that the complex numbers exp
(
−2π
√−1ν(PB

i )/N(PB
i )
)

are surely

eigenvalues of M(1)
O if either B = B0 and 2 ≤ i ≤ k − 1 or B � B0 and 1 ≤ i ≤ kB − 1.

Also in the case k ≥ 2, we consider the complex numbers t1 = exp
(
−2π
√−1ν(P1)/N(P1)

)
and tkB = exp

(
−2π
√−1ν(PB

kB)/N(PB
kB)

)
for every B in Bnt. By (4.2) and the recurrence

formula of ν(PB
i ) in Theorem 3.10, we get

tN(T1)
1 = exp

(
−2π
√−1(a1 + b1)/b1

)
= exp

(
−2π
√−1a1/b1

)
and

t
N(T B

mB )

kB = exp
(
−2π
√−1(aB

kBν(PB
root) + bB

kB)/aB
kB

)
= exp

(
−2π
√−1bB

kB/aB
kB

)
.

Since a1, b1 ≥ 2 and aB
kB , bB

kB ≥ 2 are coprime pairs for every B in Bnt, it implies that a1/b1

and bB
kB/aB

kB is not in Z, hence t1 (resp. tkB) is a zero of

(1 − tN(P1))r1

1 − tN(T1) (resp.
(1 − tN(PB

kB ))rB

kB

1 − tN(T B

mB
)

).

So t1 and tkB , for all B in Bnt, are eigenvalues of M(1)
O , thus the proof for k ≥ 2 completes.

We now consider the case k = 1, that is, the initial expansion of f (x, y) at O has the form
(ya1 + ξxb1 )A + (higher terms), with ξ in C∗ and A in N∗. If r1 ≥ 2, then by (4.2), the same
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arguments as in the case k ≥ 2 still holds, and we thus have that exp
(
−2π
√−1ν(P1)/N(P1)

)
is an eigenvalue of M(1)

O , where P1 = (a1, b1)t. Assume that r1 = 1. We are going to prove the
theorem by induction of the degree n = a1A of the polynomial f in the variable y. Obviously,
the theorem holds for A = 1. Assume that the theorem already holds for every function germ
of degree in y less than n. Let B1 be the unique successor of B0. Since N(T B1

1 ) = A, the
function Zmon

f ,O (t) equals

(1 − ta1b1A)(1 − tA)
(1 − tb1A)(1 − ta1A)

· 1

1 − tN(T B1
1 )
·

∏
B0�B∈Bnt

(1 − tN(PB

kB ))rB

kB

1 − tN(T B

mB
)

kB−1∏
i=1

(1 − tN(PB
i ))rB

i .

By (4.1) we get

Zmon
f ,O (t) =

(1 − ta1b1A)(1 − tA)
(1 − tb1A)(1 − ta1A)

Zmon
π∗1 f ,O′(t),

where O′ is the origin of the system of Tschirnhausen coordinates after the toric modification
π1 admissible for f . Clearly, t1 is a root of the polynomial

(1 − ta1b1A)(1 − tA)
(1 − tb1A)(1 − ta1A)

,

and the degree of π∗1 f in y is less than n. This completes the proof. �
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